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Cells use signaling networks consisting of multiple interacting proteins to respond
to changes in their environment. In many situations, such as chemotaxis, spatial
and temporal information must be transmitted through the network. Recent
computational studies have emphasized the importance of cellular geometry in
signal transduction, but have been limited in their ability to accurately represent
complex cell morphologies. We present a finite volume method that addresses
this problem. Our method uses Cartesian-cut cells in a differential algebraic
formulation to handle the complex boundary dynamics encountered in biological
systems. The method is second-order in space and time. Several models of
signaling systems are simulated in realistic cell morphologies obtained from live
cell images. We then examine the effects of geometry on signal transduction.

1. Introduction

Cells must be able to sense and respond to external environmental cues. Information
about external signals, such as hormones or growth factors, is transmitted by
signaling pathways to the cellular machinery required to generate the appropriate
response. Defects in these pathways can lead to diseases, such as cancer, diabetes,
and heart disease. Therefore, understanding how intracellular signaling pathways
function is not only a fundamental problem in cell biology, but also important for
developing therapeutic strategies for treating disease.

In many pathways, proper signal transduction requires that both the spatial
and temporal dynamics of the system be tightly regulated [10]. For example,
recent experiments have revealed spatial gradients of protein activation in migrating
cells [19]. Mathematical models can be used to elucidate the control mechanisms
used to regulate the spatiotemporal dynamics of signaling pathways, and recent
computational studies emphasize the importance of cellular geometry in signaling
networks [16; 17; 23]. For computational simplicity, many of these investigations
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assume idealized cell geometries [12; 16], whereas others approximate irregularly
shaped cells using a “staircase” representation of the cell membrane [22].

Both finite element and finite volume methods have been used to simulate spatial
models of biochemical reaction networks [16; 22; 23; 31]. The most common finite
volume algorithm to simulate reaction networks in two and three dimensions is
the virtual cell algorithm [22]. Cellular geometries are represented by staircase
curves. The authors note that the approximation of fluxes across membranes leads
to a decrease in the spatial accuracy of the numerical method to first-order. The
temporal accuracy of algorithm in [22] is also limited to first-order. For finite
element methods, which typically require a triangulation of the computational
domain, grid generation can be a challenge. This becomes especially true if the
boundaries of the computational domain are moving.

To overcome the issues of accurate boundary representation and grid generation,
we developed a finite volume method that utilizes a Cartesian grid. Our numerical
scheme is based on a cut-cell method that accurately represents the cell boundary
using a piecewise-linear approximation. The method presented here extends the
results on embedded boundary methods to systems of nonlinear reaction diffusion
equations with arbitrary boundary conditions. Embedded boundary methods [4; 5;
9; 13; 15; 25] have been used to solve Poisson’s equation [9] and the heat equation
[15; 25] with homogeneous Dirichlet and Neumann boundary conditions as well
as hyperbolic conservation laws [5]. Surface diffusion of one species in three
dimensions was simulated with an embedded boundary discretization in [24]. We
also offer an alternative formulation to embedded boundary methods for handling
the temporal update. In our formulation, the boundary conditions form a system of
nonlinear algebraic equations that can be solved with existing differential algebraic
equation solvers. We provide a novel use of DASPK (Differential Algebraic Solver
Pack) [2] as a time integrator for the finite volume method. The embedded boundary
spatial discretization combined with the differential algebraic formulation allows
us to achieve second-order accuracy in space and time. Our method also provides
an appropriate framework for addressing moving boundary problems using level
set methods [18; 26].

The remainder of the article is organized as follows. In Section 2, we describe
the mathematical formulation and governing equations. In Section 3, we describe
the numerical scheme, the flux based formulation, and coupling reactions terms
on the interior and boundary with spatial terms to form one interconnected system.
We also outline how the system is adapted for the DASPK numerical solver [2]. In
Section 4, we verify the numerical method. The computed solution is compared to a
known solution on a circular domain. Additionally, we perform grid refinements of
the computed solution on a well resolved grid to show convergence in the absence of
an exact solution. The numerical method is then demonstrated on a more physically
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relevant domain with an irregular domain. Finally, we simulate a biologically
relevant reaction-diffusion model on a very irregular domain.

2. Mathematical formulation

Spatial models of biochemical reaction networks are typically represented using
partial differential equations consisting of reaction and diffusion terms. Active
transport, driven by molecular motors, also occurs within cells. This effect can be
included in our numerical scheme by the use of advection terms and will be addressed
in future work. For simplicity we restrict ourselves to two spatial dimensions x
and y. For a given chemical species, the reaction terms encompass processes such
as activation, degradation, protein modifications and the formation of molecular
complexes. These reactions typically include nonlinear terms, such as those arising
from Michaelis–Menten kinetics. In a system consisting of n chemical species,
the concentration of the i th species ci evolves in space and time according to the
equation

∂ci

∂t
=−∇ · J+ fi (c), (1)

where J = −Di∇ci is the flux density, Di is the diffusion coefficient, and the
function fi (c) models the reactions within the cell that affect ci . The elements of
the vector c are the concentrations of the n chemical species. Reactions also may
occur on the cell membrane yielding nonlinear conditions on the boundary ∂�:

−DEn · ∇ci |∂�+ g(c)|∂� = 0. (2)

Equations (1) and (2) are solved subject to appropriate initial conditions ci (x, y, 0)
for each species in the system.

3. Numerical methods

Our goal is to develop a simulation tool that can accurately and efficiently solve
spatial models of signaling and regulatory pathways in realistic cellular geometries.
We obtain the computational domain from live-cell images. The model equations
are solved on a Cartesian grid by discretizing the Laplacian operator, which models
molecular diffusion, with a finite volume method.

3.1. Computational domain. Figure 1 shows a gray-scale image of a mouse fi-
broblast [19]. Because the original image is noisy, the image was smoothed by
convolving it twice with the standard five-point Gaussian smoothing filter. After
smoothing, a suitable thresholding value was picked, and the front was computed by
an iso-contour finder. A signed distance function is constructed with the smoothened
boundary using fast marching methods [14]. The zero-level set of the signed distance
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Figure 1. Grayscale image of a mouse fibroblast taken from sup-
plemental data in [19] (left) and the smoothened boundary (right).

function yields piecewise linear segments used to define cut cells (Figure 2). Implicit
representation of irregular boundaries has also been proposed in [4; 13].

3.2. Discretization of the spatial operator. We utilize a Cartesian grid-based, finite
volume algorithm originally presented in [9] to discretize the diffusion operator
arising from (1). Finite volume methods store the average value of the concentration
over a computational grid cell at the location (i, j). That is,

c̄i, j =
1

Vi, j

∫∫
Vi, j

c(x, y) dV, (3)

Figure 2. Computational boundary (dashed line) with an assumed
higher-order representation of the cell boundary drawn as a solid
line.
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where Vi, j is the volume of the (i, j) grid cell. Inserting (3) into (1) produces

∂ c̄i, j

∂t
− f (c)i, j =−

1
Vi, j

∫∫
Vi, j

∇ · J dV . (4)

The divergence theorem allows us to convert the above volume integral into a
surface integral,

∂ c̄i, j

∂t
− f (c)i, j =−

1
Vi, j

∫
∂Vi, j

(J · En) d S. (5)

For interior grid cells, we have

∂ c̄i, j

∂t
− f (c)i, j =−

1
Vi, j

[∫ y j+1/2

y j−1/2

(
Jx(xi+1/2, y)− Jx(xi−1/2, y)

)
dy

+

∫ xi+1/2

xi−1/2

(
Jy(x, y j+1/2)− Jy(x, y j−1/2)

)
dx

]
, (6)

where Jx =−D(∂c/∂x) and Jy =−D(∂c/∂y). Approximation of the integrals in
(6) with the midpoint rule yields

∂ci, j

∂t
− f (ci, j )≈−

1
Vi, j

[
1y(Jx(xi+1/2, y j )− Jx(xi−1/2, y j ))

+1x
(
Jy(xi , y j+1/2)− Jy(xi , y j−1/2)

)]
. (7)

By approximating the gradient terms with centered differences, we arrive at the
standard five-point Laplacian. Therefore in computational grid cells with volume
Vi, j = 1, the finite volume stencil is the same as the five-point Laplacian approxi-
mation.

The cut-cell method generalizes as follows. The boundary of the computational
domain is approximated as a piecewise linear segments (Figure 2, dashed line), and
grid cells that the boundary passes through are referred to as cut cells. The volume
of a cut cell is computed by recasting the volume integral as a boundary integral:

Vi, j =

∫∫
Vi, j

dV =
∫∫

Vi, j

∇ ·

( x
2
,

y
2

)
dV =

∫
∂Vi, j

(( x
2
,

y
2

)
· En
)

d S, (8)

where En is the normal vector to the surface. The integral on the right can be
computed exactly for the polygon. Each segment is evaluated, then summed. The
center of mass can also be computed using a boundary integral, for example:∫∫

Vi j

xdV =
∫∫

Vi j

∇ ·

( x2

2
, 0
)

dV =
∫
∂Vi, j

(( x2

2
, 0
)
· En
)

d S. (9)

We initialize cut cells with values computed at the centroid as in [15].
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Next, we construct the integral on the right side of (5) for a cut cell. In general,
there are up to five surface integrals to approximate. Let al,m ∈ [0, 1] represent the
fraction of each of the four cell edges covered by the cut cell and a f be the length
of the line segment representing the boundary. Then (7) becomes

∂ci, j

∂t
− f (ci, j )≈−

1
Vi, j

[
1y

(
ai+1/2, j Jx(xci+1/2, y j )− ai−1/2, j Jx(xci−1/2, y j )

)
+1x

(
ai, j+1/2 Jy(xi , yc j+1/2)− ai, j−1/2 Jy(xi , yc j−1/2)

)
+ a f J f

]
. (10)

The notation (xci±1/2, y j ) indicates the midpoint of partially covered (xi±1/2, y j )

face. Let

Fi±1/2, j =−ai±1/2, j1y Jx(xci±1/2, y j ), Fi, j±1/2 =−ai, j±1/21x Jy(xi , yc j±1/2).

With this notation, we rewrite the previous equation as

∂ci, j

∂t
− f (ci, j )≈

1
Vi, j

(
Fi+1/2, j − Fi−1/2, j + Fi, j+1/2− Fi, j−1/2− F f

i, j

)
. (11)

We refer to the Fs as the surface fluxes (Figure 3). On a full edge with al,m = 1 the
surface flux is calculated with centered differences. For example, in Figure 3, we
have

Fi−1/2, j+1 = D1y
ci, j+1− ci−1, j+1

1x
. (12)

The flux gradient across a cut edge, for example (xi−1/2, y j ), is approximated by
a linear interpolation of two gradients, which are computed by centered differences.
A linear interpolation formula between two points y1 and y2 as a function of a

ci−1, j+1 ci, j+1 ci+1, j+1

ci−1, j ci, j

Fi−1/2, j
Fi, j+1/2

F f
i, j

Outside

Figure 3. Diagram of fluxes for cut cells where shaded boxes
indicate cells that are inside the boundary.
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parameter µ ∈ [0, 1] is
y I
= (1−µ)y1+µy2. (13)

In the case of a cut-cell edge, µ= (1+ al,m)/2. For example, to construct Fi−1/2, j

in Figure 3, the gradient at (xi−1/2, y j ) and (xi−1/2, y j+1) is used:

Fi−1/2, j = Dai−1/2, j1y
[
(1+ ai−1/2, j )

2
(ci, j − ci−1, j )

1x

+
(1− ai−1/2, j )

2
(ci, j+1− ci−1, j+1)

1x

]
. (14)

To calculate the flux through a boundary, for example, F f
i, j , we compute the

gradient along a line normal to the boundary and centered at the boundary midpoint.
To find function values on the normal line, we interpolate using three equally spaced
cell-centered points (Figure 4). If the normal line is oriented with an angle of
π/4 < |θ | < 3π/4 relative to the horizontal grid lines, horizontal grid points are
used to compute the values on the line. Otherwise vertical points are used.

The two points computed along the normal line and the value on the boundary
are then used to construct a quadratic polynomial. The concentration gradient is
calculated by differentiating the quadratic polynomial and evaluating the result at
the boundary point c f :

G f
=

1
d2− d1

[
d2

d1
(c f
− cI

1)−
d1

d2
(c f
− cI

2)

]
, (15)

cI
2

cI
1

c f

Outside

Figure 4. White circles indicate interpolated values that depend
on the grid-based values.
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where cI
1 and cI

2 are the interpolated values along the normal line and d1 and d2,
respectively, are the distances of these two points from the boundary. The flux F f

i j
in (11) is calculated by multiplying G f by the area of the cut-cell edge a f and the
diffusion coefficient D. The discretization of the boundary condition (2) becomes
the algebraic equation

DG f
+ g(c f )= 0. (16)

Because all gradients are constructed with second-order methods, the overall dis-
cretization scheme is second-order in space. Further discussion on the accuracy of
the spatial discretization scheme can be found in [9].

3.3. Time discretization. Spatial discretizations of (1) and (2) are treated as a
differential-algebraic system of nonlinear equations (DAE). The general form for a
differential-algebraic system is

F(t,C,C ′)= 0, (17)

where C is an (Ng+Nb)×1 vector. The first Ng entries are associated with Cartesian
grid based values in the differential-algebraic system from the discretization of
(1) for the chemical species concentrations. These entries have an explicit time
derivative term. The Nb remaining entries arise from discretizing the boundary
conditions given in (2) that form algebraic constraints. As noted in [1], reformulating
algebraic constraints in a nonlinear model as a system of ordinary differential
equations may be time consuming or impossible. DAEs formed by reaction-diffusion
equations described in Section 2 are semiexplicit, index-1 systems of the form

C ′1 = F1(C1,C2, t),

0 = F2(C1,C2, t).
(18)

C1 represents the first Ng variables and C2 represents the remaining Nb variables.
Equation (18) is an index-1 system if and only if ∂F2/∂C2 is nonsingular [1].
Ordinary differential equations are index-0.

We use the DASPK solver described in [2] as a time integrator for our differential
algebraic system. In DAPSK, backward differentiation formulas (BDF) discretize
the time derivative in (17). A basic implicit method with a backward Euler time
discretization of (17) is given by,

F
(

tn+1,Cn+1,
Cn+1

−Cn

1t

)
= 0, (19)

where n is defined such that tn
= n1t . Newton’s method can be used to solve the

resulting nonlinear equations for Cn+1,

Cn+1
m+1 = Cn+1

m −

(∂F
∂C
+

1
1t

∂F
∂C ′

)∣∣∣−1

Cn+1
m

F
(

tn+1,Cn+1
m ,

Cn+1
m −Cn

1t

)
, (20)
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where m is the index of the Newton iteration. In order to achieve higher-order
temporal accuracy, a higher-order interpolating polynomial is used to approximate
the time derivative.

In a k-step BDF, the time derivative is replaced by the derivative of an inter-
polating polynomial at k + 1 times tn+1, tn . . . , tn+1−k evaluated at tn+1. If we
approximate the derivative using a kth order stencil using k known values and the
implicit value Cn+1 we get

C ′ n+1
≈

1
1t

(
α0Cn+1

+

k∑
i=1

αi Cn+1−i
)
. (21)

The coefficients of the BDF are given by αi s. In DAPSK, these values are coefficients
of the Newton divided difference interpolating polynomial [1]. The default order of
the BDF method in DASPK is five.

The new implicit equation to be solved at each time step is

F
(

tn+1,Cn+1,
1
1t

(
α0Cn+1

+

k∑
i=1

αi Cn+1−i
))
= 0. (22)

This can be rewritten as

F
(

tn+1,Cn+1,
α0

1t
Cn+1

+ v
)
= 0, (23)

where v is a vector that depends on previously computed time values. Details of
choosing step-size, starting selection and variable order strategies are found in [1].
The nonlinear system is solved with a modified Newton’s method, given by

Cn+1
m+1 = Cn

m − ζ
(∂F
∂C
+
α0

1t
∂F
∂C ′

)∣∣∣−1

Cn+1
m

F
(

tn+1,Cn+1
m ,

α0

1t
Cn+1

m + v
)
, (24)

where ζ is a constant chosen to speed up convergence and m is the iteration index.
Each step of the Newton iteration requires inverting the matrix

A =
∂F
∂C
+
α0

1t
∂F
∂C ′

. (25)

We store this matrix in sparse triple format, and use routines from SPARSKIT [20]
to solve the linear system iteratively. The generalized minimal residual (GMRES)
method [21] with an incomplete LU (ILU) preconditioner is used to solve the linear
system.

4. Results

4.1. Convergence tests. To demonstrate the accuracy of our method on a domain
containing all types of cut cells, the convergence of our method is compared against
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an exact solution on a circle. The exact solution to the diffusion equation with a
zero Dirichlet boundary condition can be found in terms of Bessel functions. Let λ
denote the first root of the Bessel function J0(x), and r be the radius of the circle
centered at the point (0.5, 0.5). Then the expression

f (x, y, t)= exp
(
−D

(
λ
r

)2
t
)

J0

(
λ

√

(x − 0.5)2+ (y− 0.5)2

r

)
(26)

is an exact solution to the diffusion equation.
For this example, the error is computed as the difference between computed

solution values on a triangular grid subtracted from the exact solution. The grids for
both two dimensional triangular meshes were the same. For purposes of generating
the following convergence data, the spatial steps 1x and 1y are equal and set to
1/N , where N is the grid size. The time step 1t is set to 1x/4 (that is, it is refined
with the spatial step size). Because DASPK uses variable time steps, the output at
the time step requested might be interpolated as described in [1]. A time series of
the truncation error in the infinity norm over time is shown in Figure 5. Table 1
lists the truncation error at the simulation time t = 0.4. The convergence rate r is
calculated as

r = log
e1

e2

/
log

1x1

1x2
, (27)

where e1 and e2 are errors computed in norms with grid spacing 1x1 and 1x2. A
log-log plot of truncation error as a function of the spatial step is shown in Figure 6.
The error was calculated with the computed and exact solutions at the time value of
t = 0.4. The results of this analysis demonstrate global second-order accuracy of
the numerical method.

Next we tested a nonlinear system in which a protein C can exist in two dis-
tinct chemical states: active and inactive. The reactions that convert the protein
between the two states are assumed to follow Michaelis–Menten kinetics, which
describes the kinetics of many enzymatic reactions including phosphorylation and
dephosphorylation events [11]. The protein C is deactivated in the interior of the

Grid size Time step L2 norm r L1 norm r L∞ norm r

50 × 50 5.00·10−3 2.95·10−4
− 2.61·10−4

− 5.46·10−4
−

100 × 100 2.50·10−3 4.94·10−5 2.58 4.32·10−5 2.59 9.28·10−5 2.56
200 × 200 1.25·10−3 1.05·10−5 2.24 9.20·10−6 2.23 2.09·10−5 2.15
400 × 400 6.25·10−4 2.42·10−6 2.11 2.13·10−6 2.11 5.42·10−6 1.95

Table 1. The norms and convergence rates for the diffusion equa-
tion at the time value of 0.4.
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Figure 5. L∞-norm truncation error for the diffusion equation,
with size N = 100, 200, 400 (from top to bottom). The time step at
each refinement was set to 1/(4N ).

computational domain according to the following equations:

∂Ci

∂t
= D1Ci +

k2Ca

Km2+Ca
,

∂Ca

∂t
= D1Ca −

k2Ca

km2+Ca
, (28)

where Ci and Ca are the concentrations of inactive and active protein, respectively,
k2 is the maximum deactivation rate, and Km2 is the Michaelis constant. Activation
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L2 norm
First order reference
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r
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Figure 6. Truncation error for the diffusion equation at the time
value of 0.4. The convergence data is the same as in Table 1.
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occurs on the boundary, ∂�, according to the following boundary conditions:

−DEn · ∇Ci |∂� =
k1SCi

Km1+Ci

∣∣∣
∂�
, −DEn · ∇Ca|∂� =−

k1SCi

Km1+Ci

∣∣∣
∂�
, (29)

where k1 is the maximum activation rate and Km1 is the Michaelis constant. The
equations are solved in the domain

�(r, θ)= r ≤ 0.3− 0.09 sin(4θ). (30)

In our simulation, � is shifted to the center of the unit box. The initial concentration
of inactive protein is assumed to be constant and equal to 1. There is initially no
active protein. Figure 7 shows a plot of the active concentration at t = 0.25.
For visualization purposes, the computational domain and boundary points are
triangulated with Triangle [27]. The concentration of the active protein is shown as
a cross-section of the two-dimensional geometry at several time values in Figure
7, bottom. The constants (see figure caption) were arbitrarily chosen to generate a
gradient. Execution times for Mac Pro desktop computer with dual-core 2.66 GHz
Intel Xeon processors for different grid sizes are listed in Table 2.

We compute the error as the difference between successive grid refinements as
follows. The truncation error function E(x, y, t) is defined on interior values of the
coarser grid. Computed solution values located in coarse grid cut cells are excluded
from the domain. This includes some values located in interior points for the more
refined grid (Figure 8). The truncation error function is defined as

E(x, y, t)= c1x(x, y, t)− c1x/2(x, y, t). (31)

The coarse grid values are located in the center of a box defined by four refined grid
values. Four refined grid values are averaged and subtracted from one coarse value.
Because the time integration is handled implicitly, a different convergence rate of
the truncation error in cut cells and boundary values would affect the convergence

Execution
Grid size Time step time

50 × 50 5.000·10−3 1.76 s
100 × 100 2.500·10−3 5.81 s
200 × 200 1.250·10−3 32.15 s
400 × 400 6.250·10−4 203.95 s
800 × 800 3.125·10−4 1202.18 s

Table 2. Execution times for the two-species model. The end time
of the simulation was t = 0.5.
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Figure 7. Concentration of the active species Ca at t = 0.25 (top)
and at evenly spaced time values for t ∈ [0, 0.25] (bottom) along the
section shown with a dashed line in the top figure. Values chosen
for the constants: D = Km1 = km2 = 0.2, S = k1 = k2 = 1.0.

rate of the truncation error for interior cells. Therefore, by computing the error with
interior cells, we are still able to draw conclusions about the order of the method.

Table 3 lists convergence data for the two-species system given by (28) and (29).
The data used for calculating the error was taken from computed solutions at the
simulation time value of t = 0.5. Note that the norms of truncation errors for both Ci

and Ca are the same. The system is mass conservative, and the computed solution
is also conservative to machine precision. Therefore we only show convergence
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Species Ci

Grid size Time step L2 norm r L1 norm r L∞ norm r

50 × 50 5.000·10−3
− − − − − −

100 × 100 2.500·10−3 7.59·10−4
− 1.67·10−4

− 1.49·10−3
−

200 × 200 1.250·10−3 1.92·10−4 1.98 4.44·10−5 1.91 5.01·10−4 1.57
400 × 400 6.250·10−4 4.57·10−5 2.07 1.08·10−5 2.04 1.25·10−4 2.00
800 × 800 3.125·10−4 1.09·10−5 2.07 2.61·10−6 2.05 3.12·10−5 2.00

Species Ca

Grid size Time step L2 norm r L1 norm r L∞ norm r

50 × 50 5.000·10−3
− − − − − −

100 × 100 2.500·10−3 7.59·10−4
− 1.67·10−4

− 1.49·10−3
−

200 × 200 1.250·10−3 1.92·10−4 1.98 4.44·10−5 1.91 5.01·10−4 1.57
400 × 400 6.250·10−4 4.57·10−5 2.07 1.08·10−5 2.04 12.5·10−4 2.00
800 × 800 3.125·10−4 1.09·10−5 2.07 2.61·10−6 2.05 3.12·10−5 2.00

Table 3. Norms and convergence rates for the two-species model
at the time value of 0.5.

Figure 8. Interior grid cells on the coarser grid (dashed lines) are
shaded. Square- and diamond-filled points indicate locations of
cell-centered values on the coarse grid. Values associated with
diamond-grid points represent cut cells for the coarser grid. Coarse
and refined values in these cut cells are not used in the averaging
scheme. The refined grid is indicated by solid lines. Circles mark
the cell centers of the refined grid cells. Four-refined point values
are averaged and compared to the square point on the coarse grid.
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Figure 9. L∞-norm truncation error for species Ci for the reaction-
diffusion equation. The values for the top plot were computed by
subtracting the solution at grid size N = 200 from the one at
N = 100 (see text). The middle plot was calculated with N = 200
and N = 400, and the bottom one with N = 400 and N = 800.

figures for species Ci . The truncation error for species Ci computed in the infinity
norm as a function of time is listed in Figure 9. A log-log plot of the truncation
error as a function of the grid size is listed in Figure 10. From this analysis, we
conclude second-order accuracy.

Second order reference
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Figure 10. Truncation error for the Ci at the time value of 0.5.
The convergence data is the same as that in Table 3.



46 WANDA STRYCHALSKI, DAVID ADALSTEINSSON AND TIMOTHY ELSTON

4.2. A two-compartment model. In this model, we have two compartments: cyto-
plasm and nucleus. The cellular geometry was taken from a yeast cell undergoing
chemotrophic growth in the direction of a pheromone gradient [8]. Proteins involved
in the pheromone response pathway are known to localize on the plasma membrane,
the nucleus, and in the cytosol [7]. The nucleus is modeled as a circle located
toward the front of the cell. Because yeast cells are three dimensional, we model
the top view of the cell as in [6], where membrane-bound species are located in
the interior of the computational domain but are assumed to diffuse slower than
cytosolic forms.

The model consists of two species, A and C , with inactive and active forms.
Protein C is allowed to enter and exit the nucleus, whereas protein A is restricted
to the cytoplasm (Figure 11, top).

A→ A∗

C
A∗
→ C∗

C∗ → C

0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3
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0.5

0.6

0.7

0.8

0.9
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0.77

0.78

0.79
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0.81

0.82

0.83

0.84

0.85
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0.87

Figure 11. Two-compartment model. Top: reactions and species
in the two-compartment model. Bottom: steady-state concentration
values for active C species in the cytoplasm and nucleus.
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Initially both A and C are in their inactive forms. At the beginning of the
simulation, the reaction rate for the activation of A, k0, is instantaneously increased
from 0 to 1. This is meant to model the cell receiving an external signal. Once A is
activated it is assumed to interact with the cell membrane, causing a reduction in the
protein’s diffusion coefficient [30]. The active form of A can then activate protein
C . The active form of C is only deactivated within the nucleus. This simple model
captures some of the signaling events that occur during the pheromone response of
yeast [28]. If we denote the concentration of a chemical species with brackets, the
equations for the cytoplasmic species are:

∂[Ac]

∂t
= D11[Ac] − k0[Ac],

∂[A∗c ]
∂t
= D21[A∗c ] + k0[Ac],

∂[Cc]

∂t
= D11[Cc] − k1[A∗c ][Cc],

∂[C∗c ]
∂t
= D11[C∗c ] + k1[A∗c ][Cc],

(32)

where the asterisks denote the active form of the protein, D1 is the diffusion
coefficient in the cytoplasm, D2 is diffusion coefficient in the membrane, and the ks
represent the reaction rates. Subscripts indicate cytosolic and nuclear species. The
boundary conditions at the cell membrane ∂�1 are no flux for all chemical species.
The nuclear boundary conditions for A species are also no flux, whereas C species
are allowed to move through the nuclear membrane ∂�2 and satisfy the conditions

−D1(En · ∇[Cc])|∂�2 =−k2([Cn] − [Cc])|∂�2,

−D1(En · ∇[C∗c ])|∂�2 =−k2([C∗n ] − [C
∗

c ])|∂�2,

−D1(En · ∇[Cn])|∂�2 = k2([Cn] − [Cc])|∂�2,

−D1(En · ∇[C∗n ])|∂�2 = k2([C∗n ] − [C
∗

c ])|∂�2 .

(33)

Nuclear C∗ is deactivated according to the equations

∂[Cn]

∂t
= D11[Cn] + k3[C∗n ],

∂[C∗n ]
∂t
= D11[C∗n ] − k3[C∗n ]. (34)

The steady-state spatial distribution of active C is illustrated in Figure 11, bottom.
All reaction constants were arbitrarily chosen to be 1, D1=0.1, D2=0.01, and1x=
1/200. The initial values were zero except for [Ac](x, y, 0) = [Cc](x, y, 0) = 1.
The execution time of the simulation to run from t = 0 until t = 20 was 150 seconds
on Mac Pro desktop computer with dual-core 2.66 GHz Intel Xeon processors.

To verify that the system is close a steady-state solution at t = 20, we subtracted
the solution of active C in the cytoplasm [C∗c ] for all times from the assumed steady-
state solution at the time value of t = 20. If the system exponentially converges to
the computed solution at t = 20, we assume this time value is close to steady-state.
Figure 12 shows the infinity norm of the difference between the computed solution
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Figure 12. Solid line: norm of difference of the computed solution
at the assumed steady-state value at t = 20 from computed solution
over time. Dashed line: exponential fit.

and the solution at t = 20 sampled over time. Based on this data, the system is
close to its steady-state solution.

The model simulation suggests a spatial activation gradient can be generated by
the position of the nucleus. The inactivation of C in the nucleus leads to a higher
concentration of active protein in the rear of the cell in spite of a uniform spatial
signal from active A.

4.3. Rho family GTPase model. The Rho family of GTPases regulates many cel-
lular functions, including polarization and motility. We created a model with three
key members of this family, Cdc42, Rac, and Rho; the interactions, based on [3],
can be schematically represented as follows:

Signal Cdc42 Rac Rho

A more complicated model involving these proteins in one dimension can be found
in [6]. As in the previous example, we assume a top view of a three dimensional
cell with membrane bound active forms and cytosolic inactive forms of the three
proteins. The model has a total of six species. The cell boundary ∂� is taken from
supplemental material from [19].
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In our model, a uniform extracellular signal triggers the activation of Cdc42
protein on the cell edge,

−DEn · ∇ [Cdc42i ]
∣∣
∂�
=

k1S [Cdc42i ]
Km1+ [Cdc42i ]

∣∣∣
∂�
,

−DEn · ∇ [Cdc42a]
∣∣
∂�
=−

k1S [Cdc42i ]
km2+ [Cdc42i ]

∣∣∣
∂�
.

(35)

In the cell interior, active Cdc42 is inactivated. A positive feedback loop increases
the activation of Cdc42,

∂ [Cdc42i ]
∂t

= D1 [Cdc42i ]+
k2 [Cdc42a]

Km3+ [Cdc42a]
−

k3 [Cdc42a] [Cdc42i ]
Km4+ [Cdc42i ]

,

∂ [Cdc42a]
∂t

= D1 [Cdc42a]−
k2 [Cdc42a]

km5+ [Cdc42a]
+

k3 [Cdc42a] [Cdc42i ]
km6+ [Cdc42i ]

.

(36)

Rac is activated by Cdc42, and a positive feedback loop increases the concentration
of active Rac. Active Rho increases the deactivation of Rac in the cytosol,

∂[Raci ]

∂t
= D1[Raci ]+

(k4[Rhoa]+k5)[Raca]

Km7+[Raca]
−
(k6[Cdc42a]+k7[Raca])[Raci ]

Km8+[Raci ]
,

∂[Raca]

∂t
= D1[Raca]−

(k4[Rhoa]+k5)[Raca]

km9+[Raca]
+
(k6[Cdc42a]+k7[Raca])[Raci ]

km10+[Raci ]
.

Rho is activated by the active form of Rac and deactivated in the interior,

∂ [Rhoi ]
∂t

= D1 [Rhoi ] +
k8 [Rhoa]

Km11+ [Rhoa]
−

k9 [Raca] [Rhoi ]
Km12+ [Rhoi ]

,

∂ [Rhoa]
∂t

= D1 [Rhoa]−
k8 [Rhoa]

km13+ [Rhoa]
+

k9 [Raca] [Rhoi ]
km14+ [Rhoi ]

.

(37)

The boundary conditions for Rac and Rho species are no flux. The steady-state
distribution is displayed in Figure 13. To achieve these results, a step size 1x =
1/200 and a diffusion coefficient D = 0.1 were used. The reaction constants
for the simulation were arbitrarily chosen as follows: S = k3 = k5 = k7 = 1.0,
k2 = k4 = k8 = 3.0, k1 = k6 = k9 = 5.0, and all Kmi and kmi equal to 0.2.

The initial concentration of inactive chemical species was set to one and zero for
active species. The execution time was 217 seconds for 1600 time steps on a Mac
Pro desktop computer with dual-core 2.66 GHz Intel Xeon processors.

In this model, a gradient is formed by protein activation on the cell edge, and
propagated to the downstream signaling components Rac and Rho. Figure 13 shows
that filopodia and thin protrusions have higher activation levels due the increased
ratio of cell membrane to cell volume in these regions [16].
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Figure 13. Rho GTPase model: steady-state distribution of protein
concentration amounts in a fibroblast. The boundary was taken
from a live cell image [19]. Values chosen for the constants: S =
k3 = k5 = k7 = 1.0, k2 = k4 = k8 = 3.0, k1 = k6 = k9 = 5.0, and
all Kmi and kmi equal to 0.2.

5. Conclusions

We have developed an accurate and efficient cut-cell method for simulating spatial
models of signaling pathways in realistic cellular geometries. We demonstrated
our method using models that consist of multiple species interacting in multiple
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compartments. The examples were chosen to illustrate the numerical methods
and therefore lack many details found in real biological signaling systems. In
particular, feedback and feed forward control mechanisms that regulate pathway
activity were not considered in detail. Our numerical methods provide important
tools for investigating such regulatory mechanisms in realistic cell geometries
and, therefore, should provide important insights into the ways signaling networks
process and transmit information.

Our algorithm extends previous work on embedded boundary methods [5; 9;
15; 25]. These methods have been implemented in two and three dimension for
Poisson’s equation, the heat equation, and hyperbolic conservation laws. Our
formulation extends these methods to systems of reaction-diffusion equations with
nonlinear reactions in the interior as well as nonlinear reactions affecting boundary
values. The boundary conditions treated in previous work [9; 15; 25] have been
homogeneous Dirichlet and Neumann, which is not sufficient for many models
of signaling pathways [16]. In [15], a second-order implicit method was used to
update the heat equation in time [29]. In our method, we use an implicit nonlinear
solver to handle nonlinear reactions occurring in the interior. An advantage of the
differential-algebraic formulation is the ability to treat the boundary conditions
as algebraic constraints. This allows us to handle reactions that take place on the
physical boundary of the reaction-diffusion equation.

One limitation of the finite volume discretization arises from the interpolation
method to obtain the normal derivative to the surface as shown in Figure 4. Cut cells
must not have a zero volume cell within two rows or columns. For biological cells
with long, thin or irregularly-shaped components such as neurons, mesh adaptive
refinement may be needed to resolve the cellular geometry.

The underlying Cartesian-grid based finite volume discretization allows us to
use advection schemes originally developed for hyperbolic conservation laws to
simulate active transport or motility. In future reports, we will show how level set
methods [18; 26] can be combined with biochemical reaction networks to investigate
the effect of moving boundaries on cell signaling. Future work also includes a three-
dimensional implementation of our fixed boundary algorithm. A three-dimensional
extension of our method could be coupled with the method for simulating diffusion
on a surface presented in [24] to obtain an algorithm for simulating models that take
into account processes that occur both in the cytoplasm and on the cell membrane.
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