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CONDITIONAL PATH SAMPLING FOR STOCHASTIC
DIFFERENTIAL EQUATIONS THROUGH DRIFT RELAXATION

PANOS STINIS

We present an algorithm for the efficient sampling of conditional paths of sto-
chastic differential equations (SDEs). While unconditional path sampling of
SDEs is straightforward, albeit expensive for high dimensional systems of SDEs,
conditional path sampling can be difficult even for low dimensional systems. This
is because we need to produce sample paths of the SDE that respect both the
dynamics of the SDE and the initial and endpoint conditions. The dynamics
of a SDE are governed by the deterministic term (drift) and the stochastic term
(noise). Instead of producing conditional paths directly from the original SDE,
one can consider a sequence of SDEs with modified drifts. The modified drifts
should be chosen so that it is easier to produce sample paths that satisfy the initial
and endpoint conditions. Also, the sequence of modified drifts should converge
to the drift of the original SDE. We construct a simple Markov chain Monte
Carlo algorithm that samples, in sequence, conditional paths from the modified
SDEs, by taking the last sampled path at each level of the sequence as an initial
condition for the sampling at the next level in the sequence. The algorithm can be
thought of as a stochastic analog of deterministic homotopy methods for solving
nonlinear algebraic equations or as a SDE generalization of simulated annealing.
The algorithm is particularly suited for filtering/smoothing applications. We show
how it can be used to improve the performance of particle filters. Numerical
results for filtering of a stochastic differential equation are included.

Introduction

The study of systems arising in different areas, from signal processing and chemical
kinetics to econometrics and finance [1; 19] often requires the sampling of paths of
stochastic differential equations (SDEs) subject to initial and endpoint conditions.
While unconditional path sampling of SDEs is straightforward, albeit expensive for
high dimensional systems of SDEs, conditional path sampling can be difficult even
for low dimensional systems. This is because we need to produce sample paths of
the SDE that respect both the dynamics of the SDE and the initial and endpoint
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conditions. An analogous situation arises in ordinary differential equations, where
it can be considerably more difficult to create solutions to boundary value problems
than it is to construct solutions to initial value problems (see, for example, Chapter
8 in [5]). The problem of conditional path sampling of SDEs has been a subject of
active research in recent years and some very interesting approaches have already
been developed [2; 19; 23].

The dynamics of a SDE are governed by the deterministic term (drift) and the
stochastic term (noise). Instead of producing conditional paths directly from the
original SDE, one can consider a sequence of SDEs with modified drifts. The
modified drifts should be chosen so that it is easier to produce sample paths that
satisfy the initial and endpoint conditions. Also, the sequence of modified drifts
should converge to the drift of the original SDE. We construct a simple Markov
chain Monte Carlo (MCMC) algorithm that samples, in sequence, conditional
paths from the modified SDEs, by taking the last sampled path at each level of the
sequence as an initial condition for the sampling at the next level in the sequence.
We have called the algorithm the drift relaxation algorithm.

We have used the drift relaxation algorithm to modify a popular filtering method
called particle filter [6]. A particle filter is a sequential importance sampling
algorithm based on the recursive (online) Bayesian updating of the values of samples
(called particles) to incorporate information from noisy observations of the state of
a dynamic model. While the particle filter is a very versatile method it may require
a very large number of samples to approximate accurately the conditional density of
the state of the model. This has led to considerable research [8; 20; 24] into how one
can modify a particle filter to make it more efficient (see also [4; 3] for a different
approach to particle filtering). As an application of the drift relaxation algorithm
we show in Section 2 how it can be used to construct a more efficient particle filter.

The paper is organized as follows. Section 1 presents the drift relaxation algorithm
for an SDE conditional path sampling problem. Section 2 shows how to use the
algorithm to modify a particle filter. Section 3 contains numerical results for the
application of the modified particle filter to the standard example of filtering a
diffusion in a double-well potential (more elaborate examples will be presented in
[15]). Finally, Section 4 discusses the results as well as current and future work.

1. Conditional path sampling and drift relaxation

Suppose that we are given a system of stochastic differential equations (SDEs)

d X t = a(X t)dt + σ(X t)d Bt , (1)

Suppose also that we want to construct, in the time interval [0, T ], sample paths
from (1) such that the endpoints are distributed according to the densities h(X0)
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and g(XT ) respectively. Equation (1) can be discretized in the interval [0, T ] by
some numerical approximation scheme [11]. Suppose that we have discretized the
interval [0, T ] using a stepsize 1t = T/I . Let 0 = T0 < T1 < . . . < TI = T . To
construct conditional paths of (1) we have to sample the density

h(XT0)
I∏

i=1
p(XTi |XTi−1)g(XTI ), (2)

where p(XTi |XTi−1) is the transition probability from XTi−1 at time Ti−1 to XTi at
time Ti . The density (2) can be sampled using MCMC assuming that the transition
densities p(XTi |XTi−1) can be evaluated. However, the major issue with the MCMC
sampling is whether it can be performed efficiently [23; 4]. Instead of MCMC
sampling directly from the density (2) i.e., starting from an arbitrary initial path
and modifying it to become a path corresponding to (2), we can aid the MCMC
sampling process by providing the MCMC sampler of the density (2) with a better
initial condition.

To this end, consider an SDE system with modified drift

dYt = b(Yt)dt + σ(Yt)d Bt , (3)

where b(Yt) can be suitably chosen to facilitate the conditional path sampling
problem (see also comments at the end of this section).

Also, consider the collection of L + 1 modified SDE systems

dY l
t = (1− εl)b(Y l

t )dt + εla(Y l
t )dt + σ(Y l

t )d Bt ,

where εl ∈[0, 1], l=0, . . . , L , with εl <εl+1, ε0=0 and εL=1. Note that the zeroth
level SDE corresponds to (3) while the L-th level SDE corresponds to the original
SDE (1). Also, for the l-th SDE in the sequence we denote as pl(Y l

Ti
|Y l

Ti−1
) the cor-

responding transition probability. With this notation, pL(Y L
Ti
|Y L

Ti−1
)= p(XTi |XTi−1).

The main idea behind drift relaxation is that instead of sampling directly a
conditional path for the SDE (1), one can sample a conditional path for the modified
SDE (3) and gradually morph the path into a path of (1).

Drift relaxation algorithm:
• Sample through MCMC the density h(Y 0

T0
)
∏I

i=1 p0(Y 0
Ti
|Y 0

Ti−1
)g(Y 0

TI
).

• For l = 1, . . . , L take the last sample path from the (l−1)-st level and use it as
an initial condition for MCMC sampling of the density

h(Y l
T0
)

I∏
i=1

pl(Y l
Ti
|Y l

Ti−1
)g(Y l

TI
)

at the l-th level.

• Keep the last sample path at the L-th level.
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We repeat here that the levels from 0 to L − 1 are auxiliary and only serve the
purpose of providing the sampler at level L with a better initial condition. The final
sampling is performed at the L-th level that corresponds to the original SDE (1).

The drift relaxation algorithm is similar to simulated annealing (SA), used in
equilibrium statistical mechanics [12]. However, instead of modifying a temperature
as in SA, here we modify the drift of the system. Also, the idea behind drift
relaxation resembles the main idea behind homotopy methods used in deterministic
optimization problems [7; 10].

Note that there are two ways to utilize the drift relaxation idea. The first one is
by sampling the densities for the different levels sequentially as in the algorithm
presented above. The second is to consider the L + 1 systems in parallel, sample
simultaneously the conditional densities

h(Y l
T0
)

I∏
i=1

pl(Y l
Ti
|Y l

Ti−1
)g(Y l

TI
), for l = 0, . . . , L ,

and occasionally swap paths between levels (the swapping of paths between levels
should be performed in a manner that preserves detailed balance [12]). This approach
is in the spirit of parallel tempering used in Monte Carlo sampling [12]. In the
current work we have applied the drift relaxation idea only in the form presented in
the algorithm above.

We end this section with a brief discussion on the choice of the modified drift.
For stochastic gradient flows with transitions between multiple metastable states,
one can choose the modified drift as a mollified version of the original drift (see also
the discussion in Section 3). This amounts to making the potential wells shallower
and thus facilitates the transitions between metastable states. For general problems,
one can choose to use for the modified drift a mean-field drift. This has been used
successfully by the author to improve the performance of particle filters for multiple
target tracking [15].

2. Application to particle filtering

We show in this section how the drift relaxation algorithm can be applied to particle
filtering with the aim of bringing the samples closer to the observations.

2.1. Generic particle filter. Suppose that we are given an SDE system and that
we also have access to noisy observations ZT1, . . . , ZTK of the state of the system
at specified instants T1, . . . , TK . The observations are functions of the state of
the system, say given by ZTk = G(XTk , ξk), where ξk, k = 1, . . . , K are mutually
independent random variables. For simplicity, let us assume that the distribution of
the observations admits a density g(XTk , ZTk ), i.e., p(ZTk |XTk )∝ g(XTk , ZTk ).
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The filtering problem consists of computing estimates of the conditional expecta-
tion E[ f (XTk )|{ZT j }

k
j=1], i.e., the conditional expectation of the state of the system

given the (noisy) observations. Equivalently, we are looking to compute the condi-
tional density of the state of the system given the observations p(XTk |{ZT j }

k
j=1).

There are several ways to compute this conditional density and the associated
conditional expectation but for practical applications they are rather expensive.

Particle filters fall in the category of importance sampling methods. Because
computing averages with respect to the conditional density involves the sampling
of the conditional density, which can be difficult, importance sampling methods
proceed by sampling a reference density q(XTk |{ZT j }

k
j=1), which can be easily

sampled and then compute the weighted sample mean

E[ f (XTk )|{ZT j }
k
j=1] ≈

1
N

N∑
n=1

f (Xn
Tk
)

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

,

or the related estimate

E[ f (XTk )|{ZT j }
k
j=1] ≈

N∑
n=1

f (Xn
Tk
)

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

N∑
n=1

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

, (4)

where N has been replaced by the approximation

N ≈
N∑

n=1

p(Xn
Tk
|{ZT j }

k
j=1)

q(Xn
Tk
|{ZT j }

k
j=1)

.

Particle filtering is a recursive implementation of the importance sampling approach.
It is based on the recursion

p(XTk |{ZT j }
k
j=1)∝ g(XTk , ZTk )p(XTk |{ZT j }

k−1
j=1), (5)

where p(XTk |{ZT j }
k−1
j=1)=

∫
p(XTk |XTk−1)p(XTk−1 |{ZT j }

k−1
j=1)d XTk−1 . (6)

If we set
q(XTk |{ZT j }

k
j=1)= p(XTk |{ZT j }

k−1
j=1),

then from (5) we get

p(XTk |{ZT j }
k
j=1)

q(XTk |{ZT j }
k
j=1)
∝ g(XTk , ZTk ).

The approximation in expression (4) becomes

E[ f (XTi )|{ZT j }
k
j=1] ≈

∑N
n=1 f (Xn

Tk
)g(Xn

Tk
, ZTk )∑N

n=1 g(Xn
Tk
, ZTk )

. (7)
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From (7) we see that if we can construct samples from the predictive distribution
p(XTk |{ZT j }

k−1
j=1) then we can define the (normalized) weights

W n
Tk
=

g(Xn
Tk
, ZTk )∑N

n=1 g(Xn
Tk
, ZTk )

and use them to weigh the samples, and the weighted samples will be distributed
according to the posterior distribution p(XTk |{ZT j }

k
j=1).

In many applications, most samples will have a negligible weight with respect
to the observation, so carrying them along does not contribute significantly to the
conditional expectation estimate (this is the problem of degeneracy [12]). To create
larger diversity one can resample the weights to create more copies of the samples
with significant weights. The particle filter with resampling is summarized in the
following algorithm, due to Gordon et al. [9].

Particle filter:

(1) Begin with N unweighted samples Xn
Tk−1

from p(XTk−1 |{ZT j }
k−1
j=1).

(2) Prediction: Generate N samples X ′nTk
from p(XTk |XTk−1).

(3) Update: Evaluate the weights

W n
Tk
=

g(X ′nTk
, ZTk )∑N

n=1 g(X ′nTk
, ZTk )

.

(4) Resampling: Generate N independent uniform random variables {θn
}

N
n=1 in

(0, 1). For n = 1, . . . , N let Xn
Tk
= X ′ jTk

where

j−1∑
l=1

W l
Tk
≤ θ j <

j∑
l=1

W l
Tk

where j can range from 1 to N .

(5) Set k = k+ 1 and proceed to Step 1.

The particle filter algorithm is easy to implement and adapt for different problems
since the only part of the algorithm that depends on the specific dynamics of the
problem is the prediction step. This has led to the particle filter algorithm’s increased
popularity [6]. However, even with the resampling step, the particle filter can
still need a lot of samples in order to describe accurately the conditional density
p(XTk |{ZT j }

k
j=1). Snyder et al. [18] have shown how the particle filter can fail

in simple high dimensional problems because one sample dominates the weight
distribution. The rest of the samples are not in statistically significant regions.
Even worse, as we will show in the numerical results section, there are simple
examples where not even one sample is in a statistically significant region. In the
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next subsection we present how drift relaxation can be used to push samples closer
to statistically significant regions.

2.2. Particle filter with MCMC step. Several authors (see, e.g., [8; 24]) have sug-
gested the use of a MCMC step after the resampling step (Step 4) in order to move
samples away from statistically insignificant regions. There are many possible ways
to append an MCMC step after the resampling step in order to achieve that objective.
The important point is that the MCMC step must preserve the conditional density
p(XTk |{ZT j }

k
j=1).

We begin by noting that one can use the resampling step (Step 4) in the particle
filter algorithm to create more copies not only of the good samples according
to the observation, but also of the values (initial conditions) of the samples at
the previous observation. These values are the ones who have evolved into good
samples for the current observation (see more details in [24]). The motivation
behind producing more copies of the pairs of initial and final conditions is to use
the good initial conditions as starting points to produce statistically more significant
samples according to the current observation. This process can be accomplished in
two steps. First, Step 4 of the particle filter algorithm is replaced by:

Resampling. Generate N independent uniform random variables {θn
}

N
n=1 in (0, 1).

For n = 1, . . . , N let (Xn
Tk−1

, Xn
Tk
)= (X ′ jTk−1

, X ′ jTk
) where

j−1∑
l=1

W l
Tk
≤ θ j <

j∑
l=1

W l
Tk
.

Also, with Bayes’ rule [24] one can show that the posterior density p(XTk |{ZT j }
k
j=1)

is preserved if one samples from the density

g(XTk , ZTk )p(XTk |XTk−1),

where XTk−1 are given by the modified resampling step. This is a problem of
conditional sampling for (continuous-time or discrete) stochastic systems. The
important issue is to perform the necessary sampling efficiently [4; 24]. We propose
to do that here using drift relaxation (see Section 1). The particle filter with MCMC
step algorithm is given by:

Particle filter with MCMC step.
(1) Begin with N unweighted samples Xn

Tk−1
from p(XTk−1 |{ZT j }

k−1
j=1).

(2) Prediction: Generate N samples X ′nTk
from p(XTk |XTk−1).

(3) Update: Evaluate the weights

W n
Tk
=

g(X ′nTk
, ZTk )∑N

n=1 g(X ′nTk
, ZTk )

.
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(4) Resampling: Generate N independent uniform random variables {θn
}

N
n=1 in

(0, 1). For n = 1, . . . , N let (Xn
Tk−1

, Xn
Tk
)= (X ′ jTk−1

, X ′ jTk
) where

j−1∑
l=1

W l
Tk
≤ θ j <

j∑
l=1

W l
Tk
, j = 1, . . . , N .

(5) MCMC step: For n = 1, . . . , N choose a modified drift (possibly different for
each n). Construct through drift relaxation a Markov chain for Y n

Tk
with initial

value Xn
Tk

and stationary distribution

g(Y n
Tk
, ZTk )p(Y

n
Tk
|Xn

Tk−1
).

(6) Set Xn
Tk
= Y n

Tk
.

(7) Set k = k+ 1 and proceed to Step 1.

3. Numerical results

We present numerical results of the particle filter algorithm with MCMC step
for the standard problem of diffusion in a double-well potential (more elaborate
applications of the method will be presented elsewhere [15]). Our objective here is
to show how the generic particle filter’s performance can be significantly improved
by incorporating the MCMC step via drift relaxation.

The problem of diffusion in a double well potential is described by the scalar
SDE

d X t =−4X t(X2
t − 1)+ 1

2 d Bt . (8)

The deterministic part (drift) describes a gradient flow for the potential U (x) =
x4
− 2x2, which has two minima, at x =±1. In the notation of Section 1 we have

a(X t)=−4X t(X2
t − 1) and σ(X t)=

1
2 . If the stochastic term is zero the solution

wanders around one of the minima depending on the value of the initial condition.
A weak stochastic term leads to rare transitions between the minima of the potential.
We have chosen the coefficient 1

2 to make the stochastic term rather weak. This is
done because we plan to enforce the observations to alternate among the minima,
and thus check if the particle filter can track these transitions.

The SDE (8) is discretized by the Euler–Maruyama [11] scheme with step size
1t = 10−2. The initial condition is set to −1 and there is a total of 10 observations
at Tk = k, k = 1, . . . , 10. The observations are given by ZTk = XTk + ξk , where
ξk ∼ N (0, 0.01) for k= 1, . . . , 10. Note that we have chosen a rather small variance
for the observation noise, which in turn makes the filtering problem more difficult.
For this choice of observation noise, the observation density (also called likelihood)
is given by

g(XTk , ZTk )∝ exp
[
−
(ZTk − XTk )

2

2× 0.01

]
. (9)
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The observations alternate between 1 and −1. In particular, for k = 1, . . . , 10 we
have ZTk =−1 if k is odd and ZTk = 1 if k is even. Given that the stochastic term
is rather weak, such frequent transitions between the two potential minima are rare.

In order to apply the MCMC step with drift relaxation we need to define the
modified drift b(Yt) for the process Yt given by

dYt = b(Yt)+
1
2 d Bt . (10)

The modified drift can be the same for all the samples or different for each sample.
Since the difficulty in tracking the observations comes from the inability of the
original SDE (8) to make frequent transitions between the two minima of the double
well, an intuitively appealing choice for b(Yt) is b(Yt) = −α4Yt(Y 2

t − 1), where
0 < α < 1. This drift corresponds to the potential W (y) = α(y4

− 2y2). The
potential W (y) has its minima also located at y =±1. However, the value of the
potential at the minima is −α instead of −1 for the potential U (x). This means
that the wells corresponding to the minima of W (y) are shallower than the wells
corresponding to the minima of U (x). This makes the transitions between the two
wells for the process Yt more frequent than for the original process X t . For the
numerical experiments we have chosen α = 0.1.

The sequence of modified SDEs for the drift relaxation algorithm with L levels
is given by

dY l
t = (1− εl)b(Y l

t )dt + εla(Y l
t )dt + 1

2 d Bt , (11)

where εl ∈ [0, 1], l= 0, . . . , L , with εl <εl+1, ε0= 0 and εL = 1. For our numerical
experiments we chose L = 10 and εl = l/10.

Recall that the density we want to sample during the MCMC step is given by

g(XTk , ZTk )p(XTk |XTk−1),

where p(XTk |XTk−1) is the transition probability between XTk−1 and XTk . For many
applications, sampling directly from p(XTk |XTk−1) may be impossible. Thus, one
needs to resort to some numerical approximation scheme to approximate the path
between XTk−1 and XTk by a discretized path. However (see [24] for details), even
the evaluation of the discretized path’s density may not be efficient. Instead, by
using the fact that each Brownian path in (8) gives rise to a unique path for X t

[17], we can replace the sampling of g(XTk , ZTk )p(XTk |XTk−1) by sampling from
the density

exp
[
−
(ZT − Xn

T ({1Bn
i }

I−1
i=0 ))

2

2× 0.01

] I−1∏
i=0

exp
[
−
(1Bn

i )
2

21t

]
=

exp
[
−

(
(ZT − Xn

T ({1Bn
i }

I−1
i=0 ))

2

2× 0.01
+

I−1∑
i=0

(1Bn
i )

2

21t

)]
, (12)
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where {1Bn
i }

I−1
i=0 are the Brownian increments of the discretized path connecting

XTk−1 and XTk . Also, note that the final point XTk has now become a function of the
entire Brownian path {1Bn

i }
I−1
i=0 . For the numerical experiments we have chosen

1t =
Tk − Tk−1

I
= 10−2,

which, since Tk − Tk−1 = 1, gives I = 100.
We use drift relaxation to produce samples from the density (12). The Markov

chain at each level of the drift relaxation algorithm is constructed using hybrid
Monte Carlo (HMC) [12]. At the l-th level, we can discretize (11), say with the
Euler–Maruyama scheme, and the points on the path will be given by

Y l,n
i1t = Y l,n

(i−1)1t + (1− εl)b(Y
l,n
(i−1)1t)1t + εla(Y

l,n
(i−1)1t)1t + 1

21Bl,n
i−1,

for i = 1, . . . , I . We can use more sophisticated schemes than the Euler–Maruyama
scheme for the discretization of the simplified SDE (10) at the cost of making the
expression for the density more complicated.

We can define a potential Vεl ({1Bl,n
i }

I−1
i=0 ) for the variables {1Bl,n

i }
I−1
i=0 . The

potential is given by

Vεl

(
{{1Bl,n

i }
I−1
i=0

)
=
(ZT − Y l,n

I1t({1Bl,n
i }

I−1
i=0 ))

2

2× 0.01
+

I−1∑
i=0

(1Bl,n
i )2

21t
,

and the density to be sampled can be written as

exp
[
−Vεl

(
{1Bl,n

i }
I−1
i=0

)]
.

The subscript εl is to denote the dependence of the potential on the drift relaxation
parameter εl . In HMC one considers the variables on which the potential depends
as the position variables of a Hamiltonian system. In our case we have I position
variables so we can define a I -dimensional position vector {qi }

I
i=1. The next step is

to augment the position variables vector by a vector of associated momenta {pi }
I
i=1.

Together they form a Hamiltonian system with Hamiltonian given by

Hεl ({qi }
I
i=1, {pi }

I
i=1)= Vεl ({qi }

I
i=1)+

pT p
2
,

where p = (p1, . . . , pI ) is the vector of momenta. Thus, the momenta variables
are Gaussian distributed random variables with mean zero and variance 1. The
equations of motion for this Hamiltonian system are given by Hamilton’s equations

dqi

dτ
=
∂Hεl

∂pi
and

dpi

dτ
=−

∂Hεl

∂qi
, for i = 1, . . . , I. (13)

HMC proceeds by assigning initial conditions to the momentum variables (through
sampling from exp(−pT p/2)), evolving the Hamiltonian system in fictitious time
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τ for a given number of steps of size δτ and then using the solution of the system to
perform a Metropolis accept/reject step (more details in [12]). After the Metropolis
step, the values of the momenta are discarded. The most popular method for solving
the Hamiltonian system, which is the one we also used, is the Verlet leapfrog scheme.
In our numerical implementation, we did not attempt to optimize the performance
of the HMC algorithm. For the sampling at each level of the drift relaxation process
we used 10 Metropolis accept/reject steps and 1 HMC step of size δτ = 10−2 to
construct a trial path. A detailed study of the drift relaxation/HMC algorithm for
conditional path sampling problems outside of the context of particle filtering will
be presented in a future publication.

For the chosen values of the parameters for the drift relaxation and HMC steps,
the particle filter with MCMC step is about 500 times more expensive per sample
(particle) than the generic particle filter. However, we show that this increase in
cost per sample is worthwhile. Figure 1 compares the performance of the particle
filter with MCMC step with 10 samples and the generic particle filter with 5000
samples. It is obvious that the particle filter with MCMC step follows accurately
all the transitions between the two minima of the double-well. On the other hand,
the generic particle filter captures accurately only every other observation. It fails
to perform the transitions between the two minima of the double-well.

0 2 4 6 8 10
Time

-2

-1

0

1

2

C
o
n
d
it

io
n
al

 e
x
p
ec

ta
ti

o
n
 o

f 
X

_
t

PF with MCMC (drift relaxation) 10 samples

PF  5000 samples

Observations

Figure 1. Comparison of the conditional expectation of X t as
computed by the generic particle filter and the particle filter with
MCMC step.
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Since the particle filter with MCMC step uses only 10 samples the conditional
expectation estimate of the hidden signal is not as smooth as the estimate of the
generic particle filter, which uses 5000 samples. The generic particle filter needs
about 105 samples to capture accurately the transitions between the two minima.
However, from the 105 samples, only 2 or 3 dominate the observation weight
distribution at each transition, thus making the use of the generic particle filter very
inefficient.

Finally, we compare the performance of the particle filter with MCMC step and
drift relaxation to a particle filter with MCMC step without drift relaxation. This
comparison is made to examine whether the drift relaxation algorithm offers any
advantage over direct sampling of the conditional density (12). The particle filter
with MCMC step without drift relaxation involved 110 Metropolis accept/reject
steps and 1 HMC step of size δτ = 10−2 to construct a trial path for each observation.
This makes the computational complexity the same as for the particle filter with
drift relaxation.

From Figure 2 one can see that there is an advantage in the use of drift relaxation
as far as the conditional expectation estimate is concerned. For the majority of
the observations, the MCMC step with drift relaxation gives superior results to the
particle filter with MCMC step without drift relaxation. In particular, the particle
filter without drift relaxation is not as effective in bringing the samples close to the
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Figure 2. Comparison of the conditional expectation of X t as
computed by the particle filter with MCMC step and drift relaxation
and the particle filter with MCMC step without drift relaxation.
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observations as the particle filter with drift relations. The mathematical reason for
the better performance of the MCMC step with drift relaxation is that the shallower
modified potential allows the density of the observation g(XTk , ZTk ) to alter faster
the Brownian increments that give rise to the path between the two wells (this is
straightforward to see by examination of Hamilton’s equations (13) for the HMC
sampler). Indeed, for the particle filter with drift relaxation, about 70% of the
samples have already crossed from one well to the other after the zeroth level
MCMC sampling. Numerical experiments with different choices in the number
of drift relaxation levels and/or number of Metropolis accept/reject steps in HMC
support the trend shown in Figure 2.

In Figure 3 we plot the error estimate of the conditional expectation estimate
of X t as computed by the particle filter with MCMC step with and without drift
relaxation. The error is a measure of the tightness of the distribution of the sample
values around the mean. It is obvious that the use of drift relaxation leads to a
tighter distribution of the samples around the mean.

In order for the particle filter with MCMC step without drift relaxation to obtain
an estimate comparable to the one of the filter with drift relaxation shown in Figure 2,
one needs to use about 1000 Metropolis accept/reject steps. This is about 10 times
more expensive than the particle filter with drift relaxation. This corroborates the
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conclusion reached in [24], that the use of an MCMC step on its own is not enough
to make for a more efficient particle filter. In particular, one has to use an efficient
algorithm for implementing the MCMC step. A more thorough comparison between
the MCMC step with and without drift relaxation will be published elsewhere.

4. Discussion

We have presented an algorithm for conditional path sampling of SDEs. The
proposed algorithm is based on drift relaxation, which allows to sample conditional
paths from a modified drift equation. The conditional paths of the modified drift
equation are then morphed into conditional paths of the original equation. We have
called this process of gradually enforcing the drift of the original equation drift
relaxation. The algorithm has been used to create a modified particle filter for SDEs.
We have shown that the modified particle filter’s performance is significantly better
than the performance of a generic particle filter.

In the current work, we have examined the application of drift relaxation to the
filtering problem of diffusion in a double-well potential, a standard example in the
filtering literature. The same algorithm can be applied to the problem of tracking
a single target. A problem of great practical interest is that of tracking not only
one but multiple moving targets [13; 16; 21; 22]. The multitarget tracking problem
is much more difficult than the single-target problem due to the combinatorial
explosion of the number of possible target-observation association arrangements. In
this context, the accurate tracking of each target becomes crucial. Suppose that only
one of the targets is of interest and the rest act as decoys [14]. The inability to track
each potential target accurately can lead to ambiguity about the targets’ movement
if the observations for different targets are close. We have already applied the
drift relaxation modified particle filter to multitarget tracking problems with very
encouraging results that will appear elsewhere [15].
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