
Communications in
Applied
Mathematics and

Computational
Science

mathematical sciences publishers

vol. 6 no. 1 2011

A FREE-SPACE ADAPTIVE FMM-BASED PDE
SOLVER IN THREE DIMENSIONS

M. HARPER LANGSTON,
LESLIE GREENGARD AND DENIS ZORIN

COMM. APP. MATH. AND COMP. SCI.
Vol. 6, No. 1, 2011

msp

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN
THREE DIMENSIONS

M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

We present a kernel-independent, adaptive fast multipole method (FMM) of arbi-
trary order accuracy for solving elliptic PDEs in three dimensions with radiation
and periodic boundary conditions. The algorithm requires only the ability to
evaluate the Green’s function for the governing equation and a representation
of the source distribution (the right-hand side) that can be evaluated at arbitrary
points. The performance is accelerated in three ways. First, we construct a
piecewise polynomial approximation of the right-hand side and compute far-field
expansions in the FMM from the coefficients of this approximation. Second, we
precompute tables of quadratures to handle the near-field interactions on adaptive
octree data structures, keeping the total storage requirements in check through
the exploitation of symmetries. Third, we employ shared-memory parallelization
methods and load-balancing techniques to accelerate the major algorithmic loops
of the FMM. We present numerical examples for the Laplace, modified Helmholtz
and Stokes equations.

1. Introduction

Many problems in scientific computing call for the efficient solution to linear
partial differential equations with constant coefficients. On regular grids with
separable Dirichlet, Neumann or periodic boundary conditions, such equations
can be solved using fast, direct methods. For free-space boundary conditions and
highly nonuniform source distributions defined on adaptive and/or unstructured
grids, alternative approaches are necessary. We describe a direct high-order adaptive
solver for inhomogeneous linear constant-coefficient PDEs in three dimensions
with decay conditions at infinity. A typical case is the Poisson equation

−1u = g, supp(g)⊂�, (1)

Langston’s work was supported by the U.S. Department of Energy CPES contract; Greengard’s was
supported in part by the U.S. Department of Energy under contract DEFG0288ER25053; Zorin’s was
supported by the U.S. Department of Energy (CPES contract) and the National Science Foundation
(contract DMS-0612624).
MSC2010: primary 31B10, 65N99, 65R10, 65Y20; secondary 65N15, 76D07.
Keywords: volume integrals, Poisson solver, fast multipole method, adaptive methods,

kernel-independent fast multipole method.

79

80 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

where � is a bounded domain in R3, and u(x)= O(1/|x|) as |x| goes to infinity.
Our solver uses a kernel-independent fast multipole method (FMM) [60; 61] which
can be applied to any PDE for which a free-space Green’s function evaluation
routine is provided. It handles highly nonuniform sources in an efficient manner,
using an adaptive approximation of the right-hand side in (1). The structure of the
solver allows for natural integration with FMM-based boundary integral equation
techniques, leading to the construction of an adaptive kernel-independent solver for
inhomogeneous PDEs in complex geometries, to be described elsewhere.

Related work. For regular grids in separable coordinate systems (rectangles, disks,
spheres, etc.), fast methods for constant-coefficient second order PDEs are well
established [15; 16]. These methods generally rely on cyclic reduction and/or fast
Fourier transforms (FFTs) to achieve nearly linear scaling. For many problems,
however, adaptive meshes resulting from adaptive mesh refinement (AMR) strategies
are essential [2; 7; 49], and existing solvers typically rely on domain decomposition
strategies [23] or multigrid acceleration [18; 37; 40; 44]. For complex geometries,
unstructured grid generation techniques are often used [45]. In such cases, both
the grid generation process and the solution of the resulting linear systems can
be computationally expensive. The lack of regularity in the data structures adds
complexities in parallelization as well [1; 18].

A more recent class of methods combines ideas from potential theory with finite
difference methods. In [39], fast direct solvers were used on a sequence of refined
grids with boundary conditions inherited from the coarser levels. This results in
discontinuities at coarse-fine interfaces, which are corrected using a second pass
through the grid hierarchy. In [4], the method of local corrections (MLC) [3] was
combined with multigrid methods to solve the Poisson equation on a hierarchy of
nested grids. The fastest free-space Poisson solver for three-dimensional problems
of which we are aware is described in [47]. It first solves local Poisson problems
on fine grids using FFT-based techniques and then couples together the solutions on
coarser grids using MLC. This approach was shown to be very effective in parallel,
with good scaling up to 1024 processors. (A similar two-dimensional scheme is
described in [29].) For unstructured meshes, the preceding methods do not apply
without significant modification and most fast solvers are based on iterative methods
using multigrid or domain decomposition acceleration [13; 14; 17].

Here we concentrate on the integral equation (or, more precisely, the integral
transform) viewpoint. Rather than solving (1), for example, we simply compute

u(x)=
1

4π

∫
R3

1
|x− y|

g(y) dy. (2)

Among the advantages of this approach is the increase in precision in computing
derivatives. In PDE-based methods, if first or second derivatives of the solution are

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 81

needed, accuracy tends to degrade due to the need for numerical differentiation.
Instead, we can differentiate the kernel in (2) and compute derivatives from their
integral representation as well. Other advantages are that free-space radiation
conditions are automatically satisfied, we can obtain simple a priori error estimates,
and high order accuracy is straightforward to achieve. However, the computational
complexity of a naïve implementation is high: computing the solution u at N
points x given N discretization points y requires O(N 2) work. There have been
a number of methods proposed to overcome this barrier. These include panel-
clustering techniques [11; 36], hierarchical matrices (H,H2-matrices) [10; 34; 35],
the Barnes–Hut method [5], and the fast multipole method (FMM) [20; 32; 25;
51] originally designed for gravitational/Coulomb interactions. These schemes all
achieve linear O(N) or nearly linear O(N log N) scaling. Most of these methods
fall into the class of what are often called tree codes because they separate near-
and far-field interactions on a hierarchy of spatial scales using quadtree (2D) or
octree (3D) data structures. Because it can achieve arbitrary precision at modest
cost with straightforward error estimates, we concentrate on the FMM in the present
setting. The classical FMM is kernel-specific and relies on detailed separation
of variables solutions of the governing PDE. While the FMM references above
considered the Laplace equation, the Helmholtz equation was subsequently treated
in [52]. A three-dimensional version effective for all frequencies (and additional
references) can be found in [21]. The modified Helmholtz equation was discussed
in [12; 27], and the biharmonic equation in [28; 33; 58]. The Stokes equations
are somewhat exceptional, since they can be handled by a sequence of calls to the
original (Coulomb) FMM [56; 50]. An attractive alternative that avoids much of the
detailed analytic work of these methods is the kernel-independent approach of [60;
61]. In this approach, expansions in special functions are replaced with equivalent
source densities. The result is that the same numerical apparatus can be used for a
variety of PDEs, and the user need only supply a subroutine for the evaluation of
the relevant Green’s function.

While the bulk of the work on FMMs over the last two decades has concentrated
on particle interactions or the acceleration of boundary integral equation methods,
there has been some work on solving inhomogeneous PDEs. One option is to
couple the FMM with finite difference methods to allow for fast solvers in complex
geometries [46; 48; 9]. While this is a significant improvement in terms of range of
applicability over classical fast solvers, these methods require a regular volume mesh
on which is superimposed an irregular boundary. Adaptive FMMs for volume source
distributions in two dimensions were described in [22; 24; 29]. The present paper
extends these two-dimensional schemes to three dimensions, incorporates them into
kernel-independent FMMs, and introduces several new performance optimizations.
The result is an efficient, adaptive method that is capable of computing volume

82 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

integrals in three dimensions for a broad variety of PDE kernels.
Before turning to the method itself, we should also note that there has been a

significant body of work in the quantum chemistry community on accelerating
volume integral calculations using the FMM, where collections of Gaussians are
typically used to describe the charge distribution [53; 59]. These are Poisson
problems in free-space but with a different approach to defining the right-hand side.

2. Equations and kernels

Given a linear, constant-coefficient PDE

L(u)(x)= g(x), (3)

classical mathematical methods can be used to compute the corresponding Green’s
function K (x, y) in free space, such that

u(x)=
∫
�

K (x, y)g(y) dy, (4)

where � is the support of g. K (x, y) is, in general, weakly singular; assuming
g(x) is given at N points and u(x) is desired at N points, the nonlocal character of
the integral representation, as indicated above, would lead to an O(N 2) solution
procedure. Thus, we need both a suitable quadrature approach and a fast algorithm
for (4) to yield a useful numerical technique. Assuming this is achieved, a number
of advantages follow. First, no linear system needs to be solved. Second, adaptivity
is achieved through the approximation of the right-hand side. Third, as mentioned in
the previous section, derivatives can be computed without loss of precision. (There
is some loss in accuracy for derivatives of order greater than two, since at that point
the integral operator becomes hypersingular and some catastrophic cancellation
cannot be avoided.) Finally, we have simple a priori error estimates. To see this,
let ĝ(x) be the approximation to g(x), and let Q̂[f](x) denote the quadrature
approximation of

∫
�

K (x, y) f (y) dy. Assuming the near field is computed exactly,
the quadrature error satisfies an estimate of the form∣∣∣∣ Q̂[f](x)− ∫

�

K (x, y) f (y) dy
∣∣∣∣≤ ε‖ f ‖1,

where ε is the approximation error in the FMM. In turn, ε is controlled by the
parameter p that determines the number of discretization points used for equivalent
densities, as described in Section 4.1 and [60].

To estimate the total error, let us assume ĝ(x) is a k-th order polynomial approx-
imation of the right-hand side,

ĝ(x)− g(x)≤ δ = O(hk),

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 83

and that

û(x)= Q̂[ĝ](x) . (5)

Then

e(x)= u(x)− û(x)=
∫
�

K (x, y)g(y)dy−
∫
�

Q̂[ĝ](x)

≤

∫
�

K (x, y)[g(y)− ĝ(y)]dy+
∣∣∣∫
�

K (x, y)ĝ(y)dy− Q̂[ĝ](x)
∣∣∣

≤ C1‖g(y)− ĝ(y)‖∞+‖ĝ(y)‖1 ε, (6)

where

C1 =max
x

∫
�

|K (x, y)| dy ≤ C1δ+‖ĝ(y)‖1 ε.

This estimate is much sharper than one typically obtained when discretizing the
PDE itself, where the order of accuracy is determined by high derivatives of the
solution. Here, it depends only on the quality of the approximation of the right-hand
side (δ= O(hk)) and the FMM tolerance (ε). Note that the constant C1 is a bounded
quantity determined by the volume of � with no dependence on the data. If ε is
chosen to be of the same order as δ, the scheme is formally k-th order accurate. In
practice, it is convenient to decouple the right-hand side approximation error from
the FMM tolerance, as above, permitting the user to control them independently.

The principal drawback with the integral formulation is that, when implemented
naïvely, the complexity of the approach is quadratic in the number of sample points.
FMM algorithms overcome this computational barrier by making systematic use
of the smoothness of distant interactions on a hierarchy of spatial scales [6; 24;
30]. The kernel-independent versions of the FMM [60; 61] are particularly useful
because of their generality; they make it possible to compute solutions of the form
(4) for any (nonoscillatory) elliptic PDE, provided only a module which evaluates
the kernel.

After describing the details of the approach, we demonstrate its performance for
the Poisson equation

−1u(x)= g(x), (7)

the modified Helmholtz equation

αu(x)−1u(x)= g(x), α > 0, (8)

and the Stokes equations

∇p(x)−µ1u(x)= g(x), µ > 0,

∇ · u(x)= 0.
(9)

84 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Defining r = x− y and r = ‖r‖, the corresponding kernels in three dimensions are
given, respectively, by

K (x, y)= 1
4πr

, (10)

K (x, y)= 1
4πr

e−
√
αr , (11)

K (x, y)= 1
8πµ

(1
r

I +
r ⊗ r

r3

)
. (12)

The classical FMM is reviewed briefly in Section 3, the kernel-independent
method is described in Section 4, and symmetries for optimizing storage are dis-
cussed in Section 5. Numerical experiments are presented in Section 6 as well
as a brief discussion on extending our method to periodic boundary conditions or
including a singular source component along with a smooth background force. We
provide additional error analysis in the Appendix as well as a brief summary of how
the method is optimized using OpenMP and load-balancing techniques to achieve
near-linear strong scaling.

3. Analytic fast multipole method

We briefly review the structure of the original two-dimensional FMM for the case of
particle interactions [30]. Given a set of Nsrc charges of strength g(yi) at locations
(y)i , the FMM was designed to compute the induced potentials u j at Ntrg target
locations, x j ,

u j = u(x j)=
Nsrc∑
i=1

K (x j , yi)g(yi), j = 1, . . . , Ntrg, (13)

where K (x, y) = − log | {x− y} |/2π . For Nsrc ≈ Ntrg = N , the FMM decreases
the computational cost from O(N 2) to O(N) for fixed user-prescribed accuracy
by introducing a hierarchical partition (represented by a tree data structure T) of a
regular bounding domain D and two series expansions for each box at each level
of the hierarchy. More precisely, the root of T is associated with the entire box D
and defined to be at level `= 0. Level `+ 1 is obtained from level ` recursively,
dividing each subdomain at level ` into four equal-sized children. For a regular
box B of width H , B’s near field, NB , is defined as the set of all boxes in D
that lie within a box centered at B of width 3H . The neighbor list L B

N is defined
as the set of boxes in NB which share a vertex with B. In the nonadaptive case,
L B

N = NB . The far field, FB , is the complement of the near field: FB
= D \NB .

Finally, the interaction list L B
I is the set of children of B’s parent’s neighbors that

are not neighbors themselves. Thus, L B
I ⊆FB . The depth of T is chosen so that the

smallest boxes (leaves in T) contain no more than some fixed number of points —

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 85

say, s. We first consider uniformly refined trees, where all leaves T are at the same
level. Note that the total number of boxes in a 2D quadtree is bounded by 4N/3s
(and 8N/3s in a 3D octree). Thus, if the workload per box is constant, the net
algorithm has O(N) complexity.

A local expansion is used to represent within each box B the influence of all
sources in the far field of B. A multipole expansion about the center of B is used
to represent the influence of sources inside B on boxes in the far field FB [30].

The FMM computes the total field at a target point in leaf box B as the sum of
(a) the field due to the source points contained in the boxes of the neighbor list L B

N
and (b) the contribution from sources in the far field FB . The contributions from
source points inside the boxes of L B

N are computed directly using (13), while the
contributions from FB are obtained by evaluating the local expansion of box B at
the target. The essential task of the FMM is the construction of the local expansions
in a hierarchical manner. This takes place in two steps.

The upward pass. This pass begins at the finest level of the tree data structure,
converting charge strengths at source points into multipole expansions for each
leaf box; this computation is carried out by the source-to-multipole (S2M) operator.
Multipole expansions for each nonleaf box B at each coarser level are obtained
recursively. More precisely, the multipole expansions for the four children of B are
merged into a single expansion about B’s center using the multipole-to-multipole
(M2M) operator.

The downward pass. For each box B, starting at the coarsest level, the local expan-
sion of FB is obtained by shifting the local expansion of B’s parent to the center of
B using the local-to-local (L2L) operator and by mapping multipole expansions
centered at each box in L B

I to B’s local expansion using the multipole-to-local
(M2L) operator. For leaf box B, local expansions are then evaluated at each target
point using the local to target (L2T) operator.

Figure 1. Boxes used by M2M, L2L and M2L operators. For box
B at level `, P in the L2L operator represents the parent of B at
level `− 1, and in the M2M operator, C represents the children of
B at level `+1. Boxes labeled V in the M2L operator reside in L B

I .

86 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Summary. FMM uses S2M, M2M, M2L, L2L, and L2T linear operators: M2M
and L2L operators are determined uniquely by the relative position of a box and its
parent; each M2L operator is determined by the relative position of a box in the
interaction list; S2M and L2T operators depend on source and target point locations
and can be different for each (finest level) box. Figure 1 on the previous page
illustrates the data flow involved in the M2M, M2L and L2L operators.

For the Laplace kernel in three dimensions, far-field expansions are represented
using a mixture of spherical harmonics [31] and plane-wave representations [32].

We turn now to the kernel-independent approach [60; 61] in order to design a
volume integral FMM in three dimensions that can handle a broad class of PDEs.

4. 3D kernel-independent FMM volume integral solver

Given an octree T for our 3D bounding domain D, let D =
∑
{Bi }, i = 1 . . .M

be the set of leaf boxes resulting from hierarchical subdivision. For a single-layer
kernel K , we compute the integral (4) at some point x as

u(x)=
M∑

i=1
K [Bi , gBi](x), (14)

where K [B, gB
](x)=

∫
B K (x, y)g(y) d y, and gB represents the restriction of the

source distribution to the box B.
The principal difference between the approach of this paper and the analytic FMM

for point sources is that we use sampled equivalent densities instead of classical
special functions and series expansions to account for far-field interactions, as in
[60; 61]. This requires only a black-box kernel evaluation routine and allows for a
kernel-independent implementation. A second difference between the approach of
this paper and prior kernel-independent FMM schemes is that we are dealing with
a continuous source distribution rather than a collection of point-like particles. To
extend the method of [60; 61] to this setting, we use polynomial basis functions
to approximate the source distribution g on each leaf box, following the two-
dimensional approach of [22; 29; 24]. More precisely, we assume that the input
source is given on each leaf box B by a polynomial gB of degree k + 1 with
coefficients γ B :

gB
=

Nk∑
j=1
γ B

j β j (2`(x− cB)), (15)

where β j are polynomial basis functions, ` is the depth of the box B (` = 0 at
the root of T), and cB is its center. We use monomials for low-order accuracy
and tensor-product Chebyshev polynomials for higher-order accuracy. The number
of coefficients is Nk = k(k + 1)(k + 2)/6 for each scalar source function g. We
describe an interpolation scheme to convert a set of source values defined on a

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 87

grid of sample points to a polynomial representation in Section 4.6. As output, our
algorithm can return either point values of the potential at each target point or a
polynomial approximation of the potential on each leaf box (which can then be
evaluated at arbitrary locations).

To simplify the exposition, we present our algorithm first for a uniformly refined
octree of depth ` and then discuss the changes necessary for the adaptive octree case
separately. The final algorithmic steps are outlined in Section 4.8, and we briefly
discuss how the major loops are optimized for shared-memory parallelization in
the Appendix (Section A.4).

4.1. Equivalent densities. The kernel-independent approach to translation opera-
tors is based on the following idea. For kernel K , suppose we have an arbitrary
(smooth or nonsmooth) source distribution gs in a volume �s with surface 0s . Let
0t denote an auxiliary surface in the exterior of 0s , and let 0check denote yet another
auxiliary surface in the exterior of 0t . Finally, let E denote the exterior of 0check.
We will compute a charge density φt on 0t such that the potentials K [�s, gs] and
K [0t , φt] coincide in E . This is always possible if the exterior Dirichlet problem
on 0t has a unique solution and the exterior field can be represented in terms of a
single layer potential.1

Remark. For some problems, such as the Helmholtz equation, a combination of
single and double layer sources may be required because of nonphysical resonances
in the single layer representation, but it is generally sufficient for nonoscillatory
kernels ([41] for the Poisson equation, [42] for the Stokes equations).

Our goal is to use K [0t , φt] to represent the far-field instead of a multipole
expansion. For this, we let 0check approximate the outer boundary of the neighbor
list L B

N and solve a Fredholm integral equation of the first kind for φt ,

K [0t , φt](x)= K [�s, gs](x) for all x ∈ 0check. (16)

Having matched the field on 0check, the fields will match in the exterior E (with
precise estimates depending on the specific kernel). We refer to 0t as an equivalent
surface with equivalent density φt , and 0check as a check surface. In the case when
the original density is concentrated on the surface 0s , then (16) can be written as

K [0t , φt](x)= K [0s, φs](x) for all x ∈ xt . (17)

We match the field created by charges outside the near neighbors of a box by a
discretized layer potential defined on a surface enclosing the box, and a different
equivalent density will be used to replace the local expansion. The number of
samples used to represent the equivalent density is the analog of the number of

1For some kernels (Stokes), a low-dimensional nullspace may need to be eliminated.

88 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

expansion terms in a classical FMM. 0t and 0check are cubic surfaces, uniformly
sampled at p locations. In discretized form, (17) can be written as

K0t ,xtφt = K0s ,xtφs, (18)

where φs and φt are vectors of point-sampled densities, and K a,b are matrices with
entries given by K a,b

i j = K (ai , b j) for sample points ai and a j on surfaces a and b.
For known φs and solving for φt , (18) is a discretization of a Fredholm equation
of the first kind. For large p, linear systems may be poorly conditioned; in such
cases, we choose to utilize Tikhonov regularization methods [41] to invert K0t ,xt .
We discuss this approach and its accuracy in the Appendix (sections A.1 and A.3).

Kernel invariance and matrix precomputation. For all equations we consider, the
kernels are invariant with respect to a rigid transformation T: for scalar kernels,
K (Tx,T y) = TK (x, y), and for matrix kernels, K (Tx,T y) = TK (x, y)TT.
Hence, all matrices K need to be computed only once for each class of pairs of
equivalent surfaces, closed with respect to a specific T. Furthermore, many kernels
are homogeneous: for all c > 0, there exists a scaling exponent r 6= 0 such that
K (cx, c y) = cr K (x, y), further reducing the number of classes of surface pairs
requiring separate matrices. We consider optimizations due to invariance for each
translation operator in the next sections, assuming scalar kernels for simplicity,
although our implementation can handle matrix kernels.

4.2. Upward pass. For the upward pass, recall now that for each leaf box, the
sources are polynomials approximating the source distribution. For consistency
with the FMM summary above, we use S, M, etc. in describing translation operator
names.

Source to multipole S2M translations. For each leaf box B, we choose yB,u , the
upward equivalent surface, and x B,u , the upward check surface, as in [60]. Equation
(16) for upward equivalent density φB,u in this case becomes

K [yB,u, φB,u
](x)= K [B, gB

](x), (19)

K [B, gB
](x)≈

Nk∑
j=1
γ B

j F B
j (x), (20)

where F B
j (x)=

∫
B
β j (2`(y− cB))K (x, y)d y for x ∈ x B,u . (21)

By translation invariance, F B
j (x) depends only on the choice of β j and level `

of B. To evaluate the integrals in (21), we use adaptive Gaussian quadrature [8]. In
matrix form, the Nyström discretization of (19)–(21) at p sample points φB,u on
yB,u yields

K B
S2MφB,u

= FB
S2Mγ

B, (22)

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 89

where FB
S2M is the matrix of precomputed weights (21) and K B

S2M is the matrix with
entries K (xi , y j), i = 1 . . . p, j = 1 . . . p. Solving for φB,u ,

φB,u
= (K B

S2M)
−1 FB

S2Mγ
B
= T B

S2Mγ
B . (23)

For a uniformly refined tree, T B
S2M depends only on `, so one matrix is computed.

Figure 2, left, illustrates the computation of φB,u from γ B .

Multipole to multipole (M2M) translations. M2M translation operators translate
φC,u at a child box C to φB,u for the parent box B, shown in Figure 2, right: for all
x ∈ x B,u ,

K [yB,u, φB,u
](x)=

∑
C

K [yC,u, φC,u
](x),

or, in matrix form,
K B,B

M2MφB,u
=
∑
C

K C,B
M2Mφ

C,u . (24)

Similar to the S2M computations, these systems are solved as

φB,u
=
∑
C
(K B,B

M2M)
−1 K C,B

M2MφC,u
=
∑
C

T C,B
M2Mφ

C,u . (25)

For any two children C1 and C2, rotation R maps C1 to C2; therefore, only one
T C,B

M2M is computed per level, with the contribution to φB,u from any other child
obtained by composing this matrix with an appropriate permutation of φC,u . Further,
for homogeneous kernels, only one matrix is stored at a single level ` and scaled as
necessary.

4.3. Downward pass. In the downward pass downward equivalent densities are
computed through the M2L, L2L, and L2T operators.

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xB,u

yB,u

yC,u

FB
S2M

xB,u

KC,B
M2M

yB,u

(KB,B
M2M)−1(KB

S2M)−1

Upw. Equ. Surface
Upw. Check Surface

Figure 2. Kernel-independent FMM translation operators for S2M
(left) and M2M (right).

90 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

(KB,B
L2L)−1

KP,B
L2L

Dwn. Check Surface
Dwn./Upw. Equ. Surface

(KB,B
L2L)−1

xB,d

yB,d

yP,dyV,u

KV,B
M2L

yB,d

xB,d

Figure 3. Kernel-independent FMM translation operators for M2L
(left) and L2L (right).

Multipole to local (M2L) translations. For any box B, M2L operators (Figure 3, left)
translate φV,u , approximating the field of sources inside of V ∈ L B

I , to a downward
equivalent density φB,d . In this case, we seek to induce identical potentials inside of
B, effectively swapping upward equivalent and check surfaces to obtain downward
equivalent and check surfaces: yB,d

= x B,u and x B,d
= yB,u . Equation (17) takes

the form

K [yB,d , φB,d
](x)=

∑
V

K [yV,u, φV,u
](x) for all x ∈ x B,d , (26)

where φB,d is discretized at p uniformly spaced samples on yB,d . The right-hand
side of (26) is computed and stored as a downward check potential, u B,d at x B,d ,
and φB,d is recovered after the L2L contribution is added.

u B,d
M2L =

∑
V

K V,B
M2LφV,u . (27)

We efficiently evaluate u B,d with FFTs by treating densities as being defined
on extensions of yV,u and x B,d to 3D Cartesian grids with zero values in the
interior. This results in O(p3/2) sample locations, and the computational cost of
O(p3/2 log p) for evaluation.

There are at most 189 possible locations for V ∈ L B
I relative to any particular

B; however, using translation and rotation invariance of the kernel as discussed in
Section 5, we store at most 16 total K V,B

M2L matrices for a homogeneous kernel.

Local to local (L2L) translations. Contributions from FB
\LB

I are captured through
the local field computed for B’s parent box, P , using L2L operators (Figure 3,

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 91

right). We translate φP,d at yP,d to φB,d at yB,d using the equation

K [yB,d , φB,d
](x)= K [yP,d , φP,d

](x) for all x ∈ x B,d . (28)

The right-hand side is computed as a contribution to u B,d , so (28) for B at depth
` becomes

u B,d
L2L = K P,B

L2L φP,d , (29)

such that
φB,d
= (K B,B

L2L)
−1(u B,d

M2L+ u B,d
L2L

)
. (30)

The precomputation of matrix K P,B
L2L is completely analogous to K C,B

M2M, with
parent and child swapped.

Local to grid target (L2T) translations. For each leaf box B, we evaluate u B,g at
grid locations, x B,g. At depth `, φB,d accounts for all contributions from FB while
direct near-field calculations (discussed in detail in Section 4.4) account for the
contributions from NB . The far-field potential is computed using L2T operators
(Figure 4).

u(x)= K [yB,d ,φB,d
](x), x ∈ x B,g,

or, in matrix form
u B,g
= K B,B

L2T φB,d . (31)

For a uniformly refined tree, all leaves are at the same level, so we precompute
and store one K B,B

L2T matrix.

4.4. Near-field interactions. After the far-field contributions are computed, the
final step is to compute near-field interactions for leaf boxes. This is the most
expensive step in the computation, if carried out naïvely, and it is essential to

KB,B
L2T

Dwn. Equ. Surface

xB,g

yB,d

Figure 4. Kernel-independent FMM translation operators for L2T.

92 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

optimize this part of the algorithm. For each leaf box B, we need to compute the
influence of the volume density gU for every box U ∈ L N

B (the near field boxes).
Given a polynomial approximation γU to gU , we evaluate the potential on an
n×n×n grid of samples x B,g on B, which we then add to the far field contribution
computed in (31).

The principal mechanism to accelerate this step is based on the observation that we
may use a regular grid pattern of points in B, permitting the use of precomputation.
More precisely,

u B,g(x)=
∑
U

K [U, g](x)=
∑
U

Nk∑
j=1
γU

j FU,B
j (x), (32)

FU,B
j (x)=

∫
U
β j
(
2`(y− cU)

)
K (x, y) d y for x ∈ x B,g, (33)

where cU is the center of box U . We evaluate u B,g on a uniform grid x B,g
i , i =

1 . . . n3 for n < 6 and on a tensor product Chebyshev grid for n > 6 to avoid
condition problems, as discussed in Section A.2 of the Appendix. In matrix form
(32) becomes

u B,g
=
∑
U

FU,BγU . (34)

For a uniform octree, there are at most 27 possible locations for U ∈ L B
N with

respect to B itself; using symmetries, however, only 4 are unique up to translation
and rotation (Section 5). As in the S2M computations, adaptive Gaussian quadrature
[8] is used to precompute and store the weights for these matrices. This can be
done to machine precision for the function u and its first or second derivatives.

As each leaf box, B is not dependent on the near-field computations of any
leaf box in T , it can quickly be seen how even the simplest approaches can take
advantage of parallel architectures in the near-field computations. In Section A.4 of
the Appendix, we discuss how we use OpenMP [19] and load-balancing approaches
to parallelize the near-field and other computational steps of the FMM for shared-
memory, multiprocessor architectures.

4.5. Polynomial approximation of the solution. In order to compute the value of
u B at an arbitrary point in the box, it is convenient to approximate it as a polynomial
υB using a least-squares fit: minimizing

n3∑
i=1

∥∥∥u B(xi)−
Nn∑
j=1
υB

j β j (xi − cB)

∥∥∥2
for xi ∈ x B, (35)

where β j ∈ {Pa(x)Pb(y)Pc(z), 0≤ a+ b+ c ≤ n− 1} using either a monomial or
Chebyshev polynomial basis, depending on the desired order n. For n ≤ 6 it is more
convenient to use regular grids, while for n > 6 Chebyshev grid points provide

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 93

greater stability. In Section A.2 we demonstrate the accuracy of equispaced points
and Chebyshev points for n = 4, 6, 8. For box B at depth `, if 0 is the matrix with
entries 0i j = β j (2`(x− cB)), (35) leads to the equation υB

= 0(+)u B,g, where the
pseudoinverse 0(+) needs to be precomputed only once as it does not depend on
the kernel and is scale-invariant in all cases; that is, 0i j = β j (x∗i) where x∗i are grid
points in B∗ = [−1, 1]3. Once the vB

j are known, we can evaluate the solution at
an arbitrary point xt ∈ B as

u(xt)=
Nn∑
j=1
υB

j β j (xt − cB). (36)

In general, we assume that k, the order of the approximation γ B of the force
gB , is equal to n, the order of approximation of υB ; however, as source and target
locations need not be the same, k and n can be different.

4.6. Polynomial force approximation from grid samples. We have assumed the
right-hand side is already given as a polynomial. However, if the force is available
in another form (e.g., as samples on an AMR grid or polynomials on an unstructured
finite element grid), we need simply to build a k-th order approximation of the
right-hand side to the desired tolerance at regular grid points on each leaf node,
followed by conversion to a polynomial representation, as in the preceding section.
We view this step as outside the scope of the present paper.

4.7. Nonuniform source distributions and adaptive FMM. For nonuniform source
distributions, leaf boxes may appear at different levels, leading to several additional
types of interactions between boxes that need to be taken into account. For adaptive
octrees, the number of relative positions of boxes one needs to consider can become
very large. To avoid storing large number of precomputed matrices, we consider
level-restricted refinement: we require adjacent leaf boxes be within one level of
each other, a common restriction in tree codes and structured grids. Many fast
approaches exist to convert arbitrary octrees to ones satisfying this constraint [55];
we currently use a straightforward sequential algorithm similar to [24].

Lists for adaptive FMM. Our definitions and notation follow [26; 30; 31]. For leaf
box B, we define U and W lists:

• The U-list, L B
U , consists of leaves adjacent to B, including itself; L B

U = L B
N

for uniform trees.

• The W-list, L B
W , is the set of descendants of B’s neighbors, not adjacent to B,

but whose parents are adjacent to B. For any W ∈ L B
W , W is at a finer level

than B and W ∈ NB (conversely, B ∈ FW).

For leaf and nonleaf boxes B, we define V and X lists.

94 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

• The V-list, L B
V , is the set of B’s parent’s neighbor’s children, not adjacent to

B. L B
V = L B

I for uniform trees.

• The X-list, L B
X , is the set of boxes A such that B ∈ L A

W .

We note that

B ∈ L A
U ⇐⇒ A ∈ L B

U , B ∈ L A
V ⇐⇒ A ∈ L B

V , B ∈ L A
W ⇐⇒ A ∈ L B

X .

An example domain with labeled lists is shown in [60]; possible positions of boxes
in the L B

U , L B
V , L B

W and L B
X are shown in Figure 5.

By the following lemma, for level-restricted trees, boxes in W and X lists have
finite possible positions.

Lemma 4.1. For a level-restricted tree T in which all neighboring leaf boxes are
within one level of each other in the octree, for a box, B, all boxes in L B

W and L B
X

must also be within one level of B.

Proof. For box B assume there exists W ∈ L B
W such that `W − `B ≥ 2. Then W ’s

parent, PW , satisfies `PW −`B ≥ 1, so there exist descendants D of PW with D ∈ L B
U

and `D − `B ≥ 2, violating our tree-level restriction. Thus, `W − `B ≤ 1. Since
W ∈ L B

W implies B ∈ LW
X , we have `B − `X ≤ 1 for all X ∈ L B

X . �

Boxes in L B
U and L B

V are handled as boxes in L B
N and L B

I , respectively, are in the
uniform case. For leaf box B, if W ∈ L B

W , then W 6∈FB ; therefore, W ’s contribution
to B is not accounted for through its parent, PB , but since B ∈FW , we can evaluate
φW,u at x B,g. Hence, using notation analogous to other operators, M2T operators
need to be defined. Further, for X ∈ L B

X , B ∈ NX , but X ∈ FB . Thus, we need to

Figure 5. Possible box positions for different lists in a level-
restricted tree in 2D. The configurations in 3D are analogous.

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 95

evaluate contributions from X directly but can apply them to φB,d ; that is, we need
to define an S2L operator.

To summarize, for adaptive FMM, in addition to M2M, M2L, L2L, and L2T,
two additional operators, M2T and S2L need to be defined, and S2M and near-field
(S2T) operators need to handle leaf boxes at arbitrary levels. We begin by describing
changes to S2M and S2T operators and follow with a discussion of M2T and S2L
operators.

S2M operators for the adaptive case. For homogeneous kernels, we store a single
matrix T B∗

S2M, scaling for level ` as was done for the M2M and L2L operators. Let
B∗ = [−1, 1]3 at `= 0. Then, for x ∈ B at level `, let x∗ = 2`(x− cB) for x∗ ∈ B∗.
For scaling exponent r , we have K (xi , y j)= 2−r`K (x∗i , y∗j), and (21) becomes

F B
j (x)=2−(r+2)`K [B∗, β j](x∗)=2−(r+2)`F B∗

j (x∗) for all x∈ x B,g, x∗∈ x B∗,g.

In matrix form, FB
S2M = 2−(r+2)`FB∗

S2M and K B
S2M = 2−r`K B∗

S2M. Solving for φB,u ,
(23) becomes

φB,u
= T B∗

S2Mγ
B, (37)

where T B∗
S2M is precomputed and stored. (For inhomogeneous kernels, we store one

matrix per leaf level).

Neighbor list interactions for adaptive trees. For adaptive level-restricted trees,
leaves may exist at any level and U ∈ L B

U may exist at one level finer or coarser
than B. As above for the S2M operators, for homogeneous kernels with scaling
exponent r , we only compute matrices for pairs (B,U) with B scaled to B∗ (U is
appropriately scaled as well to U∗) such that (33) and (34) become

FU,B
j (x)= 2−(r+2)`K [U∗, β j](x∗)= 2−(r+2)`F (U,B)

∗

j (x∗),
for all x ∈ x B,g, x∗ ∈ x B∗,g,

u B,g
=
∑
U

FU,B
S2T γ

U
= 2−(r+2)`∑

U
F(U,B)∗

S2T γU .

Along with 27 possible same-level neighbors, there are 56 fine-level neighbors
(one level deeper) and 7 coarse-level neighbors (one level higher), all constituting the
90 possible locations for boxes in L B

U in a level-restricted octree. Using symmetries
(Section 5), we only precompute and store 10 matrices. For inhomogeneous kernels,
this set of matrices is precomputed for each level for which leaf boxes exist.

M2T and S2L operators. For leaf box B and W ∈ L B
W , we need an operator that

evaluates φW,u at x B,g:

u B,g(x)=
∑
W

K [yW,u,φW,u
](x)for x ∈ x B,g,

96 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

or, in matrix form,
u B,g
=
∑
W

K W,B
M2Tφ

W,u, (38)

for precomputed K W,B
M2T . For all boxes B, L B

X contains leaves X , for which contri-
butions to B are computed at x B,d :

u B,d(x)=
∑
X

K [X, gX
](x)≈

∑
X

Nk∑
j=1
γ X

j F j (x) for x ∈ x B,d ,

or, in matrix form,
u B,d
=
∑
X

FX,B
S2L γ

X . (39)

There are 152 possible locations for W ∈ L B
W ; however, only six locations

are distinct up to translation and rotation; also, due to the inverse relationship
between L B

X and L B
W , the number of symmetry classes is the same (Section 5). For

homogeneous kernels, only six K W,B
M2T and six FX,B

S2L matrices are precomputed for
level `= 0 and scaled as necessary. For inhomogeneous kernels we compute and
store these sets for each leaf level.

Remark. In cases where the order of γ is low compared to the order of φB,u and
φB,d , the size of M2T and S2L operators may actually be larger than those needed
for direct computation of contributions from W ∈ L B

W or X ∈ L B
X to x B,g. Assuming

we have a homogeneous kernel, if W ∈ L B
W is a leaf box, we can replace K W,B

M2T
by FW,B

S2T , constructed exactly in the same way as for boxes in the neighbor list
L B

U . Similarly, for leaf box B and a box X ∈ L B
X , we can replace FX,B

S2L with FX,B
S2T .

For homogeneous kernels, these operators are computed for B∗ only and scaled as
necessary as in Section 4.4.

4.8. Pseudocode and complexity for kernel-independent FMM volume solver.

Pseudocode. The algorithm is summarized on the next page. We assume that a
tree-level restricted octree T already exists [24] and that for each box, B, we are
given the approximation, γ B , to the force gB (we discuss how to construct γ from
g in Section 4.6). For clarity, we do not include the optimization of replacing M2T
and S2L with S2T operators when more efficient as discussed above.

Computational complexity and storage requirements. We analyze the complexity
for a uniformly refined octree. The analysis for the adaptive FMM is similar but
slightly more complicated. We assume a homogeneous scalar kernel such as the
Laplace kernel in (10) for analyzing the storage and computational complexities.
Further, we assume that there are ` levels in the octree T. For a uniform tree, this
implies we have M` = 8` leaves and Mt = (8`+1

− 1)/7 total boxes in T . If we are
using a k-th order polynomial approximation to the force at each leaf, we further
assume there are approximately N = M`n3 total target points and C = M`Nk total

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 97

STEP 1 - BUILD LISTS
for each box B in preorder traversal of T do

build L B
U , L B

W , L B
X , and L B

V (Section 4.7)
end for
STEP 2 - UPWARD PASS (Section 4.2)
for each box B in postorder traversal of T do

if B is a leaf box then
Convert local force approximations to upward densities:
φB,u
:= T B

S2Mγ
B (23)

else
Translate children’s upward densities to parent’s upward density:

φB,u
:=

∑
C

T C,B
M2Mφ

Ci ,u (25)

end if
end for
STEP 3 - DOWNWARD PASS (Section 4.3)
for each nonroot box B in preorder traversal of T do

Add potentials due to parent downward density, U and X boxes to get the
downward check potential:

u B,d
:= K P,B

L2L φ
P,d
+

∑
V∈L B

V

K V,B
M2Lφ

V,u
+

∑
X∈L B

X

FX,B
S2L γ X (29), (27), (39)

Translate the check potential to the downward density:
φB,d
:= (K B,B

L2L)
−1uB,d (30)

if B is a leaf box then
Compute potentials from adjacent and W boxes to the potential at grid
locations:

u B,g
:=

∑
U∈L B

U

FU,B
S2T γ

U
+

∑
W∈L B

W

K W,B
M2Tφ

W,u (34), (38)

Add the potential from the far field:
u B,g
:= uB,g

+ FL2Tφ
B,d (31)

end if
end for

Algorithm 1. Kernel-independent volume FMM.

coefficients. Let p be the number of coefficients sought in the multipole expansion,
affecting the size of the equivalent densities and surfaces. For a desired level of
precision in the expansion, say εfmm = 10−n p , we have p = n3

p − (n p − 2)3. In
Table 1, we indicate the computational complexity of each step of the nonadaptive
FMM algorithm as well as the amount of precomputation and storage used for
operators at each step. For nonuniform source distributions, we store additional

98 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Operator Complexity Storage

S2M: T B
S2M O(Cp) pNk

M2M: T C,B
M2M O((Mt −M`)p2) p2

M2L: K V,B
M2L O(Mt p3/2 log p+ 189Mt p3/2) 16p3/2

L2L:K P,B
L2L , (K B,B

L2L)
−1 O(Mt p2) 2p2

L2T: K B,B
L2T O(N p) pn3

Near Interaction: FU,B
S2T O(27N Nk) 4Nkn3

U -list (adaptive): FU,B
S2T 10Nkn3

W -list: FW,B
S2T , K W,B

M2T 6n3(Nk + p)

X -list: FX,B
S2T , FX,B

S2L 6Nk(n3
+ p)

Table 1. Computational complexity and storage requirements for a
scalar homogeneous kernel. These values scale linearly for matrix
and inhomogeneous kernels.

operators for the near-field interactions in the U, W, and X operators; the complexity
of these operators are based on the degree of adaptivity.

Finally, we note that the computational and storage complexities will scale
linearly for matrix or inhomogeneous kernels. For example, for the Stokes kernel
in (12), the number of coefficients, p, scales as a results of the matrix kernel
size to p = 9(n3

p − (n p − 2)3). For the modified Helmholtz kernel in (11), the
inhomogeneous nature of the kernel results in an increased storage complexity,
which varies depending on the number of different levels in the tree.

5. Symmetries for precomputed interaction operators

For a box B and all boxes in L B
U , L B

V , L B
W and L B

X , the number of different relative
positions can be large, so precomputing all possible interaction matrices may require
significant time and storage. Performance can also be affected by the need for
random access of large amounts of precomputed data. The number of precomputed
matrices can be substantially reduced via symmetries; that is, many box positions
are equivalent in the sense that there is a rigid transformation T, mapping box Z1

to Z2 and box B to itself. We store a single matrix for a representative box for each
symmetry class, obtaining matrices for all elements of the class by applying T to
the matrix for the representative box.

For every list type Z ∈{U, V,W, X}, we define a set of possible positions Pos(Z)
and a set of symmetry classes which form a partition of Pos(Z). For each class, we

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 99

define a reference box, and for each box position in Pos(Z), we need an efficient
way to determine its class and a transformation T(B) : R3

→ R3 mapping it to the
reference box.

For all lists, the symmetries are related to the transformations of space which map
a grid of cubes to itself. We consider N 3 grids of sizes 13 to 73 (we discuss which
lists correspond to which cubes in more detail below) and begin by classifying all
symmetries of such grids.

Grid symmetries. The cubes on the N 3 grid are indexed by (i, j, k) with values
−M . . .− 1, 0, 1 . . .M for odd N = 2M + 1 and −M . . .− 1, 1 . . .M for even
N = 2M . We skip index 0 for even grids to ensure cube centers and indices are
transformed by symmetries in the same way. If the cube size is 1, cube centers
are exactly the indices (i, j, k) for odd N and differ by ± 1

2 for even N , depending
on the index sign. Each N 3 grid can be partitioned into M (for even N) or M + 1
(for odd N) layers. Layer 0 consists of one cube and exists for odd N , and layer
M consists of cubes on the surface of the N 3 grid. For odd N , layer l has size
(2l + 1)3 and for even N , layer l has size (2l)3.

The group of symmetries Gcube of a cube has order 48. For a cube centered at zero,
transformations in Gcube are compositions of rotations and reflections, mapping
each axis direction to another, possibly with orientation reversed. Any permutation
of directions is possible, so we identify the group with S3× J 3, where S3 is the
group of permutations of length 3, and J is the two-element group of reflections.
The rotational part of any element of Gcube can be specified as a permutation of
length 3 on the set of axes {x, y, z}, with an orientation 1 or −1 specified for each
axis. Transformations from Gcube encoded in this way can be applied to points very
efficiently: for a point x ∈ R3, the permutation is applied to its coordinates, which
are then scaled by 1 or −1.

For the N 3 grid, the equivalence classes under the action of Gcube can be
enumerated combinatorially. If two indices (i, j, k) and (i ′, j ′, k ′) differ only
by signs of components, corresponding cubes are in the same class, mapped by
reflections. To enumerate all classes, we consider cubes with nonnegative indices.
Two cubes with nonnegative indices (i, j, k) and (i ′, j ′, k ′) are in the same class if
and only if there is a permutation mapping (i, j, k) to (i ′, j ′, k ′). For i 6= j 6= k and
i, j, k ∈ [1,M], seven series of equivalence classes are
easily enumerated, corresponding to signatures (i, j, k),
(i, i, j), (i, i, i), (0, i, i), (0, 0, i) and (0, 0, 0). A refer-
ence box in every class is uniquely defined by requiring
that its three indices are all nonnegative and are in non-
decreasing order. As an example, the figure shows the
representative box for the (1, 2, 3) class in the 73 grid
for M = 3.

100 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

The properties of classes in each series are summarized in Table 2. For a box
Z , with grid index (i, j, k) relative to B, the reference box is obtained by taking
absolute values and sorting the indices; sign changes and a permutation mapping
(i, j, k) to the reference box index also encode the transformation.

series
signature 73 classes reference

cube
classes
per grid

classes
per layer

class
size

(i, j, k) (|i |, | j |, |k|),
|i |< | j |< |k|

(M
3

) (M−1
2

)
48

(i, i, j)
(|i |, |i |, | j |),
|i |< | j |

or (|i |, | j |, | j |)
M(M−1) 2(M−1) 24

(i, i, i) (|i |, |i |, |i |) M 1 8

(0, i, j) (0, |i |, | j |)
(M

2

)
M−1 24

(0, i, i) (0, |i |, |i |) M 1 12

(0, i, i) (0, 0, |i |) M 1 6

(0, 0, 0) — (0, 0, 0) 1 — 1

Table 2. Series of equivalence classes of cubes in an N 3 grid, with
M = bN/2c. For even N only the first 3 series of classes may be
nonempty. For odd N all classes are present. For M ≤ 2, (i, j, k)
classes are empty, and for M = 1, (i, i, j) and (0, i, j) classes
are also empty. Class (0, 0, 0), corresponding to the center of
the grid, exists only in layer 0. Boxes in different classes in one
series are marked with circles of different colors; representative
boxes are marked with circles with black border. The view is from
the top, with first index direction to the right, second direction
up and third towards the viewer, as in the figure on page 99. The
total number of classes for (2M)3 layers is (M+1)M/2 (classes
(i, j,M) with i, j = 1 . . .M , i ≤ j), and for (2M+1)3 layers, it
is (M+2)(M+1)/2 (classes (i, j,M) with i, j = 0 . . .M , i ≤ j).

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 101

Symmetries of L B
U . Due to the tree-level restriction, boxes U ∈ L B

U are either
neighbors of B, neighbors of B’s parent and adjacent to B, or adjacent children
of neighbors of B. We denote these three sublists of L B

U by L B
U,n , L B

U,p and L B
U,c

respectively. Note that A ∈ L B
U,p is equivalent to B ∈ L A

U,c; hence, it is sufficient
to consider L B

U,n and L B
U,c. The neighbors of B on the same level as B form a 33

grid centered at B, so from Table 2, the number of classes is 4: (1, 1, 1), (0, 1, 1),
(0, 0, 1), and (0, 0, 0). Locations of U ∈ L B

U,c can be thought of as the outer layer
of a 43 grid, with M = 2 and B as the 23 subgrid in the center, so we obtain 3
classes: (1, 1, 2), (1, 2, 2), (2, 2, 2), giving 10 classes for L B

U .

Symmetries of L B
V . Boxes in L B

V are children of neighbors of the parent of B, so
they can all be represented by cubes of a 63 grid; however, the group of rigid
transformations of the grid mapping to itself do not necessarily preserve B. Hence,
instead regard L B

V as a subset of a 73 grid centered at B with M = 3. All V ∈ L B
V are

in layers 2 and 3, and there are 10 classes: for layer 3, classes (i, j, 3), i, j = 1 . . . 3,
i ≤ j and for layer 2, classes (i, j, 2), i, j = 0, 1, 2, i ≤ j . Because we consider
only a subset of the full 73 grid, the class sizes are smaller, but it can easily be seen
that no class becomes empty, so the number is optimal.

Symmetries of L B
W , L B

X . For a level-restricted tree, boxes W ∈ L B
W are children of

neighbors of B not adjacent to B, that is, they reside in the surface layer of a 63 grid
with B as the central 23 grid. For M = 3, we have 6 classes from Table 2: (i, j, 3),
i, j = 1 . . . 3, i ≤ j . Due to duality, the number of classes for L B

X is the same, but
the class sizes may not be the same.

Summary. For a given pair (B, Z), if Z ∈ {L B
U,n, L B

U,c, L B
V , L B

W }, determine the
translation and scaling which map B to the central box or 23 subgrid of a larger
grid. Then, apply the same transformation to the center of Z ; resulting coordinates
yield the index (i, j, k), which is translated into the reference box and rotation as
described above.

6. Numerical results

Our algorithm has been implemented in C++, and we have tested several kernels
and source and target point distributions. Our tests were run on an Intel Xeon-based
X7560 (2.27 GHz, 64 bit) system with 16 CPUs and 128 GB of RAM; the major
computation loops are accelerated with OpenMP [19] as discussed in Section A.4.

We first test the free-space Poisson solver on three different types of problems
designed to show how our algorithm handles increasing levels of complexity in the
force distribution.

We use an adaptive-refinement strategy similar to [24]. For this, we compute
a k-th order polynomial approximation, γ B , to the force gB(x) sampled on a

102 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Figure 6. Sample force distributions based on adaptive refinement.
Each point, colored by its tree level, indicates the center of a
leaf box B. Top left: A single sharply peaked Gaussian function
(Example 1). Top right: A discontinuous force distribution, equal
to 1 inside a sphere and 0 outside (Example 2). Bottom: A discon-
tinuous force distribution involving oscillatory functions restricted
to the interiors of a set of three spheres (Example 3).

k× k× k grid. We let g̃B be the force evaluated on a refined 2k× 2k× 2k grid. If
‖gB(x)− g̃B(x)‖2 > εrhs, B is subdivided, and the octree is balanced as needed.
Three force distributions, used in Examples 1–3 below, are shown in Figure 6.

Example 1. The first experiment tests the accuracy of our method for solving the
Poisson equation — Equation (7) with kernel (10) — with a fast-decaying smooth
right-hand side:

−1u(x)=
8∑

i=0
−e−L‖x−xi‖

2
(4L‖x− xi‖

2
− 6L), L = 250,

with solution

u(x)=
8∑

i=0
−e−L‖x−xi‖

2
,

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 103

where xi =
(
±

3
40 ,±

3
40 ,±

3
40

)
inside the [−1, 1]3 box. This test requires a high

degree of adaptivity to achieve good accuracy with a limited number of points.
In Table 3, εfmm is the precision of the translation operators, εrhs is the refinement

criterion for the adaptive refinement of the source distribution, and M` is the number
of leaves in the tree T with LT levels. The number of points Npts is computed as
M`k3 where k is the order of the polynomial. This number of points per leaf is
chosen to be sufficiently large to build the polynomial approximation of order k.
The computation time TFMM is given in seconds, and the rate is in points per second.
E2 and E∞ are the relative L2 and L∞ errors, respectively. Timings include FMM
evaluation times only; when the precision εfmm remains constant, the rate of work

εfmm εrhs M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 736 47104 6 2.3·10−2 2.4·10−2 9.1453·10−3 5.15·10+6

10−4 10−2 736 47104 6 1.1·10−3 6.8·10−4 2.4328·10−2 1.94·10+6

10−4 10−4 3088 197632 7 1.1·10−4 2.7·10−4 9.6590·10−2 2.05·10+6

10−6 10−4 3088 197632 7 3.8·10−5 2.5·10−5 3.7906·10−1 5.21·10+5

10−6 10−6 19328 1236992 8 3.8·10−6 3.6·10−6 2.3889·10+0 5.18·10+5

10−8 10−6 19328 1236992 8 3.7·10−6 1.3·10−6 6.2057·10+0 1.99·10+5

10−8 10−8 143088 9157632 9 1.6·10−7 8.8·10−8 4.5280·10+1 2.02·10+5

sixth-order force approximation

10−4 10−4 1408 304128 6 1.1·10−4 2.3·10−4 1.1016·10−1 2.76·10+6

10−6 10−4 1408 304128 6 1.4·10−5 3.5·10−5 1.8717·10−1 1.62·10+6

10−6 10−6 4936 1066176 7 9.0·10−7 2.2·10−6 6.6737·10−1 1.60·10+6

10−8 10−6 4936 1066176 7 3.3·10−7 1.6·10−7 1.6155·10+0 6.60·10+5

10−8 10−8 20112 4344192 8 2.4·10−8 6.2·10−8 6.8652·10+0 6.33·10+5

10−10 10−8 20112 4344192 8 1.8·10−8 1.0·10−8 1.5771·10+1 2.76·10+5

10−10 10−10 92072 19887552 9 6.3·10−9 9.7·10−9 7.5103·10+1 2.65·10+5

eighth-order force approximation

10−6 10−6 2024 1036288 7 9.2·10−7 3.5·10−6 4.6688·10−1 2.22·10+6

10−8 10−6 2024 1036288 7 3.7·10−7 8.2·10−7 7.4189·10−1 1.40·10+6

10−8 10−8 5440 2785280 7 1.9·10−8 6.6·10−8 2.1128·10+0 1.32·10+6

10−10 10−8 5440 2785280 7 7.7·10−9 7.6·10−9 4.3588·10+0 6.40·10+5

10−10 10−10 22800 11673600 8 4.1·10−9 5.6·10−9 1.9449·10+1 6.00·10+5

10−12 10−10 22800 11673600 8 2.6·10−9 4.7·10−9 4.1602·10+1 2.81·10+5

10−12 10−12 50352 25780224 9 2.1·10−9 4.6·10−9 9.2139·10+1 2.80·10+5

Table 3. Results for free-space Poisson equation (Example 1):
Gaussian bump at the origin.

104 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

per source and target point remains close to constant, as we would expect since the
FMM algorithm scales linearly.

Example 2. In this example, we consider a discontinuous right-hand side, with
g(x) = 1 inside a sphere of radius R = 0.75, and g(x) = 0 outside the sphere.
Letting r = ‖x‖, the problem becomes

−1u(x)=
{

1 if r ≤ R,
0 else,

with solution

−1u(x)=
{
(R2
− r2)/6+ R2/3 if r ≤ R,

R3/3r2 else.
While this problem can be handled analytically, it serves as a useful test of

performance on adaptive data structures that are refined in the neighborhood of a
surface. The number of points indicates the total number of points both inside and
outside the sphere. Since the coefficient representation of the force for a leaf node
entirely outside of the sphere is zero, these boxes are ignored in all evaluation phases;
this increases the computed rate somewhat. A greater speedup is achieved from the
observation that leaf nodes entirely in the interior have a constant source distribution,
so that only one polynomial coefficient is nonzero. This significantly accelerates
both the near-field and S2M calculation stages. Results are shown in Table 4.

εfmm εrhs k M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 4 232 14848 4 1.1·10−2 1.6·10−2 1.8346·10−3 8.09·10+6

10−3 10−3 4 1184 75776 5 4.3·10−3 4.6·10−3 1.1007·10−2 6.88·10+6

10−4 10−4 4 5888 376832 6 1.4·10−4 2.5·10−4 1.1327·10−1 3.33·10+6

10−5 10−5 6 11432 2469312 7 1.6·10−5 3.3·10−5 6.2147·10−1 3.97·10+6

10−6 10−6 6 80088 17299008 8 7.2·10−6 1.8·10−5 6.0647·10+0 2.85·10+6

10−7 10−7 8 127856 65462272 8 9.4·10−7 3.3·10−6 1.8852·10+1 3.47·10+6

10−8 10−8 8 528984 270839808 10 3.7·10−7 9.8·10−7 1.2335·10+2 2.20·10+6

10−9 10−9 8 2074360 1062072320 10 3.2·10−8 2.6·10−7 6.4900·10+2 1.64·10+6

Table 4. Free-space Poisson equation (Example 2): discontinuous force.

Example 3. For our third example, we replicate an experiment from [47] for a
highly oscillatory force with discontinuities along multiple surfaces, setting

fm(r)=
{
((r − r2) sin (2mπr))2 if r < 1,
0 if r ≥ 1,

−1u(x)= 1
R3

2∑
i=0

fm(|x− ci |/R), (40)

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 105

where c0 =
(3

16 ,
7

16 ,
13
16

)
, c1 =

(7
16 ,

13
16 ,

3
16

)
, c2 =

(13
16 ,

3
16 ,

7
16

)
, R = 0.05, and the

wavelength of fm is λm = R/(2m)= (1/40m). Defining

φm(r)=
(10r6

− 28r5
+ 21r4

− 7)
840

+
(60r − 120)

rλ6
m

−
9
λ4

m

+

[(300r − 120)
rλ6

m
−+

(30r2
− 36r + 9)
λ4

m
+
(r4
− 2r3

+ r2)

2λ2
m

]
cos (rλm)

+

[
−

360
rλ7

m
+
(120r2

− 96r + 12)
rλ5

m
+
(5r3
+ 8r2

− 3r)
λ3

m

]
sin (rλm),

and

θm(r)=
(360
λ6

m
−

12
λ4

m
−

1
120

)
/r,

we write the solution to (40) as

uexact(x)=

φ(‖x− c0‖/R)+

∑
i=1,2 θ(‖x− ci‖/R) if ‖x− c0‖< R,

φ(‖x− c1‖/R)+
∑

i=0,2 θ(‖x− ci‖/R) if ‖x− c1‖< R,

φ(‖x− c2‖/R)+
∑

i=0,1 θ(‖x− ci‖/R) if ‖x− c2‖< R,∑2
i=0 θ(‖x− ci‖/R) else.

In order to compare our results to [47], we use the error metric introduced there.
Let εB be the vector of errors calculated as the difference between the calculated
and exact solutions on B and calculate the following norm over all leaf boxes.

‖εB
all‖2 =

∑
B

(∫ εB

‖uexact‖∞

)1/2
.

As indicated in [47],

‖uexact
‖∞ =

∣∣∣∣(− 6
λ4

m
−

1
120

)
/R+

(720
λ6

m
−

24
λ4

m
−

1
120

)
/‖ci − c j‖

∣∣∣∣
for all i, j = 0, 1, 2, i 6= j.

Our automatic refinement strategy refines within or near the sphere surfaces, with
refinement taking place in the exterior of the spheres only for the purpose of tree-
balancing. We build coefficients only on leaf boxes which contain nonzero source
distributions: either interior to or intersecting one of the three spheres. Results are
shown in Table 5.

While the performance of our code cannot be compared easily to the optimized
and parallelized scheme presented in [47], we have implemented schemes accurate
to much higher order. Thus, as expected, we are able to reach comparable accuracies
with significantly fewer points. To compare the number of points required, we con-
sider the number of points in the finest level solve of their three-level examples. For

106 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

m εfmm εrhs M` Npts LT k ‖εB
all‖2 ‖εB

all‖∞

1 10−6 10−6 3984 254976 8 4 2.3·10−7 2.2·10−5

1 10−8 10−8 7296 1575936 9 6 1.1·10−8 7.1·10−7

1 10−10 10−10 24144 12361728 9 8 1.6·10−10 1.8·10−8

7 10−6 10−6 93816 6004224 10 4 2.2·10−6 1.8·10−4

7 10−8 10−8 195984 42332544 10 6 9.3·10−9 1.1·10−6

7 10−10 10−10 228312 116895744 10 8 1.1·10−10 4.3·10−8

15 10−6 10−6 140568 8996352 10 4 6.4·10−7 8.6·10−5

15 10−8 10−8 1092456 235970496 11 6 7.2·10−8 4.2·10−6

15 10−10 10−10 1596672 817496064 11 8 4.8·10−10 6.1·10−8

30 10−6 10−6 148272 9489408 10 4 5.8·10−7 6.2·10−5

30 10−8 10−8 1491216 322102656 11 6 2.1·10−8 3.8·10−6

30 10−10 10−10 1720152 880717824 12 8 4.9·10−9 2.0·10−6

60 10−6 10−6 150288 9618432 11 4 6.0·10−7 9.6·10−5

60 10−8 10−8 1502592 324559872 11 6 9.2·10−8 1.4·10−5

60 10−10 10−9 1659312 849567744 11 8 7.7·10−8 1.7·10−5

Table 5. Free-space Poisson equation (Example 3): Discontinuities
along several spherical surfaces containing oscillating source dis-
tributions.

m= 7, we achieve accuracy on par with their most accurate tests with approximately
1

100 as many points. For m = 15, we require approximately 1
5 as many points, and

with 1
4 as many points, we achieve about two orders of magnitude greater accuracy.

For m = 30, we achieve equivalent results with approximately 1
4 as many points.

Additionally, we extended the examples for an even higher wavenumber component
(m = 60), decreasing the wavelength to 4.17 ·10−4, and achieving good results with
fewer than 109 points.

Example 4. For the modified Helmholtz equation — (8) with kernel (11) — we use
a right-hand side similar to that of Example 1, setting the Helmholtz parameter
(inverse Debye length) to α = π :

α u(x)−1u(x)=
8∑

i=0
−e−L‖x−xi‖

2
(4L‖x− xi‖

2
− 6L −α), L = 250,

with solution

u(x)=
8∑

i=0
−e−L‖x−xi‖

2
, for xi =

(
±

3
40 ,±

3
40 ,±

3
40

)

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 107

εfmm εrhs M` Npts LT E2 E∞

fourth-order force approximation

10−2 10−2 736 47104 6 2.3·10−2 2.4·10−2

10−4 10−2 736 47104 6 6.0·10−4 5.6·10−4

10−4 10−4 3088 197632 7 1.1·10−4 1.8·10−4

10−6 10−4 3088 197632 7 2.4·10−5 2.1·10−5

10−6 10−6 19328 1236992 8 2.3·10−6 3.4·10−6

sixth-order force approximation

10−4 10−4 1408 304128 6 1.1·10−4 2.4·10−4

10−6 10−4 1408 304128 6 1.4·10−5 3.5·10−5

10−6 10−6 4936 1066176 7 8.5·10−7 2.5·10−6

10−8 10−6 4936 1066176 7 1.4·10−7 1.3·10−7

10−8 10−8 20112 4344192 8 1.5·10−8 7.5·10−8

10−10 10−8 20112 4344192 8 8.9·10−9 7.4·10−9

10−10 10−10 92072 19887552 9 2.2·10−9 5.7·10−9

eighth-order force approximation

10−6 10−6 2024 1036288 7 1.9·10−6 4.7·10−6

10−8 10−6 2024 1036288 7 1.8·10−7 4.6·10−7

10−8 10−8 5440 2785280 7 1.2·10−8 1.4·10−8

10−10 10−8 5440 2785280 7 7.7·10−9 7.6·10−9

10−10 10−10 22800 11673600 8 3.4·10−9 5.6·10−9

10−12 10−10 22800 11673600 8 1.3·10−9 2.0·10−9

10−12 10−12 50352 25780224 9 2.0·10−9 2.6·10−9

Table 6. Free-space modified Helmholtz equation (Example 4):
Gaussian bump at the origin.

inside of the [−1, 1]3 box. All translation matrices are computed to a precision
of εfmm/10. These matrices can be computed at run-time in a lazy manner; if α
is known before run-time, these tables can be precomputed, stored, and loaded as
necessary. Additionally, since the right-hand side is the same as in Example 1, we
use the same point distribution; hence, the timings are essentially the same as in
that example and are omitted here. Results are shown in Table 6.

Example 5. We test the ability of our code to handle matrix kernels by solving
the Stokes equations — (9) with kernel (12) — with the following divergence-free
fast-decaying force.

−µ1u(x)+∇ p(x)=
8∑

i=0
(8L3
‖x− xi‖

2
− 20L2)e−L‖x−xi‖

2(
∇ × (x− xi)

)
,

108 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

εfmm εrhs M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 2038 130432 6 1.3·10−1 1.5·10−1 1.3485·10−1 9.67·10+5

10−4 10−2 2038 130432 6 1.0·10−3 8.4·10−4 9.4899·10−1 1.37·10+5

10−4 10−4 10606 678784 7 9.1·10−4 9.4·10−4 5.1145·10+0 1.33·10+5

10−6 10−4 10606 678784 7 8.4·10−6 1.1·10−5 2.2359·10+1 3.04·10+4

10−6 10−6 69140 4424960 8 7.5·10−6 1.4·10−5 1.4655·10+2 3.02·10+4

10−8 10−6 69140 4424960 8 2.2·10−7 4.4·10−7 4.8311·10+2 9.16·10+3

10−8 10−8 484408 31002112 9 1.4·10−7 4.4·10−7 3.2253·10+3 9.61·10+3

sixth-order force approximation

10−4 10−4 2696 582336 7 4.9·10−4 8.6·10−4 1.5720·10+0 3.70·10+5

10−6 10−4 2696 582336 7 4.3·10−6 9.9·10−6 5.9948·10+0 9.71·10+4

10−6 10−6 10396 2245536 7 8.1·10−6 1.3·10−6 2.3602·10+1 9.51·10+4

10−8 10−6 10396 2245536 7 1.6·10−7 4.1·10−7 7.7862·10+1 2.88·10+4

10−8 10−8 59830 12923280 8 1.4·10−7 4.3·10−7 4.1067·10+2 3.15·10+4

10−10 10−8 59830 12923280 8 5.4·10−9 1.3·10−8 1.0326·10+3 1.25·10+4

10−10 10−10 295100 63741600 9 5.2·10−9 1.1·10−8 5.3102·10+3 1.20·10+4

eighth-order force approximation

10−6 10−6 4894 2505728 7 4.8·10−6 1.5·10−5 1.4287·10+1 1.75·10+5

10−8 10−6 4894 2505728 7 8.0·10−8 4.3·10−7 4.1362·10+1 6.06·10+4

10−8 10−8 12860 6584320 7 1.5·10−7 4.5·10−7 1.0268·10+2 6.41·10+4

10−10 10−8 12860 6584320 7 6.0·10−9 1.5·10−8 2.3717·10+2 2.78·10+4

10−10 10−10 55854 28597248 8 4.7·10−9 1.6·10−8 1.0489·10+3 2.73·10+4

10−12 10−10 55854 28597248 8 6.3·10−9 8.8·10−9 1.9641·10+3 1.46·10+4

10−12 10−12 132490 67834880 9 5.6·10−9 7.0·10−9 4.4599·10+3 1.52·10+4

Table 7. Free-space Stokes equation (Example 5): Gaussian bump
at the origin.

with solution

u(x)=
2L
µ

8∑
i=0

e−L‖x−xi‖
2(
∇ × (x− xi)

)
,

for xi =
(
±

3
40 ,±

3
40 ,±

3
40

)
, µ= 1, L = 125, inside of the [−1, 1]3 box. Errors are

again similar to those seen in the fast-decaying experiments from examples 1 and
4; timings are worse, as expected, since we are dealing with nine times as many
degrees of freedom per point. Results are shown in Table 7.

Example 6. It is straightforward to extend the solver infrastructure described above
to the case of periodic boundary conditions, using the classical method of images of

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 109

Lord Rayleigh [54], following the discussion of [24]. The influence of all separated
image boxes can be incorporated using either a recursive approach [38] or a scheme
based on lattice sums [30]. In either case, the additional work depends only on
εfmm and not on the number of degrees of freedom. The main difference is that
the unit cell B now has near neighbors, whose influence must be accounted for.
This, too, has relatively little impact on performance. A small number of additional
boxes are added to both the interaction and near neighbor lists, but no additional
data structures are created; instead, everything is handled via careful book-keeping
to minimize additional memory consumption.

As an example, we consider the periodic source function

f (x)= C M2π2 sin(πMx) sin(πMy) sin(πMz),

for which the solution is

u(x)= C sin(πMx) sin(πMy) sin(πMz).

We conduct our experiments for a nontrivial oscillatory force, choosing C = 5
and M = 7 on the domain [−1, 1]3 with varying degrees of depth and precision.
We check the relative L2 and L∞ with results shown in Table 8.

εfmm εrhs M` Npts LT E2 E∞ TFMM rate

fourth-order force approximation

10−2 10−2 32768 2097152 6 2.6·10−2 3.3·10−2 3.3250·10−1 6.31·10+6

10−4 10−4 262144 16777216 7 2.9·10−4 7.6·10−4 1.6296·10+1 1.03·10+6

10−6 10−6 2097152 134217728 8 5.6·10−6 1.9·10−5 2.9403·10+2 4.56·10+5

sixth-order force approximation

10−2 10−2 32768 7077888 6 2.7·10−2 3.4·10−2 6.0730·10−1 1.17·10+7

10−4 10−4 37248 8045568 7 2.7·10−4 8.2·10−4 1.7895·10+0 4.50·10+6

10−6 10−6 262144 56623104 7 5.5·10−6 1.8·10−5 3.6250·10+1 1.56·10+6

10−8 10−8 2097152 452984832 8 1.0·10−7 3.0·10−7 7.2101·10+2 6.28·10+5

eighth-order force approximation

10−2 10−2 4096 2097152 5 1.8·10−2 2.8·10−2 2.5445·10−1 8.24·10+6

10−4 10−4 32768 16777216 6 3.7·10−4 9.5·10−4 2.9459·10+0 5.70·10+6

10−6 10−6 242432 124125184 7 6.5·10−6 2.0·10−5 5.4881·10+1 2.26·10+6

10−8 10−8 262144 134217728 7 1.4·10−7 5.3·10−7 1.3578·10+2 9.88·10+5

10−10 10−10 2097152 1073741824 8 9.0·10−9 4.3·10−8 1.8685·10+3 5.75·10+5

Table 8. Periodic boundary conditions: Example 6.

110 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

It is straightforward to extend this approach to a variety of homogeneous Dirichlet,
Neumann or mixed boundary conditions by the method of images as well with very
little additional effort.

Example 7. A number of applications require the modeling of source distributions
that contain both a smooth component and a singular component. In electrostatics,
for example, positively charged ions are often approximated as point charges and
the neutralizing electrons as an We consider such a case here. The relevant Poisson
equation takes the form

1u(x)= fsmooth(x)+
N∑

i=1
qiδ(x− xi),

where the qi are positive and the neutralizing background takes the form of a sum
of Gaussian distributions

f i
smooth(x)= 1/(

√
2πσ 2)e−(x−σ)

2/2σ 2

centered on each δ-function.
The smooth portion can be handled as above, while the particle sources can

be handled with the corresponding particle-based kernel-independent FMM [61].

Npts εfmm M` LT S2M/M2M Near M2L L2L/L2T TFMM

10−2 4096 5 2.52·10−2 6.42·10−1 5.09·10−2 4.84·10−3 7.23·10−1

1.
02

4·
10
+

6

10−4 4096 5 6.97·10−2 6.49·10−1 1.29·10−1 2.35·10−2 8.71·10−1

10−6 4096 5 1.41·10−1 6.50·10−1 3.77·10−1 6.66·10−2 1.24·10+0

10−8 4096 5 2.48·10−1 6.41·10−1 1.03·10+0 1.58·10−1 2.08·10+0

10−2 32768 6 1.11·10−1 1.58·10+0 2.39·10−1 1.85·10−2 1.95·10+0

4.
09

6·
10
+

6

10−4 32768 6 3.04·10−1 1.61·10+0 1.32·10+0 1.01·10−1 3.34·10+0

10−6 32768 6 6.29·10−1 1.61·10+0 3.55·10+0 2.92·10−1 6.08·10+0

10−8 32768 6 1.17·10+0 1.60·10+0 9.20·10+0 6.48·10−1 1.26·10+1

10−2 262144 7 1.58·10+0 4.31·10+1 2.14·10+0 2.58·10−1 4.71·10+1

1.
63

8·
10
+

7

10−4 262144 7 4.31·10+0 4.34·10+1 1.14·10+1 1.48·10+0 6.06·10+1

10−6 262144 7 8.79·10+0 4.38·10+1 3.05·10+1 4.20·10+0 8.72·10+1

10−8 262144 7 1.55·10+1 4.32·10+1 8.26·10+1 9.96·10+0 1.51·10+2

10−2 2097152 8 7.00·10+0 1.04·10+2 1.80·10+1 1.40·10+0 1.31·10+2

6.
55

4·
10
+

7

10−4 2097152 8 1.93·10+1 1.05·10+2 9.14·10+1 6.76·10+0 2.23·10+2

10−6 2097152 8 4.01·10+1 1.07·10+2 2.61·10+2 1.93·10+1 4.27·10+2

10−8 2097152 8 7.34·10+1 1.06·10+2 7.00·10+2 4.19·10+1 9.21·10+2

Table 9. Example 7: Poisson equation with a mixture of smooth
and singular sources.

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 111

However, it is trivial to modify our solver to incorporate the particle sources into
the S2M operator of Section 4.2 by modifying (22):

K B
S2MφB,u

= FB
S2Mγ

B
+

N∑
i=1

qi G(x, xi), (41)

where G is the kernel used for evaluating the singular component, consisting of the
point charges. Once the point charges are incorporated into φB,u , the rest of the
components of the algorithm (i.e., M2M, M2L, and L2L) take care of the far-field
interactions. We need only calculate the influence of near-field particle interactions
directly, and evaluate both the local expansions (L2T) and the smooth contributions
at particle locations. The latter is done by interpolation, as discussed in Section 4.5.

The performance of our scheme is shown in Table 9 on the previous page.
The upward pass timings are minimally larger than for the particle-only case, and

the downward pass timings are agnostic about the nature of the sources, dependent
only on the tree-structure itself. The Near computation timings are simply the sum
of the particle and volume-based cases, since there is no amortization of cost in
this step.

7. Conclusions

We have presented a kernel-independent FMM for solving a variety of constant-
coefficient elliptic PDEs in free space, allowing for arbitrary levels of adaptivity,
highly nonhomogeneous forces and arbitrarily distributed target locations. Results
for the Poisson, modified Helmholtz, and Stokes equations show that the perfor-
mance is similar for each. Applying the method to other equations requires only a
kernel evaluation routine.

Compared to the state-of-the-art technique [47], our method is accurate to higher
order and therefore solves similar problems with fewer degrees of freedom, and
the work per point is approximately the same. Our current implementation uses
OpenMP (but not MPI), although we expect the extension to be straightforward, as
our solver is built on top of the MPI-based code of [61]. We discuss how the major
loops are optimized for OpenMP shared-memory parallelization in Section A.4 for
this current implementation.

As in [24], we have extended our solver to handle periodic, Dirichlet and Neu-
mann boundary conditions for problems on cubic domains using the method of
images. We are also coupling the present volume integral code with boundary
integral methods to allow for the solution of linear, constant-coefficient, inhomo-
geneous elliptic PDEs in complex geometries, as in [9]. Additional current work
involves incorporating this solver into the state-of-the-art in [43]. These extensions
will be reported at a later date.

112 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

Appendix

In this appendix, we first verify numerically that the equivalent density representation
yields the expected accuracy, followed by a discussion of how the choice of grids
affects the order of convergence and an overall numerical justification for the use of
Tikhonov regularization. We close with a discussion of how we accelerate the major
computation loops of our algorithm using OpenMP shared-memory parallelization
and load-balancing techniques.

A.1. Equivalent density accuracy. As discussed in Section 4.1, we invert several
matrices of discretized Fredholm equations of the first kind in order to build out
far-field representations,

K yd ,xdφd = K ys ,xdφs .

As in [60], we choose to use Tikhonov regularization [41] when solving these ill-
conditioned systems. This solves two problems: in this way, we eliminate the null
space in the cases when it is present (Stokes kernel) and we significantly improve
accuracy of the inversion for higher numbers of samples (Section A.3). We verify
the potential we get from φB,u , computed using our regularized method in the S2M
operation, approximates well u(x), computed directly from a force. We test using
gB
=
∑(a+b+c)≤(k−1)

a,b,c xa ybzc for box B of width 2 and compute

u(x)=
∫

B
K (x, y)gB(y)d y, x ∈ x B,u,

to within 10−16 accuracy using adaptive Gaussian quadrature [8]. We then compute
φB,u at yB,u using (23) where (KS2M)

−1 is replaced with

(α I + (KS2M)
∗KS2M)

−1 K ∗S2M.

For FMM precision, n p, we choose α = 10−(n p+1). More details on the choice of α
are available in [60]. Our algorithm relies on the fact that for surfaces outside the
near field of B, φB,u is a sufficiently accurate representation of B’s volume force.
We compute

u(x)equiv =

∫
yB,u

K (x, y)φB,u(y) d y

for x ∈ S, some surface. To evaluate the accuracy of this approximation, we compute

u(x)exact =

∫
B

K (x, y)gB(y) d y

up to an accuracy of 10−16 [8]. In Figure 7, we compare the infinity-norm of the
resulting error for three different kernels (Laplace, modified Helmholtz, Stokes)
and varying levels of the polynomial approximation and multiple degrees of FMM

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 113

Figure 7. Error due to upward equivalent density approximation
of the field. From left to right, three columns show the errors
for the polynomial force approximations of degree 4, 6 and 8.
Each plot shows four levels of FMM precision, εfmm = 10−n p ,
p = n3

p − (n p − 2)3 points are used on the surfaces yB,u and x B,u .
For the evaluation surfaces S, we vary the radius RS from 3.1 to
5.9, the region covering L B

I ∈ FB . The y-axis of each plot is the
infinity norm ‖uequiv− uexact‖∞ computed over 488 samples on S.

evaluation precision. For each of the kernels of interest, φB,u , computed by in-
verting our ill-conditioned kernels, is recovered on each surface S to within the
requested degree of precision. For evaluating the accuracy of the kernel inversion
and regularization in the computation of φB,d , we note that this computation is
equivalent to the particle-based FMM, of which numerical analysis for the M2L
and L2L operators is available in [60].

A.2. Polynomial basis and grid spacing. As discussed in Section 4.4, we evaluate
the solution at a leaf box B on a grid of points x B,g, and construct an approximating
polynomial from these points. Additionally, we construct a k-th order polynomial

114 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0

Poly approx k = 4

−log
10

 |ε
fmm

|

lo
g

1
0
 E

2

Regular Spacing

Chebyshev Spacing

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0

Poly approx k = 6

−log
10

 |ε
fmm

|

lo
g

1
0
 E

2

2 4 6 8 10
−10

−8

−6

−4

−2

0

Poly approx k = 8

−log
10

 |ε
fmm

|

lo
g

1
0
 E

2

Figure 8. For each of the test examples, the x-axis indicates the
negative log of the requested FMM accuracy, εfmm, and the y-axis
indicates the log of E2. The number of points chosen for each
εfmm is equivalent to those in Example 1 (page 102) for εrhs= εfmm.
Left: for polynomial approximation of degree 4 and x B,g of size
43 on each leaf B, overall relative error is close for equispaced and
Chebyshev points. Middle: For n, k = 6 differences are visible but
insignificant. Right: For n, k = 8, solutions based on equispaced
grid are less accurate.

approximation to B’s distributed force if gB is given on a grid (see Section 4.6).
For consistency with AMR codes and efficiency of implementation, it would have
been desirable to use uniform grid samples. This approach works well for n ≤ 6,
but it is well-known for large n that equispaced grids lead to instabilities [57]; as a
result, for n > 6 we use Chebyshev grid points. To show that regularly spaced grid
points perform poorly for n, k > 6, we consider the following test case:

−1u(x)= e−L(‖x‖2)2(4L(‖x‖2)2− 6L), L = 250, x ∈ [−1, 1]3.

In Figure 8, we compare the overall relative L2 error, E2, for solutions using equi-
spaced and Chebyshev grid points in the evaluation of the solution and construction
of the polynomial approximations of degree 4, 6 and 8. Errors for discretizations
using equispaced or Chebyshev grid points are similar for k ≤, but for k = 8,
Chebyshev points are more accurate.

A.3. Tikhonov regularization. As discussed in Section A.1, we use Tikhonov
regularization [41] to invert Fredholm equations of the first kind, specifically the
S2M, M2M, and L2L operators in Section 4. Further, in Section A.1, we looked
specifically at the accuracy resulting from this inversion process. To justify the
overall use of Tikhonov regularization, we consider for the Poisson equation the
test case

−1u(x)= e−L(‖x‖2)2(4L(‖x‖2)2− 6L), L = 250, x ∈ [−1, 1]3,

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 115

Figure 9. For each of the test examples, the x-axis indicates the
negative log of the requested FMM accuracy, εfmm, and the y-axis
indicates the log of E2. The number of points chosen for each
εfmm is equivalent to those in Examples 1 and 5 of Section 6 for
εrhs = εfmm. Left: for polynomial approximation of degree 6 for
the Laplace kernel with and without regularization. Right: for
polynomial approximation of degree 6 for the Stokes kernel with
and without regularization.

and for the Stokes equation

−1u(x)+∇ p(x)=
(
8L3
‖x− xi‖

2
− 20L2)e−L‖x−xi‖

2(
∇ × (x− xi)

)
,

L = 125, x ∈ [−1, 1]3.

In Figure 9, we compare the overall relative L2 error, E2, solutions, resulting
from Tikhonov regularization versus no regularization and the construction of
polynomial approximations of degree k = 6 for the right-hand sides (errors for
k = 4, 8 are similar). For decreasing levels of εfmm, we choose εfmm = εrhs.

We notice that for εfmm > 10−7, the effect of not employing regularization
is equivalent to using regularization for both the Laplace and Stokes operators.
However, as εfmm decreases, the number of sample points on the equivalent and
check surfaces increases, resulting in larger linear systems, which as mentioned
earlier, may be poorly conditioned. Indeed, for such larger systems resulting from
εfmm ≤ 10−7, it is necessary to regularize the systems to achieve desirable results.

A.4. Shared-memory parallelization and load-balancing. We have designed the
code to take advantage of shared-memory architectures through the use of OpenMP
(see Section 7). In particular, we highlight the steps to accelerate the various major
steps in Algorithm 1. For details on the nature of OpenMP and its usage, see [19].

S2M and M2M computations. In the upward pass (step 2 of Algorithm 1 and
Section 4.2), we begin by building a list of all leaf boxes, B in the octree T , which
have sources. We then do a simple OpenMP parallelization step over these boxes

116 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

for the S2M step. As all components of (23) are of the same size for each leaf box,
there is no need to rebalance the load among threads.

In order to ensure proper order of computation, we proceed by sorting all non-
leaves in reverse-order by depth. For each nonleaf level in T , beginning at the
deepest level, we translate a box B’s children’s upward equivalent densities to its
own through the M2M computation in (25). Again, as each of the components is
of the same size, there is no need to rebalance among threads. As we parallelize
only among boxes at the same depth in T , level ` is not processed until `+ 1 has
completed. Further, once we have reached coarse level `= 1 (which only occurs
for periodic or Dirichlet boundary conditions), we discontinue the parallelization.

M2L, L2L, and L2T computations. In the downward pass of Algorithm 1 (see
Section 4.3), we perform a similar operation as above for the M2M step. First, we
sort all boxes B in T from the shallowest to deepest levels in the tree. For each
level, `, we parallelize among the boxes being processed at that level for the M2L
and L2L computations. The L2L components in (29) are of equivalent size for each
box B; however, for each box B, the size of L B

V vary greatly from other boxes (for
example, this list is much smaller for boxes on the edge or corners of our domain).
To ensure proper balancing among threads, we further sort all boxes for each level,
` by the size of L B

V and then reorder the boxes such that the sum of all L B
V for each

thread is of roughly the same size.
For the L2T computations in (31), we once again build a list of only leaf boxes,

for which the target solution is desired, and we parallelize the computations in this
list. The components of the discretized equation are all the same size, as with the
S2M computation, so there is no need to rebalance among threads for this step.

Near-field computations. We focus our discussion here on the U -list computations.
Parallelizing the near-field computations in (34) is the most straightforward in that
no leaf box B is dependent on the completion of computations by any other box.
That is, we can simply parallelize the computations among leaf boxes, for which the
L B

U exists. However, even more so than with the M2L computations, the sizes of L B
U

can be very different among leaf boxes (especially in the most adaptively refined
octrees). Thus, we sort all leaf boxes B in T by the size of L B

U and reorder the list of
leaves such that the sum of the size of L B

U among each thread is roughly equivalent,
ensuring a relatively well-balanced load among threads. The size of the components
and operators are the same for each box B, so balancing by list sizes is optimal.
We note that this rebalancing is largely unnecessary for uniformly refined trees.

Additionally, for matrix kernels (e.g., Stokes) and larger orders of polynomial
approximation, constantly loading large matrices into memory results in little
speedup as we increase the number of processes. To correct this, for each equivalence
class as described in Section 5, we perform all of the operations involving a single

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 117

class first before performing all computations for other classes of operators. Hence,
we only load each matrix operator at most once per processor.

We note that for the M2L step, as we have to process level ` before moving to level
`− 1, operators will constantly have to be reloaded. Performing all computations
in order for each equivalence class at each level is done, but we have seen little
time savings for this in practice as opposed to the near-field computations, where it
is essential for good speedup.

Remark. As with the near-field computations, for adaptively refined trees, we
rebalance the loads among threads for the X and W lists, which involve additional
near-field S2T M2T, and S2L computations in Equations (39) and (38), based on
the sizes of L B

X and L B
W , respectively. Additionally, we perform all computations in

order of equivalence class, again loading each matrix operator at most once.

Timing results versus number of processors. To see the effect of our use of OpenMP
and load-balancing strategies, we investigate the strong scaling of two fixed prob-
lems. First, in Example 1 (page 102), we set the polynomial order, εrhs, and εfmm

to 8. The reasoning behind this is to ensure that for a single processor, neither
the near-field nor far-field computations fully dominate the timings. In Table 10

Nprocs S2M/M2M Near M2L L2L/L2T TFMM scaling rate

Poisson equation (Example 1) εrhs = εfmm = 8 M` = 5440 Npts = 2785280

1 1.125 ·10+0 8.534 ·10+0 1.464 ·10+1 9.340 ·10−1 2.523 ·10+1

2 5.880 ·10−1 5.112 ·10+0 7.285 ·10+0 4.779 ·10−1 1.346 ·10+1 1.874 ·10+0

4 3.750 ·10−1 2.377 ·10+0 4.559 ·10+0 2.927 ·10−1 7.604 ·10+0 1.770 ·10+0

8 1.838 ·10−1 1.231 ·10+0 2.279 ·10+0 1.459 ·10−1 3.841 ·10+0 1.979 ·10+0

16 9.700 ·10−2 6.894 ·10−1 1.240 ·10+0 8.546 ·10−2 2.112 ·10+0 1.818 ·10+0

Stokes equations (Example 5) εrhs = εfmm = 6 M` = 4894 Npts = 2505728

1 8.794 ·10+0 5.416 ·10+1 9.402 ·10+1 6.832 ·10+0 1.638 ·10+2

2 5.182 ·10+0 2.857 ·10+1 5.213 ·10+1 3.617 ·10+0 8.951 ·10+1 1.830 ·10+0

4 2.866 ·10+0 1.307 ·10+1 3.029 ·10+1 1.733 ·10+0 4.797 ·10+1 1.865 ·10+0

8 1.569 ·10+0 6.781 ·10+0 1.613 ·10+1 8.367 ·10−1 2.532 ·10+1 1.894 ·10+0

16 8.248 ·10−1 3.611 ·10+0 9.452 ·10+0 3.918 ·10−1 1.428 ·10+1 1.772 ·10+0

Table 10. Timings (in wall-time seconds) for the various com-
ponents of the FMM volume solver for two fixed problem sizes.
The tree level, LT , is 7 and the polynomial order is 8 and in each
case. Nprocs, M`, and Npts are the number of processors, leaves,
and points; we scale Nprocs linearly. We separate the S2M/M2M,
Near (U ,W , X -list computations), M2L (V -list computations), and
L2L/L2T timings, with the total shown as TFMM.

118 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

-�

-�

0

�

�

6

0 0�� 1 1�� � ��� 3 3�� �

L
�
�

�
�

�
�
	

�
�

��� �� ������ �� ����������

��P���� �����P��

Total

M2L

Near

S2M/M2M

L2L/L2T

-�

0

�

4

6

8

0 0�� 1 1�� � ��� 3 3�� 4

L
�
�

�
�

�
�
�
	

�
�

�� �� ������ �� ����������

S����� ������� �

Total

M2L

Near

S2M/M2M

L2L/L2T

Figure 10. Log-log plots for timings from Table 10.

(top part) we look at the timings for the different algorithmic steps (note that the
near-field computation times include U , W , and X list computation times) and we
plot the decreasing times in Figure 10, top.

For our second study of the effect of shared-memory parallelization, we look at
the Stokes kernel tests from Example 5 (page 107). We fix the polynomial order at

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 119

8 and look at εrhs = εfmm = 6, again in an effort to not have one step fully dominate
the computational time, allowing us to look at the effect of scaling the number
of processors. Timing results can be seen in the bottom parts of Table 10 and
Figure 10.

As can be seen in Table 10, our scheme exhibits the desirable result of nearly
linear speedup as we scale the number of processors. As indicated in the conclusion,
current work is being done to incorporate this work with [43] in order to achieve
parallelization on a significantly larger scale.

Acknowledgement

The authors acknowledge the New York University HPC resources,2 which con-
tributed to the research results reported within this paper. These resources have
been largely funded by the NYU Information Technology Services group and an
Office of Naval Research DURIP program grant from the Center for Atmosphere
Ocean Science (CAOS) at the Courant Institute.

References

[1] M. F. Adams and J. Demmel, Parallel multigrid solver algorithms and implementations for 3D
unstructured finite element problem, Internat. J. Numer. Methods Engrg. 48, no. 8, 1241–1262.

[2] M. J. Aftosmis, M. J. Berger, and J. E. Melton, Adaptive Cartesian mesh generation, The
handbook of grid generation (J. F. Thompson, ed.), CRC Press, Boca Raton, FL, 1998, pp. 22–1–
22–26.

[3] C. R. Anderson, A method of local corrections for computing the velocity field due to a distribu-
tion of vortex blobs, J. Comput. Phys. 62 (1986), no. 1, 111–123. MR 87d:76050 Zbl 0575.
76031

[4] G. T. Balls and P. Colella, A finite difference domain decomposition method using local cor-
rections for the solution of Poisson’s equation, J. Comput. Phys. 180 (2002), no. 1, 25–53.
MR 2003c:65102 Zbl 1003.65140

[5] J. Barnes and P. Hut, A hierarchical O(N log N) force calculation algorithm, Nature 324 (1986),
446–449.

[6] R. Beatson and L. Greengard, A short course on fast multipole methods, Wavelets, multilevel
methods and elliptic PDEs (M. Ainsworth et al., eds.), Clarendon Press, Oxford, 1997, pp. 1–37.
MR 99a:65142 Zbl 0882.65106

[7] M. J. Berger, M. Aftosmis, and J. Melton, Accuracy, adaptive methods and complex geometry,
Proc. 1st AFOSR Conference on Dynamic Motion CFD (L. Sakell and D. Knight, eds.), 1996.

[8] J. Berntsen, T. O. Espelid, and A. Genz, Algorithm 698: DCUHRE: an adaptive multidimensional
integration routine for a vector of integrals, ACM Trans. Math. Software 17 (1991), no. 4, 452–
456. MR 1140035 Zbl 0900.65053

[9] G. Biros, L. Ying, and D. Zorin, A fast solver for the Stokes equations with distributed forces
in complex geometries, J. Comput. Phys. 193 (2004), no. 1, 317–348. MR 2022697 Zbl 1047.
76065

2http://www.nyu.edu/its/research/hpc

120 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

[10] S. Börm, H2-matrix arithmetics in linear complexity, Computing 77 (2006), no. 1, 1–28. MR
2006k:65111 Zbl 1086.65036

[11] S. Börm and W. Hackbusch, Hierarchical quadrature for singular integrals, Computing 74
(2005), no. 2, 75–100. MR 2006c:41037 Zbl 1003.65140

[12] A. H. Boschitsch, M. O. Fenley, and W. K. Olson, A fast adaptive multipole algorithm for
calculating screened Coulomb (Yukawa) interactions, J. Comput. Phys. 151 (1999), no. 1,
212–241. MR 1701576 Zbl 1017.92500

[13] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977),
no. 138, 333–390. MR 55 #4714 Zbl 0373.65054

[14] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial, 2nd ed., Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR 2001h:65002
Zbl 0958.65128

[15] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s equations,
SIAM J. Numer. Anal. 7 (1970), 627–656. MR 44 #4920 Zbl 0217.52902

[16] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics,
Springer, New York, 1988. MR 89m:76004 Zbl 0658.76001

[17] T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, Domain decomposition methods, SIAM,
Philadelphia, 1989. MR 89j:65010

[18] T. F. Chan and B. F. Smith, Domain decomposition and multigrid algorithms for elliptic prob-
lems on unstructured meshes, Electron. Trans. Numer. Anal. 2 (1994), no. Dec., 171–182.
MR 95i:65173 Zbl 0852.65108

[19] B. Chapman, G. Jost, and R. Pas, Using openmp: Portable shared memory parallel programming
(scientific and engineering computation), (2007).

[20] H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions,
J. Comput. Phys. 155 (1999), no. 2, 468–498. MR 2000h:65178 Zbl 0937.65126

[21] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin,
N. Yarvin, and J. Zhao, A wideband fast multipole method for the Helmholtz equation in three
dimensions, J. Comput. Phys. 216 (2006), no. 1, 300–325. MR 2007a:65193 Zbl 1093.65117

[22] H. Cheng, J. Huang, and T. J. Leiterman, An adaptive fast solver for the modified Helmholtz
equation in two dimensions, J. Comput. Phys. 211 (2006), no. 2, 616–637. MR 2006e:65242
Zbl 1117.65161

[23] G. Chesshire and W. D. Hanshaw, Composite overlapping meshes for the solution of partial
differential equations, J. Comput. Phys. 90 (1990), no. 1, 1–64. MR 91f:76043 Zbl 0709.65090

[24] F. Ethridge and L. Greengard, A new fast-multipole accelerated Poisson solver in two dimensions,
SIAM J. Sci. Comput. 23 (2001), no. 3, 741–760. MR 2002i:65146 Zbl 1002.65131

[25] L. Greengard, The rapid evaluation of potential fields in particle systems, MIT Press, Cambridge,
MA, 1988. MR 89k:31008 Zbl 1001.31500

[26] , Fast algorithms for classical physics, Science 265 (1994), no. 5174, 909–914. MR
95f:65236

[27] L. Greengard and J. Huang, A new version of the fast multipole method for screened Coulomb
interactions in three dimensions, J. Comput. Phys. 180 (2002), no. 2, 642–658. MR 2003h:
78014 Zbl 1143.78372

[28] L. Greengard, M. C. Kropinski, and A. Mayo, Integral equation methods for Stokes flow and
isotropic elasticity in the plane, J. Comput. Phys. 125 (1996), no. 2, 403–414. MR 97a:73022
Zbl 0847.76066

A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS 121

[29] L. Greengard and J.-Y. Lee, A direct adaptive Poisson solver of arbitrary order accuracy, J.
Comput. Phys. 125 (1996), no. 2, 415–424. MR 96m:65090 Zbl 0851.65090

[30] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73
(1987), no. 2, 325–348. MR 88k:82007 Zbl 0629.65005

[31] , The rapid evaluation of potential fields in three dimensions, Vortex methods: Proceed-
ings of the U.C.L.A. Workshop (C. Anderson and C. Greengard, eds.), Lecture Notes in Math.,
no. 1360, Springer, Berlin, 1988, pp. 121–141. MR 979565 Zbl 0661.70006

[32] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions, Acta Numer., no. 6, Cambridge Univ. Press, 1997, pp. 229–269.
MR 99c:65012 Zbl 0889.65115

[33] N. A. Gumerov and R. Duraiswami, Fast multipole method for the biharmonic equation in three
dimensions, J. Comput. Phys. 215 (2006), no. 1, 363–383. MR 2006j:65373 Zbl 1103.65122

[34] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices,
Computing 62 (1999), no. 2, 89–108. MR 2000c:65039 Zbl 0927.65063

[35] W. Hackbusch and S. Börm, H2-matrix approximation of integral operators by interpolation,
Appl. Numer. Math. 43 (2002), no. 1-2, 129–143. MR 1936106 Zbl 1019.65103

[36] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary element
method by panel clustering, Numer. Math. 54 (1989), no. 4, 463–491. MR 89k:65162 Zbl 0641.
65038

[37] W. Hackbusch and U. Trottenberg (eds.), Multigrid methods, Lecture Notes in Mathematics, no.
960, Springer, Berlin, 1982. MR 84b:65007 Zbl 0497.00015

[38] J. Helsing, Fast and accurate calculations of structural parameters for suspensions, Proc. Roy.
Soc. Lond. A 445 (1994), 127–140.

[39] J. Huang and L. Greengard, A fast direct solver for elliptic partial differential equations on
adaptively refined meshes, SIAM J. Sci. Comput. 21 (1999/00), no. 4, 1551–1566. MR 2001c:
65132 Zbl 0957.65091

[40] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation
on irregular domains, J. Comput. Phys. 147 (1998), no. 1, 60–85. MR 99m:65231 Zbl 0923.
65079

[41] R. Kress, Linear integral equations, 2nd ed., Applied Mathematical Sciences, no. 82, Springer,
New York, 1999. MR 2000h:45001 Zbl 0920.45001

[42] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, 2nd ed., Math-
ematics and its Applications, no. 2, Gordon and Breach, New York, 1969. MR 40 #7610
Zbl 0184.52603

[43] I. Lashuk, A. Chandramowlishwaran, M. Langston, T. Nguyen, R. Sampath, A. Shringarpure, R.
Vuduc, L. Ying, D. Zorin, and G. Biros, A massively parallel adaptive fast-multipole method on
heterogeneous architectures, SC’2009 Conference, IEEE/ACM SIGARCH, 2009.

[44] D. Martin and K. Cartwright, Solving Poisson’s equations using adaptive mesh refinement,
technical report M96/66, Electronic Research Laboratory, University of California, Berkeley,
1996.

[45] D. J. Mavriplis, Unstructured grid techniques, Annu. Rev. Fluid Mech. (1997), no. 29, 473–514.
MR 97j:76044

[46] A. Mayo, Fast high order accurate solution of Laplace’s equation on irregular regions, SIAM J.
Sci. Statist. Comput. 6 (1985), no. 1, 144–157. MR 86i:65066 Zbl 0559.65082

122 M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN

[47] P. McCorquodale, P. Colella, G. T. Balls, and S. B. Baden, A local corrections algorithm for
solving Poisson’s equation in three dimensions, Commun. Appl. Math. Comput. Sci. 2 (2007),
57–81. MR 2008i:65291 Zbl 1133.65106

[48] A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geometries, J.
Comput. Phys. 118 (1995), no. 2, 348–355. MR 96a:65179 Zbl 0823.65115

[49] M. L. Minion, A projection method for locally refined grids, J. Comput. Phys. 127 (1996), no. 1,
158–178. MR 97g:76072 Zbl 0859.76047

[50] G. J. Rodin and Y. Fu, Fast solution method for three-dimensional Stokesian many-particle
problems, Comm. Numer. Methods Engrg. 16 (2000), no. 2, 145–149.

[51] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys.
60 (1985), no. 2, 187–207. MR 86k:65120 Zbl 0629.65122

[52] , Rapid solution of integral equations of scattering theory in two dimensions, J. Comput.
Phys. 86 (1990), no. 2, 414–439. MR 90k:76081 Zbl 0686.65079

[53] M. Strain, G. Scuseria, and M. Frisch, Achieving linear scaling for the electronic quantum
Coulomb problem, Science 271 (1996), 51–53.

[54] J. W. Strutt (Lord Rayleigh), On the influence of obstacles arranged in rectangular order upon
the properties of a medium, Phil. Mag. 34 (1892), 481–502.

[55] H. Sundar, R. S. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement of
linear octrees in parallel, SIAM J. Sci. Comput. 30 (2008), no. 5, 2675–2708. MR 2010d:68192
Zbl 1186.68554

[56] A.-K. Tornberg and L. Greengard, A fast multipole method for the three-dimensional Stokes
equations, J. Comput. Phys. 227 (2008), no. 3, 1613–1619. MR 2009g:76110 Zbl 05248608

[57] L. N. Trefethen and D. Bau, III, Numerical linear algebra, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997. MR 98k:65002 Zbl 0874.65013

[58] H. Wang, T. Lei, J. Li, J. Huang, and Z. Yao, A parallel fast multipole accelerated integral
equation scheme for 3D Stokes equations, Internat. J. Numer. Methods Engrg. 70 (2007), no. 7,
812–839. MR 2008a:76120 Zbl 1194.76221

[59] C. Whitea, B. Johnson, P. M. W. Gill, and M. Head-Gordon, The continuous fast multipole
method, Chem. Phys. Lett. 230 (1994), 8–16.

[60] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in
two and three dimensions, J. Comput. Phys. 196 (2004), no. 2, 591–626. MR 2005d:65235
Zbl 1053.65095

[61] L. Ying, G. Biros, D. Zorin, and M. H. Langston, A new parallel kernel-independent fast
multipole method, SC’2003 Conference CD, IEEE/ACM SIGARCH, 2003.

Received April 1, 2011. Revised July 20, 2011.

M. HARPER LANGSTON: harper@cims.nyu.edu
Courant Institute, New York University, 251 Mercer Street, New York 10012, United States
http://cs.nyu.edu/~harper/

LESLIE GREENGARD: greengard@cims.nyu.edu
Courant Institute, New York University, 251 Mercer Street, New York NY 10012, United States
http://math.nyu.edu/faculty/greengar/

DENIS ZORIN: dzorin@cims.nyu.edu
Courant Institute, New York University, 251 Mercer Street, New York 10012, United States
http://mrl.nyu.edu/~dzorin/

mathematical sciences publishers msp

Communications in Applied Mathematics and Computational Science
pjm.math.berkeley.edu/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

contact@msp.org

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor

See inside back cover or pjm.math.berkeley.edu/camcos for submission instructions.

The subscription price for 2011 is US $70/year for the electronic version, and $100/year for print and electronic. Subscriptions, requests
for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers,
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Communications in Applied Mathematics and Computational Science, at Mathematical Sciences Publishers, Department of Mathemat-
ics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA
94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Mathematical Sciences Publishers

http://pjm.math.berkeley.edu/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:contact@msp.org
http://pjm.math.berkeley.edu/camcos
http://msp.org/
http://msp.org/

Communications in Applied Mathematics
and Computational Science

vol. 6 no. 1 2011

1A high-order finite-volume method for conservation laws on locally refined
grids

Peter McCorquodale and Phillip Colella

27An unsplit, higher-order Godunov method using quadratic reconstruction for
advection in two dimensions

Sandra May, Andrew Nonaka, Ann Almgren and John Bell

63Conditional path sampling for stochastic differential equations through drift
relaxation

Panos Stinis

79A free-space adaptive FMM-Based PDE solver in three dimensions
M. Harper Langston, Leslie Greengard and Denis Zorin

1559-3940(2011)6:1;1-6

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.6,
no.1

2011

	
	
	

