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PARALLEL IN TIME ALGORITHMS WITH REDUCTION
METHODS FOR SOLVING CHEMICAL KINETICS

ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

We design suitable parallel in time algorithms coupled with reduction methods
for the stiff differential systems integration arising in chemical kinetics. We
consider linear as well as nonlinear systems. The numerical efficiency of our
approach is illustrated by a realistic ozone production model.

1. Introduction

Parareal algorithms were first introduced in [18] to solve evolution problems in
real time. The principle is the following. One first approximates the solution on
a coarse time grid, and then locally solves the equations on fine time subgrids on
parallel computers. One can prove that the associated iterative procedure ensures an
accuracy which is of same order as a sequential algorithm on a global fine time grid.
Mathematical properties of these algorithms have been recently investigated; see
[2; 25; 16; 15; 13; 14; 12], for example. They have been applied in various fields,
such as financial mathematics [3], fluid mechanics and fluid-structure interaction
[9; 11; 10], oceanography [19], chemistry [21] and quantum chemistry [22].

The present work is dedicated to standard chemistry. We study monomolecular
chemistry, as in [21], for which we carry out a new modified parareal algorithm
preserving stoichiometric invariants. We also investigate the nonlinear chemistry
case.

When the reaction scheme is monomolecular, the kinetic equations describing
species evolutions are linear but may be stiff. In this context, we consider the
thyroid reaction scheme given in [23]. An efficient reduction algorithm is described
in [5], and applied to this biochemical model. It is an inductive procedure, based
on linear algebraic techniques. The reduction process, applied to the initial kinetic
system, eliminates the fastest dynamics, and no change of coordinates is required.
This process is systematic and does not rely on conventional chemical assumptions
(see [27] for a large survey of these techniques). Applied to chemical kinetic sys-
tems with kinetic constants in different scales, the algorithm eliminates reactants
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arising in some of the fastest reactions. The reduced system then provides an
accurate approximation for the slow dynamics.

The ozone model we study here is a typical nonlinear, realistic model for ozone
production in the troposphere. The issue of ozone pollution is one of the most
important environmental problems we have faced for the last three decades (see
[24] and the references therein). The massive presence in the troposphere, mainly
above urban areas, of nitrogen dioxide NO2, coupled with one of various hydro-
carbons, induces a preferential chain of reactions which produces ozone O3. This
chain is really favored by a large amount of ultraviolet rays, basically during sunny
summers. The ozone concentration then reaches a level that may be dangerous for
both human health and ecosystems.

The ozone model of [1; 4] describes the evolution of the main species con-
centrations at stake. Numerical simulations of reactive flows can often be really
difficult to tackle, mainly because of the intricate chemical mechanisms that must
be taken into account. That is the case, for instance, with the air quality issue:
we do not focus on a simple description of the chemical kinetics of reactions of
nitrogen oxides and ozone. We need to take into account more reactions including
pollutants themselves to model more faithfully the pollution in the atmosphere.

We aim to compute numerically the evolution of the chemical species in the at-
mosphere, including the pollutants, within a reasonable computational time. Some
of the phenomena are really stiff and have to be discretized with a very small time
step. To get around this major numerical difficulty, we use a suitable parareal
algorithm where the associated coarse propagator is applied to the reduced system
in order to minimize its cost. We also need an accurate description of both the
physics (convection, diffusion, source or well of pollution) and the chemistry (re-
actions). Nevertheless, it is quite clear that our PDE system is large, and most of
the nonlinearity comes from the chemical part. We here assume that the chemistry
also governs the coupling between our equations. Therefore, the chemical kinetics
naturally stand as the key point of our study of the ozone model in the troposphere.

We first focus on the kinetics of the reactions producing ozone, and drop the
dependence on the space variable. Those reactions lead to an ODE system, where
several problems have to be taken care of.

• There is a large variety of characteristic time scales for the species involved.

• Dozens or even hundreds of chemical reactions and species may be concerned.

• Most of the ODEs are nonlinear.

Once again, our approach consists in first using a reduced model: when possi-
ble, we approximate the full differential system by an algebraic-differential system
where transitional fast states are neglected. This allows us to simultaneously lower
the size of the system and to avoid or at least weaken its stiffness. In the nonlinear
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case, which is the most common situation, reduction algorithms are not so easy
to design. However, the quasisteady state (QSS) method seems to be an efficient
compromise: some species are put at chemical equilibrium, with high rates of both
production and consumption (the species is destroyed as soon as it is produced).

This work is organized as follows. In Section 2, we recall a convenient parareal
algorithm for our models, which considers stoichiometric invariants. Section 3 is
dedicated to the study of monomolecular chemistry, and Section 4 to the ozone
model. In each case, we describe the chemical models, briefly discuss a reduc-
tion method fitted to the situations, and show numerical results that indicate the
efficiency of the parareal algorithm.

2. Parareal algorithm

Let m ≥ 1 and consider the following ordinary differential equation, where y :
R+→ Rm is the unknown:

y′(t)= f (t, y(t)), (1)

with initial Cauchy condition y(0) = y0 ∈ Rm and where f : R+ ×Rm
→ Rm is

given. Section 3 corresponds to the linear version of (1), that is, with

f (t, y(t))= J y(t),

where J is a time-independent matrix.
We are interested in computing the solution u of (1) on an interval [0, T ], with

T > 0. For any N ≥ 1, we consider intermediate times 0= T0< T1< · · ·< TN = T
and, for the sake of simplicity, a constant coarse time step 1T = Tn+1−Tn , where
n denotes the coarse time index. Note that 1T may not be constant, and that the
associated algorithm would only be an adjustment of the one presented below.

Let k denote the parareal iteration index. The parareal scheme consists in de-
signing a sequence (yk

n)k∈N at each coarse time step [Tn, Tn+1] such that, for each
n,

lim
k→+∞

yk
n = ȳn,

where ȳn is an approximation of y(Tn), and the convergence, which of course
depends on the accuracy of the coarse propagator, should be fast. Indeed, in many
applications, k ≤ 5 is enough to get a satisfying approximation.

The parareal algorithm uses two different schemes: a fine one Fδt , based on a
fine time step δt > 0, and a coarse one C1T , based on coarse time step 1T = sδt ,
s ∈ N∗. In most situations, we consider s� 1.

The coarse solver is applied for the evolution on [0, T ]. The quantity

vn+1 = C1T (Tn+1; Tn, vn)
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is an approximation, at time Tn+1, of the solution of (1) on [Tn, Tn+1], with initial
value vn at time Tn . Note that vn+1 is the only value computed by the coarse
solver on ]Tn, Tn+1]. For simplicity and stability reasons, we use the implicit Euler
scheme. In the linear case, we write vn+1 = Cvn , where C = (I −1T J )−1.

The fine solver is applied for the evolution on each subinterval [Tn, Tn+1]. The
quantity

wn+1 = Fδt(Tn+1; Tn, wn)

is an approximation, at time Tn+1, of the solution of (1) on [Tn, Tn+1], with initial
value wn at time Tn . In the linear case, wn+1 can be written under the form wn+1=

F swn , where F is a time-independent matrix. For instance, in the case of an explicit
Euler scheme, we have F = I + δt J . We may also use the Runge–Kutta RK4 and
the implicit Euler schemes.

The full parareal sequence (yk
n)n,k is inductively defined, for any k, n, by

yk
0 = y0, (2)

y0
n+1 = C1T (Tn+1; Tn, y0

n), (3)

yk+1
n+1 = C1T (Tn+1; Tn, yk+1

n )+Fδt(Tn+1; Tn, yk
n)−C1T (Tn+1; Tn, yk

n). (4)

Passing to the limit in (4) as k goes to +∞, we get

ȳn+1 = Fδt(Tn+1; Tn, ȳn).

This relation means that ȳn+1 is obtained from ȳn by use of the fine scheme Fδt on
the interval [Tn, Tn+1]. That ensures that yk

n may be a good approximation of the
fine solution when k is not too small.

In order to reduce the CPU cost, we shall apply the coarse propagator C1T to a
reduced system of ODEs, that is

ỹ′(t)= f̃ (t, ỹ(t)) (5)

where m̃ < m and f̃ : R+ × Rm̃
→ Rm̃ can be computed from f . It is assumed

that (5) is easier to solve than (1) and that f̃ describes a simpler but still faithful
physics.

Remark 1. In a chemical kinetics context, when we apply algorithms (2)–(4) to
integrate the differential system, we should pay special attention to preserving
certain properties of the system, such as stoichiometric invariants and stationary
points. We shall see below how to establish from (2)–(4) an ad hoc numerical
scheme considering these invariants.
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3. Linear chemistry

3.1. Framework. Consider N gaseous species (Ai )1≤i≤N and denote by (yi )1≤i≤N

the corresponding concentrations. In the gaseous mixture, there can also be some
species (Nl)1≤l≤L , like O2 or N2 in air, whose concentration variations are ne-
glected. Consequently, we only take into account the variations of (yi ) of the
limiting species (Ai ). We assume that R chemical reactions take place simultane-
ously in the mixture, and that these R reactions are monomolecular in the species
(Ai ); that is, each reaction r can be written as

Air +Nir

kr
−→A jr +Njr ,

with reaction rate vr = kr yir , where kr is a given positive kinetic constant. For the
sake of simplicity, we assume that a pair (Ai ,A j ) appears in at most one reaction
as reactant-product.

The time evolution of the concentration yi , 1 ≤ i ≤ N , is governed by the law
of mass action

dyi

dt
=−

∑
r, ir=i

kr yir +
∑

r, jr=i
kr y jr =−

∑
r, ir=i

vr +
∑

r, jr=i
vr .

The first sum deals with the reactions where Ai is a reactant, and the second one
deals with the ones where Ai is a product. In other words, y = (yi )1≤i≤N satisfies
the stoichiometric system

dy
dt
= Sv,

where v = (vr )1≤r≤R is the vector of the reaction rates and S ∈ RN×R is the
stoichiometric matrix, defined by Si,r = −1 for i = ir , Si,r = 1 for i = jr , and
Si,r = 0 otherwise. Since the chemical reactions are assumed to be monomolecular,
v linearly depends on y. Hence, y solves the following differential system, for a
given initial datum,

dy
dt
= J y, t ≥ 0, (6)

where J ∈ RN×N is defined by J j j = −
∑

r, ir= j kr , Ji j = kr if i 6= j and there
exists r such that (ir , jr ) = ( j, i), and Ji j = 0 otherwise. By assumption on our
system, if i 6= j and if there exists a reaction r such that (ir , jr ) = ( j, i), then r
is unique. Note that J is a kinetic matrix, that is, it satisfies, for any j , J j j ≤ 0,
Ji j ≥ 0 for all i 6= j , and

∑
i Ji j = 0.

The kinetic matrix J is semistable, that is, all its nonzero eigenvalues have
negative real parts. Besides, 0 is an eigenvalue of J and its multiplicity indicates
the number of stoichiometric invariants. That implies that any solution of (6) has
a finite limit when t goes to +∞. The reader may find more details in [7; 8; 26].
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3.2. A reduction method. In [5], the authors introduced an algorithm to obtain,
from (6), a reduced and nonstiff system which only involves a subset of the initial
species, coupled with algebraic equations for the remaining species concentrations.
This algebraic-differential system accurately approximates the full stiff system, af-
ter the exit time from the boundary layer. Let us briefly recall this reduction method
and the associated error estimate.

At each reduction step 1 ≤ k ≤ N − 1, an index ik ∈ {1, . . . , N }, a semistable
matrix J k , and real coefficients (βik , j ) j∈Kk are inductively built with

Kk = {1, . . . , N }\{i1, . . . , ik}.

Let us then fix a step 1≤ p≤N−1 at which we decide to stop the reduction process.
For any y = (yi )1≤i≤N , we denote ỹ = (yi )i∈Kp . The reduced system associated
to (6) up to step p is the following algebraic-differential system of unknown z p

=

(z p
i )1≤i≤N , defined for a given initial datum (at t = T ∗) for the differential part of

the system:
dz̃ p

dt
= J p z̃ p, t ≥ T ∗, (7)

z p
ik
(t)=

∑
j∈Kk

βik j z
p
j (t), 1≤ k ≤ p, t ≥ T ∗. (8)

If p is suitably chosen, the reduced matrix J p only contains the N − p eigen-
values of J which have the lowest real parts. Note that, when the eigenvalues of
J p are small with respect to the p first eigenvalues of J , the differential system
(7) is not stiff anymore (this idea was also used in [17; 20]). Here, the algebraic
equations (8) approximate the fast species (zi )i 6∈Kp , and T ∗ is an exit time from
the corresponding boundary layer. Real coefficients βik j are expressed in terms of
left eigenvectors of matrices J k , k = 0, . . . , p.

It is shown in [5] that the nonstiff problem (7)–(8) actually yields a relevant
approximation of the solutions of (6) for t ≥ T ∗. More precisely, assume that the
initial data for (7) is chosen such that

|z p
j (T
∗)− y j (T ∗)| ≤ ch, for all j ∈ Kp,

where h can be viewed as the numerical error of the underlying scheme at time T ∗

and c is a nonnegative constant which does not depend on h. Then there exists α≥1
and C ≥ 0, depending on y(0), such that, for any t ≥ T ∗, with T ∗ ≥ αε ln(1/ε),

|z p
j (t)− y j (t)| ≤ C(h+ ε), 1≤ j ≤ N .

In other words, provided that the errors due to the prescribing of the values of the
slow species at the exit time T ∗ from the boundary layer are small, the errors with
respect to the exact solution remain small at any further time t ≥ T ∗.



REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 247

3.3. Numerical tests. We apply the previous algorithm to the dynamics of the thy-
roid hormones [23]. It was investigated in [5] for the reduction method, and in [21]
for both reduction method and parareal algorithm, including a source term. The
chemical network (see Figure 1) involves 8 species and 14 reactions.

The kinetic matrix of the set of reactions reads

J =



–5.1 0.01 0. 0. 0.06 0. 0. 0.
0. –2.516 0. 0. 0. 0.0008 0. 0.
0. 0. –1.3 0.001 0.0003 0. 0. 0.
0. 0. 0. –1.091 0. 0.00008 0. 0.
5. 0. 1. 0. –0.0603 0. 0. 0.
0. 2.5 0. 1. 0. –0.00088 0. 0.
0.1 0.006 0. 0. 0. 0. 0. 0.
0. 0. 0.3 0.09 0. 0. 0. 0.


.

In the following subsections, we compare the computational behavior of reduced
and/or parareal algorithms with respect to the fine algorithm. Let us note that for
all computations, the speed-up is defined as the ratio

CPU (fine scheme)
CPU (current scheme)

,

where the CPU of the currently studied scheme takes into account the initialization
step and neglects the communications between processors since we only simulate
parareal implementation, and not perform actual parareal computations.

3.3.1. Parareal algorithm vs. fine algorithm. The computations are first performed
up to final time T = 3 with the following parameters for the parareal algorithm.
The coarse grid has N = 50 cells which constitute a regular subdivision of [0, 3],
so that the coarse time step is 1T = 0.06. Then each coarse cell is divided into a
regular fine subdivision of s = 500 cells, so that the fine time step is δt = 0.00012.
The numerical tolerance is set to 0.01. We use Runge–Kutta RK4 for the fine

A1(T3F)
5

0.1 1

1

0.01

2.5

0.001

0.06

0.0008

0.00008

0.0003

0.006

0.3

0.09

A3(T3S)A5(T3)

A4(T4S)A2(T4F) A6(T4)

A7(Disposal) A8(Disposal)

Figure 1. The thyroid reaction scheme.
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Fine solut ion - Parareal solut ion: iter =  0

Figure 2. Thyroid: numerical error between the fine solution and
(top) the coarse initialized solution, and (bottom) the parareal so-
lution after 3 parareal iterations.

scheme and the implicit Euler for the coarse scheme. The speed-up we obtain is
approximately 12.

Figure 2 shows the error at the initialization step (top) and the error between the
fine and parareal solutions (bottom). We observe that the maximal error is divided
by 1000 after three iterations of the parareal algorithm.

Moreover, we check numerically (Figure 3) that the two stoichiometric invari-
ants of this problem still hold. The plots of both invariants are exactly superim-
posed, since both fine and coarse solvers in the parareal algorithm conserve the
stoichiometric invariants.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

Stoichiom etric invariants (fine solut ion)
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1.98

2.00

2.02

2.04

2.06

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Stoichiom etric invariants (parareal solut ion)

Figure 3. Thyroid: stoichiometric invariants.
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Figure 4. Thyroid: stoichiometric invariants with reduction.

3.3.2. Reduction algorithm vs. fine algorithm. We now use the reduction method
described in Section 3.2. Matrix J has four dominant eigenvalues of the same
magnitude, lying between−6 and−1. The remaining eigenvalues are either 0, with
multiplicity 2, or very small with respect to 1. We compare the results obtained
with the fine solver and by applying the reduction method. For the reduction, we
compute the solution of the full system up to the characteristic time T ∗ = 5, then
the solution of the reduced system up to final time T = 30, including the algebraic
equations.

One can check on Figure 4 that the stoichiometric invariants are not conserved.
However, the jumps in the stoichiometric invariants are small. We also note that
computations with the reduction method are 2.5 times faster compared to those
obtained by the fine solver.

3.3.3. Parareal algorithm with reduction method. We use the values T ∗ = 10 and
T = 30 as in 3.3.2. For the parareal algorithm, the coarse solver is, on [0, T ∗]
(respectively on [T ∗, T ]), the implicit Euler scheme for the full problem with a
coarse time step 1T1 = 2 (respectively for the reduced problem with a coarse time
step 1T2 = 4). The fine solver is still RK4, with a fine time step δt1 = 0.02 on
[0, T ∗], and δt2 = 0.04 on [T ∗, T ]. The tolerance is set at 0.01. The method
converges in three iterations and we obtain a speed-up of 4.3 for 10 processors,
that is, an efficiency of 0.43.

On Figure 5, we can check that the error between the parareal algorithm and
the reduction method decreases with the number of parareal iterations. Eventually,
we note on Figure 6 that the stoichiometric invariants are not conserved. Hence, a
basic parareal algorithm connected with the reduction method does not conserve
the stoichiometric invariants.

3.3.4. A modified parareal algorithm preserving stoichiometric invariants. Recall
that a stoichiometric invariant γ is a linear combination of concentrations (yi ) such
that its time derivative is nil.
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Figure 5. Thyroid: errors during the parareal iterations.

In other words, there exists a nonzero vector w ∈ ker(ST ) such that γ = 〈w, y〉
and

dγ
dt
= 〈w, Sy(t)〉 = 〈STw, y(t)〉 = 0.

This shows that y(t) belongs to the affine space y(0)+Range(S).
In order to conserve the stoichiometric invariants, we consider the modified

parareal algorithm

yk+1
n+1 = Fδt(y

k
n)+5(C1T (y

k+1
n )−C1T (y

k
n)) (9)

1.94

1.98

2.02

2.06

0 5 10 15 20 25 30

Stoichiom etric invariants

Figure 6. Thyroid: fine (solid) and parareal (+) stoichiometric invariants.



REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 251

1.94

1.98

2.02

2.06

0 5 10 15 20 25 30

Stoichiom etric invariants

Figure 7. Thyroid: fine (solid) and new parareal (+) stoichiomet-
ric invariants with the improved parareal algorithm.

where5 is the orthogonal projection on the range of J . Nonorthogonal projections
can be used too.

Of course, one can then check on Figure 7 that the stoichiometric invariants are
now conserved. Moreover, the algorithm is still a good approximation of the fine
solution with the same number of iterations and the same speed-up.

4. Example of nonlinear chemistry: an ozone model

4.1. Description of the model.

4.1.1. Ozone model. The ozone model we investigate here is described in detail
in [1]. It involves 16 species and 12 reactions, that makes it a rather simple model,
though realistic. The kinetic constant of reaction r is denoted kr , 1≤ r ≤ 12. The
chemical reactions are

OD+ air+O2
k1
−→ O3+ air+O2,

O3+NO
k2
−→ NO2,

NO+HO2
k3
−→ NO2+OH,

OH+NO2
k4
−→ NHO3,

NO2
k5
−→ NO+OD,

RH+OH
k6
−→ RO2,

RCHO+OH
k7
−→ RCO3,

RCHO
k8
−→ RO2+CO+HO2,

NO+RO2
k9
−→ NO2+RCHO+HO2,

NO+RCO3
k10
−→ NO2+RO2+CO2,

RCO3+NO2
k11
−→ RCO3NO2,

RCO3NO2
k12
−→ RCO3+NO2.

The previous scheme is already somehow reduced, since the concentrations
of air, O2 and H2O (which does not appear in this system, but is necessary) are
considered as very high constants. Therefore, some reactions do not seem to be
balanced. That only means that we may not take into account those three species in
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the previous reactions. Note also that CO2, NHO3 and CO are not reactants. The
values of the kinetic constants are the following:

k1 = 10−33, k5 = 8.9 10−3, k9 = 7.6 10−12,
k2 = 2 10−14, k6 = 2.6 10−12, k10 = 7.6 10−12,
k3 = 8.2 10−12, k7 = 1.6 10−11, k11 = 4.7 10−12,
k4 = 1.1 10−11, k8 = 3.2 10−6, k12 = 4 10−4.

Each species is denoted by an integer index, as follows:

index 1 2 3 4 5 6 7 8
species air O2 CO2 NHO3 RH CO NO NO2

index 9 10 11 12 13 14 15 16
species RCO3NO2 RCHO O3 OH HO2 RCO3 RO2 OD

The vector y = (yi )1≤i≤16 ∈ R16, whose coordinates yi are the concentrations
of the species represented in the previous table solves the following differential
system

y′1 = 0,

y′2 = 0,

y′3 = v10,

y′4 = v4,

y′5 =−v6,

y′6 = v8,

y′7 =−v2−v3+v5−v9−v10,

y′8 = v2+v3−v4−v5+v9+v10−v11+v12,

y′9 = v11−v12,

y′10 =−v7−v8+v9,

y′11 = v1−v2,

y′12 = v3−v4−v6−v7,

y′13 =−v3+v8+v9,

y′14 = v7−v10−v11+v12,

y′15 = v6+v8−v9+v10,

y′16 =−v1+v5,

where v = (vr )1≤r≤12 denotes the reaction rate vector, depending on y.
More precisely, we have

v1 = k1 y1 y2 y16, v2 = k2 y7 y11,

v3 = k3 y7 y13, v4 = k4 y8 y12,

v5 = k5 y8, v6 = k6 y5 y12,

v7 = k7 y10 y12, v8 = k8 y10,

v9 = k9 y7 y15, v10 = k10 y7 y14,

v11 = k11 y8 y14, v12 = k12 y9.

The differential system can be rewritten under the form

y′ = Sv, (10)
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where S= (Si,r )1≤i≤16,1≤r≤12 is the stoichiometric matrix. Equation (10) is clearly
nonlinear, since each vr nonlinearly depends on y.

Figures 8–9 show the evolution of the concentrations of all the species involved
in the model, directly computed with the software Scilab, within two time scales,
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Figure 8. Ozone: Normalized concentrations of all species (final
time 16 h 40 min).
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Figure 9. Ozone: Normalized concentrations of all the species
(final time 5 days and 19 h).

with respective final times 16 h 40 min, and 5 days and 19 h. (Note that the model
may not hold anymore at the second time scale: this is discussed in [1; 4].) The
concentrations of air and O2 are not plotted, since they remain constant. The initial
values of the concentrations are:
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air O2 CO2 NHO3 RH CO NO NO2

2.45 1019 4.18 1018 100 100 5 1013 100 1.23 1013 2.5 1012

RCO3NO2 RCHO O3 OH HO2 RCO3 RO2 OD

100 5 1013 100 200 100 300 200 100

We obviously recover the results from [1] with the same set of initial data.

4.1.2. Stoichiometric invariants. Since the rank of matrix S is 10, there are six
stoichiometric invariants in the model, which can be chosen as follows [1]:

d
dt

y1 = 0, (11)

d
dt

y2 = 0, (12)

d
dt
(y4+ y7+ y8+ y9)= 0, (13)

d
dt
(y5+ y9+ y10+ y14+ y15)= 0, (14)

d
dt
(y4− 2y6+ y9+ y12+ y13+ y14+ y15)= 0, (15)

d
dt
(−3y3− 3y6− y7− 2y9− 2y10+ y11+ y13− 2y14+ y16)= 0. (16)

The first two invariants are immediate, and equations (13)–(14) come from the
conservation of species involving N and R radicals. Invariants (15)–(16) are nu-
merically controlled with the same computation. More precisely, we can see in
Figure 10 that the invariant (15) is not as well conserved as invariant (16). This is
a consequence of the computation. Indeed, some concentrations involved in (15)–
(16) are of very high order of magnitude (∼ 1014). The numerical variations of a
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Figure 10. Ozone: conservation of invariants (15) and (16).
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Figure 11. Ozone: evolution of the spectrum of the Jacobian matrix.

linear combination of such quantities, whose value is approximately 103, clearly
involve unavoidable numerical errors.

4.1.3. Stiffness. We recall that the differential system (10) is stiff if there are some
eigenvalues of its Jacobian matrix (∂yi (Sv) j )1≤i, j≤16 whose real parts are not of
the same order of magnitude with respect to the other eigenvalues. We can check
on Figure 11 that there are mainly three orders of magnitude for the eigenvalues.
Note that there are a lot of oscillations for the smaller eigenvalues, again due to
numerical errors.

4.2. A reduction method: the quasisteady states. There is no systematic method
to obtain, from a nonlinear stiff differential system, a reduced model giving fine
numerical approximations at any time. One solution consists in linearizing the
system in a neighborhood of a given stationary point [6]. Other possibilities exist,
such as the quasisteady state assumption on some species, or the partial equilibrium
assumption for some reactions [27].

In the section, we focus on the quasisteady state method. Before applying it to
the ozone model, let us briefly recall its mechanism. Denote by A an intermediary
compound in a given chain of reactions. The evolution of its concentration is
governed by

dyA

dt
= p− c,

where p and c are respectively the production and consumption of A. The species
A is in a quasisteady state when its production rate is very close to its destruction
rate, more precisely, if the quasistationary index, defined by

IA =
|p− c|
p+ c

,
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is such that IA � 1. This index only gives an a posteriori criterion to select the
quasisteady state species. Moreover, the quasisteady state of the species A does
not mean that the concentration of A is constant.

In [1], using the a posteriori criterion defined above, one gets five quasistationary
species in the ozone model: OH, HO2, RCO3, RO2 and OD, for times smaller than
16 h and 40 min. In that situation, the concentration of OD, which is now denoted
z16, can be directly computed in terms of (yi )1≤i≤11:

z16 =
k5 y8

k1 y1 y2
.

The concentrations of the other quasistationary species, also denoted (zi )12≤i≤15,
depend on each other. In fact, (zi )13≤i≤15 can be written in terms of z12, more
precisely, we have

z15 =
(k4 y8+k6 y5+k7 y10)z12−k8 y10

k9 y7
, z14 =

(k4 y8+k7 y10)z12−2k8 y10

k10 y7
,

z13 =
(k4 y8+k6 y5+k7 y10)z12

k3 y7
,

with
z12 =

2k8 y10(k10 y7+ k11 y8)+ k10 k12 y7 y9

(k4 y8+ k7 y10)(k10 y7+ k11 y8)− k7 k10 y7 y10
.

The five previous equalities come from (10), where we put (Sv)i =0 for 12≤ i≤16.
Note that, beyond 16 h and 40 min, the quasistationary species are not the same,

and that the model itself does not hold anymore. Hence, in the sequel, we only
present computations on times smaller than 16 h and 40 min, when we make the
quasisteady state assumption.

4.3. Numerical tests. We apply the parareal algorithm (4) to solve the equations
of the ozone model. We use the implicit Euler scheme for the fine and the coarse
solvers, with different time steps. The parareal iterations are stopped as soon as
the sum of the relative errors on each concentration (between parareal iterations
k and k + 1) is smaller than the numerical tolerance, which is set to 0.05. In the
sequel, we only focus on the concentrations of four species: O3, CO2, OH and
RO2, for the sake of simplicity. Of course, the behaviors of the remaining species
concentrations have been checked too.

4.3.1. Parareal algorithm vs. fine algorithm: Test 1. We compute the solution in
the interval [0, 16 h 40 min]. One processor was used to solve the problem in
the tiny interval [0, 0.01 h] to capture the first boundary layers, 9 processors for
the computation in [0.01 h, 2 h 45 min], and 10 processors for the computation in
[2 h 45 min, 16 h 40 min]. The parareal algorithm converges after only 1 iteration
and the parareal computation is about 18 times faster than the fine computation
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Figure 12. Ozone: fine (solid) and parareal (+) solutions on [0, 16 h 40 min].

obtained with the fine solver on the whole interval [0, 16 h 40 min]. We display the
evolution of the species of interest on Figure 12.

4.3.2. Parareal algorithm vs. fine algorithm: test 2. We compute the solution over
a long period of time [0, 5d19h]. The parareal computation converges after 2
iterations. It is 31 times faster than the fine computation on the whole interval
[0, 5d19h]. Let us precise that we have used 170 processors for these computations:
only one processor on [0, 0.01], 9 on [0.01, 1], 10 on [1, 10] and 150 processors
on [10, 5d19h]. The concentrations of some species are shown on Figure 13.

4.3.3. Parareal algorithm coupled with reduction vs. fine algorithm. As already
noted in Section 4.2, we focus on the time interval [0, 16 h 40 min]. The com-
putational parameters are the same as in Section 4.3.1. The parareal algorithm is
coupled with the QSS reduction, that is, the coarse solver uses the full system up to
2h45min, and the reduced system beyond that time, whereas the fine solver remains
the same. The algorithm converges after 3 iterations. The parareal computation is
about 4 times faster than the fine computation obtained with the fine scheme on the
whole interval [0, 16 h 40 min]. The evolution of some species is shown on Figure
14 and the stoichiometric invariants are quite well conserved, see Figure 15. Note
that the relative errors are at most of order 10−4.
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Figure 13. Ozone: fine (solid) and parareal (+) solutions on [0, 5 d 19 h].
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Figure 14. Ozone: fine (solid) and reduced parareal (+) solutions
on [0, 16 h 40 min].
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Figure 15. Ozone: fine (solid) and reduced parareal (+) stoichio-
metric invariants on [0, 16 h 40 min].

In order to decrease the numerical errors on Figure 15, we proceed in the same
way as in Section 3.3.4 to modify the parareal algorithm, that is, we add an orthog-
onal projection to ensure a better conservation of the stoichiometric invariants; see
Figure 16.

5. Concluding remarks

In chemical kinetics, the parareal algorithms coupled with reduction methods pro-
vide an essential tool to solve stiff differential systems with accuracy. Numerical
tests point out the efficiency of the parareal approach in both linear and nonlin-
ear cases. Let us note that one can ensure a better numerical conservation of the
stoichiometric invariants by adding a projection in the standard parareal algorithm.
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