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Existing slender body theories for the dynamics of a thin tube in a Stokes flow
differ in the way the asymptotic errors depend on a small parameter defined as
the radius of the body over its length. Examples are the theory of Lighthill, that
of Keller and Rubinow, and that of Johnson. Slender body theory is revisited here
in the more general setting of forces which are localized but smoothly varying
within a small neighborhood of the filament centerline, rather than delta distribu-
tions along the centerline. Physically, this means that the forces are smoothly dis-
tributed over the cross-section of the body. The regularity in the forces produces
a final expression that has built-in smoothing which helps eliminate instabilities
encountered in computations with unsmoothed formulas. Consistency with stan-
dard theories is verified in the limit as the smoothing parameter vanishes, where
the original expressions are recovered. In addition, an expression for the fluid
velocity at locations off the slender body is derived and used to compute the flow
around a filament.

1. Introduction

Slender body theories give asymptotic solutions of slender bodies (thin tubular
bodies) in a viscous fluid where the small parameter of the expansion is the radius
a∗ of the tube divided by its length L∗. The goal is to develop an asymptotic
formula that relates the velocity of the slender body’s surface to forces that are
consistent with that motion and are exerted along the centerline (see Figure 1). In
our derivation, we nondimensionalize all spatial variables by the length of the tube,
L∗, so that a= a∗/L∗ is the dimensionless slenderness parameter. In all derivations,
the tube dimensionless length is taken to be 1 and we consider a tube with constant
circular cross sections (constant a).

Different versions of the theory were developed independently in the 1970’s by
Lighthill [17] and by Keller and Rubinow [16] using stokeslets and dipole distribu-
tions. Johnson developed a slender body theory based on Wu’s exact solution of the
flow around a spheroidal body (see [13]). Later Johnson [15] made improvements
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Figure 1. Schematic of a portion of the slender body. All spatial variables are scaled by
the tube length so that a is a dimensionless slenderness parameter.

to the theories by adding higher order singularities near the slender body endpoints.
Slender body formulations of this type have been used in numerous applications;
our focus is on biological ones such as ciliary motion [11; 12], and swimming
flagella [13].

The Keller–Rubinow slender body formulation [16] relies on the exact cancel-
lation of integrals that have the same asymptotic singularity. While this is a math-
ematically elegant formulation, its numerical implementation is unstable to high
wave number perturbations [20; 24]. Generally, it is not possible to achieve the
same singularity cancellation numerically without problems related to cancellation
errors and instability. Roughly speaking, to overcome this problem and stabilize
the computation, the integrands in [20; 24] were regularized by replacing r−1 with
(r2
+ δ2)−1/2 using a clever choice of δ that preserved the order of the asymptotic

expansion of the final formula.
In Lighthill’s theory [17; 18; 19], a portion of the filament containing the singu-

larity is removed from the integration and replaced with a local term. The remain-
ing integral is no longer singular but care must be taken in the numerical evaluation
of it since the kernel has large gradients near the endpoints of the removed piece.
A drawback of this formulation is that removing a piece of the integration curve
interrupts the periodicity of the problem for a closed filament, eliminating the ben-
efits of the trapezoid rule in periodic domains or the use of spectral methods to
approximate the integral.

We address these issues here by re-deriving both theories for the case of force
and dipole fields distributed not as delta distributions along the centerline of the
body, but distributed over the cross-section of the slender body. This is accom-
plished by defining a smooth localized spherically symmetric function φδ(r) (like
a narrow Gaussian with standard deviation proportional to the slender body radius)
centered at every point X (s) of the body centerline and letting the force be given by
F(x)= f (s)φδ(|x−X (s)|). While the maximum of the force is at the centerline of
the slender body, the force is distributed over the entire cross-section of the body,
which leads to a regular expression for the velocity of the body. This implies that
the regularized Lighthill formulation can be implemented without removing the
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piece of the curve where the singularity was. The regularization parameter, δ, is
also dimensionless after scaling by the tube length, and is assumed to satisfy δ ∼ a.

The solution of the Stokes equations for regularized forces and dipoles is derived
in Section 2, including the specific regularizing functions that are used. This solu-
tion is used to generate the near-field and far-field expansions for the asymptotic
solution. Section 3 contains the derivation of Lighthill’s theory for regularized
forces and shows that the final expression collapses to Lighthill’s formula when the
regularization parameter δ vanishes. However, for δ > 0, additional simplifications
to the final formula are possible that circumvent the drawbacks discussed above.
Section 4 shows the matched asymptotic analysis corresponding to Keller and Rubi-
now’s theory, including simplifications to the final expression for δ > 0. In Section 5
we show validation studies and numerical simulations that compare the two theories
both in the case of a closed filament as well as the case of a swimming organism.

2. The flow due to regularized forces

The incompressible Stokes equations in R3 are

µ1u =∇ p− F, (1)

∇ · u = 0, (2)

where µ is the fluid viscosity, u is the fluid velocity, p is the pressure, and F is the
body force. The boundary conditions associated with the flow are:

u(x)= v(σ ) for x on the surface of the slender body at cross section σ,

u(x)→ 0 as |x| →∞,

where v(σ ) is a translational velocity of the cross section at σ .
Consider the problem in (1)–(2) in the case when the force exerted by the fila-

ment on the fluid is given by the function F(x)= f φδ(x), where φδ is a radially
symmetric smooth function whose integral over R3 is 1. For example, φδ may be
a normal density function with standard deviation proportional to the parameter δ.
The function φδ provides the spatial dependence of the body force. The follow-
ing definitions will be convenient for the derivation of the exact solution of these
equations.

Definitions. Let the regularized Green’s function Gδ(x) be the free-space solution
of 1Gδ = φδ and let Bδ(x) be the free-space solution of 1Bδ = Gδ.

The function Gδ(x) is a smooth function that is bounded everywhere and closely
approximates the Green’s function G(x) = −(4π |x|)−1 for |x| > δ. Similarly
Bδ(x) is smooth and approximates B(x)=−|x|/8π , the solution of the equation
1B(x)= G(x).
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Taking the divergence of (1) and using (2) we have that ∇ · F =1p, which gives

p(x)= f · ∇Gδ(x). (3)

The equation for u now becomes µ1u = ( f · ∇)∇Gδ − f φδ, whose particular
solution is

µu(x)= ( f · ∇)∇Bδ(x)− f Gδ(x).

This is referred to as regularized stokeslet flow. To this particular solution one
can add [Dφδ − (D · ∇)∇Gδ], which represents a regularized dipole flow whose
divergence is zero everywhere and is harmonic outside the support of φδ. In this
way we obtain the more general solution

µu(x)= ( f · ∇)∇Bδ(x)− f Gδ(x)+ Dφδ − (D · ∇)∇Gδ +µU, (4)

where U is a constant flow that may depend on f and D.
Using the fact that Gδ and Bδ are radially symmetric, (4) can be written as

8πµ(u(x)−U)= f
H1(|x|)
|x|

+( f ·x)x
H2(|x|)
|x|3

−2D
H3(|x|)
|x|3

+6(D ·x)x
H4(|x|)
|x|5

where the smoothing functions depend on the blob φδ. They are defined by the
relations

H1(r)= 8π
(
B ′δ(r)− rGδ(r)

)
, H2(r)= 8π

(
r B ′′δ (r)− B ′δ(r)

)
,

H3(r)= 4πr2(G ′δ(r)− rφδ(r)
)
, H4(r)= 4

3πr2(G ′δ(r)− rG ′′δ (r)
)
.

One can check that for fixed δ > 0 we have

• limr→∞ Hk(r)= 1, for k = 1, 2, 3, 4;

• for r � δ,

H1(r)= O
(r
δ

)
, H2(r)= O

((r
δ

)3)
, H3(r)= O

((r
δ

)3)
, H4(r)= O

((r
δ

)5)
.

The velocity formula has been derived for arbitrary isolated force f and dipole
strength D. In the case of a filament given by X (σ ), where σ is the arclength
parameter with 0≤ σ ≤ 1, the velocity at any point x is given by

8πµ(u(x)−U)

=

∫ 1

0
f (σ )

H1(r)
r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ, (5)

where r = x− X (σ ) and r = |r|. The constant field U and the dipole strength dis-
tribution D(σ ) give the degrees of freedom needed to enforce boundary conditions
at |x| →∞ and at the filament surface.
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2.1. Choice of blob function. Before proceeding we need to choose the regular-
izing function. Throughout the paper we will use radially symmetric blobs with
infinite support. It turns out to be convenient (although not necessary) to choose
one regularization for the stokeslets and a different one for the dipoles [1] in order
to achieve simplified expressions. Using

φδ(r)=
15δ4

8π(r2+ δ2)7/2
and ψ(r)=

3δ2

4π(r2+ δ2)5/2
, (6)

for the stokeslets and dipoles, respectively, the functions in (5) are

H1(r)= r
(

1
√

r2+δ2
+

δ2

(r2+δ2)3/2

)
, H2(r)= r

(
1

√
r2+δ2

−
δ2

(r2+δ2)3/2

)
,

H3(r)= r3
(

1
(r2+δ2)3/2

−
3δ2

(r2+δ2)5/2

)
, H4(r)=

r5

(r2+δ2)5/2

(7)

and are shown in Figure 2. Other choices of regularization are possible, including
Gaussians and functions with compact support. In all cases, the regularization
parameter δ is chosen to be δ = O(a).
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Figure 2. Graphs of the smoothing functions H1–H4 as functions of r/δ.
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3. Lighthill’s theory

We consider first a construction of the slender body velocity following the strategy
in [17; 18; 19]. In Lighthill’s theory, it is sufficient to choose the constant flow
U = 0 and to consider the evaluation of the velocity at a point x on the surface of
the slender body. The velocity is given by (5):

8πµu(x)

=

∫ 1

0
f (σ )

H1(r)
r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ,

where r = x− X (σ ).
Specifically, consider the integral evaluated on the surface of the cross-section

at σ = σ0 and select an intermediate length scale represented by q with a� q � 1
and make the following assumptions:

(1) q is large enough that for r > q, the dipole contribution is negligible due to
the high singularity, and the stokeslet contribution does not vary significantly
on the cross-section at σ0.

(2) q is small enough that the portion of the slender body corresponding to |σ −
σ0| < q is straight (has zero curvature), and f (σ ) and D(σ ) do not vary
significantly from their values at σ0.

Although the velocity formula above is evaluated at a point x on the surface of
the slender body, the goal is to reduce this formula to one that is evaluated at the
centerline point X (σ0), corresponding to the center of the cross-section containing
x. The result would be an expression involving only centerline points but consis-
tent with the correct boundary conditions on the surface of the slender body. The
velocity expression will be separated into two pieces: the near field corresponding
to |σ − σ0|< q and the far field. The first assumption will be used to simplify the
far field and the second one to simplify the near field.

Let b̂ be a unit vector normal to the centerline at X (σ0) and write (see Figure 1)

x = X (σ0)+ a b̂, r0 = X (σ0)− X (σ ), r = x− X (σ ).

3.1. The far field. The far field is expressed as∫
|r|>q

f (σ )
H1(r)

r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ .

In the far field, the dipole contribution is insignificant and the stokeslet contribu-
tion is independent of the evaluation point on the cross-section centered at X (σ0).
Consequently, one choose D = 0 and r = r0 in the integral above to get

8πµu f ar (σ0)=

∫
|r0|>q

f (σ )
H1(r0)

r0
+ ( f · r0)r0

H2(r0)

r3
0

dσ + O(a). (8)
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The error term in this equation is due to the fact that

( f · r)r = ( f0 · r0)r0+ a[( f0 · b̂)r0+ ( f0 · r0)b̂] + a2( f0 · b̂)b̂. (9)

and that in the far field of point X (σ0) the shape of the slender body is arbitrary so
there is no reason to expect any cancellation from symmetries.

3.2. The near field. Now, the near-field contribution is given by

8πµunear(σ0)

=

∫
|r|<q

f (σ )
H1(r)

r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ.

We consider q small enough that the force does not vary significantly from f (σ0)

and the dipole strength does not vary significantly from D(σ0). Then for a straight
filament, the vector r0 = (σ0−σ)s is an odd function, so that the term proportional
to a in (9) will provide no contribution to the integral. We are left with

8πµunear(σ0)=

∫
|r|<q

(
f0

H1(r)
r
+
(
( f0 · r0)r0+ a2( f0 · b̂)b̂

)H2(r)
r3

− 2D0
H3(r)

r3 + 6
(
(D0 · r0)r0+ a2(D0 · b̂)b̂

)H4(r)
r5

)
dσ.

In order for the entire cross-section of the filament at σ0 to move with the same
velocity, the integral cannot depend on the vector b̂, which is a unit vector normal
to the filament at σ0 but otherwise arbitrary. We therefore enforce the condition
that ∫

|r|<q
( f0 · b̂)b̂

H2(r)
r3 + 6(D0 · b̂)b̂

H4(r)
r5 dσ = 0,

which is used to determine the strength of the dipole D0 as a function of f0. This
approach is exactly analogous to the problem of a sphere moving at constant veloc-
ity in a Stokes fluid. A single stokeslet at the center of the sphere is not sufficient to
provide the correct velocity, but a stokeslet plus a dipole at the center will suffice,
provided the dipole strength is related to the stokeslet strength in a way that cancels
the dependence on the evaluation point on the surface [2].

Computing the last integral exactly and neglecting terms containing O(a2/q2)

and O(δ2/q2), we have that

2
(a2+ δ2)

( f0 · b̂)b̂+
8

(a2+ δ2)2
(D0 · b̂)b̂= 0

from which we deduce that

D0 =−
a2
+δ2

4
fn, (10)
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where fn := f0− ( f0 · s)srepresents the component of f0 normal to the filament.
Note that the dipole strength is strictly normal to the filament; it does not have a
tangential component.

The near-field velocity is thus given by

8πµunear(σ0)

=

∫
|r|<q

f0
H1(r)

r
+ ( f0 · r0)r0

H2(r)
r3 − 2D0

H3(r)
r3 + 6(D0 · r0)r0

H4(r)
r5 dσ.

Before proceeding, we decompose the force into its normal and tangential com-
ponents, f0 = fn + fτ , and note that to leading order, r0 = (σ0 − σ)s, so that
( f0 · r0)r0 = (σ − σ0)

2 fτ . Using (10), we get

8πµunear(σ0)= 2( fn + 2 fτ )
[

ln
2q
β
−

a2

2β2

]
+ 2 fn

[
1−

δ2

2β2

]
+ O(ε2), (11)

where we have defined β2
= a2
+ δ2 and ε =max(a/q, δ/q).

At this point, one can combine (8) and (11) to get the velocity. However, there
is something unattractive about these expressions: they depend on a choice of q.
But aside from some scaling requirements, q is arbitrary.

Lighthill devised a way to eliminate this ambiguity in a way that can be adjusted
to the present context. Since the far field is simply the integral of the stokeslet field,
we compute to leading order for any number θ satisfying 0< θ < q,∫
θ<r0<q

f0
H1(r0)

r0
+ ( f0 · r0)r0

H2(r0)

r3
0

dσ

= 2( fn + 2 fτ ) ln
2q

θ +
√
θ2+ δ2

+ 2 fn

[
1−

θ
√
θ2+ δ2

]
and since (11) can be written as

8πµunear(σ0)= 2( fn + 2 fτ ) ln
2q

βea2/2β2 + 2 fn

[
1−

δ2

2β2

]
,

we can define the number θ by making the identification

θ +
√
θ2+ δ2 = βea2/2β2

,

so that

8πµunear(σ0)

= 2 fn

[
θ

√
θ2+ δ2

−
δ2

2β2

]
+

∫
θ<r0<q

f0
H1(r0)

r0
+ ( f0 · r0)r0

H2(r0)

r3
0

dσ .

By writing the near field in this way and adding it to the far field in (8), we get
a final expression which is independent of q:
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8πµu(σ0)= 2 fn

[
1−

2δ2

β2ea2/β2
+ δ2
−
δ2

2β2

]
+

∫
θ<r0

f (σ )
H1(r0)

r0
+ ( f · r0)r0

H2(r0)

r3
0

dσ, (12)

where r0 = X (σ0)− X (σ ), r0 = |r0|, β2
= a2
+ δ2, and

θ =
1

2β

(
β2ea2/2β2

− δ2e−a2/2β2)
.

Formula (12) indicates that the velocity of the filament at X (σ0) has two con-
tributions. One is the integral of the regularized stokeslet field evaluated at the
centerline, with the portion |σ − σ0|< θ excluded. The other one is a local term
proportional to the component of force normal to the filament at σ0.

3.3. The limit δ → 0. Notice that as the regularization δ vanishes, we have that
β→a and therefore θ→θ0=a

√
e/2≈0.824a. In this limit, H1(r)→1, H2(r)→1

and the local term reduces to 2 fn , so that the entire expression for velocity is in
agreement with Lighthill’s basic theorem of flagellar hydrodynamics [18; 19]. The
expression derived here is therefore more general since it includes the previously
developed case of delta force distributions and extends it to the case of regular
forces distributed over the body’s cross-section. Figure 3 shows the relative size
of the bracketed expression in the local term of (12) and of the parameter θ as
functions of the regularization parameter δ.
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3.4. Simplifications for δ > 0. In the case δ= 0, the excluded part of the integral in
(12) is necessary because the stokeslet field is not integrable in any neighborhood
of σ0. For a closed filament, spectral methods are efficient numerical techniques
for computing the integral accurately; however, the missing piece of the integral
gets in the way of an efficient implementation of such methods. However, in the
regularized case (when δ > 0), the velocity expression is integrable and one can
write it as the integral from σ = 0 to σ = 1 by simply adding and subtracting the
excluded piece. By assumption in the region |σ − σ0|< θ , the force is considered
constant: f (σ )= f0 and ( f · r0)r0 = r2

0 fτ . After some simplification we have

8πµu(σ0)= 2 fn

[
1−

δ2

2β2

]
− ( fn + 2 fτ )

[
2 ln(β/δ)+ 1−

δ2

β2

]
+

∫ 1

0

f (σ )
√

r2
0 + δ

2
+

( f · r0)r0

r2
0

√

r2
0 + δ

2
dσ, (13)

where r0 = X (σ0)− X (σ ), r0 = |r0|, and β2
= a2
+ δ2.

This formula shows that the integral is that of the standard stokeslet but with the
singular factor 1/r replaced by 1/

√
r2+ δ2. The regularization of the forces is also

expected to impact the local terms in the velocity since it is in a neighborhood of the
centerline where the forces are most significantly changed. The final formula shows
the appropriate form of the local terms in order for the velocity to be consistent
with these forces.

4. Keller–Rubinow theory

Lighthill’s slender body theory is developed in such a way that the errors depend
linearly on the body radius. Keller and Rubinow’s theory [16] develops the rela-
tionship between velocity and force with errors O(a2 ln a) in regions away from
the endpoints. In order to achieve this improvement, the near-field and far-field
flows are evaluated at fluid locations rather than at a point on the slender body
surface. The two expressions are then matched asymptotically at an intermediate
distance. In this section, it will be convenient to start with (5) and set the dipole
strength equal to a multiple of the force, D = A f .

4.1. The far field. Let x be a point in the fluid far from the slender body. For the
far field solution we consider a flow which decays to zero as |x| →∞. In this case
it is possible to choose A = 0 and U = 0 to get

8πµu(x)=
∫ 1

0
f (σ )

H1(r)
r
+ ( f (σ ) · r)r

H2(r)
r3 dσ (14)

where r = x− X (σ ) and r = |r|.
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4.2. The near field. We now consider a point x0 in the fluid so close to the slender
body that the latter can be viewed as a long, thin, straight cylinder of radius a.
Without loss of generality we assume that it extends in the ẑ direction from z =−q
to z = q and that the evaluation point is given by

x0 = (x, y, 0),

with |x0| = ρ � q. The forces acting along the straight tube are assumed to be
constant and equal to f0. Then the velocity at x0 satisfies

8πµ(u(x0)−U)

=

∫ q

−q
f0

(
H1(| y|)
| y|

−
2AH3(| y|)
| y|3

)
+( f0 · y) y

(
H2(| y|)
| y|3

+
6AH4(| y|)
| y|5

)
dz, (15)

where
y = x0− (0, 0, z)= (x, y,−z).

In order to simplify the notation, let s be a unit vector in the positive ẑ direction
(tangent to the filament). Then

( f0 · y) y = ( f0 · x0) x0− z [( f0 · x0) s+ ( f0· s) x0]+ z2( f0· s)s.

Using the specific form of the functions H1(r)–H4(r) in (7), we find that the
inner velocity is given by (see Appendix A):

8πµ(u(x0)−U)= f
[

ln
4q2

|x0|2+ δ2 +
2δ2

|x0|2+ δ2 − 2A
(

2|x0|
2
− δ2

(|x0|2+ δ2)2
−

1
q2

)]
+ ( f · x0)x0

[
2

|x0|2+ δ2 + 6A
4

3(|x0|2+ δ2)2

]
+ ( f · s)s

[
ln

4q2

|x0|2+ δ2 − 2+ 6A
(

2
3(|x0|2+ δ2)

−
1
q2

)]
.

4.2.1. No-slip boundary condition. We consider the slender body velocity given
by the unknown v(σ0). The goal is to develop an expression for v(σ0). The near-
field boundary condition must be consistent with a uniform velocity at every point
of a cross-section of the slender body. Then we must impose the condition u(x0)=

v(σ0) for all x0 with magnitude ρ = a (i.e. on the surface of the slender body). For
this we notice that the second term on the right side of the last equation is the only
one that is not radially symmetric. This leads us to choose

A =−
a2
+ δ2

4
.

With this value of A we can solve for the constant flow U in terms of v(σ0) and
substitute it back. The final inner velocity expression at a point x0 in the fluid is
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8πµu(x0)

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
(

ln
|x0|

2
+ δ2

a2+ δ2 +
(|x0|

2
− δ2)(|x0|

2
− a2)

(|x0|2+ δ2)2

)
+ 2( f0· s)s

|x0|
2(|x0|

2
− a2)

(|x0|2+ δ2)2
+ 2( f0 · x0)x0

|x0|
2
− a2

(|x0|2+ δ2)2
. (16)

4.3. Matching. The fluid velocity obtained from the inner expansion (16) is bounded
as the filament is approached, i.e., as |x0| → a. However, it grows logarithmically
as |x0| increases. The outer expansion velocity given by (14) also has a logarithmic
term as x approaches a point X (σ0) on the filament. To match the solutions at an
intermediate distance, let x0= x− X (σ0) with |x0| = ρ and assume δ∼ a� ρ� 1.
Here X (σ0) is the point on the filament which is closest to x and s is the unit tangent
at X (σ0). Then dropping the higher order terms in O(a2/ρ2) and O(δ2/ρ2), the
inner expansion becomes

8πµu(x)

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 .

The outer expansion velocity is given by (14), which we rewrite as

8πµu(x)=
∫ 1

0
J (r, ρ, δ, f (σ )) dσ , (17)

where r = x− X (σ ). Setting the two expressions equal to each other we get∫ 1

0
J (r, ρ, δ, f (σ )) dσ

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 .

The inner expansion of the far field is found by expanding the left-hand side of
this equation in powers of ρ (see Appendix B). This yields∫ 1

0

(
J (r0, 0, δ, f (σ ))− f0

H1(|σ − σ0|)

|σ − σ0|
− ( f0· s)s

H2(|σ − σ0|)

|σ − σ0|

)
dσ

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln(ρ2

+ δ2)
]
− 2( f0· s)s+

2( f0 · x0)x0

ρ2

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 ,

(18)

where r0 = X (σ0)− X (σ ).
Since x0 is an arbitrary point where the asymptotic matching is done, the final

result should not depend on it (or on its magnitude ρ). Fortunately all the terms
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containing ρ cancel out of the last equation so that the change of variables t =σ−σ0

gives

8πµv(σ0)=

∫ 1−σ0

−σ0

(
f (σ0+ t) H1(r0)

r0
−

f0 H1(|t |)
|t |

+
( f (σ0+ t) · r0)r0 H2(r0)

r3
0

−
( f0· s)s H2(|t |)

|t |

)
dt

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln

(
a2
+ δ2)

+ 1
]
− 4( f0· s)s. (19)

Our velocity formula can be simplified using the functions H1–H4 in (7) (see
Appendix C) so that up to O(δ2 ln δ) the final expression for the filament velocity
becomes

8πµv(σ0)=

∫ 1−σ0

−σ0

f (σ0+ t)
√

r2
0 + δ

2
+
( f (σ0+ t) · r0)r0

r2
0

√

r2
0 + δ

2
−

f0+ ( f0· s)s
√

t2+ δ2
dt

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln

(
a2
+ δ2)]

− ( f0+ ( f0· s)s)+ 2( f0− ( f0· s)s), (20)

where r0 = X (σ0)− X (t). This is the regularized Keller–Rubinow formula.

4.4. The limit δ → 0. The first integral in (20) can be evaluated even when δ = 0
because its singular behavior has been explicitly extracted. It is easy to see that in
the limit δ→ 0, the expression in (20) converges to the one obtained in [16]:

8πµv(σ0)=

∫ 1−σ0

−σ0

f (σ0+ t)
r0

+
( f (σ0+ t) · r0)r0

r3
0

−
f0+ ( f0· s)s
|t |

dt

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln a2]

− ( f0+ ( f0 · s)s)+ 2( f0− ( f0 · s)s).

4.5. Simplifications for δ > 0. We note that since none of the functions in (20) is
singular, one can evaluate the third term of the integral explicitly and include the
result as part of the local terms, leaving only the integral of the stokeslet kernel as
in the case of Lighthill’s theory, (13). This also provides a way of comparing the
two theories directly. The result is

8πµv(σ0)

=2 fn−( fn+2 fτ ) [2 ln(β/δ)+ 1]+
∫ 1−σ0

−σ0

f (σ0+t)
√

r2
0 + δ

2
+
( f (σ0+t) · r0)r0

r2
0

√

r2
0 + δ

2
dt. (21)

This expression, found by the method of matched asymptotics, can be compared
with (13), which was found by different means. The differences appear only in the
local terms. We note that this final expression does not rely on the cancellation of
singular terms.
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In computations, although (21) does not contain singularities, the function is
nearly singular (or spiky) so that there is a computational advantage to using (20)
instead of (21).

4.6. The velocity of the fluid. The velocity field at an arbitrary point x in the fluid
can also be evaluated using the asymptotic matching. The fluid velocity is given
by the sum of the inner solution, (16), and the outer solution, (14), minus the inner
expansion of the outer solution, given by the left-hand side of (18). After some
cancellation, the final expression is

8πµu(x)=
∫ 1

0
f (t)

H1(r)
r
+ ( f (t) · r)r

H2(r)
r3 dt

+ f (s)
[

1−
(|x0|

2
−δ2)(|x0|

2
−a2)

(|x0|2+ δ2)2

]
−( f · s)s

a2
+ δ2

|x0|2+δ2 −2( f · x0)x0
a2
+ δ2

(|x0|2+δ2)2
,

(22)

where r = x − X (s + t), r = |r|, and x0 = x − X (s). Here X (s) is the filament
point closest to x.

4.7. Periodic filaments. Equation (20) is valid for points along the filament that
are far from the endpoints s = 0 and s = 1 relative to δ. In the case of a periodic
filament, the choice of parametrization should be irrelevant. Therefore the equation
can be evaluated at a valid point, say s = 1/2, and the result should be valid for
any point on the filament. The forces f (t) and parametrization X (t) are periodic
functions but one last modification is necessary because the function 1/

√
t2+ δ2,

which appears in the integrand of (20), is not periodic in t . In order to replace it
with a periodic function, we use the identity∫ 1/2

−1/2

1
√

t2+ δ2
dt =

∫ 1/2

−1/2

dt
√

(1/π2) sin2(π t)+ δ2
− ln(16/π2)+ O(δ2 ln δ).

So, for a periodic filament, the final expression is

8πµv(s)=
∫ 1/2

−1/2

f (s+ t)
(|r0|2+ δ2)1/2

+
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)1/2
−
[ f (s)+ ( f · s)s]
√

π−2 sin2(π t)+ δ2
dt

+ 2( f − ( f · s)s)− ( f + ( f · s)s)
[

ln
(a2
+ δ2)π2

16
+ 1

]
. (23)

We use this formulation, rather than (20), for periodic filaments.
We note that in this case, the local terms (outside the integral in (23)) can also

be written as

2( f − ( f · s)s)− ( f + ( f · s)s)
[

ln(a2)+ 1+ ln
π2(a2

+ δ2)

16a2

]
.



SLENDER BODY THEORY FOR STOKES FLOWS WITH REGULARIZED FORCES 47

It is clear that the choice of δ affects significantly the local drag. This is to be
expected, since the regularization mostly affects the near-field velocity. However,
it turns out that the local terms are exactly equal to the ones in [16], i.e.,

2( f − ( f · s)s)− ( f + ( f · s)s)(ln a2
+ 1),

if δ is chosen so that ln π
2(a2
+δ2)

16a2 = 0, or approximately δ = 0.788124a.

5. Numerical examples

5.1. Validation studies. We consider first two validation studies by computing the
velocity of the fluid around a translating slender body. The first test problem is that
of a torus with centerline radius R = 1/2π and cross-sectional radius a. The torus
is slender when ε = a/R = 2πa� 1. We consider here a torus translating in an
arbitrary direction. The second validation study is that of a straight slender body
of length 1 and radius a.

5.1.1. A slender torus. Consider a torus whose centerline is in the xy-plane. This
is a particularly good test problem since the geometry of the slender body is that of
a cylindrical tube with constant cross-section, which is exactly what our formulas
have assumed. There is no exact solution; however, by placing various funda-
mental solutions along the centerline, Johnson and Wu [14] developed O(ε2 log ε)
asymptotic approximations to fluid velocities under various conditions. They give
asymptotic formulas for the force per unit length on the centerline of the torus that
produces a given translation. We make two comparisons. First, we compute forces
by setting the centerline velocity to the prescribed value and using either (13) for
Lighthill or (21) for Keller–Rubinow to solve for the forces. We also compute the
centerline velocity when using the forces from [14] in the regularized theories. Sec-
ond, we compute the fluid velocity using the regularized Keller–Rubinow formula
(22) and compare with the results from [14].

In the first comparison, we set the centerline velocity to a constant and invert
a trapezoid rule discretization of (13) to solve for the forces in Lighthill’s theory.
We do the same with (21) to solve for the forces in Keller–Rubinow’s theory. The
force per unit length is then compared with its asymptotic value given in [14]. The
results for a horizontal translation velocity (0, 1, 0) are shown in Table 1 and for
a vertical translation velocity (0, 0, 1) in Table 2. Recall that δ is a numerical
parameter for the regularization of the integrals, and therefore should be related
to the discretization size of the centerline. In these examples we discretize the
centerline with N points in such a way that the point separation is approximately
equal to the tube cross-section a; then δ is chosen proportional to 1/N . The tables
show results for two different values of δ for each slenderness value. The tables
show that both theories give comparable results for the normal component of the
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a F J W
n F K R

n F L
n F J W

t F K R
t F L

t numerical parameters

0.01 2.2370
2.2539 2.2814

1.4213
1.4415 1.3822 N = 100, δ = 0.5/N

2.2177 2.2351 1.4008 1.3624 N = 100, δ = 0.4/N

0.005 2.0149
2.0300 2.0453

1.2058
1.2191 1.1808 N = 200, δ = 0.5/N

1.9982 2.0080 1.1916 1.1665 N = 200, δ = 0.4/N

0.0025 1.8245
1.8373 1.8468

1.0533
1.0630 1.0360 N = 400, δ = 0.5/N

1.8104 1.8166 1.0428 1.0249 N = 400, δ = 0.4/N

0.00125 1.6636
1.6745 1.6809

0.93775
0.94528 0.92500 N = 800, δ = 0.5/N

1.6517 1.6559 0.92956 0.91605 N = 800, δ = 0.4/N

Table 1. Comparison of the resultant force per unit length for the case of a torus of
centerline radius R = 1/2π and cross-sectional radius a translating horizontally (in the
y-direction) with unit speed. The slenderness parameter defined in [14] is ε = 2πa. The
forces shown are for the normal and tangential components (subscripts) from [14] (JW),
regularized Keller–Rubinow (KR), and regularized Lighthill (L). The number of points N
discretizing the centerline is varied so that the point separation equals a. The Lighthill
forces were found by inverting (13) while the Keller–Rubinow forces were found by in-
verting (21).

force. The Keller–Rubinow theory gives slightly better results for the tangential
force and the given discretization parameters. By comparing (13) and (21), one
can see that the dependence of the normal component of force on the velocity is
identical for both theories, while there is a difference in the tangential component

a F J W
n F K R

n F L
n numerical parameters

0.01 2.3503
2.3729 2.3729 N = 100, δ = 0.5/N
2.3259 2.3259 N = 100, δ = 0.4/N

0.005 2.0806
2.0982 2.0982 N = 200, δ = 0.5/N
2.0614 2.0614 N = 200, δ = 0.4/N

0.0025 1.8664
1.8805 1.8805 N = 400, δ = 0.5/N
1.8509 1.8509 N = 400, δ = 0.4/N

0.00125 1.6922
1.7038 1.7038 N = 800, δ = 0.5/N
1.6795 1.6795 N = 800, δ = 0.4/N

Table 2. Comparison of the resultant force per unit length for the case of a torus of
centerline radius R = 1/2π and cross-sectional radius a translating vertically (in the z-
direction) with unit speed. The slenderness parameter defined in [14] is ε = 2πa. The
forces shown are for normal to the tube in the z-direction from [14] (JW), regularized
Keller–Rubinow (KR), and regularized Lighthill (L). The number of points N discretizing
the centerline is varied so that the point separation equals a. The Lighthill forces were
found by inverting (13) while the Keller–Rubinow forces were found by inverting (21).
Notice that these two equations are identical for the normal component of force since
they only differ in the tangential force component. This example has zero tangential force
so the two theories give the same answers.



SLENDER BODY THEORY FOR STOKES FLOWS WITH REGULARIZED FORCES 49

0 0.05 0.1 0.15 0.2 0.25
0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

!/a

ce
nt

er
lin

e 
sp

ee
d

N = 
15

0,0
00

N = 
3,0

00

N = 
1,5

00

N = 
1,0

00

N = 
75

0

Figure 4. Centerline velocity of the torus as a function of δ when the force per unit length
applied is the one given in [14] for a torus moving horizontally with constant velocity
(u, v, w)= (0, 1, 0). The solid curve corresponds to the Lighthill theory and the dashed
curve to the Keller–Rubinow theory. N is the number of quadrature points along the
centerline that were required to numerically resolve the integrals for the given value of δ.

of force. The test problem in Table 2 results in strictly normal force, which is why
both theories give the same solution.

A different comparison was performed by using the values of the force per unit
length given in [14] and applying those forces in the regularized theories. Although
one expects the forces from each theory to be similar for a given centerline veloc-
ity boundary condition, they are not identical. So, using the asymptotic forces
from [14] in the regularized theories does not guarantee the correct centerline ve-
locity. We set a = 0.01 and use the asymptotic forces to compute the centerline
velocities from (12) and (21) for different values of δ. The results for the torus
translating horizontally in the y direction are shown in Figure 4. The solid curve
corresponds to the Lighthill theory and the dashed curve to the Keller–Rubinow
theory. For a = 0.01, the asymptotic error in [14] is O(ε2 log ε) ≈ 0.011 where
ε = 2πa, which indicates that the velocity values are acceptable for δ ∈ (0, a/4].
The figure also shows the number N of quadrature points on the centerline required
to resolve the integrals for each δ. Note that N can be extremely large for δ ≈ 0;
however, if we use, say, the value δ = 0.25a, we can benefit tremendously by re-
ducing the number of quadrature points due to the regularization of the integrands.

Finally, we compute the velocity in the fluid using the Keller–Rubinow theory,
(22), and compare it to the asymptotic formula given in [14]. Figure 5 shows the
y-component of the fluid velocity along the line (x, 0, 0) where x varies form the
surface of the torus to a distance of about 10a. The left panel shows the result for
a = 0.01, a value that allows the computation of the integrals with N = 200 points
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Figure 5. Fluid velocities resulting from tori moving horizontally with constant velocity
(u, v, w)= (0, 1, 0). The tori are given by centerline radius R = 1/2π and cross-sectional
radius a = 0.01 (left) and a = 0.001 (right). The plots show the y component of velocity
v at points (x, 0, 0) as x varies from the torus surface to x = 10a. The velocities for the
Johnson and Wu theory [14] are shown as circles. The solid line represents the veloci-
ties for the regularized Keller–Rubinow theory with δ = 0.4/N and N = 200 (left) and
N = 2000 (right).

on the centerline. The right panel shows the results for a = 0.001 and N = 2000. In
this case, the forces used in the Keller–Rubinow theory were computed by inverting
(21) by enforcing the velocity boundary condition on a curve on the outer surface
of the torus (the curve corresponding to r = R+ a, z = 0). The circles represent
the asymptotic theory in [14] while the solid line is from Keller–Rubinow. Note
that the agreement is better for the more slender torus.

5.1.2. A straight slender body. The second validation problem is the one of a
straight slender filament of unit length. Chwang and Wu [4] developed an exact
solution for the translation of a prolate spheroid, which we use as a reference. We
emphasize that our formulas have been derived for a cylindrical tube of constant
circular cross-section, as depicted in Figure 6, so the geometry is not exactly the
same as the solution in [4]. For this reason, we cannot expect our solution to
converge to the one in [4]; however, a qualitative comparison is instructive. For
the regularized theories, we use a slender cylinder whose axis coincides with the
x-axis and whose radius is a = 0.01. The reference is the exact solution for the
prolate spheroid 4x2

+ (y2
+ z2)/a2

= 1. The two slender bodies have the same
cross section when x = 0 only as shown in Figure 6. At other values of x , the
cylinder is wider than the prolate spheroid. We invert a discrete version of (22)
based on the trapezoid rule with N = 401 points, enforcing the velocity boundary
condition of (u, v, w)= (1, 1, 0) on the surface of the cylinder (y = a).

We then select points in the fluid along a straight line perpendicular to the slender
bodies and emanating from the center of them, given by (0, y, 0) for y ∈ [a, 10a]
(see Figure 6 for reference). We compute the fluid velocity there using both the
regularized Keller–Rubinow theory for the cylindrical tube and the exact solution of
Chwang and Wu for the prolate spheroid. The results are shown on the left panel of
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Figure 6. Difference in the shape of slender bodies. Panel (a) shows the prolate spheroid
for which an exact solution is known [4]. Panel (b) shows the shape addressed in our work.
The figures use a radius of a = 0.025 for visualization purposes. The cross-sections are
equal only at x = 0.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

y

fl
u
id

 v
e
lo

c
it
ie

s

v

u

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

y

fl
u
id

 v
e
lo

c
it
ie

s

v

u

Figure 7. Fluid velocities resulting from a straight slender body moving with constant
velocity (u, v, w)= (1, 1, 0). The axis of the slender body is the x axis. The length of the
body is 1 and the radius is a = 0.01. The number of quadrature points was N = 401 and
δ = 0.5/N . The left panel shows the x and the y components of velocity (u, v) at points
(0, y, 0) for y ∈ [a, 10a]. The right panel shows the same velocity components at points
(0.25, y, 0), at a cross section halfway between the center and the nose of the tube. The
solid curves are from the regularized Keller–Rubinow theory while the dashed lines are
the exact solution of a prolate spheroid given in [4].

Figure 7. The solid curves are for the straight cylinder using the regularized Keller–
Rubinow theory and the dashed curves are the exact prolate spheroid solution. The
right panel of the figure shows similar results but computing the fluid velocity along
the line (0.25, y, 0) for a ≤ y ≤ 10a, which is halfway between the center and the
nose of the slender bodies. Here we do not expect the solutions to agree due to the
fact that the two slender bodies are different. Specifically, the velocities given by
Chwang and Wu are not equal to 1 at the point (0.25, a, 0) since that is not on the
surface of the prolate spheroid, but it is on the surface of the slender cylinder. In
spite of this, the curves agree qualitatively.

5.2. Application: Closed filaments. We apply both theories to the problem of
closed filaments with a normal force proportional to curvature. Our filaments are
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Figure 8. A closed filament r = 1+ B cos(nθ) with normal forces at various times with
B = 0.2, N = 64, n = 3. The slender body radius was a = 0.1 and the regularization
parameter set to δ = 0.1. The dashed lines correspond to Lighthill’s theory, and the solid
lines are results for the Keller–Rubinow method.

defined in cylindrical coordinates by

r = 1+ B cos(nθ) and z = 0

for various integers n, and we assign a force

F(θ, t)=− 1
10
κ(θ, t)ν(θ, t)

(
L(t)− 3π

2

)
where κ(θ, t) is the curvature of the filament, ν(θ, t) is the inward unit normal,
and L(t) is the arclength of the filament. We expect such forces to restore the
filaments to circular shapes. The filaments are discretized using N points and
the forces are computed at those locations. Since the filaments and forces are
smooth and periodic, we approximate derivatives along the filament using FFT
interpolation and evaluate the integrals with a trapezoid rule. We update positions
at each time step with a Runge-Kutta method. Results for both the Lighthill and
Keller–Rubinow theories, (13) and (23) respectively, can be seen in Figure 8 for
r = 1+ B cos(nθ) with B = 0.2, N = 64, n = 3. The slender body radius was
a = 0.1 and the regularization parameter set to δ = 0.1. The differences in the
shapes are due to the local terms in the expressions since the integrals are identical.
The figure shows that for this set of parameters, the filament approaches the circular
shape faster with Lighthill’s method.

It has been noted in the Introduction that subtracting the singularity of the Keller–
Rubinow integral like in (20) or (23) can lead to numerical instabilities in filaments
with high frequency components. This is the case when the parameter δ is chosen
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Figure 9. Solution at time t = 1 using the regularized theory of Keller–Rubinow, (21).
The closed filament was given initially by r = 1+ B cos(nθ) with B = 0.3, N = 64, n = 5.
The slender body radius was a = 0.1 and two different regularizations were used. Note
the formation of instabilities in the filament with less regularization.

too small for the regularization to provide stability. Figure 9 shows a closed fila-
ment with wave number n = 5 after a short simulation time using two different
values of the regularization parameter δ. The smaller value is too small to prevent
instabilities. Figure 10 shows that the filament computation remains stable for
long times when the larger regularization parameter is used. The computations
were done using (23).
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Figure 10. Solution at various times using the regularized theory of Keller and Rubinow,
(21). The closed filament was given initially by r = 1+ B cos(nθ) with B = 0.3, N = 64,
n = 5. The slender body radius was a = 0.1 and the regularization parameter set to δ = 0.1.
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5.3. Application: Swimming organism. Biological applications of slender body
theory also call for open filaments such as in the case of cilia or flagella. Sperm
swimming in an infinite fluid, for example, often exhibit planar beat in which a
wave travels along the flagellum from head to tail. Internal mechanisms in the
flagellum produce time-dependent forces along it that result in swimming motions
through interactions with the fluid. Relevant mathematical analysis and computa-
tional modeling of swimming “filaments” or cylindrical tubes can be found in [10;
23; 3; 4; 14; 6]. Our goal is to show the applicability of our result to this type
of motion, so we present an idealized swimming microorganism modeled as a
single sinusoidal filament with growing amplitude from head to tail. Simulations
of the motion and flow field around flagella in which the shape was represented
parametrically are found, for example, in [7; 9; 22; 21].

In time, the organism moves according to a traveling wave translating down the
body. There are two types of forces involved. The organism is defined by N points
equally distributed along the length which lies in the xy-plane so that the organism
points are (xk, yk, 0) for k = 1, 2, . . . , N . Consecutive points are connected by
springs whose resting lengths are given by their initial position. The first type
of force is the spring force (Hooke’s law) that develops as the end points of the
springs move causing them to contract or stretch. The second type of force is due to
an imposed time-dependent curvature of the filament consistent with the idealized
shape

y(x)= Y0 x sin
(2π

L
(x − t)

)
, 0≤ x ≤ L .

This is done by writing a discrete energy function

Eh(x1, y1, . . . , xk, yk, . . . , xN , yN )=
h
2

S1

N∑
n=1

(
(Exn+1− Exn)× (Exn − Exn−1)

h3 − κn

)2

where h is the separation between contiguous points, S1 is a constant and κn is the
target curvature at point n. The cross product is known to approximate curvature [9].
Then the curvature force is defined as

EFk =−

(
∂Eh

∂xk
,
∂Eh

∂yk
, 0
)
.

By defining forces this way, we guarantee that the net force and net torque are
identically zero. More details of this force can be found in [9; 8; 5]. The goal of
this example is show an application of the methodology developed here even if the
biological aspects are not developed.

The flagellum is defined by N points equally distributed along the length. Their
velocities are computed using the trapezoid rule on the Keller–Rubinow integral
in (21), and the position is updated at each time step with Euler’s method. The
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Figure 11. Snapshots of the flagella at different times. The motion is governed by (21),
and the fluid velocities are calculated using (22). For these calculations, the length of the
flagella is L = 0.75, and we have used N = 20 nodes with δ = 2h = 2L/(N − 1) and

a = 2δ.

fluid velocities are computed using the trapezoid rule on the integral in (22). All
necessary derivatives along the filament are calculated with simple finite differ-
ences. Figure 11 shows the results for the parameters L = 0.75, N = 20, δ =
2h = 2L/(N − 1) and a = 2δ. This results in a dimensionless oscillation period
of T = 0.75 so that the snapshots in the figure cover more than two periods. The
time step was set to 1t = 10−5. All frames cover exactly the same spatial domain
so that the swimming motion (leftward) of the organism is appreciable. The fluid
motion in the plane of the organism shows the rotations that are typical of this
motion [9; 8; 5].

6. Conclusions

We have derived a regularized formulation of the slender body theories developed
by Lighthill and by Keller and Rubinow. The main purpose is to provide a modified
version of each theory that retains the asymptotic order of the original formula but
results in expressions that are more amenable to computation. Specifically, the
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Keller and Rubinow theory relies on the exact cancellation of singular functions,
which is not possible to accomplish numerically without some type of regulariza-
tion. In the case of Lighthill’s theory, the advantage of our approach is that the gap
that is removed from the line integral can be restored. The uninterrupted integral
along the centerline of the slender body is important especially in closed filaments
where one can take advantage of the periodicity of the problem using high-order
quadratures.

The results show that both regularized theories result in the same integral along
the filament, (13) and (21), which allows a direct comparison between them. The
two theories differ by the local terms only due to the way in which they are derived
and the order of the asymptotic expansions. The regularization parameter δ should
be considered a numerical parameter that removes the singularity of the original
expressions in a way that maintains the asymptotic order and stabilizes the com-
putation of the integrals. The validation studies show that comparable results can
be obtained with δ ≈ 0 and δ = O(a) while the latter case provides a substantial
advantage in the number of quadrature points needed to compute the resulting
integrals accurately. We show by example that sufficient regularization (i.e. large
enough δ) is necessary to stabilize high wave numbers in the representation of the
filaments.

The theory presented here involves regularized stokeslets and dipoles along the
centerline of the slender body. The inclusion of other elements, such as rotlets for
a torque load, is also possible since regularized versions of them are available [1].

Appendix A: Details of the inner velocity expansion

To compute the inner velocity in (15), we will need the following approximations
for |x0| = ρ� q:

J1 =

∫ q

−q

H1(
√
|x0|2+ z2) dz

(|x0|2+ z2)1/2
≈ ln

4q2

|x0|2+ δ2 +
2δ2

|x0|2+ δ2 +

(
|x0|

2
− δ2

)
2q2

J2a =

∫ q

−q

H3(
√
|x0|2+ z2) dz

(|x0|2+ z2)3/2
≈

2(|x0|
2
− δ2)

(|x0|2+ δ2)2
−

1
q2

J2b =

∫ q

−q

H2(
√
|x0|2+ z2) dz

(|x0|2+ z2)3/2
≈

2
(|x0|2+ δ2)

−
1
q2

J3 =

∫ q

−q

H4(
√
|x0|2+ z2) dz

(|x0|2+ z2)5/2
≈

4
3(|x0|2+ δ2)2

−
1

2q4

J4 =

∫ q

−q

zH2(
√
|x0|2+ z2)dz

(|x0|2+ z2)3/2
= 0
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J5 =

∫ q

−q

zH4(
√
|x0|2+ z2)dz

(|x0|2+ z2)5/2
= 0

J6 =

∫ q

−q

z2 H2(
√
|x0|2+ z2) dz

(|x0|2+ z2)3/2
≈ ln

4q2

|x0|2+ δ2 − 2+
3(|x0|

2
+ δ2)

2q2

J7 =

∫ q

−q

z2 H4(
√
|x0|2+ z2) dz

(|x0|2+ z2)5/2
≈

2
3(|x0|2+ δ2)

−
1
q2

Neglecting terms of order O(a2/q2), O(δ2/q2) and O(|x0|
2/q2), the velocity

can be written as

8πµ(u(x0)−U)= f (J1−2AJ2a)+ ( f · x0)x0 (J2b+6AJ3)+ ( f · s)s (J6+6AJ7)

= f
[

ln
4q2

|x0|2+δ2 +
2δ2

|x0|2+δ2 −2A
(

2|x0|
2
−δ2

(|x0|2+δ2)2
−

1
q2

)]
+ ( f · x0)x0

[
2

|x0|2+δ2 +6A
(

4
3(|x0|2+δ2)2

)]
+ ( f · s)s

[
ln

4q2

|x0|2+δ2 −2+6A
(

2
3(|x0|2+δ2)

−
1
q2

)]
.

When the evaluation point is on the surface, |x0| = a, the velocity must be
independent of the particular surface point, so that the coefficient of ( f · x0)x0

must vanish. This leads to

A =−
a2
+ δ2

4
,

so that this choice of A is consistent with the boundary conditions at the filament
surface, we have for |x0| = a

8πµU = 8πµv(s)− ( f + ( f · s)s)
[

ln
4q2

a2+ δ2 + 1
]
+ 4( f · s)s,

and the final velocity expression is (16):

8πµu(x0)=8πµv(σ0)−( f0+( f0·s)s)
[

ln
|x0|

2
+ δ2

a2+ δ2 +
(|x0|

2
− δ2)(|x0|

2
− a2)

(|x0|2+ δ2)2

]
+ 2( f0· s)s

|x0|
2(|x0|

2
− a2)

(|x0|2+ δ2)2
+ 2( f0 · x0)x0

|x0|
2
− a2

(|x0|2+ δ2)2
+ O(ε2),

where

ε =max
(
|x0|

q
,
δ

q

)
.
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Appendix B: Matching

Consider the matching equation∫ 1

0
J (r, ρ, δ, f (σ )) dσ

= 8πµv(s)− ( f + ( f · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f · s)s+

2( f · x0)x0

ρ2 . (24)

Since the terms containing ρ came from integrals J1, J2b and J6, it is natural to
consider writing∫ 1

0
J (r, ρ, δ, f (σ )) dσ

=

∫ 1

0

(
J (r, ρ, δ, f (σ ))− f (s)K1(ρ, δ)−( f·x0)x0K2(ρ, δ)−( f·s)sK3(ρ, δ)

)
dσ

+

∫ 1

0
[ f (s)K1(ρ, δ)+ ( f · x0)x0K2(ρ, δ)+ ( f · s)sK3(ρ, δ)]dσ , (25)

where, setting t = σ − s, we define

K1(ρ, δ)=
H1(

√
t2+ ρ2)

(t2+ ρ2)1/2
, K2(ρ, δ)=

H2(
√

t2+ ρ2)

(t2+ ρ2)3/2
,

K3(ρ, δ)=
H2(

√
t2+ ρ2) t2

(t2+ ρ2)3/2
.

We approximate the first integral on the right-hand side of (25) by setting ρ = 0 so
that the outer solution is approximated by∫ 1

0
J (r, ρ, δ, f (σ )) dσ

≈

∫ 1

0
[J (r0, 0, δ, f (σ ))− f (s)K1(0, δ)− ( f · s)sK3(0, δ)]dσ

+

∫ 1

0
[ f (s)K1(ρ, δ)+ ( f · x0)x0K2(ρ, δ)+ ( f · s)sK3(ρ, δ)]dσ, (26)

where r0 = X (s)− X (s+ t).
Then, by using the integrals∫ 1

0
K1(ρ, δ) dσ =

∫ 1−s

−s

(t2
+ ρ2
+ 2δ2) dt

(t2+ ρ2+ δ2)3/2

= ln(4s(1− s))− ln(ρ2
+ δ2)+ O(ρ2)+ O(δ2),∫ 1

0
K2(ρ, δ) dσ =

∫ 1−s

−s

dt
(t2+ ρ2+ δ2)3/2

=
2

ρ2+ δ2 + O(ρ2)=
2
ρ2 + O(ρ2)+ O(δ2/ρ2),
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0
K3(ρ, δ) dσ =

∫ 1−s

−s

t2 dt
(t2+ ρ2+ δ2)3/2

= ln(4s(1− s))− 2− ln(ρ2
+ δ2)+ O(ρ2),

(see the expressions in (7)), Equation (24) becomes∫ 1

0

(
J (r0, 0, δ, f (σ ))− f0K1(0, δ)− ( f0· s)sK3(0, δ)

)
dσ

+ ( f0+ ( f0· s)s)
[
ln(4s(1− s))− ln(ρ2

+ δ2)
]
− 2( f0· s)s+

2( f0 · x0)x0

ρ2

= 8πµv(s)− ( f0+ ( f0· s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 .

Appendix C: Simplifying the velocity expression

The filament velocity formula (19) can be simplified by using (7) and the identity∫ 1−s

−s

dt
(t2+ a2+ δ2)1/2

= ln(4s(1− s))− ln
(
a2
+ δ2)

+ O(a2
+ δ2);

we can write the filament velocity as

8πµv(s)=
∫ 1−s

−s

f (s+ t)
(|r0|2+ δ2)1/2

+
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)1/2
−

f (s)+ ( f · s)s
(t2+ δ2)1/2

dt

+ δ2
∫ 1−s

−s

f (s+ t)
(|r0|2+ δ2)3/2

−
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)3/2
−

f (s)− ( f · s)s
(t2+ δ2)3/2

dt

+

∫ 1−s

−s

f (s)+ ( f · s)s
(t2+ a2+ δ2)1/2

dt − ( f + ( f · s)s)+ 2( f − ( f · s)s),

where r0 = X (s)− X (s+ t).
Lemma 6.1 below shows that the second integral in this expression is O(δ2 ln δ),

so that the final expression for the filament velocity up to this order is

8πµv(s)=
∫ 1−s

−s

f (s+ t)
(|r0|2+ δ2)1/2

+
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)1/2
−

f (s)+ ( f · s)s
(t2+ δ2)1/2

dt

+

∫ 1−s

−s

f (s)+ ( f · s)s
(t2+ a2+ δ2)1/2

dt − ( f + ( f · s)s)+ 2( f − ( f · s)s).

Lemma 6.1. Let a filament be defined by the curve X (t), where t is the arclength
parameter. Let f (t) be a smooth function, r(t)= X (t)− X (0) and δ� `. Then

I (δ)= δ2
∫ `

−`

f (t)
(|r|2+ δ2)3/2

−
f (0)

(t2+ δ2)3/2
dt =−

( 1
4 K 2

0 f0+ f ′′0
)
δ2 ln δ+ O(δ2)

where f0 = f (0), f ′0 = f ′(0), f ′′0 = f ′′(0) and K0 is the filament curvature at X (0).
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Proof. Consider first the integral

I1(δ)= δ
2
∫ `

0

f (t)
(|r(t)|2+ δ2)3/2

dt

and write for t � 1

r(t)= t τ̂ + 1
2 t2K0n̂+ 1

6 t3 (K ′0n̂− K 2
0 τ̂ )+ O(t4),

|r(t)|2 = r · r = t2
−

1
12 K 2

0 t4
+ O(t5),

|r(t)| = t − 1
24 K 2

0 t3
+ O(t4),

|r(t)|t = 1− 1
8 K 2

0 t2
+ O(t3).

where τ̂ and n̂ are the tangent and normal unit vectors at X (0). Using these expres-
sions we write for t � 1

f (t)= f0+ t f ′0+
1
2 t2 f ′′0 + O(t3)

= f0|r(t)|t
[
1+ 1

8 K 2
0 |r(t)|

2]
+ f ′0|r(t)||r(t)|t +

1
2 f ′′0 |r(t)|

2
|r(t)|t + O(t3)

= |r(t)|t
[

f0+ |r(t)| f ′0+
1
2 |r(t)|

2 ( f ′′0 +
1
4 K 2

0 f0
)]
+ O(t3)

= |r(t)|t A(|r(t)|)+ O(t3).

Then

I1(δ)= δ
2
∫ `

0

f (t)− |r(t)|t A(|r(t)|)
(|r(t)|2+ δ2)3/2

dt + δ2
∫ `

0

|r(t)|t A(|r(t)|)
(|r(t)|2+ δ2)3/2

dt

= J1(δ)+ J2(δ).

By construction we know that J1(δ) = O(δ2). On the other hand, we can let
y = |r(t)| and write

J2(δ)= δ
2
∫ R

0

A(y)
(y2+ δ2)3/2

dy

where R = |r(`)|. So

J2(δ)= f0

∫ R

0

δ2

(y2+ δ2)3/2
dy+ f ′0

∫ R

0

δ2 y
(y2+ δ2)3/2

dy

+
1
2

(
f ′′0 +

1
4 K 2

0 f0
) ∫ R

0

δ2 y2

(y2+ δ2)3/2
dy

or

J2(δ)= f0
R

√
R2+ δ2

− f ′0

[
δ2

√
R2+ δ2

− δ

]
+

1
2

(
f ′′0 +

1
4 K 2

0 f0
)[
δ2 ln

(
R+

√
R2+ δ2

)
− δ2 ln δ−

δ2 R
√

R2+ δ2

]
.
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Now the second half of the original integral is

I2(δ)= δ
2
∫ 0

−`

f (t)
(|r(t)|2+ δ2)3/2

dt = δ2
∫ `

0

f (−t)
(|r(−t)|2+ δ2)3/2

dt .

Using the same approach we conclude that

I2(δ)= f0
P

√
P2+ δ2

+ f ′0

[
δ2

√
P2+ δ2

− δ

]
+

1
2

(
f ′′0 +

1
4 K 2

0 f0
) [
δ2 ln

(
P +

√
P2+ δ2

)
− δ2 ln δ−

δ2 P
√

P2+ δ2

]
+ O(δ2),

where P = |r(−`)|.
Combining the results we have

I (δ)= f0

[
R

√
R2+δ2

+
P

√
P2+δ2

−
2`

√
`2+δ2

]
+ f ′0

[
δ2

√
P2+δ2

−
δ2

√
R2+δ2

]
+

1
2

(
f ′′0 +

1
4 K 2

0 f0
)[
δ2 ln

(
P +

√
P2+δ2

)
+ δ2 ln

(
R+

√
R2+δ2

)
− 2δ2 ln δ−

δ2 P
√

P2+δ2
−

δ2 R
√

R2+δ2

]
+ O(δ2)

=−
(

f ′′0 +
1
4 K 2

0 f0
)
δ2 ln δ+ O(δ2). �
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