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DISCONTINUOUS GALERKIN METHOD WITH THE
SPECTRAL DEFERRED CORRECTION TIME-INTEGRATION

SCHEME AND A MODIFIED MOMENT LIMITER FOR
ADAPTIVE GRIDS

LEANDRO D. GRYNGARTEN, ANDREW SMITH AND SURESH MENON

The discontinuous Galerkin (DG) method is combined with the spectral deferred
correction (SDC) time integration approach to solve the fluid dynamic equations.
The moment limiter is generalized for nonuniform grids with hanging nodes that
result from adaptive mesh refinement. The effect of characteristic, primitive, or
conservative decomposition in the limiting stage is studied. In general, primitive
variable decomposition is a better option, especially in two and three dimen-
sions. The accuracy-preserving total variation diminishing (AP-TVD) marker
for troubled-cell detection, which uses an averaged-derivative basis, is modified
to use the Legendre polynomial basis. Given that the latest basis is generally
used for DG, the new approach avoids transforming to the averaged-derivative
basis, what results in a more efficient technique. Further, a new error estimator
is proposed to determine where to refine or coarsen the grid. This estimator is
compared against other estimator used in the literature and shows an improved
performance. Canonical tests in one, two, and three dimensions are conducted
to show the accuracy of the solver.

1. Introduction

The discontinuous Galerkin (DG) method belongs to the finite element (FE) family
and uses a piecewise discontinuous space for the test function and the numerical
solution [7]. The use of the same function space for the test function and solution
defines all Galerkin methods. Usually, the basis to form the space is composed
of Legendre [7] or Lagrange [10] polynomials, although other options have been
studied in the literature [43]. The discontinuity is localized at the boundary of each
element and the coupling between elements is done by computing fluxes as in finite
volume (FV) schemes, e.g., using an approximate Riemann solver. This kind of
coupling allows DG to formulate each element locally, making the implementation

MSC2010: 35L65, 35L67, 65L06, 65M50, 65M60.
Keywords: discontinuous Galerkin, moment limiter, high-order accuracy, adaptive mesh,
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134 LEANDRO D. GRYNGARTEN, ANDREW SMITH AND SURESH MENON

highly parallelizable, h-p adaptivity friendly, compatible with complex geometries,
and is capable of achieving high-orders of accuracy even with unstructured grids
and hanging nodes (e.g., see Remacle et al. [33]). Given that DG is a result of FE
and FV, the terms element and cell are generally used indistinctly in this context.

The time integration scheme most widely used has been the ubiquitous 3rd-order
TVD Runge–Kutta (RK) method, leading to what is known as the RKDG method
[5; 4; 3; 6]. Given that DG has the ability to easily achieve high-order spatial
accuracy, some effort to maintain comparable time accuracy has been reported
[40]. Under some conditions, especially with higher order derivatives, the time
step required for stability of the RKDG method can be very limiting. Recently,
Xu and Shu [40] suggested that the spectral deferred correction (SDC) method,
derived by Dutt et al. [8], may be an alternative time stepping scheme. It has
been shown that SDC can be used in an explicit, semiimplicit, or fully implicit
form, and it is easy to extend to high-order accuracy in time [27]. Xia et al. [38]
studied a semiimplicit SDC method, in addition to other alternative techniques,
to use with the local discontinuous Galerkin (LDG) method. SDC combined with
DG (SDC-DG) has not yet been used extensively for practical applications. Grooss
and Hesthaven [14] used a semiimplicit SDC to solve the incompressible Navier–
Stokes with free-surface flows. Here, we report on new results that demonstrate
the potential of SDC-DG with explicit integration and compare it against RKDG.
Even though Gottlieb et al. [13] presented RK methods of order higher than 3,
these schemes are very difficult to derive, while the extension of SDC to any order
is straightforward. In addition, TVD-RK methods of 4th-order or greater require
the governing equation to be invariant to time reversal [12; 13]. The Euler equations
are invariant to this transformation, but the Navier–Stokes (NS) equations are not.
Although we do not use the NS equations in this report, viscous fluxes will be
included in future studies. Hence, TVD-RK schemes of 4th-order or higher are
not considered here. The possibility of an SDC method with the strong stability
preserving (SSP) property was studied by Gottlieb et al. [11] and more extensively
by Liu et al. [26]. Note that TVD schemes are SSP schemes that were originally
derived using the total variation norm [13], instead of a generic norm. Therefore,
in practice the TVD and the SSP properties are equivalent, but TVD could be con-
sidered a particular case of SSP. Liu et al. [26] showed that SSP-SDC algorithms
can be obtained, but the derivation gets very complicated as the order increases
and the CFL coefficient is smaller than for the SSP-RK. Thus, in the current study
we use SDC without the SSP property.

The current method also combines the SDC-DG approach with adaptive mesh
refinement (AMR) to dynamically and locally refine or coarsen the grid based
on an estimation of the numerical error. Issues with the implementation such as
hanging nodes, particularly in quadrilateral or hexahedral grids are addressed. The
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DG formulation works well with AMR because of its local nature [33] and its
performance is demonstrated in this paper.

As with other numerical approaches, it is well known that DG methods may
cause nonphysical oscillations close to discontinuities due to the Gibbs phenom-
enon, especially when higher order schemes are used because of lower numeri-
cal dissipation. Therefore, some approach to “limit” this effect is needed. One
common technique consists of applying limiters inherited from FV techniques,
several of which have been developed in the last two decades. Cockburn and
Shu [5] demonstrated a modified minmod limiter for the DG method, but it has
the disadvantages of dropping the order of accuracy when it is activated and relies
on a user-defined parameter to make it total variation bounded (TVB) instead of
total variation diminishing (TVD). Qiu and Shu [31] showed that the weighted
essentially nonoscillatory (WENO) approach, borrowed from FV, can smooth the
un-desired oscillations but increases the size of the stencil and loses the subcell
information that DG provides. In a later study, Qiu and Shu [30] used a modified
WENO scheme based on Hermite polynomials to reduce the stencil.

Other limiters, such as the moment limiter (ML), originally proposed by Biswas
et al. [2] for uniform grids and further improved, e.g., by Krivodonova [22], has also
been proposed for DG applications. The ML is generally applied to a Legendre
polynomial basis limiting the conservative or the characteristic variables. Yang
and Wang [42] modified the ML for unstructured grids for a spectral difference
(SD) method, applying it to a polynomial basis based on the averaged derivatives
along the cell, instead of estimating the derivatives at the cell center as in [22].
The hierarchical reconstruction (HR) method, introduced by Liu et al. [24], was
applied to DG with a WENO-type reconstruction at each hierarchical level [41].
In this approach characteristic decomposition is not used, but rather small over-
shoots/undershoots appear especially as the order of accuracy is increased [25].
For DG schemes with very high order elements, artificial dissipation to smooth
out discontinuities has also been proposed [16; 28; 1]. In this paper the ML as
presented in [22] is modified for nonuniform grids with hanging nodes. The ML
is usually applied to characteristic variables, which is only consistent in a one-
dimensional sense. Therefore, we study the consequences of limiting the conser-
vative, primitive, or characteristic variables to later apply it to multidimensional
cases.

Even though good limiters tend to keep the original order of accuracy in smooth
regions, they may increase the error slightly [29; 22]. Hence, the application of
such limiters within the domain needs to be minimized. This task is carried out by
what is usually called a troubled-cell detector, which identifies the cells that may
be becoming oscillatory or unstable, and thus require a limiter. Moreover, if the
detector is computationally faster than the limiter, the speed of the solver can be
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increased by reducing the number of cells where the limiter is applied. In the past,
several limiters were adapted as detectors [29], and the ones with best success are
the minmod-based TVB limiter [5], the shock-detector by Krivodonova et al. [21]
(KXRCF), and the indicator based on Harten’s subcell resolution [15]. In [42],
the accuracy-preserving TVD (AP-TVD) detector is suggested in an SD frame
and compared against the other detectors just mentioned above and was shown to
produce better agreement. Therefore, we adapt the AP-TVD to the DG method
with some additional modifications, as reported below.

AMR requires an indicator to determine where to refine or coarsen the grid based
on an estimated numerical error. This numerical error depends on the scheme, thus
error estimators used in FV or finite differences (FD) are not valid here. Consid-
erable research has been invested in estimating the numerical error for the DG
method for conservative hyperbolic equations [9], but usually these approaches
are computationally expensive and therefore inefficient. Faster, though perhaps
less accurate methods have also been derived for DG. Remacle et al. [33] used
a simple error estimator based on the jump between elements, which is the same
principle as used in the shock-detector KXRCF. Trouble-cell detectors have also
been used as error estimators [34; 45]. Zhu et al. [45] compared a few of them and
found that KXRCF provided very good results for typical one-dimensional shock
problems. In addition, Leicht and Hartmann [23] used the jump between elements
to determine the direction for anisotropic refinement. In this study we propose a
new estimator which results from a combination of some of these detectors and
has better efficiency.

The current paper is organized in the following way. Section 2 introduces the
governing equation relevant to this study. Section 3 presents the numerical schemes
and algorithm behind the solver. Section 4 includes the test cases that show the suc-
cess of the method being proposed. Finally, Section 5 summarizes the observations
and suggests areas where future work is necessary.

2. Governing equations

The governing equations are the conservation laws written in the general form{
∂u
∂t
+∇ · F(u)= 0 for t > 0,

u = u0 for t = 0,
(1)

where u is the solution vector, F is the inviscid flux, and u0 is the initial value.
Unless specified otherwise, they correspond to the Euler equation, so that

u = (ρ, ρv1, ρv2, ρv3, ρET )
T (2)

and
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F1 =


ρv1

ρv2
1 + p
ρv1v2

ρv1v3

(ρET + p)v1

 F2 =


ρv2

ρv1v2

ρv2
2 + p
ρv2v3

(ρET + p)v2

 F3 =


ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρET + p)v3

 ,
where ρ is the density, v j is the velocity component in the x j direction, p is the
pressure, ET is the total energy defined as ET = e +

∑3
i=1

1
2v

2
i where e is the

internal energy. The ideal gas equation of state is ρe = p/(γ − 1) where γ is the
specific heat ratio and it is assumed constant. In addition, the speed of sound c is

c =
√
γ

p
ρ
. (3)

The state vector u in (2) is given in conservative form. The state vector for the
primitive form as used in this study is

up = (ρ, v1, v2, v3, p)T . (4)

Although in this paper we focus on the Euler equations to show the ability and
accuracy of the proposed method, extension to full Navier–Stokes equations are
also being evaluated and will be reported in the near future.

3. Numerical method

The DG method is applied to the conservation law described in (1). The domain,
�, is divided into N nonoverlapping elements:

�=

N⋃
l=1

�l . (5)

The solution vector u is approximated per element by Ul , defined by the basis φ:

Ul =

p∑
i=0

φi ci,l, (6)

where p defines the order of the finite element and ci,l is the weight corresponding
to each element of the basis φ. After multiplying by the test function, which is
equal to the basis φ, and integrating by parts we arrive at the weak form of the DG
method [7]:
∫
�l

φ
∂Ul
∂t

dV −
∫
�l

∇φ ·F(Ul) dV +
∫
∂�l

φ F̂(U−,U+) d S=0 for t>0,∫
�l

φUl dV =
∫
�l

φu0 dV for t=0,
(7)
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with appropriate boundary conditions. Here, F̂ is a numerical flux normal to the
boundary of the element and needs to be properly defined given that it is computed
at the face of the elements, which may be discontinuous. U− is the value of Ul

according to the current element l at the face and U+ is the value of Um at the face
based on the neighboring element m.

The numerical flux should be an exact or approximate Riemann solver. Here
the local Lax–Friedrichs flux is used as it is known to provide good results and is
simple to compute [5]. In this study, the spatial integration in (7) is done with a
full quadrature rule using Lobatto points [20; 5; 4; 3; 6].

3.1. Time integration. Time integration is conducted explicitly using the Runge–
Kutta (RK) method or the spectral deferred correction (SDC) method. Both ap-
proaches treat the governing equations as a system of ordinary differential equa-
tions (ODE):

du
dt
= G(t, u), (8)

where G(t, u)=−∇ · F(u). In this study, unless specified otherwise, for elements
of polynomial order p a time integration of order p+ 1 is used. Unless specified
otherwise, the time step is given by

1t = min
l=1...N

[
C

2pl + 1
· min

i=1...nd

(
1xi,l

vi,l + cl

)]
, (9)

where nd is the number of dimensions and C is a constant. The flow velocity
vi,l and the speed of sound c are considered at the centroid of element l. We use
C = 0.5 unless specified otherwise. It is usually replaced by 1.0 (see [7]), however,
in this study we choose 0.5 to be more conservative. Maximum stable time-step
size for RKDG has been shown elsewhere [7]. Stability limits for SDC-DG have
not been studied in the literature, at least to the author’s knowledge. Equation (9)
turns out to provide a stable condition for the tests presented in this study also for
SDC-DG when the order in time is equal to p+ 1.

3.1.1. The Runge–Kutta method. The Runge–Kutta method is a well known family
of schemes. The current study used the total variation diminishing RK (TVD-RK)
of second and third orders [35], which can be summarized in three steps:

Step 1:
u0
= un. (10)

Step 2:

ui
=

i−1∑
l=0

αilw
il, wil

= ul
+
βil

αil
1tG

(
ul, t +1t · dl

)
, for i = 1, . . . , K . (11)
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Step 3:
un+1 = uK , (12)

where the superindexes of u determine intermediate steps between un and un+1.
The parameters are given in Table 1. A good property for these 2nd- and 3rd-order
TVD schemes is that if for some seminorm | · |, we have that |wil

| ≤ |ul
|, then

|un+1| ≤ |un|.

Order αil βil dl

2 1 1 0
1/2 1/2 0 1/2 1

1 1 0
3 3/4 1/4 0 1/4 1

1/3 0 2/3 0 0 2/3 1/2

Table 1. Parameters for TVD-RK of order 2 and 3.

3.1.2. The spectral deferred correction method. Although details of this method
are given elsewhere [8; 27; 26; 40], we include the main algorithm for complete-
ness. The scheme is based on first-order explicit integration of substeps and it-
erative correction [8]. For stiff problems, the scheme can be varied with a more
implicit character, but only the explicit method is addressed here. Each time step
[tn, tn+1] is divided into J substeps: tn = tn,0 < tn,1 < · · ·< tn,m < tn,m+1 < · · ·<

tn,J = tn+1. These points are chosen as quadrature points (Lobatto points in the
current study). This approach makes the scheme more stable because it avoids a
uniform distribution and leads to the spectral characteristic of the scheme [8]. This
property is important to stabilize higher orders. Initially, the governing equations
are integrated with a first-order explicit integration from tn to tn+1 using tn,m points:

u1
n,m+1 = u1

n,m +1tn,mG
(
tn,m, u1

n,m
)

for m = 0, . . . , J − 1, (13)

where u1
n,0 = un and 1tn,m = tn,m+1− tn,m .

Now K iterations are computed for k= 1, . . . , K and m= 0, . . . , J−1 (m being
the inner loop):

uk+1
n,m+1

= uk+1
n,m + θ1tn,m

(
G(tn,m, uk+1

n,m )−G(tn,m, uk
n,m)

)
+ I m+1

m
(
G(tn,m, un,m)

)
, (14)

where 0≤ θ ≤ 1 and I m+1
m (G(tn,m, un,m)) is the integral of the interpolating poly-

nomial along the quadrature points:

I m+1
m (G(tn,m, un,m))=

∫ tn,m+1

tn,m
G(τ, u(τ )) dτ. (15)
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Finally, un+1= uK+1
n,J . Here, we use θ = 1 as in the original study [8] and K = J−1.

For the cases studied in this report, we observed that neglecting the second term
on the right-hand side, i.e., using θ = 0, provides similar results but with greater
numerical error.

3.2. The basis. Several options can be used to form the finite element space. Our
basis φ is built on the Legendre polynomials Pi , which leads to an orthogonal,
hierarchical, polynomial basis — an advantage in comparison with computationally
more expensive functions (e.g., trigonometric or exponential). Another numerical
advantage is an advantage in comparison with computationally more expensive
functions the lower condition number of the Vandermonde matrix, which trans-
forms from modal space to nodal space. The mass matrix is diagonal when the
basis is orthogonal and the Jacobian is constant inside the element; indeed, if the
basis is correctly normalized and the Jacobian is constant, the mass matrix is just
the identity matrix times the Jacobian.

The normalized Legendre polynomials are given by

φi = Pi

√
2i + 1

2
for i = 0, . . . , p, (16)

and they are orthonormal:
∫
�l
φiφ j dV = δi j , where δi j is Dirac’s delta function.

For quadrilateral and hexahedral elements the basis can easily be generated from
the 1D basis by applying a tensor product. Thus, in 2D we have

φi j (ξ, η)= φi (ξ) φ j (η), (17)

and in 3D
φi jk(ξ, η, ζ )= φi (ξ) φ j (η) φk(ζ ). (18)

3.3. Adaptive mesh refinement. The solver relies on a tree to handle the hierar-
chical structure of the grid adaptations. The initial grid is composed of root cells,
corresponding to the lowest level. Each cell can have children. A cell that does
not have children is called a leaf cell. If a root cell does not have children it is also
tagged as a leaf cell. The root cells correspond to level 1 and the maximum level is
given by `max, which may depend on the problem. Each face of every cell has to be
connected to a neighbor or to a boundary element. A cell can connect to a neighbor
at the same level or at a lower level, but never at a higher level. In addition, there
is a ghost tree to handle the ghost cells for interprocessor communications. Details
about the tree structures are given in [19; 17].

When a cell is marked for refinement it is split into two, four, or eight, in dimen-
sion 1, 2, or 3. The variables from the parent are projected onto the children with
an identity projection. On the other hand, when all the children of a cell are marked
for coarsening, the variables from the children are projected onto the parent cell
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with a least-squares projection. Note that if the order p is kept constant, no data is
lost when refinement is done; however, data is lost when coarsening is done.

Cells are marked for adaptation based on an error estimator. The error εl of cell
l is then normalized by the maximum error εmax found in the whole domain. Then,
a logarithmic scale is applied as in [9]. The current hierarchical level in the tree
for cell l is `(l). A target level `t is estimated as

`t =max
(
1, `max− INT

(
log(εmax/ε j )/ log d

))
(19)

where d is a parameter that determines the sensibility of the refinement, the larger
its value, the more refinement will be done. Even though the accuracy is expected to
increase as d is raised, the computational cost will be higher too. The default value
adopted here is d = 10 as in [9], which is a good balance between computational
cost and accuracy. If `t is greater than `(l) then cell l is marked for refinement. If
`t is lower than `(l) then cell l is merged for coarsening. Note that for coarsening
to actually be feasible, all the children have to be marked for coarsening.

The level difference between neighboring cells is not allowed to be larger than
1. For example, suppose cells 1 and 2 are neighbors, with `(1)= 3 and `(2)= 4.
If cell 2 is marked for refinement, then cell 1 will be marked for refinement also.

For the sake of simplicity and computational speed, a simple error estimator is
used here. More accurate approaches are slower and may increase the overhead,
making the adaptivity too costly.

Zhu et al. [45] compared a few different shock-detectors as estimators for re-
finement, and concluded that the most efficient based on their 1D discontinuous
problems was the KXRCF [21]:

εA,l =

∣∣∣∣∫
δ�−l

(U−−U+) d S
∣∣∣∣

h
p+1

2
l

∫
δ�−j

d S ‖Ul‖

, (20)

where U is some relevant variable, δ�−l is the element boundary where the velocity
is going into the element, hl is the radius of the circle circumscribed to the element l,
and the norm is based on an element average. In [33] the following error estimator
was used for element l:

εB,l =

∫
�l

|U−−U+| d S. (21)

Here, we combine the best of (20) and (21) to obtain

εC,l =

∫
δ�l
|U−−U+|d S∫
δ�l

d S.
(22)
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In the current implementation the error is already normalized by the maximum error
in the domain — see (19) — and so the additional normalization needed in (20) is
not required. For the Euler equation two error estimators based on the density and
the total energy are used. Below we refer to the estimators in (20)–(22) as KXRCF,
JUMP1, and JUMP2, respectively. The difference between JUMP1 and JUMP2
can only be observed in 2 and 3 dimensions, so for the 1D cases JUMP1 is not
used.

3.4. Moment-limiter for nonuniform grids. The limiting strategy of the ML is
shown below for 1D. However, for completeness, the 2D and 3D extensions are
discussed in the Appendix. In Section 3.4.2, we extend the original ML to nonuni-
form grids for 1D, but its extension to higher dimensions is trivial, except for when
a neighbor is split due to refinement, in which case the average of the two is used,
and when the neighbor is coarser, in which case a virtual refinement of the neighbor
is done. This last step has no analytical complexity, but its implementation may
not be trivial. Figure 1 shows the stencil used for limiting purposes when coarser,
finer, or equal level neighbors are present. For the neighbor on the right-hand side,
a virtual refinement was created, similar to the idea of partial neighboring cells
in [41]. The neighbors on the top are virtually merged.

Figure 1. Example of a 2D stencil used for limiting when coarser, finer, or equal-level
neighbors are present.

3.4.1. The moment-limiter concept. The idea is to limit the i-th derivative in x of
Ul in the following way:

∂ iŨl

∂x i =minmod
(
∂ iUl

∂x i , βi D+i , βi D−i

)
(23)
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where

minmod(a, b, c)=
{

sgn a min(|a|, |b|, |c|) if sgn a = sgn b = sgn c,
0 otherwise,

(24)

and Ũl is the solution Ul after the limiter is applied. D+/−i is an estimation of the
i-th derivative based on one-sided differences:

D+i =

∂ i−1Ul+1

∂x i−1 −
∂ i−1Ul

∂x i−1

x̄l+1− x̄l
, D−i =

∂ i−1Ul

∂x i−1 −
∂ i−1Ul−1

∂x i−1

x̄l − x̄l−1
, (25)

where x̄l is the location of the centroid of element l, and βi is a parameter to control
the sensibility of the limiter. If there is a boundary condition against one of the
faces of the element, then that side is neglected in (23).

In the literature (e.g., [22]) it is recommended to apply limiting to the character-
istic variables when a system of equations is being solved. This means replacing
(23) by (

L
∂ i Ũl

∂x i

)
k
=minmod

((
L
∂ i Ul

∂x i

)
k
, βi (L D+i )k, βi (L D−i )k

)
, (26)

where L is a matrix composed by the left eigenvectors of the Jacobian ∂F/∂u,
and the subindex k refers the k-th characteristic variable. Each characteristic vari-
able is limited individually and this means that if a variable in a given element
is not limited the others can still be limited. If limiting is applied in an element
the resulted characteristic variables have to be converted back to the conservative
variables, multiplying the characteristic variables by the inverse of L, which is
composed by the right eigenvectors of ∂F/∂u. In addition, if one wants to use
primitive variables for this stage, L should be replaced by the Jacobian, ∂up/∂u,
where up is the state vector in primitive variables.

The algorithm to apply the limiter is the following:

(1) Apply (23) for i = p to every element. If

∂ iŨl

∂x i =
∂ iUl

∂x i , (27)

then mark the element as not needing limiting anymore.

(2) Apply (23) for i = p− 1 to every element that still needs to be limited.

(3) Continue for i = p− 2, . . . , 1 or until no element requires limiting.

Note that only the derivatives are modified, not the mean value; thus the limiter
does not violate the conservation property.

As in [22], we also add the following steps at the end of the limiting procedure
for each element to avoid nonphysical values:
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(1) If any integration point has a nonphysical state (e.g., negative pressure), make
all the quadratic and higher-order moments equal to zero and go to step 2,
otherwise the procedure is completed.

(2) If any integration point still has a nonphysical state (e.g., negative pressure),
make all the linear moments equal to zero. This makes the solution piecewise
constant.

Obviously, when these steps are applied the accuracy is forced to drop locally.
Nonetheless, this is not needed often.

3.4.2. The ML using a Legendre basis. The (i − 1)-th derivative with respect to x
of Ul , given in (6), can be expressed as

∂ i−1Ul

∂x i−1 =

(
2
1xl

)i−1
[√

2i−1
2

(2i − 3)!! cl,i−1+
∂ i−1

∂ξ i−1

p∑
k=i

cl,kφk(ξ)

]
(28)

and the i-th derivative in x of (6) can be expressed as

∂ i Ul

∂x i =

(
2
1xl

)i
[√

2i+1
2

(2i − 1)!! cl,i +
∂ i

∂ξ i

p∑
k=i+1

cl,kφk(ξ)

]
, (29)

where 1xl is the length of element l.
At the same time, the i-th derivative could be estimated from the forward or

backward differences of ∂ i−1Ul/∂x i−1:

∂ i Ul

∂x i =

(
∂ i−1Ul+1

∂x i−1 −
∂ i−1Ul

∂x i−1

)
2

1xl+1+1xl
, (30)

∂ i Ul

∂x i =

(
∂ i−1Ul

∂x i−1 −
∂ i−1Ul−1

∂x i−1

)
2

1xl +1xl−1
. (31)

Therefore, ignoring higher order derivatives we obtain

cl,i =
2ϑ+

1+ϑ+

√
2i−1
2i+1

1
2(2i−1)

(
ϑ i−1
+

cl+1,i−1− cl,i−1
)
, (32)

cl,i =
2ϑ−

1+ϑ−

√
2i−1
2i+1

1
2(2i−1)

(
cl,i−1−ϑ

i−1
−

cl−1,i−1
)
, (33)

where ϑ− = 1xl/1xl−1 and ϑ+ = 1xl/1xl+1. Note that if the grid is uniform
ϑ− = 1, ϑ+ = 1, and the derived equations converge to the solution in [22]. Thus,
the difference between the current derivation and the one in [22] starts in (30) and
(31), where we do not assume a constant 1x .

One could apply the limiter as

c̃l,i =minmod
(
cl,i ,1

+

i ,1
−

i

)
, (34)
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where 1+ and 1− are the right-hand sides of (32) and (33). However, to make the
limiter less numerically diffusive, [22] uses an expression equivalent to

c̃l,i =minmod
(
cl,i , 2 (2i − 1)1+i , 2 (2i − 1)1−i

)
. (35)

This equation should be the actual implementation of what (23) represents. The
same procedure is easily extended to 2D and 3D. Note that this formulation is equiv-
alent to what was presented in [22] except for the generalization for nonuniform
grids and how to handle neighbors of different adaptive level.

3.5. Troubled-cell detector. The detector presented in this study is a modification
of the AP-TVD detector presented in [42] for a spectral difference (SD) scheme.
The adapted technique consists of two steps:

1. For each cell l compute

Ūmax,l =max
(
Ūl−1, Ūl, Ūl+1

)
, (36)

Ūmin,l =min
(
Ūl−1, Ūl, Ūl+1

)
, (37)

where Ūl indicates the average of U in cell l. If for any node i in element l
we have Ui,l > 1.001 Ūmax,l or Ūi,l < 0.999 Ūmin,l , then proceed to step 2; else
the element is not marked.

2. For each dimension j the idea is to compute

∂2Ũl

∂x2
j
=minmod

(
∂2Ul

∂x2
j
, β

∂Ul+1
∂x j

−
∂Ul
∂x j

xl+1− x j
, β

∂Ul
∂x j
−
∂Ul−1
∂x j

xl − xl−1

)
. (38)

The derivatives are estimated from the Legendre polynomials as in 3.4.2, so
the implementation of (38) is

c̃l,2 =minmod
(

cl,2, %ϑ+
ϑ+cl+1,1− cl,1

1+ϑ+
, %ϑ−

cl,1− cl−1,1ϑ−

1+ϑ−

)
(39)

where % = 2
√

3/5. If c̃2,l 6= c2,l the cell is marked for limiting. According to
[42]; β is a parameter between 1 and 2, the higher its value the less dissipative
the scheme will be. We use β = 2 to make it consistent with the ML used
here.

There are two main differences in the current limiter with respect to the AP-TVD
developed earlier [42]. The first one is in step 1 where every node in the element is
tested, while in [42] only the nodes at element boundaries are checked. The second
difference is in the way the derivatives are estimated in step 2, averaged-derivatives
were used in [42], while here we suggest using estimations of the derivatives, as
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done in the ML based on Legendre polynomials to avoid computing the averaged-
derivatives. Thus, we call the current detector the moment-based AP-TVD or MB-
AP-TVD.

Usually, the detection is done based on the conservative variables, instead of
transforming to characteristic or primitive variables, in order to keep this stage as
computationally cheap as possible.

4. Results and discussion

Various test cases used in past studies are used to establish the capability of this new
numerical algorithm. In addition, we use some 2D and 3D cases to demonstrate
the potential of the method for more complex problems. The details of the test
cases and the rationals for them are summarized in Table 2.

Test case Purpose

Order of convergence – Order of accuracy in space with a smooth
linear linear problem.

Order of convergence – Order of accuracy in space with a smooth
nonlinear nonlinear problem.

Accuracy in time Order of accuracy in time with a smooth
solution using RK and SDC.

Advection of mixed pulses Order of accuracy with a nonsmooth solution
with and without detector.

High order for a smooth Order of accuracy with a localized
and nonsmooth solution discontinuity.

Sod’s problem Limiting variables, with and
without detector, and with and without AMR.

Lax’s problem Limiting variables, with and
without detector, and with and without AMR.

Blast waves Limiting variables, with and
without detector, and with and without AMR.

Shock-entropy waves Limiting variables, with and
interaction without detector, and with and without AMR.

2D convection Detector and AMR in 2D.
Double-Mach reflection Example in 2D.
Vortex convection Smooth example in 2D.
Shock-vortex interaction Example in 2D.
Spherical shock test Multidimensional symmetry (3D).

Table 2. Summary of test cases.
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4.1. Order of convergence – linear. The order of convergence is studied with the
one-dimensional convection equation because the exact solution is known:

∂u(x, t)
∂t

+ c
∂u(x, t)
∂x

= 0, (40)

u(x, t = 0)= sin x,

where u is a passive scalar and c is the constant convection velocity equal to 1.
The exact solution is u(x, t) = sin(x − ct). The domain has a length of 2π and
periodic boundary conditions. The number of cells N and the polynomial order p
are varied in this study.

This case is run without detector to show the effect of the limiters on smooth
solutions. Moreover, given that the governing equation is not a system of equations,
no characteristic decomposition is needed.

The time integration schemes used here are the SDC and the TVD-RK of 3rd
order with a time step of 10−5. This gives an error in time of the order of 10−15,
which is negligible with respect to the spatial error and of the order of the round-off
error. The L∞ error, eL∞ , at t = 2 is computed at the centroid of the element and
with respect to the exact solution, i.e.,

eL∞ = max
l=1,...,N

|Ul(x̄l, t)− u(x̄l, t)| (41)

where x̄l is the centroid of element l. The L∞ error in the plots is normalized by
the case with the largest error. As shown in Figure 2, elements of order p lead to an
order of accuracy of p+1, as the literature predicts [7]. Although the solutions with
limiter have the same order of accuracy, they have a greater error. Therefore, the
limiter should not be used unless really needed. The curves in Figure 2 get flattened
out for very low errors (around O(10−11)) due to accumulated round-off error.
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Figure 2. Grid convergence for different orders when a smooth solution is convected, for
the 3rd-order TVD-RK (left) and the 3rd-order SDC (right).
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4.2. Order of convergence – nonlinear. Now the order of convergence in space
is studied with the one-dimensional burger equation as in [7]:

∂u(x, t)
∂t

+
∂(u(x, t)2/2)

∂x
= 0, (42)

u(x, t = 0)= 1
4 +

1
2 sin(π(2x − 1)),

where u is the velocity. The domain has a unit length and periodic boundary con-
ditions. The number of cells N and the polynomial order p are varied in this study.
The exact solution is estimated with N = 2048, p = 2, 3rd-order TVD-RK, and
without limiter. The problem is solved until t = 0.05, when the solution is still
smooth.

This case is run without detector to show the effect of the limiters on smooth
solutions.

The time integration schemes used here are the SDC and the TVD-RK of 3rd
order with a time step of 10−5. This gives an error in time of the order of 10−15,
which is negligible with respect to the spatial error and of the order of the round-
off error. The L∞ error, eL∞ , at t = 0.05 is computed at the centroid of the
element and with respect to the estimated exact solution as in the previous case.
As shown in Figure 3, the order of accuracy in space matches closely with what
the theory predicted even for a nonlinear problem. Even though the solutions with
limiter have the same order of accuracy, they have a greater error. Therefore, the
limiter should not be used if it is not really needed. The curves in Figure 3 get
flattened out for very low errors due to accumulated round-off error. In conclu-
sion, the observations for the nonlinear case are very similar to the linear case
above.
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Figure 3. Grid convergence for different orders with a smooth nonlinear problem, for the
3rd-order TVD-RK (left) and the 3rd-order SDC (right).
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4.3. Accuracy in time. The time integration is studied with the equation

∂u(x, t)
∂t

+ 0
∂u(x, t)
∂x

= u(x, t), (43)

u(x, 0)= 1,

which has the exact solution u(x, t)= et . The convection velocity is 0 so that the
truncation error in space is zero and the truncation error in time can be studied
by itself. A 1D domain of unit length, periodic boundaries and 100 elements is
used. The time integration is performed with the TVD-RK and SDC methods for
different order. The L∞ error is computed at t = 6.28 for different number of time
steps and shown in Table 3 along with the order of accuracy. The results are also
shown in Figure 4 for a more clear appreciation. The order of accuracy for Ni

elements (knowing that Ni = 2Ni−1) is computed as

log(ei/ei−1)

log(0.5)
. (44)

The fact that the computed order approaches the order of the scheme verifies
the proper implementation of the temporal integration. Also, note that at equal
theoretical order, SDC results to be more accurate while they have very similar
order of accuracy.

Number of 2nd order TVD-RK 3rd order TVD-RK 2nd order SDC
time steps eL∞ order eL∞ order eL∞ order

8 1.6537 ·102 — 3.5302 ·101 — 1.6537 ·102 —
16 6.0804 ·101 1.4435 6.1493 ·100 2.5213 6.0804 ·101 1.4435
32 1.8276 ·101 1.7342 9.0205 ·10−1 2.7691 1.8276 ·101 1.7342
64 4.9757 ·100 1.8770 1.2200 ·10−1 2.8863 4.9757 ·100 1.8770

128 1.2948 ·100 1.9422 1.5861 ·10−2 2.9434 1.2948 ·100 1.9422
256 3.2999 ·10−1 1.9722 2.0219 ·10−3 2.9717 3.2999 ·10−1 1.9722

Number of 3rd order SDC 4th order SDC 5th order SDC
time steps eL∞ order eL∞ order eL∞ order

8 1.9510 ·101 — 1.2840 ·100 — 7.2084 ·10−2 —
16 2.8648 ·100 2.7677 9.2132 ·10−2 3.8007 2.4229 ·10−3 4.8949
32 3.7984 ·10−1 2.9150 6.0812 ·10−3 3.9213 7.7303 ·10−5 4.9700
64 4.8588 ·10−2 2.9667 3.8890 ·10−4 3.9669 2.4288 ·10−6 4.9922
128 6.1332 ·10−3 2.9859 2.4556 ·10−5 3.9852 7.5987 ·10−8 4.9984
256 7.7005 ·10−4 2.9936 1.5422 ·10−6 3.9931 2.3588 ·10−9 5.0096

Table 3. Error eL∞ for TVD-RK (2nd and 3rd order) and for SDC (2nd to 5th order).
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Figure 4. Normalized error for TVD-RK and SDC.

Figure 5 shows the CPU time against the eL∞ obtained for different orders and
schemes. The CPU time is normalized by the fastest case. The curves closer to the
bottom left corner represent a more efficient scheme. For the same order, TVD-RK
is more efficient than SDC. At the same time, the efficiency is increased with the
order. For instance for this case 5th order SDC is more efficient than 3rd order
TVD-RK.

In conclusion, the advantage of SDC with respect to RK is that the extension to
higher orders is trivial. One could argue that SDC does not have the TVD property
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Figure 5. CPU time for different time integration schemes and orders.
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of TVD-RK of 2nd and 3rd order, however, RK schemes of 4th order or greater are
not TVD either. For certain problems where the error in time is important higher
orders may be more suitable. Thus, explicit SDC seems to be a possible approach
for high-order time integration of DG schemes.

The test cases below tend to have a dominant spatial error, thus very high orders
in time are not required.

4.4. Advection of mixed pulses. The convection equation (40) is used with the
initial value given by

u(x,0)=



1
6 (G(x, β, z−δ)+G(x, β, z+δ)+4G(x, β, z)) if −0.8≤ x ≤−0.6,

1 if −0.4≤ x ≤−0.2,

1−|10(x−0.1)| if 0 ≤ x ≤ 0.2,
1
6 (F(x, α,a−δ)+F(x, α,a+δ)+4F(x, α, z)) if 0.4≤ x ≤ 0.6,

0 otherwise,

for

G(x, β, z)= e−β(x−z)2 and F(x, α, a)=
√

max(1−α2(x − a)2, 0),

with a = 0.5, z =−0.7, δ = 0.005, α = 10, and β = log 2/(36δ2). The domain is
a uniform grid from x =−1 to x = 1 with periodic boundary conditions.

The SDC method of 3rd order is used. The ML is applied on every element or
on the ones flagged by the MB-AP-TVD detector. The result at t = 8.0 is shown
in Figure 6 for p = 2, 4 and for 200 cells.

Figure 7 shows the L1 error computed at the center of the elements for different
number of cells and polynomial orders:

eL1 =

N∑
l=1

∫
�l

|Ul(x, t)− u(x, t)|dx (45)

where U is the numerical result and u is the exact solution (or its estimation). In
the previous test case L∞ was used, which is an adequate parameter to analyze
smooth solution, however, for discontinuous solutions L1 is more appropriate.

A few observations can be made from this figure. The error is reduced as the
number of elements n or the polynomial order p increases. Also, using the detector
improves the accuracy. Note that the order of accuracy is approximately 1 because
of the presence of discontinuities in the solution. Therefore, increasing the order
p when discontinuities are present reduces the error, but not the order of accuracy.

The same case is run using the original AP-TVD detector, and the efficiency of
the AP-TVD and MB-AP-TVD detectors are compared in Figure 8. Curves closer
to the bottom left corner represent more accurate schemes.
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Figure 6. Convection of mixed pulses at t = 8, with 200 cells and p = 2, 4. Top: ML
applied to all cells. Bottom: ML applied only to troubled cells flagged by the detector.
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Figure 7. L1 error for different orders and number of elements for the convection of
mixed pulses.

Note that for the same number of elements AP-TVD tends to be slower, while the
error is similar. Thus, MB-AP-TVD ends up being a better choice than AP-TVD
when the default basis of the element is formed by Legendre polynomials. Given
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Figure 8. CPU time versus L1 error for different orders for the convection of mixed pulses.

this, we only use the MB-AP-TVD for the cases below. In addition, Figure 8 shows
that for this case, which contains discontinuities, increasing the order of the scheme
does not improve its efficiency.

4.5. High order for a smooth and nonsmooth solution. The same case as in
Section 4.2 is observed here for a longer period of time. At t = 0.4 a discontinuity
is found at approximately x = 0.1, while the rest of the solution is smooth. The
error is usually computed taking into account the whole domain. However, in order
to analyze only the region with a smooth solution, it can be computed for part of
the domain. For this purpose we define ẽL1 :

ẽL1 =

N∑
l=1

0.3≤x≤0.9

∫
�l

|Ul(x, t)− u(x, t)|dx (46)

This is similar to (45), but the integration is done away from the discontinuity,
i.e., for 0.3 ≤ x ≤ 0.9. We estimate the exact solution with 512 elements with
p = 6, and using the SDC of 7th order. The problem is studied using p = 2, 4, 6,
N = 10, 20, 30, 40, 80, 160, SDC of order p+ 1, and limiting on all the elements
or as flagged by the MB-AP-TVD detector. The errors eL1 and ẽL1 are shown in
Tables 4 and 5. Note that the order of accuracy based on ẽL1 is close to p+1, while
for eL1 it is close 1. At very low errors the order drops due to accumulated round-
off error. For p = 4 and p = 6 using 20 elements the order is much greater then
p+ 1 since the error for N = 10 is relatively large. This is due to the propagation
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Number of Whole domain (p=2) Whole domain (p=4) Whole domain (p=6)
time steps eL1 order eL1 order eL1 order

10 3.0333 ·10−2 — 2.6758 ·10−2 — 2.5755 ·10−2 —
20 1.2243 ·10−2 1.3089 1.1347 ·10−2 1.2376 1.1102 ·10−2 1.2140
30 7.6765 ·10−3 1.1513 7.2367 ·10−3 1.1093 7.1097 ·10−3 1.0991
40 5.6299 ·10−3 1.0778 5.3411 ·10−3 1.0558 5.2764 ·10−3 1.0366
80 2.7534 ·10−3 1.0319 2.6630 ·10−3 1.0041 2.0933 ·10−3 1.3338

160 1.3740 ·10−3 1.0029 9.1757 ·10−4 1.5372 1.1018 ·10−3 0.9260

Number of Smooth region (p=2) Smooth region (p=4) Smooth region (p=6)
time steps ẽL1 order ẽL1 order ẽL1 order

10 4.4679 ·10−4 — 5.0581 ·10−5 — 3.8820 ·10−5 —
20 2.8444 ·10−5 3.9734 1.3111 ·10−8 11.914 2.1739 ·10−9 14.1242
30 6.2605 ·10−6 3.7332 1.2282 ·10−9 5.8399 2.3454 ·10−12 16.8493
40 2.2165 ·10−6 3.6093 2.3009 ·10−10 5.8220 1.8132 ·10−13 8.8985
80 1.9190 ·10−7 3.5298 5.1326 ·10−12 5.4864 9.6648 ·10−14 0.9077

160 1.7365 ·10−8 3.4661 1.7473 ·10−13 4.8765 1.0902 ·10−13
−0.1738

Table 4. The error eL1 (top half) and ẽL1 (bottom half) with limiting on all the elements.

Number of Whole domain (p=2) Whole domain (p=4) Whole domain (p=6)
time steps eL1 order eL1 order eL1 order

10 2.7784 ·10−2 — 2.4803 ·10−2 — 2.3243 ·10−2 —
20 9.7931 ·10−3 1.5044 7.6011 ·10−3 1.7063 8.0117 ·10−3 1.5366
30 4.4951 ·10−3 1.9205 4.7370 ·10−3 1.1663 4.6348 ·10−3 1.3498
40 4.5546 ·10−3 0.0457 3.2698 ·10−3 1.2885 3.3924 ·10−3 1.0848
80 1.5292 ·10−3 1.5745 1.6939 ·10−3 0.9489 1.7780 ·10−3 0.9321

160 6.5156 ·10−4 1.2308 9.6828 ·10−4 0.8068 9.5344 ·10−4 0.8990

Number of Smooth region (p=2) Smooth region (p=4) Smooth region (p=6)
time steps ẽL1 order ẽL1 order ẽL1 order

10 1.5107 ·10−4 — 4.2981 ·10−5 — 1.5876 ·10−5 —
20 9.2714 ·10−6 4.0263 6.3106 ·10−9 12.7336 9.5822 ·10−12 20.6600
30 2.2911 ·10−6 3.4477 6.1355 ·10−10 5.7483 4.4873 ·10−13 7.5500
40 8.4867 ·10−7 3.4521 1.2682 ·10−10 5.4799 1.2121 ·10−13 4.5497
80 8.4769 ·10−8 3.3236 3.3972 ·10−12 5.2223 9.6667 ·10−14 0.3265

160 9.0416 ·10−9 3.2289 1.4398 ·10−13 4.5604 1.0951 ·10−13
−0.1799

Table 5. The error eL1 (top half) and ẽL1 (bottom half) with limiting based on the MB-
AP-TVD detector.
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to smooth regions of instabilities generated at the discontinuity. For a large enough
number of elements, N ≥ 20, the instabilities do not affect the smooth area being
considered in (46) for ẽL1 .

Figure 9 shows the efficiency of the scheme for different orders, with and without
the MB-AP-TVD detector. The error and CPU time are normalized based on the
case with the largest error.

As observed for previous cases, the troubled-cell detector helps improve the
accuracy and efficiency of the solver. For lower L1 error high-order schemes be-
come more efficient. The limiter reduces numerical oscillations at discontinuities,
but with a minimal numerical diffusion, so small instabilities still exist. As the
number of elements is increased the numerical error originated at the discontinuity
is localized in a smaller region. Thus, probably, p-adaptivity could improve the
efficiency by dropping the order at the discontinuity and keeping high order in the
smooth region.

10-1 100

Normalized L1  error

100

101

102

103

104

N
o
rm

al
iz

ed
 C

P
U

 t
im

e

All, p=2

All, p=4

All, p=6

MB-AP-TVD, p=2

MB-AP-TVD, p=4

MB-AP-TVD, p=6

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Normalized L1  error

100

101

102

103

104

N
o
rm

al
iz

ed
 C

P
U

 t
im

e

All, p=2

All, p=4

All, p=6

MB-AP-TVD, p=2

MB-AP-TVD, p=4

MB-AP-TVD, p=6

Figure 9. Efficiency of the scheme for different orders for a solution with one discontinu-
ity. The limiter is applied to all the elements or based on the MB-AP-TVD detector. Top:
eL1 for the whole domain. Bottom: ẽL1 for the smooth region.
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4.6. Sod’s problem. The initial conditions are

(ρ, v, p)=
{
(1.0, 0.0, 1.0) if x ≤ 0.5,
(0.125, 0.0, 0.1) if x > 0.5.

(47)

A 1D domain is used and it extends from x = 0 to x = 1. The case is run with
different number of elements and the limiting is based on conservative, primitive,
or characteristic variables. In addition, two options are tested, one applies the ML
with the MB-AP-TVD detector, and the second option applies the ML to all cells.
The grid is uniform with p = 2, and the time integration is performed using the
3rd-order SDC. The simulation is run until t = 0.2. The normalized CPU time
versus the L1 error of the final density is shown for the three cases in Figure 10(a).

Limiting with primitive or characteristic variables requires computing the respec-
tive Jacobians for each element, so it is computationally slightly more expensive
than using conservative variables, but the error is lower. For primitive and charac-
teristic variables, using the MB-AP-TVD detector to apply the ML to only troubled
cells increases the efficiency and lowers the error since the solution is smooth in a
large portion of the domain.

The same case is run enabling the adaptive mesh refinement for `max = 1, 2, 3.
The CPU time versus the L1 error of the density is shown in Figure 10(b) for
limiting with primitive variables. Note that both variables are normalized by the
fastest simulation. As `max is increased the curves get slightly closer to the origin.
This means that for this test case enabling the adaptivity produces some increase
in the efficiency of the solver. Here, the MB-AP-TVD also shows to improve the
efficiency.

The estimators are compared using `max = 3, the MB-AP-TVD detector, and
limiting with primitive variables. The efficiency is represented in Figure 10(c).
Clearly, JUMP2 is more efficient than KXRCF for this case.

4.7. Lax’s problem. The initial solution is:

(ρ, v, p)=
{
(0.445, 0.698, 3.528) if x ≤ 0,
(0.5, 0, 0.571) if x > 0.

(48)

The problem is solved in the 1D domain [−0.5, 0.5] until t = 0.13.
Initially, the effect of the variables used for limiting is studied. A uniform grid

is used with N = 64, 128, 256, 512 and p = 2 with the limiter applied to either
all cells or those flagged by the MB-AP-TVD detector. The integration in time is
done with the 3rd-order SDC method. The CPU time versus the L1 error of the
density is shown in Figure 11(a). These results show that for this particular test
problem the MB-AP-TVD detector increases the efficiency for conservative and
characteristic variables, while for primitive variables it did not affect significantly.
The CPU time is very similar independent of the set of variables used. Even though
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(a) Comparison for different limiting variables with and without detector.
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(c) Estimator comparison, limiting using primitive variables; the MB-AP-TVD detector and `max=3.

Figure 10. Sod’s problem for different solver options. The curves closer to the bottom
left corner represent a more efficient set of options.
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(a) Limiting comparison.
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(b) AMR comparison; limiting using primitive variables.
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(c) Estimator comparison; limiting using primitive variables, the MB-AP-TVD detector and `max = 3.

Figure 11. Lax problem for different solver options.
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conservative variables do not require to compute the Jacobian to transform between
the variables, they may require more steps of the limiter.

Now the effect of the adaptation is studied, limiting with primitive variables.
The same grid is used, but the adaptation is enable with `max = 1, 2, 3. The result
is shown in Figure 11(b). When `max is raised, the efficiency of the solver in-
creases and it improves more using the MB-AP-TVD detector. The estimators are
compared using `max = 3, the MB-AP-TVD detector, and limiting with primitive
variables. The efficiency is represented in Figure 11(c). Clearly, JUMP2 is more
efficient than KXRCF for this case.

4.8. Blast waves. Consider the initial data ρ = 1.0, v = 0.0, and

P =


1000 if 0≤ x < 0.1,
0.01 if 0.1≤ x < 0.9,
100 if 0.9≤ x ≤ 1.0.

(49)

This problem is a common test case first presented in [37]. Walls are located at
x = 0 and x = 1.

The problem is run until t = 0.038 s for p = 2, `max = 1, 2, 3, different number
of root cells and the 3rd-order SDC. This test case does not have an exact solution,
so it is approximated using a uniform mesh with N = 4096, p = 2, `max = 1, the
ML without detector and with characteristic decomposition, similar to [21].

Figure 12 shows the CPU time versus the L1 error in density, both variables
are normalized by the fastest run. Part (a) shows the effect of the detector and the
limiting variables. Part (b) represents the efficiency of the AMR approach using
primitive variables. The efficiency of the solver clearly improves increasing `max.
In this case the MB-AP-TVD detector does not produce any significant difference
when studying the refinement aspects. The estimators are compared using `max = 3,
the MB-AP-TVD detector, and limiting with primitive variables and the results are
in Figure 12(c). JUMP2 tends to be more efficient than KXRCF for this case.

4.9. Shock-entropy wave interaction. Consider the Euler equation with the fol-
lowing initial values:

(ρ, v, p)=
{
(3.857143, 2.629369, 10.333333) if x <−4,
(1.0+ 0.2 sin(5x), 0.0, 1.0) if x ≥−4.

(50)

The problem is solved in the 1D domain [−5, 5] until t = 1.8.
As before, the effect of the variables used for limiting are studied on a uniform

grid with N = 64, 128, 256, 512 and p= 2. The integration in time is done with the
3rd-order SDC method. The CPU time versus the L1 error of the density is shown
in Figure 13. For this problem limiting using primitive variable is advantageous
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(a) Limiting comparison.
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(c) Estimator comparison; limiting using primitive variables, the MB-AP-TVD detector and `max = 3.

Figure 12. Interacting blast waves for different solver options.
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(b) AMR comparison; limiting using the primitive variables.
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(c) Estimator comparison; limiting using primitive variables, the MB-AP-TVD detector and `max = 3.

Figure 13. Shock-entropy wave interaction problem for different solver options.
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Figure 14. Shock-entropy wave interaction at t = 1.8 for N = 256, p = 2: density ρ as
a function of location. The bottom pane shows a detail, to the left of the drop.

compared with conservative variables. Figure 14 shows the solution at t = 1.8;
it clearly presents that limiting using primitive variables captures the smooth os-
cillations much more accurately than with conservative variables. Characteristic
limiting provides a even more efficient solution than with primitive variables. Also,
the MB-AP-TVD detector improves the efficiency. Using AMR for this test case
gives no efficiency gains in the low element count (larger normalized error) regime,
but AMR is more justified at lower errors where the number of elements increases.

The estimators are compared in Figure 13 using `max = 3, the MB-AP-TVD
detector, and limiting with primitive variables. JUMP2 tends to be more efficient
than KXRCF for this case.

4.10. Convection in 2D. The limiter and adaptivity approach is studied in 2D us-
ing the two-dimensional convection equation

∂u(x, t)
∂t

+ c1
∂u(x, t)
∂x

+ c2
∂u(x, t)
∂y

= 0 (51)

with initial condition

u(x, t = 0)=
{

1 for (x1− 0.5)2+ (x2− 0.5)2 ≤ 0.252,

0 otherwise,
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where u is a passive scalar, and c1 and c2 are the constant convection velocities
equal to 1. The domain is the unit square [0, 1] × [0, 1] with periodic boundary
conditions. The time integration used is the 3rd-order SDC. Figure 15 shows the
CPU time versus the L1 error at t = 1 for different solver options varying the
number of element. In part (a), `max is varied together with the detector. Increasing
the `max improves the efficiency, and using the MB-AP-TVD helps too. In part
(b), the error estimator for AMR is varied. For this 2D case JUMP1 and JUMP2
produce slightly different results, and JUMP2 is the most efficient of the three
estimators.
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(a) AMR comparison, with and without detector.
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(b) Estimator comparison, using the MB-AP-TVD detector and `max = 3.

Figure 15. Two-dimensional convection for different solver options.



164 LEANDRO D. GRYNGARTEN, ANDREW SMITH AND SURESH MENON

4.11. Double Mach reflection. This is a very common test case for the Euler equa-
tion first used by Woodward and Colella [37]. It was also solved by Krivodonova
[22] using the ML with a uniform grid and without trouble-cell detector. This
case consists of a strong shock impacting a wedge with a half-angle of 30◦, thus
it is usually simulated by a rectangular domain with a frame rotated 30◦ over the
original horizontal axis.

The rectangular domain has a size of [0, 4] × [0, 1]. A right-moving Mach 10
shock is initially located forming an angle of 60◦ with the x-axis passing by the
coordinate x = 1

6 , y = 0. The undisturbed air on the right of the shock has a
density of 1.4 and a pressure of 1. The specific heat ratio is γ = 1.4. A slip-
wall boundary is located at the lower boundary from x = 1

6 to x = 4. The right
boundary is a supersonic outflow. The left boundary and bottom boundary for
x < 1

6 are supersonic inflow. The reason for applying supersonic inflow at the
bottom boundary is to mimic the effect of the wedge. The top boundary mimics
the exact motion of the moving shock.

The grid has 48× 12 cells with `max = 5. The ML is used with the MB-AP-
TVD detector. Second-order polynomial elements are used with the 3rd-order SDC
method.

The results are shown for t = 0.2. Figure 16 shows 60 equally spaced density
contours; the inset shows in black the cells flagged by the MB-AP-TVD detector
as troubled cells. Note that the ML is not applied here where the flow is uniform,
as intended. Figure 17 shows the level of refinement l. It can be noted that the

Figure 16. Double Mach reflection: density map at t = 0.2 and (inset) troubled cells.

Figure 17. Double Mach reflection: refinement level.
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level is increased where the features of the flow are smaller, as can be expected
from Figure 16.

4.12. Vortex convection. As we have seen with previous tests, the global effi-
ciency does not improve significantly for problems dominated by discontinuities
when the order is increased. We studied simple smooth cases in 1D, but here we
extend the study to a slightly more applicable case in 2D. An isentropic vortex is
centered at the center of the domain (xc, yc)= (0.5, 0.5). The flow is described by

v1 = M
√
γ + ε τ eα(1−τ

2) sin θ, v2 =−ε τ eα(1−τ
2) cos θ,

ρ =
(

1− γ−1
4αγ

ε2 e2α(1−τ 2)
) 1
γ−1

, p = ργ ,

where M = 0.3 and

τ =
r
rc
, r =

√
(x − xc)

2
+ (y− yc)

2, θ = arctan y−yc
x−xc

.

Three parameters describe the vortex: its the strength ε, its the decay rate α, and the
critical radius rc. For this test the following values are used: ε= 0.3, α= 0.204, and
rc = 0.05. The domain is a unit square with periodic boundaries in every direction.
Different number of elements and spatial orders, p, are used. Even though this is
a smooth problem, the ML limiter with the MB-AP-TVD detector are used. The
range of length scales is very narrow, so AMR is not needed.

Figure 18(a) presents the CPU time versus the L1 error after one period using
the SDC of order p+ 1. The same pattern as for previous 1D cases is observed
here. The efficiency increases with the order at in the high accuracy range since
at equal CPU time the numerical error is smaller. However, in the low accuracy
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Figure 18. Efficiency for the convection of an isentropic vortex: SDC of order p+1 (left)
and of order 3 (right).
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range low order schemes perform more efficiently. Even though this problem is
dominated by convection, the time-step size is limited by the acoustic time, so one
could assume that we are over-resolving in time. Thus, we rerun the same cases
with the 3rd-order SDC for every p. Note that in this case the CFL has to be
adjusted for p > 2. We use C = 0.5, C = 0.45, and C = 0.4 for p = 2, p = 4, and
p = 6, respectively. Now higher orders in space have a greater advantage. In cases
where the error in time is more significant, increasing the order of the scheme in
time would make improvements. In this case, however, higher orders in time only
add more computational cost.

It can be concluded that the limiting procedure can be freely applied in the whole
domain even where smooth features are present. This aspect is important for large-
scale applied problems where several types of features can be present at the same
time, so a generic and robust scheme is wanted. The shock-vortex interaction case
shown below elaborates more on this.

4.13. Shock-vortex interaction. This problem consists of a vortex going through
a shock and helps to test how the solver behaves when smooth features interact with
discontinuities. For more information on this kind of problems see [32]. The initial
conditions are the same as in [42; 18]. The size of the domain is [0, 2] × [0, 1].
Reflective boundary conditions are used on top and bottom. The left boundary is
a supersonic inflow, while the right boundary is an outflow. A stationary shock is
located at x = 0.5, its preshock Mach number is Ms = 1.1, and the left side state is
defined by ρ = 1, u = Ms

√
γ , v = 0 and p = 1. The right state can be determined

from the left state by using the stationary shock relations. An isentropic vortex is
centered at (xc, yc)= (0.25, 0.5). Therefore, on the left-hand side of the shock the
flow is described by

v1 = Ms
√
γ + ε τ eα(1−τ

2) sin θ, v2 =−ε τ eα(1−τ
2) cos θ,

ρ =

(
1−

(γ − 1) ε2 e2α(1−τ 2)

4αγ

) 1
γ−1
, p = ργ

where
τ =

r
rc

, r =
√
(x − xc)

2
+ (y− yc)

2, θ = arctan y−yc
x−xc

.

For this test the values used are ε = 0.3, α = 0.204, and rc = 0.05.
A uniform grid with 32 × 16 cells and `max = 4 is used with p = 2. The

time integration is done with the 3rd-order SDC method. The ML is used with
the MB-AP-TVD detector. The pressure at t = 0.8 are shown in Figure 19 with
60 equally spaced contours. The two parts of Figure 20 indicate how the solver
adapt to the solution to avoid instabilities and waste computational resources. The
vortex successfully goes through the shock and features with different length scales
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are properly be resolved. Similar results were observed in [42; 18] using other
numerical schemes.

Figure 19. Pressure isocontours for a shock-vortex interaction.

Figure 20. Shock-vortex interaction: troubled cells (left) and refinement level (right)

4.14. Spherical shock test. The final test is a spherical shock case in a cube de-
fined in [0, 1]×[0, 1]×[0, 1]. The initial conditions are similar to the typical Sod’s
problem, but in this case spherical symmetry is used:

(ρ, v1, v2, v3, p)=
{
(1.0, 0.0, 0.0, 0.0, 1.0) if r ≤ 0.5,
(0.125, 0.0, 0.0, 0.0, 0.1) if r > 0.5,

(52)

where r is the distance from (0, 0, 0). The initial grid has 323 p = 2 elements,
each allowed to refine to a level `max = 3. The integration in time is done with the
3rd-order SDC method.

An “exact” solution is estimated solving the Euler equation in spherical coordi-
nates assuming spherical symmetry. Thus, the equation being solved in the domain
[0, 1] is

∂u
∂t
+
∂F(u)
∂x

= S, (53)
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Figure 21. Spherical shock test at t = 0.15 over four different vectors.

where S=−2/x
(
ρv1, ρv

2
1, (ρET + p)v1

)T . This 1D problem is solved on a grid
with 1024 cells with p = 2 and integrated in time with the 3rd-order SDC method.

A very similar test case to this one was studied in 2D in [39; 36].
The density and pressure at t = 0.2 over four different vectors are shown in

Figure 21. Each of these four vectors are: (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1).
Given that the density on the different trajectories match, the scheme successfully
respects the spherical symmetry of the problem. Note that the results shown do
not match exactly the classical one-dimensional Sod shock-tube problem due to
3D effects. Figure 22 on the next page demonstrates the ability of AMR to track
the shock and rarefaction waves as required.

5. Conclusions

The Euler equations are solved using the discontinuous Galerkin method with adap-
tive mesh refinement and high-order of accuracy in space and time.

It was shown using high-order schemes that problems with discontinuities can
present high order of convergence in the smooth regions, while the global order
of accuracy is close to 1 in the L1 and L∞ norm. Most of the cases studied in-
clude discontinuities. Therefore, in such cases the order in space and time of the
scheme used is 3, since, as it was shown, increasing the order of the solver does not
improve its efficiency significantly when discontinuities dominate. Given that the
time step is limited by the acoustic time, convection-dominated problems end up
being over-resolved in time, so in such cases increasing the order in time produces
an unnecessary computational cost.

A simple and effective error estimator for adaptivity based on the interelement
jump is suggested and it was shown to be more efficient than other estimator
found in the literature. From a computational-resources point of view, the most
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Figure 22. Spherical shock test: density contours and grid refinement.

efficient combination of maximum levels of refinement and initial number of cells
is problem-dependent. In a few of the tested problems the overhead caused by the
adaptation made it unnecessary. However, in no case with a wide range of scales
AMR caused a significant loss of efficiency.

The AP-TVD detector in [42] was modified replacing the averaged-derivative
basis that it originally required by the Legendre polynomial basis, which is com-
monly used in DG. Therefore, the current approach avoids the transformation and
a better efficiency of the scheme is observed. We named it the moment-based
AP-TVD (MB-AP-TVD) since it uses the default moments of the solution — like
the moment limiter (ML) does. Yang and Wang [42] showed that the AP-TVD
detector gives better results than the more common detectors used in [29], so the
MB-AP-TVD should be even more efficient than those.
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The troubled cells were treated with a ML modified for nonuniform meshes
with hanging nodes. The limiting stage is done using primitive, characteristic, and
conservative variables and then appropriately evaluated. The optimal choice of
limiting variables and where to apply the limiter is case-specific, but based on the
results of the one-dimensional tests limiting using primitive variables and the MB-
AP-TVD detector is the recommended starting point, especially for multidimen-
sional problems since the ML is inherently multidimensional and the characteristic
decomposition, slightly better than primitive variables in 1D, cannot be applied in 2
or 3 dimensions. The computational cost due to the conversion from conservative
to the other variables seems to be negligible. This Jacobian (and its inverse) is
computed each time an element is being limited, but the CPU advantage of con-
servative variables seems to be lost since worse limiting requires more correction
steps of the limiter.

In addition, most test cases were studied with SDC method, what shows that it is
an adequate time-integration scheme that could be considered as an alternative to
the Runge–Kutta methods for certain applications, especially as the order increases
since it is easier to derive and implement. More research is still necessary to deter-
mine the numerical properties of SDC-DG, such as its maximum CFL number and
its numerical dissipation at different frequencies. For cartesian, low-order cases
DG may perform similarly to FD or FV [44]. However, it is important to note
that when the conditions are more sophisticated (e.g., unstructured, noncartesian,
high-order), where other schemes cannot even be applied, DG still performs well.

The scheme, including our new developments, are relatively simple to imple-
ment, robust, with great numerical properties. Thus, it presents a technique that
should be exploited for more generic applications.

For steady-state problems the proposed approach may not be highly efficient.
Common modifications to improve the convergence to a steady state include some
type of filter in time for the limiter and other discrete operations, since they create
oscillations that do not let the residual decrease enough. However, the goal of this
study is to investigate methods needed for time dependent problems.

p-adaptivity could be useful especially for problems with discontinuities, which
are better treated with low-order schemes. Application to the full Navier–Stokes
equation will be reported in the near future.
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Appendix: Moment limiter in two and three dimensions

The 1D momentum limiter presented in Section 3.4 is discussed here in two and
three dimensions for completeness.

A.1. Two-dimensional moment limiter. In this case cross derivatives should be
taken into account. Hence, for element l,m,

∂ i+ jŨl,m

∂x i
1∂x j

2

=minmod
(
∂ i+ jUl,m

∂x i
1∂x j

2

, βi j Dx1+
i j , βi j Dx1−

i j , βi j Dx2+
i j , βi j Dx2−

i j

)
(54)

where the frame (x1, x2) is a rotation of (x, y) aligned to the computational coor-
dinates (ξ, η) of the current element.

In this case, the limiting starts from orders (p, p), and continuous with the pair
(p, p−1) and (p−1, p), then with the pair (p, p−2) and (p−2, p), and so on until
(p, 0) and (0, p). Then the loop starts again from (p−1, p−1), and continuous
with (p−1, p−2) and (p−2, p−1), and so on. Whenever a pair is not changed
the limiting procedure is stopped.

If a neighboring cell is split because of refinement, the average between the
two neighboring children is used. If a neighboring cell is coarser because the
current cell is more refined, the modes of the neighbor have to be computed as
it were refined too. Note that the characteristic decomposition is only consistent
in a 1D sense. Given that the ML can be multidimensional, the characteristic
decomposition would have to be done in an arbitrary direction. Therefore, for mul-
tidimensional cases a primitive-variable decomposition may be more appropriate.

A.2. Three-dimensional moment limiter. In this case, for element l,m, n,

∂ i+ j+kŨl,m,n

∂x i
1∂x j

2∂xk
3

=minmod
(
∂ i+ j+kUl,m,n

∂x i
1∂x j

2∂x j
3

, βi jk Dx1+
i jk , βi jk Dx1−

i jk ,

βi jk Dx2+
i jk , βi jk Dx2−

i jk , βi jk Dx3+
i jk , βi jk Dx3−

i jk

)
, (55)

where the frame (x1, x2, x3) is a rotation of (x, y, z) aligned to the computational
coordinates (ξ, η, ζ ) of the current element.

In this case, the limiting starts from orders (p, p, p), and continuous for the
triad (p, p, p−1), (p, p−1, p) and (p−1, p, p), then for the triad (p, p, p−2),
(p, p−2, p) and (p−2, p, p), and so on until (p, p, 0), (p, 0, p) and (0, p, p).
Then the loop starts again from (p−1, p−1, p−1), and continues for (p−1, p−1,
p−2), (p−1, p−2, p−1) and (p−2, p−1, p−1), and so on. Whenever a triad
is not changed the limiting procedure is stopped.



172 LEANDRO D. GRYNGARTEN, ANDREW SMITH AND SURESH MENON

If a neighboring cell is split because of refinement, the average between the four
neighboring children is used. Like in the 2D case, a primitive-variable decomposi-
tion may be the optimal approach.
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AND APPLICATIONS
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We give an alternative and unified derivation of the general framework developed
in the last few years for analyzing nonstationary time series. A different ap-
proach for handling the resulting variational problem numerically is introduced.
We further expand the framework by employing adaptive finite element algo-
rithms and ideas from information theory to solve the problem of finding the
most adequate model based on a maximum-entropy ansatz, thereby reducing
the number of underlying probabilistic assumptions. In addition, we formulate
and prove the result establishing the link between the optimal parametrizations
of the direct and the inverse problems and compare the introduced algorithm
to standard approaches like Gaussian mixture models, hidden Markov models,
artificial neural networks and local kernel methods. Furthermore, based on the in-
troduced general framework, we show how to create new data analysis methods
for specific practical applications. We demonstrate the application of the frame-
work to data samples from toy models as well as to real-world problems such as
biomolecular dynamics, DNA sequence analysis and financial applications.

1. Introduction

In the field of time series analysis, a common problem is the analysis of high-
dimensional time series containing possibly hidden information at different time
scales. Here we consider the analysis of persistent processes, those where the
temporal change of the underlying model parameters takes place at a much slower
pace than the change of the system variables themselves. Such systems could be
financial markets (where the underlying dynamics might drastically change due to
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market breakdowns, new laws, etc.) [27; 48; 63]; climate systems (depending on
the external factors like insolation, human activity, etc.) [54; 18; 39; 38; 32; 30];
ocean circulation models [22; 23] or biophysical systems [67; 37; 36; 41; 62; 68].

In the literature, the problem of data-based phase identification is addressed
by a huge number of approaches which can be roughly classified as either non-
dynamical or dynamical methods. The class on nondynamical methods exploits
solely geometrical properties of the data for clustering regardless of their temporal
occurrence. The most prominent approach is the k-means method [53], which
clusters data points according to their minimal distance to geometrical centroids of
point clouds.

Dynamical methods additionally take into account the temporal dynamics of
data. This class of methods can further be divided into Bayesian approaches, such
as the hidden Markov model (HMM) [4; 3; 56; 37; 36] or the Gaussian mixture
model (GMM) (see, e.g., [21]) and the so-called local kernel methods (moving
window methods) [20; 52]. Although the Bayesian methods have proven to be very
successful in applications ranging from speech recognition [64] over atmospheric
flows identification [54; 18] to conformation dynamics of biomolecules [17], they
are based on the restrictive assumption that the underlying dynamics are governed
by a stationary probabilistic model. Particularly, the assumption of stationarity
implies, e.g., a locally constant mean value and a locally constant variance. In
many real world applications, however, these implications are not valid due to
theoretical reasons or simply due to the lack of sufficiently long time series of
observations.

In local kernel methods the assumption of stationarity is relaxed by applying
nonparametric regression methods to estimate time-dependent statistical properties
of the underlying data. The key idea is the following: instead of considering every
element of the time series to be equally statistically important, for a fixed time t the
data is weighted with a suitable so-called kernel function, e.g., a Gaussian proba-
bility density function. The modified time series then is considered to be stationary
and, consequently, statistical objects can be computed by standard procedures.

The nonstationary time series analysis methods that have been developed in the
group of I. Horenko and that will be considered in the current manuscript can
be seen as a generalization of the idea described above. Therefore we explain
the procedure in more detail. Suppose we observed a time series of real-valued
observations discretely in time, denoted by X = (xt0, . . . , xtT ) with 0≤ t0 < . . . <
tT ≤ 1. Further suppose that the time series is appropriately described by the model

xti = µ(ti )+ εti , i = 0, . . . , T, (1)

where {εti } is a family of independent and identically distributed (i.i.d.) random
variables with E [ε(ti )]= 0. An estimator for µ(t), t ∈ [0, 1] is given by [19; 20]



ANALYSIS OF PERSISTENT NONSTATIONARY TIME SERIES AND APPLICATIONS 177

µ̂(t)=
1
b

T∑
j=0

xt j

∫ s j+1

s j

W
(

t − s
b

)
ds, (2)

where W ( · ) is a nonnegative kernel function satisfying the conditions∫
∞

−∞

W (s) ds = 1,
∫
∞

−∞

(W (s))2 ds <∞ (3)

and 0 = s0 ≤ t0 ≤ s1 ≤ t1 ≤ . . . ≤ tT ≤ sT+1 = 1. The parameter b ∈ R is
referred to as the window size associated with the kernel function and determines
the statistical importance of the data in the temporal vicinity of a time t . For
instance, if the kernel function is chosen to be the probability density function
(PDF) of the standard normal distribution,

W (s)=
1

√
(2π)

exp
(
−

s2

2

)
, (4)

then b is the standard deviation of the normal PDF W
( t−s

b

)
. Hence, only data

points within the window [t − b, t + b] significantly contribute to the estimator
in (2).

The effect of the Gaussian kernel on the estimation of µ(t) is exemplified on
a time series generated via a persistent switching process between two processes,
each wiggling around a constant mean value. The estimators µ̂(t) for different
choices of the window size b are depicted in Figure 1. As expected, although
the estimators for the smallest window size give good local estimations of the
respective constant mean, they are noisy and not constant. Moreover, the estimator
becomes poor for time points close to the beginning or the end of the time series

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2
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µ̂(t), b = 0.01
µ̂(t), b = 0.03
µ̂(t), b = 0.05

Figure 1. Illustration of the local kernel method on a time series generated via a persistent
switching process between two processes each wiggling around a constant mean value
(µ1 = 0.7, µ2 = 1.4). The estimator µ̂(t) strongly depends on the specific choice of the
window size. Results for a Gaussian kernel and b = 0.01, 0.03 and 0.05.
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which is due to an insufficient statistics. In contrast, the graph of the estimators for
the biggest window size is smooth but gives poorly local estimations and, hence,
does not capture the intrinsic dynamics of the time series. Consequently, choosing
the “right” window size b is an ill-posed optimization problem which is basically
due to the local ansatz of the approach and the danger of overfitting.

The approach presented herein can be understood as a method to adaptively
identify nonlocal kernel-functions which enforces optimal regularization of the esti-
mators. The basic underlying idea is to simultaneously detect the hidden switching
process between persistent regimes (clusters) and their respective optimal parame-
ters characterizing local substitute models [39; 38; 31; 32; 30; 33]. Mathematically,
the hidden (affiliation) process defines a curve in parameter space. The optimal
paths and the associated optimal parameters of the local models are characterized
via the minimization of an appropriate clustering functional measuring the quality
of data approximation in terms of a fixed number of local error measures. In order
to avoid overfitting, or more generally spoken, to ensure well-posedness of the
clustering problem as an inverse problem, the smoothness of paths as a function of
time is limited in some appropriate function space, e.g., the Sobolev H 1 space [31;
33] or the larger class BV, consisting of functions with bounded variations [33].

The cluster algorithms arising from the H 1 approach and the BV-approach par-
tially result from finite element (FE) discretization of the 1-dimensional cluster
functional. This allows us to apply methods from the broad repository of existing
FE methods from the numerics of partial differential equations (PDEs). The H 1-
smoothness of the paths in parameter space is indirectly enforced by a Tikhonov reg-
ularization leading to numerically expensive constrained quadratic minimization
problems during the course of minimization of the cluster functional. In contrast,
the variational formulation in the BV-space amounts to solving linear programming
problems with linear constraints and, most importantly, allows the direct control of
the regularization of the paths in parameter space. The entire FEM-BV approach
will be explained in detail in Section 2.

The FEM-BV approach has two advantages; We neither have to make any as-
sumptions a priori on the probabilistic nature of the data, i.e., on the underlying
distribution of the data, nor we have to assume stationarity for the analysis of the
time series (in contrast to standard methods such as HMMs, GMMs or local ker-
nel methods). Moreover, as demonstrated in [31], the method covers geometrical
cluster approaches as well as dynamical ones. Furthermore, we will discuss in
Section 2.h the relation of the proposed approach to probabilistic methods.

The outcome of the FEM-BV methodology depends on the prescribed number of
clusters (local models) as well as on the prescribed regularity. Hence, the optimal
choice of these parameters is crucial for the interpretation and the meaningful-
ness of the analysis. The new idea presented in this paper is to select the model
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that describes the data best while involving the least number of free parameters
by combining an information theoretic measure — Akaike’s information criterion
(AIC) [1] — with the maximum entropy approach [43; 44]. The resulting modified
AIC then allows us to identify in a postprocessing step the optimal nonstationary
data-based substitute model. The main advantage of the modified AIC approach
(presented in this manuscript) to information theoretical approaches used until now
is that no explicit assumptions on the parametric form of observables’ distributions
have to be made. The only assumption is that a scalar process describing the time-
dependent error of the inverse problem is i.i.d.

Complementary to providing insight in the nonstationary behavior of the time
series, the optimal substitute model lends itself for predicting the dynamics, e.g.,
for different initial values. The prediction, however, is restricted to time instances
within the trained time span (as the underlying transition process in parameter space
is only available for that span). To overcome that restriction, a substitute model
for the (nonstationary) transition process itself is derived. Combining the two data
based models leads to a self-contained model that allows us to predict the dynamics
for any initial value at any time instance.

1.a. New contributions and organization of the paper. The main purpose of this
manuscript is threefold. First, in Section 2 we provide a complete, unified and
simplified derivation of the FEM-BV methodology originally introduced in [29;
30; 31; 32; 33; 34; 35] for analyzing nonstationary time series. Thereby, we ex-
emplify in Section 2.c the derivation of the framework for different models to give
a guideline how the developed methodology can be adapted and redesigned for
new applications. For the first time, specifically, we adapt the FEM-BV approach
to: (i) analyze periodic and partially observed (projected) data (torsion angles of a
biomolecule) and (ii) to pattern recognition in discrete data sequences (first chro-
mosome of the yeast).

The second purpose is to close the gap between the FEM-BV approach and
classical methods by investigating the assumptions and conditions under which
the FEM-BV methodology reduces to well-known methods for analyzing (non-
)stationary time series. For details see Section 2.h. Particularly, for the first time we
clarify in Section 2.g under what conditions the solution of the variational problem
(associated with the interpolation of the inverse model) can be interpreted as a
direct interpolation model (mixture model) for the data under consideration.

Additionally, we present a unified strategy for model selection in Section 3 that
allows the selection of an optimal mixture model — optimal in the sense that the
model provides maximal meaningfulness under minimal assumptions on the data.
The new model selection criterion combines a well known information criterion
with the maximum entropy approach for the inference of probabilistic distributions
from observables without assuming any parametric form.
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All these three aspects are eventually combined in a self-contained scheme for
predicting the nonstationary dynamics of the data beyond the analyzed time hori-
zon. The prediction scheme is motivated and described in detail in Section 4.

Finally, the applicability and usefulness of the presented methods is demon-
strated in Section 5 by analyzing realistic data ranging from torsion angle time
series of a biomolecule (trialanine), DNA nucleotide sequence data (from the first
chromosome of the yeast Saccharomyces cerevisiae) and financial data (prices of
oil futures). We end this manuscript by giving a conclusion in Section 6.

2. Finite element clustering method

2.a. The model distance function. Modeling processes in real world applications
amounts to seeking an appropriate parametric model function which is considered
to govern (explain) well the observed process. Suppose the observable of interest,
denoted by xt , is a d-dimensional vector. Furthermore, without loss of generality,
assume that the time series of observations is given at times t = 0, 1, . . . , T . Then,
the direct mathematical model is a function f ( · ) that relates an observation xt ∈

9 ⊂ Rd at a time t ≥ 0 to the history of observations up to the time t and a time-
dependent set of parameters θ(t) from some parameter space �. Formally, the
relation is written as1

xt = f (xt , . . . , xt−m, θ(t)) t ≥ m, (5)

where m ≥ 0 is the memory depth of the history dependence. Notice that the
formulation in (5) is most general in that it also covers implicit dependencies. See,
e.g., (26) in Section 2.c.ii.

The model function can be deterministic or can denote a random process. For
instance, the simplest model function incorporating randomness is given by

xt = f (θ(t)) def
= θ(t)+ εt , (6)

where {εt }, t ≥ 0 is a family of i.i.d. random variables with E [εt ]= 0, t ≥ 0. The
random variables εt model, for instance, errors in the measurement of observables
or they capture unresolved scales of a physical process such as fast degrees of
freedoms. Thus, the model function in (6) corresponds to the assumption that the
process under consideration has no dynamics and no memory.

Suppose we knew the parameters m and θ(t), t ≥ 0 then the direct mathematical
problem would be to find a process xt , t ≥ 0 satisfying the direct model in (5). Here
we are interested in the opposite question. Suppose we are given a time series of
observations X = (xt), t = 0, . . . , T and a known memory depth m. What are the
optimal parameters, i.e., the parameter function θ∗(t) explaining the given time

1For notational convenience, we prefer (5) to the equivalent relation 0= F(xt , . . . , xt−m , θ(t)).
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series of observations best? This inverse problem makes only sense if “best” is
quantified in terms of a fitness function measuring the quality of the approximation
for a given set of parameters. Throughout this manuscript a fitness function is
denoted by

g(xt , . . . , xt−m, θ(t)) :9m+1
×� 7→ R. (7)

Particularly, any metric d( · , · ) : 9 ×9 7→ R+0 on 9 naturally induces a fitness
function by defining g( · ) as

g(xt , . . . , xt−m, θ(t))=
(
d
(
xt , E

[
f (xt , . . . , xt−m, θ(t))

]) )2
. (8)

For instance, a reasonable model distance function for the direct mathematical
model in (6) is induced by the Euclidean norm, i.e.,

g(xt , θ(t))= ‖xt − θ(t)‖22. (9)

By employing a metric, the resulting function g( · ) measures the model error as the
squared distance between xt and the output of the average model function. There-
fore, we call g( · ) model distance function rather than fitness function. However,
any function g that is bounded from below measuring the approximation quality is
admissible within the following variational framework.

With the model distance function at hand, the optimal parameters explaining
the time series “best” can now formally be characterized as those satisfying the
variational problem

L def
=

T∑
t=m

g(xt , . . . , xt−m, θ(t))→ min
θ(t)∈�

. (10)

From now on, we will refer to L as the model distance function. In general, the
variational problem in (10) is ill-posed in the sense of Hadamard [26] as the pa-
rameter space � might be high- or even infinite-dimensional and, hence, may lead
to underdetermined or trivial solutions. For instance, the variational problem asso-
ciated with the model distance function in (9) admits the trivial but meaningless
solution (e.g., regarding the prediction skill of such a model, it requires the exact
knowledge of the infinite-dimensional function xt at all times)

θ∗(t)= xt , t = 0, . . . , T . (11)

In order to avoid such trivial solutions, the variational problem needs to be regular-
ized.

The key idea of an appropriate regularization is based on the observation that
in many real world processes the parameter function θ(t) varies much slower than
the observable xt in itself. Hence, local stationarity of the parameter function θ(t)
is a reasonable assumption, which eventually helps to overcome the ill-posedness
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of the variational problem in (10). Formally, we assume the existence of K dif-
ferent stationary yet unknown parameters 2 = (θ1, . . . , θK ) and time-dependent
weights 0(t)= (γ1(t), . . . , γK (t)) such that the model distance function g( · ) can
be expressed as a linear combination of local model distance functions, i.e.,

g(xt , . . . , xt−m, θ(t))=
K∑

i=1

γi (t)g(xt , . . . , xt−m, θi ), (12)

with (γ1(t), . . . , γK (t)) satisfying the convexity constraints

K∑
i=1

γi (t)= 1, ∀t,

γi (t)≥ 0, ∀t, i.

(13)

We call the vector 0(t) affiliation vector and we will use the shorthand 0 =
(0(t))t=m,...,T . It is important to realize that, unlike in standard methods such
as GMM/HMM, we do not assume the existence of K different local stationary
models. Our assumption is more general since it is an assumption on the de-
composability of the model error. However, as indicated by the name “affiliation
vector”, under certain conditions the entries of 0(t) can be interpreted as weights
in a mixture model of local models (Section 2.g).

Inserting the interpolation ansatz (12) into the model distance function yields
the average cluster functional

L(θ1, . . . , θK , 0)=

T∑
t=m

K∑
i=1

γi (t)g(xt , . . . , xt−m, θi ), (14)

which is the key-object in the FEM-BV methodology. Additionally to the opti-
mal (stationary) parameters 2∗ = (θ∗1 , . . . , θ

∗

K ) we seek for the optimal affiliation
vectors 0∗, which are finally characterized by the regularized variational problem

L(θ1, . . . , θK , 0)→ min
θ1,...,θK ,0

(15)

with 0 subject to the constraints in (13).

2.b. Numerical solution of the variational problem via the subspace algorithm.
Even for the regularized variational problem derived from the simple model given
in (6) there does not exist any analytical expression for the global minimizer, which
is due to the nonlinearity of the average cluster functional and the convexity con-
straint on 0. Fortunately, for many cases the model distance function g( · ) is con-
vex and analytical expressions for the unique optimal parameter 2∗ are available
provided that 0 is given and fixed. The same holds true for the optimal 0∗ if the
parameters 2 are fixed. Under weak conditions on the model distance function
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Require: Time series X , number of clusters K , persistence C, initial affiliations 00.
Ensure: Locally optimal affiliations 0∗, optimal parameters 2∗.

Repeat until convergence
(1) Compute 2(s+1) for fixed 0(s) via the unconstrained minimization problem

2(s+1)
= argmin

2

L(2, 0(s)) (16)

(2) Compute 0(s+1) for fixed 2(s+1) via the constrained minimization problem

0(s+1)
= argmin

0

L(2(s+1), 0) (17)

subject to (13).

Algorithm 1. The subspace algorithm.

g( · ) it was proven in [31] that iterating over these two steps yields an algorithm
guaranteed to converge to a local minimum of the average cluster functional L.

Throughout this paper when we speak of the subspace algorithm, we are actually
referring to an implementation of the iterative scheme described above and formally
summarized in Algorithm 1.

The subspace algorithm converges only to a local minimum. In order to find
the global minimum, an annealing-like Monte Carlo strategy can be employed,
i.e., the iterative procedure is started over several times with randomly initialized
0(0). If the number of repetitions is sufficiently large then the best solution among
the local minimizer is (almost sure) the global minimizer 0∗ and 2∗. Notice that
the described strategy for finding the global minimizers can straightforwardly be
parallelized.

2.c. Four important models. In this section we introduce four important models
that are broadly used in time series analysis and we derive their respective associ-
ated variational formulations. Numerical results will be given in Section 5.

2.c.i. Model I: Geometrical clustering. In the Section 2.a we introduced the sim-
plest nontrivial model one can think of; a model without memory,

xt = θ(t)+ εt , (18)

where xt ∈ Rd and εt denotes a noise process. If we choose the model distance
function induced by the Euclidean norm,

g(xt , θ(t))= ‖xt − θ(t)‖22, (19)
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then the regularized minimization problem in (15) simplifies to

L(θ1, . . . , θK , 0)=

T∑
t=0

K∑
i=1

γi (t)‖xt − θi‖
2
2→ min

θ1,...,θK ,0
(20)

subject to the constraints in (13). For fixed 0 the optimal 2∗ = (θ∗1 , . . . , θ
∗

K ) takes
the form [31]

θ∗i =

∑T
t=0 γi (t)xt∑T

t=0 γi (t)
. (21)

Furthermore, for fixed 2 the optimal affiliations are given by [33]

γ ∗i (t)=
{

1 if i = argmin j g(xt , θ j )= argmin j
{∥∥xt − θ j

∥∥2
2

}
,

0 otherwise,
(22)

which readily follows from the convexity conditions in (13).
The resulting subspace algorithm has a very nice interpretation: it is the well-

known and popular k-means algorithm for clustering geometrical data. To see that
note that each affiliation vector is deterministic, i.e., exactly one component is 1.0
while the remaining ones are 0.0. If we define the set Si = {xt : γ

∗

i (t) = 1} then,
by definition

‖xt − θi‖2 ≤
∥∥xt − θ j

∥∥
2 ∀xt ∈ Si , j = 1, . . . , K , (23)

and the optimal θ∗i reduces to the centroid of the point set Si ,

θ∗i =
1
|Si |

∑
xt∈Si

xt . (24)

2.c.ii. Model II: Takens-PCA clustering. A prominent example of a memoryless
model exhibiting dynamics is motivated by the observation that in many applica-
tions the essential dynamics of a high-dimensional process can be approximated
by a process on low-dimensional manifolds without significant loss of information
[70]. Recently, several cluster methods have been introduced which are based
on the decomposition of time series according to their essential linear attractive
manifolds, allowing the analysis of data of very high dimensionality with low-
dimensional dynamics [40; 29; 39; 38].

Formally, assume that the linear submanifolds are spanned by Q(t) ∈ Rd×n

consisting of n � d orthonormal d-dimensional vectors, i.e., Q†(t)Q(t) = Idn

where Idn denotes the n-dimensional identity matrix. To motivate the following
direct mathematical model, suppose that xt lives on the linear subspace spanned
by Q(t). Orthonormality then implies

xt = Q(t)Q†(t)xt , (25)
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where Q(t)Q†(t) is the orthogonal projector on the linear subspace at time t . How-
ever, in applications we only have xt ≈ Q(t)Q†(t)xt , which leads to the general
model function

(xt −µt)= Q(t)Q†(t)(xt −µt)+ εt , (26)

where the center vector µt ∈ Rd is the affine translation of the linear subspace and
εt is again some noise process with E [εt ] = 0. As shown in [38], adopting the
model distance function (θ(t)= (µ(t), Q(t)))

g(xt , θ(t))=
∥∥(xt −µt)− Q(t)Q†(t)(xt −µt)

∥∥2
2 (27)

results in analytical closed expressions for the optimal parameters. The center
vectors µ∗i ∈ Rd are given by

µ∗i =

∑T
t=0 γi (t)xt∑T

t=0 γi (t)
(28)

and the optimal matrices Q∗i satisfy an eigenvalue problem, respectively,( T∑
t=0

γi (t)(xt −µi )(xt −µi )
†
)

Q∗i = Q∗i 3i . (29)

For fixed 2, the optimal 0∗ is given analogously by (22).

2.c.iii. Model III: Discrete (or categorical) model. An alternative technique to
capture the essential dynamics of a complex system is coarse graining of the pro-
cess under consideration. The coarse grained process is a discrete process, i.e., it
attains only values in a finite set of discrete objects. Prominent examples are, e.g.,
conformational dynamics of (bio-)molecules [67] or climate research [30].

Let X = (x1, . . . , xT ) be a discrete time series and without loss of generality we
denote the discrete state space as S= {1, . . . ,M}. In order to apply the variational
framework we have to specify a model function and an appropriate model distance
function that are not readily available due to the discreteness of the state space.
Instead of considering the original data, the key idea here is to uniquely identify
each datum xt with a discrete probability distribution πt . More precisely, we define
πt = (πt(1), . . . , πt(M)) as the discrete Dirac measure with respect to xt ∈ S =

{1, . . . ,M},

πt(s)
def
=

{
1 if s = xt ,

0 otherwise.
(30)

Viewing discrete distributions as real valued vectors allows us to make use of, e.g.,
the model function given in (6), here written as

πt = θt + εt , (31)
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subject to the constraint that θt = (θt(1), . . . , θt(M)) is a discrete probability dis-
tribution,

θt(s)≥ 0 and
M∑

s=1

θt(s)= 1. (32)

Moreover, εt is a noise process as in the previous models.
Since we are particularly dealing with probability distributions, we define the

model distance function by means of a metric tailored to respect the underlying
probability space. Specifically, we chose the famous Kullback–Leibler divergence,
also referred to as the relative entropy, defined as

dK L(µ, η)=
∑
s∈S

µ(s) log
µ(s)
η(s)

(33)

for any two discrete probability distributions µ and η on the same probability space.
For an overview of metrics and divergences on probability spaces see [25], for
example.

The relative entropy directly induces a model distance function by defining

g(xt , θt)
def
= g(πt , θt)

def
= dK L(πt , θt)=−log θt(xt). (34)

A short calculation shows that the regularized minimization problem

L(θ1, . . . , θK , 0)=−

T∑
t=0

K∑
i=1

γi (t) log θi (xt)→ min
θ1,...,θK ,0

(35)

subject to the constraints (13) and (32) admits analytical solutions; the optimal
discrete probability distribution (θ∗1 , . . . , θ

∗

K ) takes the form

θ∗i (s)=
αi,s∑

z∈S αi,z
with αi,s =

T∑
t=0

δxt ,sγi (t), s = 1, . . . ,M (36)

and the optimal affiliation function 0∗ is given analogously by (22).

2.c.iv. Model IV: Markov regression model. The strategy proposed in Section 2.c.iii
to analyze time series of discrete observations can loosely be described as geomet-
rical clustering of probability distributions, geometrical in the sense that neither
dynamics nor memory are assumed to be of importance.

A discrete probabilistic model including memory and dynamics is the famous
Markov model. Generally, a discrete Markov process describes the evolution of
a transition process between a finite number of discrete states by means of time-
dependent one-step transition probabilities. If the transition probabilities are sta-
tionary (time-homogeneous) then the process is called a Markov chain and it is one
of the most exploited families of processes in this class of probabilities models.
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Formally, a stationary Markov process xt on a discrete state space S={1, . . . ,M}
is uniquely characterized by a time-independent transition (stochastic) matrix P ∈
RM×M (comprising of the stationary one-step transition probabilities) and an initial
distribution π0 ∈ RM . The evolution of the state probability vector p(t) ∈ RM ,
defined as

p j (t)
def
= P[xt = j], j ∈ S, (37)

is then governed by the master equation,

p†(t + 1)= p†(t)P, t = 0, 1, 2, . . . , T − 1. (38)

For more details on Markov chains, we refer the interested reader to, e.g., [9].
Recently in [34], the opposite question was addressed: suppose we are given a

time series of probability distributions (πt), πt ∈ RM , t = 0, 1, . . . , T and, addi-
tionally, a series of external data u(t) ∈ Rk . What is an appropriate nonstationary
Markov regression model explaining the given time series of distributions condi-
tioned on the external factors best? Following the lines of the FEM-BV approach
and motivated by the stochastic master Equation (38), it is reasonable to consider
the direct model function

π
†
t+1 = π

†
t P(t, u(t))+ εt (39)

where εt is a noise process as in the previous models and P(t, u(t)) ∈ RM×M is
stochastic, i.e.,

{P(t, u(t))}vw ≥ 0 ∀v,w, t, u(t), (40)

P(t, u(t))1M = 1M ∀t, ut (41)

with 1M = (1, . . . , 1) ∈ RM .
Additional to depending on the (resolved) external factors u(t) ∈ Rk , notice that

the transition matrices may explicitly depend on the time t . For details see [34].
The interpolation of the model distance function

g (πt+1, πt , P(t, u(t)))=
∥∥π†

t+1−π
†
t P(t, u(t))

∥∥2
2 (42)

results in

g ( · , · , P(t, u(t)))=
K∑

i=1

γi (t)g
(
· , · , P (i)(u(t))

)
(43)

where the stationary transition matrices (parameters), P (i)(u(t)) ∈ RM×M i =
1, . . . , K , have the form

P (i)(u(t))= P (i)0 +

k∑
l=1

ul(t)P
(i)
l i = 1, . . . , K (44)



188 PHILIPP METZNER, LARS PUTZIG AND ILLIA HORENKO

with P (i)0 , P (i)l ∈ RM×M i = 1, . . . , K satisfying the constraints

P (i)0 ≥ 0 (elementwise), (45)

P (i)0 1M = 1M , (46)

P (i)l 1M = 0 l = 1, . . . , k. (47)

Notice that the constraints (45)–(47) imply P (i)(u(t))1M = 1M independently of
u(t). The elementwise nonnegativity is ensured by the constraints

P (i)(u(t))≥ 0 i = 1, . . . , K , ∀u(t), (48)

which explicitly involve the external data u(t).
Assembling the pieces together, we finally end up with the variational problem

L(2, 0)=
T−1∑
t=0

K∑
i=1

γi (t)g
(
πt+1, πt , P (i)0 +

k∑
l=1

ul(t)P
(i)
l

)
→min

2,0
(49)

subject to the constraints (45)–(48). Unfortunately, no analytical expressions exist
for the optimal parameters due to the imposed constraints. Numerically, however,
the optimal Markov regression models P (i)(t, u(t)) are given by solutions of K
independent constrained quadratic programs. For the convenience of the reader,
they are stated in an Appendix.

The main challenge in numerical computation of the optimal parameters lies in
the enforcement of the constraints in (48) as a linear increase in the number of
external factors causes an exponentially increase in time and memory for minimiz-
ing (49). As shown in [34], the computational time and memory consumption can
be reduced by exploiting that (48) attains its unique maximum/minimum in a corner
of the convex hull of the set {u(t) : t = 0, . . . , T }. Hence, it is sufficient to requiring
the constraints in (48) only for the corners. For example, if the convex hull is
given by an k-dimensional hypercube then the reduced number of constraints, 2k ,
is independent of the length of the time series. This allows to substitute the time-
dependent set of constraints (48) by a time-independent set, making the entire
optimization problem numerically tractable.

2.d. Regularization of 0. As indicated in the examples introduced in the previous
section, for given parameters 2 the optimal 0∗ is given in terms of the model
distance function (compare (22), for example),

γ ∗i (t)=
{

1 if i = argmin j
{
g(xt , . . . , xt−m, θ j )

}
,

0 otherwise,
(50)

where each datum xt , t ≥ m is uniquely (deterministically) assigned to a single
cluster. However, even for the global optimal parameters 2∗, the resulting optimal
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0∗ might be a highly nonregular function. For instance, 0∗ might rapidly oscillate
between the K different clusters rather than describing a smooth and persistent
transition process. In other words, the optimal 0∗ does not continuously depend
on the data, which is again a violation of Hadamard’s postulate of a well-posed
problem. Consequently, the variational problem has to be regularized again.

One approach is to first incorporate some additional information about the reg-
ularity of the observed process by restricting the time dependent function 0( · )
on an appropriate function space and then apply a finite Galerkin discretization of
this infinite-dimensional Hilbert space. In the context of Tikhonov-based FEM-BV
methodology, this was done by restricting the functions γi ( · ) on the function space
of weakly differentiable functions. One way to incorporate this a priori information
into the optimization is to modify the variational problem in (15) by writing it in
the Tikhonov-regularized form [31]

Lε(2, 0, ε2)
def
= L(2, 0)+ ε2

K∑
i=1

‖∂tγi‖
2
L2(0,T )→ min

γ1,...,γK∈H1(0,T ),2
, (51)

where the norm ‖∂tγi‖
2
L2(0,T ) =

∫ T
0 (∂tγi (t))2dt measures the smoothness of the

function γi ( · ). A similar form of penalized regularization was first introduced
by A. Tikhonov to solve ill-posed linear least-squares problems [71] and has been
frequently used for nonlinear regression analysis in the context of statistics [28]
and multivariate spline interpolation [74].

The main problem one faces in this approach is the lack of the direct control of
the persistence of γi . To be more precise, Tikhonov regularization does not allow
us to directly incorporate the desired persistence constraints

‖∂tγi‖
2
L2(0,T ) ≤ C, i = 1, . . . , K , (52)

where 0≤ C bounds the smoothness of the functions γi ( · ). Another disadvantage
of the H 1 approach is the exclusion of functions with discontinuities such as jumps,
which is due to the requirement of weak differentiability. Fortunately, the two
problems can be overcome by considering a larger function space.

2.e. Persistence in the BV sense. A less restrictive class of functions is the class of
functions with bounded variation BV ([0, T ]), consisting of functions f : [0, T ]→
R with

‖ f ‖BV = sup
0=t0<t1<...<tM=T

{M−1∑
i=0

| f (ti+1)− f (ti )|
}
<∞, (53)

where the supremum is taken over all partitions of the interval [0, T ]. Notice that in
the time-continuous case H 1(0, T )⊂ BV (0, T ) holds true (cf. [58]), so “smooth”
H 1-transitions between cluster states are not excluded. However, the BV-norm of
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a function does not require any notion of differentiability and the class BV [0, T ]
covers transition processes with jumps between clusters.

For the remainder of this section, the memory depth m is, without loss of gen-
erality, assumed to be zero. In the following, we consider the functions γi , i =
1, . . . , K as discrete functions (vectors), which is emphasized by denoting γi ∈

RT+1. Now we are prepared to formulate the persistence condition in the time-
discrete BV sense:

‖γi‖BV =

T−1∑
t=0

|γi (t + 1)− γi (t)| ≤ C, i = 1, . . . , K , (54)

where 0≤ C is an upper bound for the maximal number of transitions between the
cluster state i and the remaining ones. In the rest of this section we will show that
the additional BV-constraints lead to a numerically convenient characterization of
0 via a linear minimization problem with linear constraints.

To this end, for given 2= (θ1, . . . , θK ) we define the row vectors

gθi = (g(x0, θi ), . . . , g(xT , θi )) ∈ RT+1, (55)

γi = (γi (0), . . . , γi (T )) ∈ RT+1. (56)

Then, the variational problem in (15) transforms to

L(θ1, . . . , θK , 0)=

K∑
i=1

〈
γi , gθi

〉
2→min

0,2
, (57)

subject to the constraints

‖γi‖BV ≤ C i = 1, . . . , K , (58)
K∑

i=1

γi (t) = 1 t = 0, . . . , T, (59)

γi (t) ≥ 0 t = 0, . . . , T, i = 1, . . . , K . (60)

Unfortunately, the additional constraints (58) turn the variational problem in (57)
into a nondifferentiable one. As a remedy, we retransform the problem into a
differentiable one by applying an upper-bound technique.

Suppose we had ηi (0), . . . , ηi (T − 1) ∈ R satisfying the constraints

|γi (t + 1)− γi (t)| ≤ ηi (t) t = 0, . . . , T − 1, (61)
T−1∑
t=0

ηi (t) ≤ C, (62)

ηi (t) ≥ 0 t = 0, . . . , T − 1, (63)
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then γi would satisfy the BV-constraint in (58). The key observation is that (61)
holds true for t ≥ 0 if and only if the following two linear inequalities hold true:

γi (t + 1)− γi (t)− ηi (t)≤ 0, (64)

−γi (t + 1)+ γi (t)− ηi (t)≤ 0. (65)

Consequently, if the upper bounds ηi = (η(0), . . . , η(T − 1)) are considered as
additional unknowns (additional to the unknowns γi ), then the BV-constraint in (58)
is satisfied if and only if the linear constraints (62)–(65) are satisfied.

Notice that the constraints (59)–(60) are linear constraints too. Finally, by defin-
ing

ω = (γ1, . . . , γK , η1, . . . , ηK ) ∈ RK (2T+1), (66)

c(2)= (gθ1, . . . , gθK , 0, . . . , 0︸ ︷︷ ︸
K T times

) ∈ RK (2T+1) (67)

we can express the original nondifferentiable optimization problem (57)–(60) as
the following differentiable optimization problem,

〈c(2), ω〉2→min
ω,2

(68)

subject to
Aeqω = beq,

Aneqω ≤ bneq,

ω ≥ 0,

(69)

where Aeq and beq readily result from the constraints (59) and Aneq and bneq from (60)
and ((62)–(65)).

The solution of the above minimization problem can be approached via the sub-
space iteration procedure presented in Section 2.b. Particularly, for fixed 2 the
problem reduces to a standard linear program, which can efficiently be solved by
standard methods such as the Simplex method or interior point method. Completely
analogously to the Tikhonov-regularized FEM-BV methodology [31], it can be
demonstrated that the iterative procedure converges towards a local minimum of
the problem (68)–(69) if some appropriate assumptions (convexity and differentia-
bility) of the model distance function (8) are fulfilled.

Unfortunately, since the dimensionality of the variable ω scales as K (2T + 1)
the numerical solution of the problem (68)–(69) for a fixed value of 2 becomes
increasingly expensive for long time series. Therefore a Finite Element Method
(FEM) will be introduced in the next section to reduce the dimensionality of the
above problem in a robust and controllable numerical manner.
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2.f. FEM discretization. Solving the problem (68)–(69) is numerically expensive
or even practically impossible for long time series, in terms of computational time
as well as in terms of memory usage. To overcome these limitations, a FEM is
proposed to reduce the dimensionality of the problem.

The idea is to approximate the (unknown) discrete functions γi (t) by a linear
combination of N � T + 1 continuous functions { f1(t), f2(t), . . . , fN (t)} with
bounded variation, i.e.,

γi (t)=
N∑

j=1

αi j f j (t) t = 0, . . . , T + 1. (70)

Traditionally, the finite element functions f j (t) ∈ BV [0, T ] are defined as noncon-
stant functions on overlapping supports. For practical examples of standard finite
element functions see, e.g., [8]. Here, however, we approximate the functions γi

with constant ansatz functions defined on nonoverlapping supports. This approach
is justified by the fundamental assumption that the time series under consideration
is persistent.

Let 0= τ0 < τ1 < τ2 < · · ·< τN = T be a partition dividing [0, T ] into N bins
[τ j , τ j+1], j = 0, . . . , N−1 with τ j /∈N, j = 1, . . . , N−1 and assume that all the
γi are piecewise constant on each of the intervals [τ j , τ j+1]. Moreover, let γ̂i ( j)
denote the value of γi on [τ j , τ j+1] and define

ĝθi ( j) def
=

∑
t∈[τ j ,τ j+1]

gθi (t). (71)

Then, the variation problem in (57) reduces to

L(θ1, . . . , θK , 0̂)=

K∑
i=1

〈
γ̂i , ĝθi

〉
2→min

0̂,2

, (72)

with γ̂i ∈ RN , ĝθi ∈ RN and subject to the constraints

‖Dγ̂i‖1 ≤ C i = 1, . . . , K , (73)
K∑

i=1

γ̂i (t) = 1 t = 0, . . . , N − 1, (74)

γ̂i (t) ≥ 0 t = 0, . . . , N − 1, i = 1, . . . , K . (75)

Analogously to the derivation given in the previous section, we finally end up
with the FEM discretization (in the BV sense) of the original variational problem
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in (15), 〈
ĉ(2), 0̂

〉
2→min

0̂,2

(76)

subject to the linear constraints (73)–(75).
Notice that the number of unknowns has reduced to K (2N + 1) being much less

than K (2T + 1) if N � T . Particularly, the number of unknowns and, hence, the
number of constraints does not explicitly depend on the total length T + 1 of the
time series anymore. Hence, the final variational problem allows the analysis of
long time series from real-world applications, as will be demonstrated in Section 5.

2.g. Identification of local models. The derivation of the average cluster func-
tional is based on the assumption that the model distance at a fixed time t can be rep-
resented by a convex combination of model distances with respect to K stationary
model parameters. Notice that this assumption is more general than the assumption
of the existence of K local stationary models. Nevertheless, the identification of
local stationary models gives additional insight into the data. More importantly,
it allows the simulation and prediction of time series, which ultimately leads to
constructing self-contained predictive models as will be explained in Section 4
below.

The identification of local stationary models depends crucially on the choice of
the model distance function and the derived optimal affiliation function 0∗. To see
that, recall the formal interpolation ansatz in (12), i.e.,

g(xt , . . . , xt−m, θ(t))=
K∑

i=1

γi (t)g(xt , . . . , xt−m, θi ). (77)

Accordingly, if we could find an θ(t) such that (77) held true then the local model
at time t would be given by f ( · ; θ(t)).

First suppose that the optimal 0∗ is deterministic, i.e., γ ∗i (t) ∈ {0, 1}. But this
immediately implies

θ(t)= θi with γ ∗i (t)= 1, (78)

as the ansatz trivially holds true with that choice. In the case of a nondetermin-
istic 0∗ the identification crucially depends on the model distance function. We
exemplify that by considering the model distance function

g(xt , . . . , xt−m, θ(t))=
∥∥xt − E

[
f (xt , . . . , xt−m, θ(t))

]∥∥2
2. (79)
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Theorem 2.1. If the direct model function f is linear in θ then

g
(

xt , . . . , xt−m,

K∑
i=1

γi (t)θi

)
≤

K∑
i=1

γi (t)g(xt , . . . , xt−m, θi ) (80)

The proof is straightforward and left for the interested reader. Consequently, if
the interpolation on the right-hand side in (80) is small then the model distance
function on the left-hand side with respect to θ(t) =

∑K
i=1 γi (t)θi is small too.

This, in turn, implies that the direct model function with respect to θ(t) is a good
approximation for a local model function at time t .

The minimization of the average cluster functional justifies the notion

xt ≈ x̂t
def
= E

[
f (xt , . . . , xt−m,

K∑
i=1

γ ∗i (t)θ
∗

i )

]
. (81)

However, the identification is only valid if the direct model function is linear with
respect to its parameters and the model distance function is strict convex. This is
the case for the model distance functions, e.g., in (19), (27), (34) and (42) described
above.

2.h. Relation to classical methods of unsupervised learning. We have already
seen that the direct model xt = θ(t)+ εt equipped with the model distance function
g(xt , θ(t))= ‖xt − θ(t)‖22 leads to the classical k-means algorithm for geometric
clustering provided that no regularity condition (C =∞) is imposed on the affilia-
tion function 0 (Section 2.c.i) and no FEM discretization is used for the numerical
solution of the resulting variational problem. In this section we further clarify the
link between the FEM-BV approach and classical methods for dynamical cluster-
ing. Particularly, we show that the presented method covers existent probabilistic
approaches as special cases by choosing specific model distance functions and
regularity constraints.

Let us first consider the discrete case, i.e., xt ∈ S = {1, . . . ,M}. A prominent
approach for dynamical clustering of persistent discrete time series is the hidden
Markov model [64]. Basically, it relies on three strong assumptions. Firstly, it is
assumed that the hidden (persistent) process is governed by a time-homogeneous
stationary Markov process. Secondly, it is assumed that an observation xt (trig-
gered by a jump of the hidden process) is distributed according to a stationary
distribution conditional on the current hidden state. Finally, one has to assume that
the observations are independent.

Here we make the most general assumption by imposing that the hidden process
is nonstationary and non-Markovian. Specifically, we assume that an observation
xt is distributed according to a discrete distribution θi ∈R|S| conditional on a hidden
state i ∈ {1, . . . , K }, which in turn is drawn from a discrete distribution 0(t) ∈ RK .
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Under the additional assumption of independence, the likelihood of a time series
X = (xt), t = 0, . . . , T takes the form

L(X;0,2)=
T∏

t=0

( K∑
i=1

γi (t)θi (xt)

)
, (82)

where we marginalize over the hidden states.

Theorem 2.2. If the model distance function is defined as

g(xt , θi )=−log(θi (xt)) (83)

then the associated average cluster functional is an upper bound of the negative
log-likelihood,

−log L(X;0,2)≤ L(0,2). (84)

Proof. Notice that −log x is a convex function. Hence, by applying Jensen’s in-
equality we conclude

−log L(X;0,2)=−
T∑

t=0

log
( K∑

i=1

γi (t)θi (xt)

)

≤

T∑
t=0

K∑
i=1

γi (t) (−log(θi (xt))) , (85)

where the upper bound in (85) is exactly the average cluster functional in (35)
resulting from the reasoning in the third example in Section 2.c.iii. �

In the probabilistic approach, the optimal parameters (distributions) of the model
are characterized by the ones that maximize the likelihood, i.e.,

(0∗,2∗)= argmax
0,2

L(X;0,2), (86)

which is equivalent to minimizing the negative log-likelihood function,

(0∗,2∗)= argmin
0,2

(−log L(X;0,2)). (87)

Therefore, the minimizer of the average cluster functional in (35) can be considered
as a good approximation of the maximizer 0∗,2∗ of the likelihood function in (82).
The fundamental difference between the two approaches, however, is that in the
FEM-BV approach non of the probabilistic assumptions on the nature of data have
to be made in order to derive the average cluster functional (35).

The presented reasoning readily carries over to the continuous case, i.e., xt ∈

Rd , by defining the model distance function in terms of the assumed underlying
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conditional probability density function ρ( · ; θi ),

g(xt , θi )
def
= −log ρ(xt ; θi ). (88)

It is straightforward to show that the upper bound for the negative log-likelihood
associated with probabilistic model coincides with the average cluster functional
resulting from the model distance function in (88).

For example, a widely used class of parametric probability density functions are
the d-dimensional Gaussian distributions,

ρG(xt ;µi , 6i )= ((2π)d |6|)−1/2 exp
(
−

1
2(xt −µi )

†6−1
i (xt −µi )

)
, (89)

with mean µi ∈ Rd and symmetric positive definite covariance matrix 6i ∈ Rd×d .
The induced model distance function then reads

g(xt , µi , 6i )=
1
2

(
cst.+ ln |6| + (xt −µi )

†6−1
i (xt −µi )

)
. (90)

Any method for inferring the optimal parameters of a Gaussian distribution relies
specifically on the assumption that the data “lives” in the full d-dimensional space
so that the covariance matrix is symmetric positive definite and, hence, invertible.
Unfortunately, in many applications this assumption is not met because, e.g., the
essential dynamics of a (Gaussian) process takes place in an n-dimensional subman-
ifold with n� d . In the FEM-BV approach, this limitation can be circumvented by
directly clustering with respect to the submanifolds by means of the PCA approach
presented in Section 2.c.ii.

At the end of this section, we comment on the relation of the FEM-BV approach
based on (90) to the stationary Gaussian mixture model (GMM). Analogously to
the reasoning above, the negative log-likelihood associated with a GMM can be
bounded from above, i.e.,

−

∑
t

log
( K∑

i=1

aiρG(xt ;µi , 6i )

)
≤−

∑
t

K∑
i=1

ai log ρG(xt ;µi , 6i ), (91)

where a = (a1, . . . , aK ) are the normalized weights of the Gaussian distributions,
i.e.,

∑K
i=1 ai = 1 and ai ≥ 0, i = 1, . . . , K . Now notice that the upper bound

in (91) coincides with the average cluster function induced by (90) if we assume
that in (54) C = 0, i.e., 0(t) ≡ a ∀t . However, the associated optimal affiliation
function,

a∗i =
{

1 if i = argmin j
{
−
∑

t log ρG(xt ;µ j , 6 j )
}
,

0 otherwise,
(92)

is deterministic, implying that the optimal substitute model (Gaussian mixture
model) consists only of one locally stationary model (Gaussian distribution) in-
dependent of the number K of assumed clusters.
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In contrast, the update formula for the weights a1, . . . , aK in the classical GMM
framework (see, e.g., [61]),

a(s+1)
i =

1
T + 1

T∑
t=0

q(i, t)∑K
j=1 q( j, t)

with q(i, t)=a(s) log ρG(xt ;µ
(s)
i , 6

(s)
i ), (93)

significantly differs from (92) and, generally, does not lead to a degenerated (de-
terministic) cluster affiliation as in the FEM-BV approach presented above.

This observation allows the conclusion that the upper bound derived in the GMM
framework is sharper than the corresponding average cluster function, e.g., in the
right-hand side of (91). However, the assumption of stationary weights (C = 0)
deployed in the GMM framework is very restrictive and it is not fulfilled in many
applications.

3. Model selection

The outcome of the FEM-BV methodology crucially depends on the specific choice
of the number of clusters K and the persistence threshold C as the choice expresses
a certain a priori knowledge on the nature of the data under consideration. In fact,
the identification of an optimal or best model among a set of possible models
is an important part of the clustering procedure itself. In this section we briefly
discuss several approaches that have been proposed in the context of the FEM-
BV methodology for the selection of the optimal parameters. Furthermore, we
present an extension of a recently introduced information-theoretical framework
that allows the simultaneous identification of the optimal parameters K and C.

The characterization of an optimal model in terms of its parameters K and C
on the basis of the average cluster function, L(K ,C), is hampered by the follow-
ing fact: if the number of clusters and the number of allowed transitions between
them is increased then the corresponding a priori knowledge is less restrictive and,
therefore, the value of the L(K ,C) decreases. Particularly, L(K ,C) attains its
minimum in the limit K = N ,C = ∞, which would imply that the correspond-
ing model is optimal in the sense that it explains the data best. As explained in
Section 2.d, however, the resulting model is meaningless due to the over-fitting
and does not reveal any insights in the underlying data. Therefore, a criterion for
selecting the optimal parameters should take both into account: how well the data
is explained and the total number of involved parameters such as the number of
clusters, the actual number of transitions between the clusters and the number of
model parameters in each cluster.

Several approaches have been proposed to tackle the problem of selecting an
optimal model within the context of the FEM-BV methodology. For instance, the
approach in [63] is based on the following observation. The increase of the number
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of clusters leads to an increase of uncertainty of the estimated model parameters
for each cluster as less data is assigned. Consequently, if one starts with a large
number of clusters, then this number can be reduced by combining the clusters
whose parameters have a nonempty intersection of their confidence intervals as
those clusters are statistically not distinguishable. The procedure is terminated if
all clusters are statistically distinguishable.

To choose the optimal persistence threshold C , techniques such as the L-Curve
method [50] can be applied. The idea is to analyze the graph of the average clus-
tering functional as a function of the persistence threshold C. The optimal C∗ is
then characterized by the point of maximum curvature of the graph.

Recently in [33], an information theoretical framework has been introduced for
the simultaneous identification of the optimal parameters K ∗ and C∗. It is moti-
vated by the principle of Occam’s razor: the best or optimal model among a set
of possible models is the one that exhibits maximal model quality (goodness of
fit) while its number of free parameters is minimal. The most prominent informa-
tion measure embodying that principle is the AIC (Akaike information criterion,
introduced in [1]), which, formally, is given by

AIC(M)=−2 ln L(M)+ 2|M |, (94)

where L(M) denotes the likelihood of the model M and |M | is the total number
of the model’s free parameter. The optimal model M∗ is then characterized by the
one that minimizes the criterion.

The AIC depends on the likelihood L(M) of the model as a measurement of the
model quality. Therefore, the criterion can not be generally applied in the FEM-BV
methodology because it is based on the more general notion of a model distance
function.

If the model distance function, however, is induced by, e.g., a discrete proba-
bility distribution (cf. (34) in Section 2.c.iii) then as justified by Theorem 2.2 (see
Section 2.h) the likelihood L(M) reduces to the likelihood given in (82). Analo-
gously, the reasoning carries over to a model distance function defined in terms of
a PDF (cf. (90) in Section 2.h) and to a model function preserving probability such
as the Markov regression model introduced in Section 2.c.iv.

It remains to consider the case, e.g., FEM-BV-k-means, if neither the model
function nor the model distance function allows a probabilistic interpretation. For-
tunately, the gap can be bridged by realizing that the distribution of the scalar time
series of model distances with respect to a fixed cluster i reflects how well the
corresponding local model explains the data. The key idea now is to employ these
distribution in order to define a likelihood of a scalar process and, eventually, to
arrive at a modified information criterion for detecting the optimal model in the
FEM-BV approach.
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Let supp(γi ) = {t : γi (t) > 0} denote the support of γi (t) and suppose for a
moment that the model distances in the cluster i = 1, . . . , K are each distributed ac-
cording to a parametric (conditional) probability density function (PDF) ρi ( · ;3i ),
i.e.,

P[g(xt , θi ) ∈ dx] = ρi (g(xt , θi );3i ) dx, i = 1, . . . , K , ∀t ∈ supp(γi ). (95)

Under the (restrictive) assumption of independence, we can define a likelihood
function L(K ,C) by

L(K ,C) def
=

∏
t

( K∑
i=1

γi (t)ρi (g(xt , θi );3i )

)
(96)

and, following the arguments from the original proof by Akaike [1], we arrive at
the modified information criterion

m AI C(K ,C)=−2 ln(L(K ,C))+ 2|M(K ,C)|. (97)

The total number of the model’s free parameters, |M(K ,C)|, consists of three
contributions; the total number of local stationary parameters, i.e., |2| = |θ1| +

· · · + |θK |, the total number of parameters needed for describing the conditional
PDFs, i.e., |3| = |31| + · · · + |3K | and, finally, the total number of parameters
needed to represent the affiliation function 0. To determine |0|, please recall that
0 is piecewise constant on a FEM-partition 0= τ0<τ1<τ2< · · ·<τN−1<τN = T
dividing the interval [0, T ] into N bins (Section 2.f). Hence, we conclude

|0| = K N . (98)

For instant, the total number of parameters in the FEM-BV-k-means model is
(Section 2.c.i)

|Mk-means(K ,C)| = Kd + K N + |3|. (99)

It remains to explain how to characterize the set of parametric PDFs, {ρi ( · ;3i )},
capturing the respective distribution of the cluster’s model distances appropriately.
One option is to assume that all distributions during the course of optimization
belong to a certain but fixed class of parametric PDFs, e.g., the class of Gaussians.
The parameters 3i are then efficiently calculated via the maximum likelihood ap-
proach. However, our numerical experiments showed that the assumption of a fixed
class of parametric PDFs is too restrictive and may lead to wrong optimal models.

To motivate the approach presented here, note that we actually do not know
anything about the parametric representations of the distributions. What we can
empirically compute, however, are statistical properties such as the expectation, the
variance and, more generally, the first k noncentralized moments. The key idea now
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is to choose the most unbiased distribution in each case, among those exhibiting
the empirical observed statistical properties. According to [43; 44; 55] the most
unbiased distribution is the one which admits the most uncertainty measured in
terms of entropy.

Let η j , j = 0, . . . , k be empirical estimates of the first k+ 1 noncentralized mo-
ments of a distribution with η0 = 1. The associated maximum entropy distribution
is characterized by a constrained variational problem

H(ρ)
def
= −

∫
ρ(x) ln ρ(x) dx→ max

ρ(x)∈L2(R)
(100)

subject to

η j =

∫
x jρ(x)dx, j = 0, . . . , k, (101)

where H(ρ) is the entropy of the PDF ρ.
Applying the calculus of variation yields the formal (unique) solution

ρ∗(x)= exp
k∑

j=0

λ j x j
= argmax
v(x)∈L2(R)

H(ρ), (102)

where the Lagrange multipliers λ0, . . . , λk enforce the constraints in (101). For
instant, if k = 2 then ρ∗ is basically given by a Gaussian distribution having the
prescribed moments. Unfortunately, for k > 2 no closed expression for ρ∗ exists
so that the Lagrange multipliers have to be computed numerically via, e.g., the
Newton method. For details on solving the problem (100)–(101) numerically see,
e.g., [76]. Moreover, for an overview on maximum entropy distributions associated
with constraints other than in (101) we refer to, e.g., [46; 55].

The maximum entropy ansatz finally allows us to characterize the parametric
representations of the distributions of the respective (scalar) cluster’s model dis-
tances

{g(xt , θi )}, t = 0, 1, . . . , T, i = 1, . . . , K (103)

as

ρi (x, λ
(i)
0 , . . . , λ

(i)
k )= exp

k∑
j=0

λ
(i)
j x j (104)

subject to∫
x jρi (x, λ

(i)
0 , . . . , λ

(i)
k )dx = Z−1

i

∑
t∈supp(γi )

(g(xt , θi ))
j j = 0, . . . , k, (105)

with Zi = |supp(γi )|. Inserting (104) in (94) we end up with the modified AIC,
denoted by m AI C(K ,C), for selecting the optimal model within the FEM-BV
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methodology. Notice that we only require in (104) and (105) the scalar “observ-
ables” g( · , θi ) to be i.i.d.2 Furthermore, the optimal number (order) k of moments
needed to approximate the underlying distribution can again be determined by em-
ploying the AIC.

We end this section by discussing a conceptual weakness of the presented model
selection approach. Despite its successful application and the numerical evidence
indicating its usefulness (see Section 5 below), the approach theoretically suf-
fers from the fact that the estimation of the ME-distributions is invariant under
translation, i.e., the ME-distributions estimated from, e.g., the scalar time series
(g(xt , θ

∗)), t ≥ 0 and (g(xt , θ
∗)+ a), a > 0, t ≥ 0 would be indistinguishable

from the view point of likelihood. Consequently, they would equally contribute
to the modified AIC although the former distribution is closer to the lower bound,
(say zero), and, hence, the associated underlying model should be the preferred one.
From the practical point of view, such scenarios are very unlikely to happen since
the model distance function g(xt , θ) is minimized during the subspace-procedure.
In fact, the occurrence of such a scenario would indicate that the underlying model
function f ( · , θ(t)) does not properly capture the dynamic of the time series under
consideration.

Generally spoken, the model selection approach theoretically suffers from not
explicitly incorporating the lower boundedness of the model distance function g( · ).
Bridging that gap is subject to ongoing research and will be discussed in a forth-
coming manuscript.

4. Self-containing predictive models

In the previous section, we presented for the FEM-BV approach a tailored strategy
to identify an optimal stochastic model in terms of the optimal number of clusters
K ∗ and the optimal persistence C∗. Furthermore, we elaborated in Section 2.g
under which conditions the optimal model parameters and the optimal cluster affil-
iations lead to a time-dependent mixture model for fitting the data best within the
trained time interval. In this section we present a prediction strategy allowing us
to predict the dynamics beyond the trained time interval.

Let 0∗
[m,T ] and θ∗1 , . . . , θ

∗

K∗ be the parameters of the optimal model associated
with a model function f ( · , · ) on the time interval [m, T ]. A reasonable fitting
(prediction) at t ∈ [m, T ], i.e., within the trained time span, is then given by the

2In this context it is important to recall the standard application of information functionals for
Bayesian time series analysis methods (such as GMMs and HMMs) [21; 49] relies on a very restric-
tive additional assumption, namely that the analyzed data xt are produced by a known parametric
multivariate distribution.
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average mixture model (cf. (81) in Section 2.g)

x̂t = E

[
f
(

xt , xt−1, . . . , xt−m,

K∗∑
i=1

γ ∗i,[m,T ](t)θ
∗

i

)]
. (106)

Now it is important to realize that the average mixture model is confined on the
interval [m, T ] because it explicitly depends on the time-dependent affiliation func-
tion 0∗

[m,T ] being only well defined on [m, T ]. However, if we could predict
the affiliation function 0̂[m,T+d](t) for t = T + 1, . . . , T + d, d > 0 then (106)
could readily be extended for predicting x̂T+1, . . . , x̂T+d by the following recursive
scheme

x̂T+r = E

[
f
(

x̂T+r , . . . , x̂T+r−m,

K∗∑
i=1

γ̂i,[m,T+d](T + r)θ∗i

)]
r = 1, . . . , d

(107)
with x̂s = xs and 0̂[m,T+d](s)= 0∗[m,T ](s) if s ≤ T .

A self-contained strategy for predicting 0̂[m,T+d] has been recently proposed in
[34]. It is based on two simple but fundamental observations. Firstly, 0∗

[m,T ](t), t =
m, . . . , T itself can be viewed as a time series of discrete probability distributions
due to the imposed convexity conditions in (13). Secondly, under the assumption
that the distributions 0∗

[m,T ](t), t = m, . . . , T are associated with a (hidden) time-
homogeneous and stationary Markov process, a model for the dynamics of the
cluster affiliations is readily given by (0 ≡ 0∗

[m,T ])

0†(t + 1)= 0†(t)P, (108)

where P ∈ RK∗×K∗ is a stochastic matrix, i.e., P is elementwise nonnegative and
the entries of a row sum up to 1.

Particularly, the dynamics in (108) allows the recursive prediction of 0̂[m,T+d],
e.g.,

0̂†(T + 1)= 0̂†(T )P (109)

with 0̂(T ) = 0∗
[m,T ](T ) and, finally, in combination with (107) leads to a self-

contained prediction scheme for the dynamics of the data under consideration.
This leaves us with the question how to estimate the stochastic matrix P from

the time series of affiliations. Of course, in general we can not expect that a matrix
P exists such that (108) exactly holds true. However, the FEM-BV methodology,
in particular the approach presented in the Section 2.c.iv, provides an elegant way
to deal with that situation by solving the following variational problem (cf. (42)):

T−1∑
t=0

∥∥0†(t + 1)−0†(t)P
∥∥2

2→min
P
, (110)
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subject to P being a stochastic matrix and 0 ≡ 0∗
[m,T ]. In order to study the

influences of external factors u(t) ∈ Rk , we additionally assume that the matrix
P = P(u(t)) can be decomposed as (cf. (44))

P(u(t))= P0+

k∑
l=1

ul(t)Pl, (111)

where the involved matrices satisfy the constraints (46)–(48). The final minimiza-
tion problem (110)–(111) with respect to the parameters P0, . . . , Pk ∈ RK∗×K∗ and
subject to the constraints (46)–(48) can be cast in a constrained quadratic program.
For details see the Appendix.

Next, suppose that an observation for xT+1 is available. What is the optimal
prediction for x̂T+2 conditioned on the additional observation xT+1? As motivated
in [34], instead of reanalyzing the updated time series (x0, . . . , xT+1) via the FEM-
BV approach and reapplying the prediction scheme described above, it is sufficient
to determine the optimal affiliation vector 0∗

[m,T+1](T + 1) simply by

γ ∗i (T + 1)=
{

1 if i = argmin j
{
g(xT+1, . . . , xT+1−m, θ

∗

j )
}
,

0 otherwise,
(112)

which by virtue of (108) and (107) yields the prediction x̂T+2. The generalization
of the conditional prediction in the presence of more than one new observation, say
(xT+1, . . . , xT+t ′), is straightforward. The resulting scheme is (r = 1, . . . , d)

(xT+t ′,2
∗)

via (112)
−→ 0∗

[m,T+t ′](T + t ′)
via (108)
−→ 0̂[m,T+t ′+d](T + t ′+ r)

via (107)
−→ x̂T+t ′+r . (113)

The remainder of this section is devoted to describing numerical strategies to
assess the prediction quality of the scheme given above. To this end, we compare
x̂T+k with standard prediction approaches such as the “zero” prediction model
frequently used in, e.g., the meteorological literature. Formally, it reduces to

x̂0
T+d ≡ xT . (114)

Furthermore, as frequently pointed out in this manuscript, stationarity is a widely
used and well accepted assumption in time series analysis. Thus, it is reasonable
to compare x̂T+d with the prediction x̂1

T+d resulting from an optimal stationary
substitute model, i.e. (analogously to (107))

x̂1
T+d = E

[
f
(
x̂1

T+d , . . . , x̂1
T+d−m, θ

∗
)]
, (115)

where θ∗ is derived3 from the time series under consideration.

3Numerically, this simply amounts to fix K = 1 in the course of the FEM-BV approach.



204 PHILIPP METZNER, LARS PUTZIG AND ILLIA HORENKO

The average relative prediction error of the d-step prediction scheme for a pre-
diction horizon [T+1, T+T ′] is then measured by

ed(T ′)
def
=

1
T ′− d + 1

T ′−d∑
t ′=T

∥∥xt ′+d − x̂t ′+d
∥∥

‖xt ′+d‖
, (116)

where ‖ ·‖ denotes a desired norm. That error is compared with the average relative
error ed

0(T ′) associated with the zero-prediction scheme and ed
1(T ′) resulting

from predicting via the stationary substitute model. See Section 5.e for a numeri-
cal example illustrating the described prediction schemes. Another possibility for
measuring the prediction error is given by the information-theoretical approaches
to model error assessment developed at the working group of A. Majda (NYU);
we refer the interested reader to, e.g., [55; 24] for more details on this matter.

5. Numerical examples

In this section we illustrate the presented FEM-BV methodology on various exam-
ples. In the first and second example we demonstrate the general feasibility of the
proposed method and discuss its properties on a simple model with known proper-
ties. In the third example, a modified version of the FEM-BV-k-means for periodic
angular data is developed and applied to analyze the conformational dynamics of
a small biomolecule. The fourth example deals with a problem in computational
biology and shows that the FEM-BV framework adapted for discrete data allows
us to analyze gene-sequences under minimal a priori assumptions. The analysis
of financial data is presented in the last example in which we also discuss the
usefulness of the self-contained prediction scheme presented in Section 4.

5.a. Toy model system I: FEM-BV-k-means. The k-means approach is a widely
used algorithm to cluster stationary data on the basis of geometric properties, i.e.,
the Euclidean distance to geometric centroids. However, even for low dimensional
examples k-means fails to identify the “right” clusters. In the first numerical ex-
periment we show for such a counter example that the additional information of
the temporal (persistent) ordering of the data is sufficient to separate geometric
clusters via of FEM-BV-k-means.

To this end we consider a time series of two dimensional data x(t)= (x1(t), x2(t))
generated via a mixture model consisting of a time dependent convex combination
of three (stationary) normal distributions,

xt ∼

3∑
i=1

γi (t)N(µi , 6i ) t = 1, . . . , 6000, (117)

where the weights (cluster affiliations) 0(t)= (γ1(t), γ2(t), γ3(t)) are deterministic
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Figure 2. Toy model I. Left: scatter plot of the a time series generated via (117) where
the parameters were chosen such that the data exhibits three geometric clusters. Right:
the graph of the cluster affiliations used as a persistent hidden process in parameter space
for the generation of the time series depicted in the left panel.

and prescribed. Particularly, 0(t) was chosen such that the (hidden) affiliation
process jumps only once from cluster one to cluster two and finally to cluster
three, i.e., ‖γ1‖BV = ‖γ3‖BV = 1 and ‖γ2‖BV = 2. For an illustration of 0(t)
see the right panel of Figure 2. As one can see in the scatter plot given in the
left panel of Figure 2, the means and covariance matrices (µi , 6i ), i = 1, 2, 3
were chosen such that a sufficiently long sample (here T = 6000) exhibits three
geometrically nonoverlapping clusters. However, the k-means algorithm for k = 3
failed to identify these clusters as illustrated in the left panel of Figure 3. Notice
that the misclassification of the data points is basically due to the different scales
of the x1 and x2 components of the data.
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Figure 3. Toy model I. Cluster affiliations of the data points resulting from the classical
k-means algorithm (left) and from the FEM-k-means method (right). Up to a few misclas-
sifications, the latter method led to the right assignment of the data points to the original
clusters, whereas the former one totally messed up.
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Next, we analyzed the time series with the FEM-BV approach which results
from the simple model in (6) and the model distance function in (9). Recall that
for C =∞ the average cluster functional admits an analytic solution for 0 and for
the cluster parameter 2 which both coincide with the respective update formulas in
the k-means algorithm (Section 2.a). Now the question is whether the persistence
of the prescribed cluster affiliations is sufficient to identify the three cluster while
using the same distance function as in the standard k-means approach?

To this end, we repeatedly launched the FEM-BV-k-means subspace algorithm
(cf. Section 2.b and (72)–(75)) for all combinations of

K = [2, 3, 4]×C = [2, 4, . . . , 12],

each time with a randomly drawn initial 0, until the global minimizer of the av-
erage cluster functional was found. For the respective optimal models we then
computed the modified AIC values via the Maximum-Entropy approach presented
in Section 3. For fixed K the graphs of m AI C(K ,C) as a function of C are given
in the left panel of Figure 4. The overall minimum is attained in K ∗ = 3,C∗ = 2
which are exactly the parameters of the original data. In the right panel of Figure 4,
we exemplarily illustrate the histogram of the residuals (6) of the right geometrical
cluster together with the graph of the fitted ME PDF (102) of order 3 which was
used to compute the modified AIC values. Finally, the correct (up to a few isolated
misfits) assignments of data points to the clusters based on the affiliation vector
0(t) is given in the right panel of Figure 3.

This simple but instructive example demonstrates that neglecting temporal per-
sistence in data may lead to misleading results even for toy examples. In con-
trast, besides yielding the correct partition of the data, the FEM-k-means-method
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Figure 4. Toy model I. Left: graphs of the (modified) AIC values (97) for fixed K as a
function of C. Right: the histogram of the residuals (6) of the right geometrical cluster
together with the graph of the fitted ME PDF (102) of order 3 (red line).
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combined with the model selection approach allowed us to reidentify the correct
parameters K = 3,C = 2.

5.b. Toy model system II: FEM-BV-PCA. In the first example, the geometrical
clustering of the time series basically relied on the separability via centroids, i.e.,
mean values. In the second example we demonstrate that even geometric cluster
with comparable means can be reidentified via the FEM-BV approach by addition-
ally incorporating spectral properties of covariances, i.e., principal components.

To this end, we consider time series of two dimensional data x(t) ∈ R2 of length
T = 10000 generated via

xt ∼ γ1(t)N2(0, 61)+ γ2(t)N2(0, 62). (118)

The prescribed weights (cluster affiliations) 0(t)= (γ1(t), 1− γ1(t)) are determin-
istic. For an illustration of γ1(t) see the right panel in Figure 5. The covariance
matrices 61 and 62 are chosen as

61 =

[
4 0
0 0.25

]
, 62(ρ)=

[
cos ρ sin ρ
−sin ρ cos ρ

]
61

[
cos ρ −sin ρ
sin ρ cos ρ

]
, (119)

where 62 results from rotating 61 by an angle ρ = 15 degrees. The scatter plot
of the time series generated via (118) is depicted in the left panel of Figure 5. As
one can see, the two clusters are almost identical and, by construction, are centered
around (0, 0). Therefore, any k-means clustering approach would fail to recover
the original temporal affiliation. The only chance to identify the (hidden) cluster
though is to cluster with respect to the eigenvectors of the (hidden) covariance
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Figure 5. Toy model II. Left: scatter-plot of a time series generated via the mixture model
in (118) consisting of a time dependent convex combination of two (stationary) normal
distributions with mean zero and covariance matrices given in (119) and a rotation angle
ρ = 15 degrees. Right: the prescribed affiliation function γ1(t) (solid line) completely
coincides with one obtained from the FEM-BV-PCA-analysis (red dashed line).
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Figure 6. Toy model II: part of the Viterbi path (1 ≤ t ≤ 1000) obtained from fitting a
two-dimensional stationary mixture model of two Gaussian distributions (via the GMM-
method) on the data shown in Figure 5.

matrices. But this is exactly the idea of the FEM-BV-PCA approach which will be
used here.

Before we present the results of the FEM-BV-PCA approach, we first apply the
GMM-method which is a classical and widely accepted method for unsupervised
clustering. We fitted (trained) a two-dimensional stationary mixture model of two
Gaussian distributions on the data via the Expectation-Maximization algorithm
[12]. Since Gaussians are involved in the time series generation, it is reasonable
to expect the GMM-method to be able to reidentify the parameters of the hidden
distributions. However, the estimated covariance matrices 6̃1 and 6̃2 significantly
differ from the original ones, indicated by, e.g., ‖62− 6̃2‖ = 5.2040.

The associated Viterbi path (partially depicted in Figure 6) reveals the reason for
the failure; it is highly oscillatory rather than being persistent. Consequently, the
majority of data points are incorrectly affiliated with regard to the original clusters
which, ultimately, leads to the incorrect estimation of the covariance matrices. The
irregularity of the Viterbi path, in turn, is a direct consequence of the strong station-
ary assumption underlying the GMM-method, i.e., time-independent distribution
parameters and time-independent affiliation weights.

In contrast, as will be demonstrated in the following, the FEM-BV-PCA-method
(see Section 2.c.ii) succeeded as it takes the persistence of the hidden dynamics
in the parameter space into account. Analogously to the procedure described in
the previous example in Section 5.a, we globally minimized the average cluster
functional resulting from the model distance function in (27) via the subspace
algorithm for all combinations of K ∈ {1, 2, 3} and C ∈ {2, 4, 6, 8, 10, 14, 20}.
The minimum of the corresponding modified AIC values is attained for K ∗ = 2
and C∗ = 8, which are exactly the parameters used for the time series generation.
Even more importantly, the numerically obtained affiliation vector is identical with
the original one (see right panel of Figure 5).
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5.c. Conformation analysis of a biomolecule (trialanine): FEM-BV-k-means.
The biological function of a biomolecule is strongly characterized by its ability to
assume almost constant geometrical configurations, referred to as conformations.
More precisely, a conformation denotes a mean geometrical configuration of a
molecule which is almost stable (metastable, persistent), i.e., the molecule’s geom-
etry wiggles around that configuration for a long period of time before it rapidly
switches to another conformation. For example, it is known that conformations
of certain proteins are responsible for severe human diseases [51]. For details on
the analysis of the conformational dynamics of molecules we refer the interested
reader to, e.g., [69] and the references therein.

It is common to analyze the conformational dynamics of a (bio-)molecule in
internal coordinates such as torsion angles rather than to consider the time series
of cartesian coordinates of all atomic positions. The reason is that torsion angles
are invariant with respect to translation and rotation of the molecule and, more
importantly, tremendously reduce the dimensionality of the time series. However,
the (nonlinear) projection of the cartesian coordinates on the torsion angle space
deflects the original dynamics and can lead to an incomplete picture of the confor-
mational dynamics of the molecule. This is in particular true if only a subset of
torsion angles is considered because of, e.g., numerical or statistical reasons. Con-
sequently, conformations which are geometrically distinguishable in the complete
torsion angle space might (completely) overlap in the reduced space. Thus, the
identification of conformations via geometrical clustering of incomplete observa-
tions of torsion angles is an ill-posed problem.

In the traditional transfer operator (TO) approach [65] to conformational dy-
namics the problem is addressed by assuming that the underlying dynamics in the
incomplete torsion angle space is a reversible, stationary and time-homogeneous
Markov process. Alternatively, we propose to tackle the ill-posedness by regular-
ization of the underlying persistent (metastable) dynamics in the BV sense and to
identify conformations via a modified FEM-BV-k-means approach.

To this end, we consider in this example a time series of three torsion an-
gles 8,9 and � obtained from a molecular simulation of the trialanine molecule
schematically illustrated as a ball-stick representation in the left panel of Figure 7.
The simulation was performed in vacuum at constant temperature and pressure
such that the resulting time series can be considered stationary for a sufficiently
long simulation time T . The details of the simulation procedure can be found in
[60]. As one can see in the right panel of Figure 7, the dynamics of the torsion
angles exhibits a strong persistence or metastability.

Recalling that the torsion angles are periodic on [−π, π], the 3d-scatter plot
in the left panel of Figure 8 clearly reveals five geometrical clusters indicating
five conformations. The projection on the two torsion angles 8 and 9, however,
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Figure 7. Biomolecule: molecular simulation of the trialanine molecule (left) reveals its
conformational dynamics observed in the time series of three torsion angles (right).
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Figure 8. Biomolecule: recalling the periodic nature of torsion angles, the scatter-plot
of the full time series (left) reveals five conformational clusters whereas the scatter-plot
of the projected time series (xt ) = (8t , 9t ) (right) suggests the existence of only three
conformations.

suggests the existence of only three conformations as illustrated in the right panel
of Figure 8. Consequently, the five clusters can only be recovered in the projection
by additionally capturing the inherent persistence of the dynamics. This will be
demonstrated in the remainder of this example.

To understand the following preprocessing steps, we briefly recall the transfer
operator approach to conformation dynamics. The basic idea is to represent the
dynamics underlying the time series of torsion angles as a reversible, stationary and
time-homogeneous Markov chain defined on a suitable discretization of the torsion
angle space, e.g., by boxes. The spectrum of the associated transition matrix P ,
then allows the characterization and extraction of the conformations as metastable
subsets via, e.g., the robust Perron-cluster cluster analysis (PCCA+) [14]. To be
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more precise, let λ1, λ1, . . . , λn be the first n dominant eigenvalues of P , i.e.,

1= λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. (120)

If a spectral gap exists, i.e., if one can find an index K such that |λK |� |λK+1|, then
one can prove that the discrete state space can be decomposed into K metastable
subsets (conformations), say A1, . . . , AK , based on the corresponding dominant
eigenvectors [11; 66; 42; 13]. A measure for the total metastability of the resulting
decomposition is then given by

η(A1, . . . , AK )=

K∑
i=1

P(Ai , Ai ), (121)

where
P(Ai , Ai )= P[x1 ∈ Ai |x0 ∈ Ai ]

is the (time-homogeneous) probability that the dynamics is in Ai after making a
transition out of Ai .

Accordingly, to ensure Markovianity while preserving the persistence, the orig-
inal time series was further subsampled by picking every 10-th time step resulting
in a time series (xt)= (8t , 9t) of total length T = 54455. Then, the 2-dimensional
space spanned by the torsion angles 8 and 9 was discretized into 30× 30 equidis-
tantly sized boxes and we ended up with a 372-state Markov chain since only 372
boxes are visited by xt .

The spectral gap between the third and fourth dominant eigenvalue (see left
panel in Figure 9) suggests an optimal decomposition into three clusters showing
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Figure 9. Biomolecule. Left: six dominant eigenvalues of the transition matrix P ∈
R372×372 and their confidence intervals, resulting from a 30× 30 box discretization of
the state space spanned by 8 and 9. Right: for fixed K = 3, 4, 5, 6 the graphs of the
mAIC values as a function of C obtained via the Maximum-Entropy approach with order
three. The minimum is attained for K∗ = 5 and C∗ = 40.
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Figure 10. Biomolecule. Decomposition of the time series (xt ) = (8t , 9t ) into five
clusters via periodic FEM-BV-k-means (upper left) and the TO approach (upper right).
The same decomposition of the time series visualized in a full three-dimensional feature
space (xt )= (8t , 9t , �t ) reveals the correct identification of the conformations (lower
left) by the FEM-BV-k-means method whereas the TO approach is not able to recover
them from the incomplete observation in xt (lower right).

that the TO approach fails to capture the persistence of the dynamics leading to five
conformations. Furthermore, as illustrated by the error bars, the high uncertainty4

of the fifth and sixth dominant eigenvalue indicates that they are statistically in-
distinguishable and so are the corresponding eigenvectors. Hence, any attempt to
decompose the state space into five clusters by additionally considering the fourth
and, particularly, the fifth dominant eigenvector would fail to properly separate
the conformations. This is confirmed in the right lower panel of Figure 10 and
by the fact that the total metastability (121) for the decomposition resulting from
the TO approach has the value ηTO = 4.106, significantly lower than the value
ηFEM = 4.900 resulting from the periodic FEM-BV-k-means method to be pre-
sented below.

4Based on a 800,000-member transition matrix ensemble generated via a sampling method intro-
duced in [57].
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From a more general viewpoint, the high uncertainty in the (less) dominant
eigenvalues reflects the ill-posedness of the cluster problem in the presence of
incomplete data. Hence, an appropriate regularization is needed such as provided
in the variational FEM-BV approach.

As demonstrated in Section 5.a, the simplest way to geometrical clustering while
taking persistence into account is the FEM-BV-k-means approach. The model
distance function in (9), however, does not capture the periodic nature of the data.
Fortunately, this can easily be fixed by adopting a distance model function defined
on the d-dimensional torus:

g(xt ,2t)=

d∑
j=1

∥∥ω([xt ] j )−ω([2t ] j )
∥∥2

2,

with ω(α)= (cosα, sinα) ∈ R2, (122)

where [y] j denotes the j-th component of y ∈ Rd . A straightforward calculation
shows that the average cluster functional associated with (122) attains for given
0(t) a local minimum in θ∗i ∈ Rd , elementwise given by

[θ∗i ] j = tan−1
∑T

t=0 γi (t) sin[xt ] j∑T
t=0 γi (t) cos[xt ] j

j = 1, . . . , d. (123)

Via the subspace algorithm, we globally minimized the average cluster func-
tional resulting for all combinations of K ∈ {3, 4, 5, 6} and C ∈ {10, 20, . . . , 60}.
The mAIC values are plotted in the right panel of Figure 9. The overall minimum
is assumed in K ∗ = 5 and C∗ = 40 suggesting the existence of five conformations.
Indeed, the according decomposition of the full time series (left lower panel of
Figure 10) based on the 2-dimensional clustering (left upper panel of Figure 10)
shows that the FEM-BV approach succeeded in identifying the conformations most
correctly.

In this example we have demonstrated that the FEM-BV-k-means approach
adapted for periodic data allows us to identify all of the relevant conformations
of a biomolecule based on incomplete torsion angle observations. In particular, we
have shown that the combination of BV-regularization with the model selection
via the modified AIC does not only yield the correct number but also the correct
assignment of the analyzed data to proper conformations. In contrast, although the
underlying assumptions necessary for formal applicability of the TO approach (e.g.,
homogeneity and Markovianity) are formally fulfilled for the analyzed time series,
it was demonstrated that the classical transfer operator approach can suffer from
the ill-posedness of the clustering problem resulting from the strong overlapping of
different conformational states in the reduced representations. The current example
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demonstrates that this ill-posedness can result in misleading conformational decom-
positions in context of the TO approach.

5.d. Yeast DNA. One of the major challenges in bioinformatics is the identifica-
tion of genes from biological data. In this example, we approach that problem with
the FEM-BV-categorical method derived in Section 2.c.iii and compare the results
to classical methods such as the unsupervised HMM.

Gene finding is the identification of coding (exons or genes) and noncoding
(introns) regions in nucleic acids (DNA and RNA) based on sequences of codons
which specify the amino acid production during the protein synthesis. A codon is
a sequence of three nucleotides out of the four possible nucleic bases adenine (A),
guanine (G), thymine (T) and cytosine (C). Thus, a single codon can code for a
maximum of 64 amino acids.

Traditional approaches to gene finding are based on supervised machine learn-
ing methods such as supervised HMMs [49], and rely on extensive previous training
and a high amount of a priori biological knowledge. Particularly, it is assumed that
the hidden process switches exactly between two states, coding and noncoding
regions, and that it is a stationary Markov process.

In contrast to the supervised methods, we propose the FEM-BV approach based
on the categorical model introduced in Section 2.c.iii as an unsupervised approach.
We exemplify the usefulness of the method by clustering a sequence ct of T =
10′000 codons resulting from the first 30′000 nucleotides of the first chromosome of
Saccharomyces cerevisiae, the ordinary yeast. The data is publicly available at [59].
Notice that in the variational approach the assumption of persistence corresponds
to the biological assumption that coding and noncoding regions are each connected.

After identifying each codon ct with a discrete state st ∈ S = {1, . . . , 64}
we globally minimized the average cluster functional in (35) (resulting from the
model distance function in (34)) for all combinations of K ∈ {1, . . . , 3} and C ∈
{4, . . . , 10, 15, 20, 30, 40, 50}. Unlike to the previous examples where we ap-
plied the Maximum-Entropy approach, here we computed the likelihood function
L(K ,C), involved in the modified AIC value (97), by exploiting that the sta-
tionary cluster parameters θ1, . . . , θK are probability distributions. Consequently,
L(K ,C) takes the form,

L(K ,C)=
T∏

t=1

K∑
i=1

γi (t)θi (st). (124)

As one can see in Figure 11, the optimal substitute model is attained for K ∗ = 2
and C∗ = 6. The interpretation of the two clusters as a coding and a noncoding
model is substantiated by comparing the associated affiliation function γ1(t) with
known positions of the genes in this part of the DNA sequence. As one can see
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Figure 11. Yeast DNA. The minimal mAIC value is assumed for K∗ = 2 and C∗ = 6
which, particularly, is consistent with the biological fact that codons can be divided into
coding and noncoding regions.

in the left panel of Figure 12, the affiliation path γ1(t) of the first cluster separates
mostly correctly between genes and noncoding regions. Only the gene SEO1 is
not identified which is in contrast to its graphical appearance and length in the left
panel of Figure 12. This conflict, however, can be resolved by the experimental
fact that this particular region encodes a protein but it does not exhibit a persistent
sequence of coding codons because it is highly fragmented, for details see [59].
This violates the persistence assumption inherent to the FEM-BV methodology.

From considering the highly oscillatory Viterbi path of an unsupervised two-
state HMM fitting (see right panel of Figure 12) one sees that the assumption of
stationarity impedes the traditional approaches to identify genes correctly unless
a large amount of biological knowledge is incorporated via supervised learning
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Figure 12. Yeast DNA. Left: a comparison of γ1(t) with the positions of some genes
justifies the interpretation of the two optimal clusters as coding and noncoding models.
Right: the first part of a Viterbi path of an unsupervised two-state HMM fitting reveals
that traditional methods assuming stationarity fail to capture the inherent persistence in
codon sequences.



216 PHILIPP METZNER, LARS PUTZIG AND ILLIA HORENKO

strategies. In contrast, respecting the inherent persistence in the sequence of the
codons via the variational FEM-BV approach allowed us to identify most of the
known gene positions. Even more important, the detection of coding and noncod-
ing regions, i.e., K ∗ = 2, was part of the result and not a priori included knowledge.

5.e. Financial data for commodities. In the final example, a time series of daily
closing prices of futures on oil is analyzed in order to address two important
question: Does the FEM-BV approach allow us to identify market phases (e.g.,
economic crises) and how do external factors affect the evolution of financial data.
In the remainder of the example, we apply the prediction scheme introduced in
Section 4 and compare its prediction skills with those of simple prediction methods.

In 1989 J. Hamilton [27] introduced a numerical method to identify what he
called hidden market phases in financial data which can be seen as the first combi-
nation of nonstationary time series analysis and mathematical finance. Since then
the method has been generalized and extended to multidimensional data. Promi-
nent phase-identification techniques are based, e.g., on linear vector autoregressive
(VAR) models [48], wavelets [2], Kalman filters [45], (G)ARCH [15; 7] or perfect
knowledge about the hidden process [10]. These methods, however, suffer from
infeasible numerical complexity in high dimensions (curse of dimensions) or are
based on strong model assumptions on the underlying dynamics, e.g., stationarity
or Markovianity.

The time series (xt) under consideration here consists of daily closing prices
of futures on the commodity oil for the time horizon 2005–2009 [73]. Futures are
very sensitive to changes in market phases because they are broadly traded on spec-
ulative reasons. The graph of prices is illustrated in Figure 13. Despite the noisy
fluctuations of the daily prices, one can clearly see two tendencies or market phases.
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Figure 13. Commodities. Price of oil futures for the timeframe 2005 to 2009. The first
90% of the time series (indicated by the horizontal dashed line) is used as a training set
for computing the optimal substitute model. The prediction skill of the nonstationary
prediction scheme derived in Section 4 is then assessed on the remaining 10%.
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Recall that we are interested in detecting market phases and, more importantly,
how their dynamics are affected by external factors. As explained in Section 2.c.iv,
the FEM-BV-Markov lends itself well to answer the questions since it allows us to
incorporate external factors, specifically.

To this end, the time series of daily prices (xt) is coarse grained by assigning
(xt) to one of the following categories: (i) The price increased significantly, (ii) no
major movement was detected or (iii) the price dropped by a significant amount.
Formally, we label the continuous prices by

st
def
=


1 if xt − xt−1 > ξ,

−1 if xt − xt−1 <−ξ,

0 otherwise,
(125)

where the threshold ξ separates noise from significant changes and was set to the
standard deviation of the time series. This data preparation approach is similar to
the one introduced in [27] to detect changes in the Markovian market dynamics.

The transformed time series (st), t = 0, . . . , T now takes values in the discrete
state space S = {−1, 0, 1}. Analogously to the proceeding in Section 2.c.iii, we
represent a state st by a Dirac-distribution πt which is defined for the discrete states
s =−1, 0, 1 as (cf. (30))

πt(s)
def
=

{
1 if s = st ,

0 otherwise.
(126)

The resulting time series (πt), t = 0, . . . , T encoding the inherent tendencies
of the price evolution in terms of probability distributions can now be analyzed
by the Markov regression model in (39). More importantly, the FEM-BV-Markov
approach allows us to investigate the influence of external factors. Specifically, we
would like to understand to which extent the price evolution is influenced by the
overall state of the US economy and the climate situation, especially, by the effects
of El Niño and La Niña [72].

To this end, the following external factors are considered:

u1 the daily closing value of the Dow Jones Industrial Average (available at [75])

u2 the El Niño-Southern Oscillation (ENSO) index 3.4 (available at [47]).

To test on memory effects, three additional external factors are taken into account:

u3 the Dow Jones shifted (delayed) by one day,

u4 the ENSO index delayed by 30 days,

u5 and the ENSO index delayed by 60 days.

Finally, the external factors are scaled to the interval [0, 1] to ensure compara-
bility of the influences as the Dow Jones takes values around 10, 000 while the
ENSO takes values between ±1.5.
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Besides the analysis of the data, the main goal of this example is to demonstrate
the skills of the prediction scheme presented in Section 4. Therefore, the time
series (πt) is divided into a training set, containing the first 90% of the data and a
prediction set, consisting of the remaining data. The analysis via FEM-BV-Markov
is based only on the training set, simulating the lack of knowledge about the future,
so that the prediction can then be compared to the prediction set.

Next, we describe in detail the clustering of the training set via the FEM-BV-
Markov approach and the subsequent optimal model selection. We globally min-
imized the average cluster functional resulting from the model distance function
in (42) for all combinations of K ∈ {1, . . . , 4} and C ∈ {3, . . . , 10} and all 25 pos-
sible subsets of combinations of external factors (ranging from no external factor
to all five factors).

Analogously to the proceeding in the previous example in Section 5.d, we ex-
ploit the fact that the average mixture model associated with the FEM-BV-Markov
approach (cf. Section 2.g and (106)),

π̂
†
t+1 =

K∑
i=1

γi (t)π
†
t P (i)(u(t)), (127)

preserves probability, i.e., π̂t+1 is again a probability distribution. Consequently,
the likelihood function L(K ,C) (involved in the modified AIC value (97)), here
can be computed via (127) by

L(K ,C)=
T−1∏
t=0

Pπ̂t+1[st+1] =

T−1∏
t=0

π̂t+1(st+1). (128)

The overall minimum of the modified AIC value with respect to all combinations
of clusters’ numbers, persistence values and all combination of external factors
is attained for K ∗ = 2, C∗ = 6 and without any external factors. That outcome
is consistent with the weak efficient-market hypothesis in [16], stating that any
information publicly available is instantly included in the price. The associated
affiliation vector (depicted in Figure 14) more or less separates the time horizon
of the training data set into two persistent regions. Interestingly, the time point of
change at the end of 2008 from cluster 1 to cluster 2 is very close to the beginning
of the financial crisis of the late 2000s.

The interpretation of 0∗(t) as an indicator of market phases is further substanti-
ated by looking at the constant transition matrices associated with the two clusters

P (∗1)
0 =

 0.0448 0.8955 0.0597
0.0989 0.8112 0.0899
0.1167 0.8000 0.0833

, P (∗2)
0 =

 0.2453 0.4528 0.3019
0.4030 0.3433 0.2537
0.3333 0.3778 0.2889

. (129)



ANALYSIS OF PERSISTENT NONSTATIONARY TIME SERIES AND APPLICATIONS 219

2005 2006 2007 2008 2009
1

2

Year

C
lu

s
te

r 
a
ff
ili

a
ti
o
n

D
o
w

 J
o
n
e
s
 p

e
a
k

Figure 14. Commodities. The cluster affiliation γ ∗1 (t) associated with the optimal sub-
stitute model with K∗ = 2, C∗ = 6 and no external factors for the training set (first 90%
of the data). The majority of the second cluster is located from the end of 2007 onwards,
indicating a relation to the financial crisis.

Recalling that an entry Pi j , i, j ∈ {−1, 0, 1} of stochastic matrix P with respect
to to S denotes the conditional probability that the associated Markov chain jumps
from state i to state j , the second column in P (∗1)0 indicates that the noise state
s = 0 is metastable. In other words, cluster (market phase) i = 1 is characterized by
small movements without any specific tendencies. In contrast, the transition matrix
P (∗2)0 of the second cluster does not show any dominating state as the transition
probabilities are close to each other, thus, indicating no specific direction in price
movement. Additionally, the second column suggests that the average change in
price is increased compared to the first cluster. Both observations together imply
an increase of the variance in the price evolution which is consistent with the obser-
vations in [6; 15] stating that economic crises are characterized by high variance
whereas low-variance phases correspond to the normal state of the market.

The analysis was performed for different ending times of the training set, though
a relevant influence of the external factors could not be observed. However, if the
training set does not include the peak in the price, the analysis yields in select-
ing the stationary (K ∗ = 1) model. This is to be expected, as the second cluster,
representing the “crisis state”, has insufficient size to be statistically relevant.

The remainder of this section is devoted to the prediction scheme introduced
in Section 4. Rather than predicting the price evolution, we adapt the scheme for
predicting the probability distributions π̂t with respect to the discrete state space
S for t ≥ T + 1.

The fitting scheme associated with the optimal model (K ∗ = 2, C∗ = 6 and
without any external factors) reduces to

π̂
†
t+1 =

2∑
i=1

γ ∗i (t)π
†
t P (i)0 t = 0, . . . , T, (130)
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where P (∗1)0 and P (∗2)0 are given in (129). In order to extend (130) to t ≥ T + 1,
we estimated a stationary Markov regression model P∗(u(t)) based for the time
series (0∗(t)) of optimal affiliation vectors. Consistently with the analysis of (πt),
we thereby considered all combinations of external factors. It turned out that the
optimal stationary Markov regression model is independent of any external factors
too. Formally, we have P∗(u(t)) = P∗ and the prediction scheme for 0̂(t) takes
the form

0̂
†
[0,T+d](T + r)= (0∗

[0,T ])
†
(T )

[
P∗
]r
, r = 1, . . . , d. (131)

Combining (131) with (127) defines a self-contained nonstationary online pre-
diction scheme analogously to the scheme given in (113). We compare our scheme
with standard prediction schemes based on:

(1) An independent stationary model formally given by

π̂0
t+1 = µ, µ(s) def

=
1

T + 1

T∑
t=0

χs(st), s ∈ {−1, 0, 1}. (132)

(2) A stationary Markov regression model estimated from the time series (πt)

(without any external factors),(
π̂1

t+1
)†
=
(
π̂1

t
)†

P. (133)

(3) A zero-prediction model, where the prediction is the last known state

π̂
(2)
t+1 = π̂

(2)
t . (134)

(4) An artificial neural network, as used in pattern recognition (see [5], for in-
stance), using the external factors as input variables. For the test we have
chosen the optimal network configuration (i.e., number of hidden neurons,
transfer functions, etc.) with respect to prediction quality.

The average relative prediction error of the five d-step prediction schemes for
a prediction horizon [T + 1, T + T ′] on the prediction set is measured similar to
(116):

ed(T ′)
def
=

1
T ′− d + 1

T ′−d∑
t ′=T

‖xt ′+d − x̂t ′+d‖2
√

2
, (135)

where the additional factor 1
√

2
is introduced to normalize the error for the worst

prediction (the prediction of one state having probability one that is not fitting
the realization) to 1. As one can see in Figure 15 (left panel), our nonstationary
scheme outperforms the standard schemes. The highly oscillatory behavior of the
zero-prediction comes from the fact, that the error of a single prediction is either
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Figure 15. Commodities. The five prediction schemes (see page 220) are compared.
Shown are the graphs of the average relative prediction error ed (T ′) (left) and the median
of the relative prediction error (right) as functions of the prediction depth d . They clearly
reveal that the nonstationary prediction strategy outperforms the standard schemes.

0 or 1, thus maximizing the variance of the prediction and the small sample size
of the predicted time frame. More precisely, when using the median (or 50%-
quantile) of the error instead of the average, shown in Figure 15 (right panel), the
zero-prediction is more likely wrong than right.

To sum up, we can now answer the questions from the beginning of this section:
does the FEM-BV approach allow us to identify market phases (e.g., economic
crises) and how do external factors affect the evolution of financial data? First, the
FEM-BV-Markov model does not only allow the identification of market phases,
but also results in a more accurate model of the market that can be used to predict
further movements. Second, in line with the (weak) efficient market hypothesis, the
influence of the general US economy, represented by the Dow Jones, and the El
Niño/La Niña events were shown the be insignificant with respect to the analyzed
data. However, we are aware of the fact, that this might be a result of the insufficient
length of the analyzed time series and not a general fact.

We also want to emphasize, that we performed a qualitative analysis instead of
a quantitative, as we coarse grained the data to overcome noise effects. While the
results might be of no great practical use for investment strategists, it can be consid-
ered relevant for risk management, as we were able to verify the fact, that financial
unstable market situations yield in a higher volatility. This is a nonnegligible part
of most definitions of financial and economical risk.

6. Conclusion

A variational approach to nonstationary time series analysis developed in the last
years is presented as a unified framework for analysis, discrimination and predic-
tion of various types of observed processes. It was demonstrated, that persistence
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is one of the main characteristic features of many real life processes and that an
appropriate mathematical regularization strategy is the clue to its efficient recovery
from the observation data. Moreover, a unified model discrimination approach is
suggested based on a modified formulation of the information theoretic criterion
AIC. Furthermore, the paper contains a first systematic comparison of the FEM-
BV methodology with standard time series analysis methods and their underlying
mathematical assumptions. The framework is demonstrated on various examples
ranging from simple toy models to the analysis of real-world processes such as
biomolecular dynamics, DNA-sequence analysis and financial risk prediction.

The effect of nonstationarity is captured in the FEM-BV approach by identify-
ing a (hidden) process in parameter space describing transitions between differ-
ent regimes which are characterized by local models and their stationary param-
eters. The presented clustering scheme involves several numerical optimization
techniques combining elements of convex optimization, linear programming and
Finite Element methods. This allows the employment of fast and numerically ro-
bust solvers which ensure an efficient analysis of high dimensional time series. As
demonstrated in the present paper, the variational framework is very flexible with
respect to different (non-)dynamical scenarios because only the estimators for the
optimal parameters have to be provided either analytically or numerically whereas
the estimation of the transition process remains general. Therefore, the FEM-BV
approach can be straightforwardly adapted and redesigned to new model functions
and new applications.

In contrast to classical methods such as HMM, GMM, neuronal networks or
local kernel methods, the approach presented here does not rely on a priori prob-
abilistic assumptions (e.g., stationarity, independence, Gaussianity, Markovianity,
etc.). Instead of the probabilistic assumptions made in standard statistical methods,
here firstly it is assumed that the dynamics under consideration are persistent, i.e.,
the parameters of the process vary much more slowly than the process itself. Sec-
ondly, it is assumed that the hidden process in parameter space can be described by
a function with bounded variation. The latter assumption leads to a direct control
of the regularity of the hidden process within the course of optimization and, thus,
allows us to explicitly incorporate persistence or metastability. For the nonregu-
larized case, it was demonstrated that standard methods such as k-means or (time-
dependent) probabilistic mixture models are recovered by the FEM-BV approach
as special cases. Although these assumptions are quite general, it is important to
emphasize that their fulfillment is crucial for postprocessing and interpretation of
the obtained results.

Another aim of this paper was to present a novel self-contained model selection
strategy to simultaneously identify the optimal number of clusters and the opti-
mal regularity of the paths in parameter space. As demonstrated in the numerical
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examples, the clusterwise approximation of the scalar residuals via maximum en-
tropy distributions in conjunction with the subsequent evaluation of the modified
Akaike information criterion successfully allows us to identify the essential nonsta-
tionary patterns in various time series. The maximum entropy ansatz follows the
philosophy of the FEM-BV approach in that it requires as less as possible explicit a
priori knowledge. The central mathematical assumption underlying this strategy is,
however, that the scalar residuals are independent. Hence, further research has to be
done to generalize this setting in order to cover the case of dependent residuals by,
e.g., fitting scalar regression models by means of the maximum entropy principle.

Furthermore, a unified concept for nonstationary time series prediction is pre-
sented. While predicting within the trained time span is reduced to evaluation
of mixture models, the construction of predictive models beyond that time span re-
quires the understanding of the underlying (learned) transition process in parameter
space. To this end, the process of affiliation vectors interpreted as a time series of
discrete probability distributions was approximated in terms of a (single) discrete
time Markov chain. Predicting an affiliation vector for t = T + 1 then allows the
approximation of xT+1 via a mixture model and so on. However, we are aware that
the resulting self-contained prediction strategy crucially relies on the assumption
that the memory depth of the affiliation process is at most one. This issue is also
the matter of future research.

Appendix

In the appendix we compactly state the constrained quadratic program characteriz-
ing the optimal Markov regression model in the FEM-BV-Markov approach. For
details see Section 2.c.iv).

Let vec(P (i)l ) ∈ RM2
be the vector which results from concatenating all columns

of the matrix P (i)l , i.e.,

vec(P (i)l )
def
=
(
P (i)l ( · , 1), . . . , P (i)l ( · ,M)

)
∈ RM2

. (136)

Furthermore, we denote the concatenation of all matrices P (i)l , l = 0, . . . , k as

p(i) def
=
(
vec(P (i)0 ), . . . , vec(P (i)k )

)
∈ R(k+1)M2

. (137)

If we define

b(i) =−2
T−1∑
t=0

γi (t)b(t) and H (i)
= 2

T−1∑
t=0

γi (t)H(t) (138)

with u0(t)≡ 1,

b(t)=
(
u0(t)vec(πtπ

†
t+1), . . . , uk(t)vec(πtπ

†
t+1)

)
∈ R(k+1)M2

(139)
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and H(t) ∈ R((k+1)M2)×((k+1)M2) consists of blocks Hl1l2(t), l1, l2 = 0, . . . , k with

Hl1l2(t)= ul1(t)ul2(t)diag(πtπ
†
t , . . . , πtπ

†
t ) ∈ RM2

×M2
(140)

then for fixed 0 the solution of the variational problem with respect to i-th local
stationary Markov model 2(i) = (P (i)0 , . . . , P (i)k ),

L(2(i), 0)=
T−1∑
t=0

K∑
i=1

γi (t)
∥∥∥∥πt+1

†
−πt

†
(

P (i)(0) +
k∑

l=1

ul(t)P
(i)
(l)

)∥∥∥∥2

2
→min

2(i)
, (141)

subject to the constraints (45)–(48) is given by the solution of

L( p(i))= 1
2

〈
p(i), H (i) p(i)

〉
2+

〈
b(i), p(i)

〉
2→min

p(i)
(142)

subject to the following linear constraints:

• Nonnegativity constraints (45):

(IdM2, 0, . . . , 0)︸ ︷︷ ︸
∈RM2×(k+1)M2

p(i) ≥ 0, (143)

• Constraints (46) and (47):
R(1M) 0 0 0

0 R(1M) 0 0
. . .

0 0 0 R(1M)


︸ ︷︷ ︸

∈R(k+1)M×(k+1)M2

p(i) =


1M

0
...

0

 (144)

with R(1M)= (IdM , . . . , IdM) ∈ RM×M2
.

• Overall nonnegativity constraint in (48):(
IdM2, û1IdM2, . . . , ûkIdM2

)︸ ︷︷ ︸
∈RM2×(k+1)M2

p(i) ≥ 0 (145)

for all (û1, . . . , ûk) ∈ {a1, b1}× . . .×{ak, bk} with

al =min{ul(t) : t = 0, . . . , T } and bl =max{ul(t) : t = 0, . . . , T }. (146)
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APPROXIMATION OF PROBABILISTIC LAPLACE
TRANSFORMS AND THEIR INVERSES

GUILLAUME COQUERET

We present a method to approximate the law of positive random variables defined
by their Laplace transforms. It is based on the study of the error in the Laplace
domain and allows for many behaviors of the law, both at 0 and infinity. In most
cases, both the Kantorovich/Wasserstein error and the Kolmogorov–Smirnov er-
ror can be accurately computed. Two detailed examples illustrate our results.

1. Introduction

The topic of Laplace transform inversion is an old problem which relates to physics,
probability theory, analysis and numerical methods. The number of publications
dedicated to it is so large that it is possible to write surveys of surveys on the
subject; see [5, Chapter 9]. If f is a positive integrable function on R+, we define
the Laplace transform operator as follows,

L[ f (x)](t)= L(t)=
∫
∞

0
e−t x f (x) ds,

When L is given, the inverse Laplace transform operator L−1 applied to L yields
the original function f . Two of the most important results related to L−1 are the
Bromwich integral (see section 2.2 in [5]):

L−1
[L(t)](x)= f (x)=

1
2π i

∫ c+i∞

c−i∞
ext L(t) dt, (1-1)

for some c chosen so that the path of integration makes sense for L , and the Post–
Widder formula: (see [8], section VII.6):

f (x)= lim
n→+∞

(−1)n

n!

(n
x

)n+1
L(n)(n/x). (1-2)

However, there are many other ingenious ways to obtain f from L . Most tech-
niques of Laplace transform inversion belong to one of the five families of methods
listed in Table 1.

MSC2010: primary 65R32; secondary 65C50.
Keywords: approximation, Laplace transform inversion, completely monotone functions,

Kantorovich distance.
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Method based on References

i) the Bromwich integral [4], [26], [5, Chapters 4 and 6]
ii) the Post–Widder formula [2], [25], [24], [5, Chapter 7]

iii) Fredholm equations of the first kind [7], [22, §12.5-3], [14], [5, Chapter 8]
iv) rational approximation [12], [15], [16], [5, Chapter 5]
v) series expansion [5, Chapter 3]

Table 1

The references related to these methods are of course far from exhaustive.
All of these approaches lead to numerical approximations. A recent survey on

the efficiency of some of these procedures was recently carried out by Masol and
Teugels in [18]. The families of techniques can further be categorized into two
broader sets:

• i) + ii) + iii): methods for which the initial function, L , is exact, but the
inversion approximate (discretization of the integral in (1-1) or choice of a
large, but finite, n in (1-2))

• iii)+ iv)+v): methods for which the inversion is exact, but the target function
is an approximation of the initial Laplace transform

(Some methods from the third family can belong to both sets.)

The approximations stemming from the second set of techniques take the form

L(t)≈
N∑

k=1

ck Lk(t) ⇐⇒ f (x)≈
N∑

k=1

ck fk(x) (1-3)

The core idea of this paper is to take advantage of the properties of Laplace
transforms in probability to choose the Lk (and thus fk) wisely, depending on some
properties of f . We present an iterative procedure which progressively reduces the
Kantorovich error induced by the approximation. The main contribution of our
approach is that when f is bounded from above, this method provides a uniform
maximum for the error made on the cumulative distribution function. Such results
are quite rare in the literature, but one reference in a slightly different setting is [23].

This method can be used, for instance, to approximate the law of positive in-
finitely divisible distributions, which are usually characterized by their Laplace
transform.

The paper is organized as follows: in Section 2, we detail some of the prop-
erties of f which can be inferred from L and which will be used further on. In
Section 3, we detail our method and some error related results, and, lastly, we
provide numerical examples in Section 4.
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2. Some properties of the density

The aim of this section is to recall a few classical results which show that many
properties of f can be derived from a thorough study of L .

We begin with some notations. Throughout the paper, we will consider two
positive random variables X and Y with densities f and g, cumulative distribution
functions (CDFs) F and G and Laplace transforms L and M respectively. We also
denote by F̄(x) = 1− F(x) and Ḡ(x) = 1−G(x) their survival functions. The
function L (resp. F) will be the original Laplace transform (resp. CDF) and M
(resp. G) its approximation.

For a function f = f (0), f (n) will denote its n-th derivative and in some asymp-
totic settings, we will write f (x)∼ g(x) for f (x)/g(x)→ 1.

Support. The first basic piece of information required to characterize a distribution
is its support.

Theorem 2.1. Let A denote the left point of the support of the positive random
variable X. Then if B is the set of real numbers b such that ebt L(t) = O(1) as
t→∞, we have

A = sup
b∈B

b

Proof. If A = 0, then, for any x < 0, ext L(t)→ 0 (t→+∞). For x > 0,

ext L(t)≥
∫ x

0
est f (x−s) ds≥ηeδt Leb{s ∈[δ, x] : f (x−s)≥η}→∞, t→+∞,

where Leb is the Lebesgue measure and δ, η > 0 were chosen such that

Leb{s ∈ [δ, x] : f (x − s)≥ η}> 0,

which is possible, since A = 0. The case A > 0 follows by direct translation. �

Another way to obtain the lower bound of the support of X is in fact to compute
the limit of −L ′(t)/L(t) when t →∞. Indeed, by Hölder’s inequality, Log L is
convex, hence L ′/L is increasing. Since it is bounded above by zero, it converges
to some negative limit. A simple analysis shows that this limit at infinity is in fact
−A.

In order to find the upper bound of the support of X , we propose a test, based
on the following proposition. Note that it is easy to compute E[X ] with the sole
knowledge of L , since E[X ] = −L ′(0).

Proposition 2.2. If the positive random variable X is almost surely bounded above
by C , then for any A > 0 and γ ≥ 1,

L(t)≤ 1− E[Xγ
]
1− e−A

Aγ
tγ for all t ∈ [0, A/C].
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Proof. The proof relies on the inequality

yγ − xγ ≥ e−x yγ − e−y xγ , γ ≥ 1, 0< x < y.

Setting x = t X , y = A and applying the expectation operator yields the result. �

Hence, if L(t)> 1− t E[X ](1−e−A)/A in the vicinity of 0, then X is unbounded.
The test usually performs better for A� 1.

In the same spirit, note that Theorem 7(b) in [10] makes it possible to build
another test based on E[Xγ

] for γ < 1. Since they depend on the interval [0, A/C],
these results make it even possible to derive bounds for C .

By Theorem 2.1 and Proposition 2.2, we will henceforth, without much loss of
generality, restrict ourselves to distributions with supports on the whole positive
real line.

Tail behaviors. This subsection recalls classical Tauberian theorems in probability
(see for instance [8, XIII.5]). These results show the strong link that exists between
the behavior of f near zero and that of L near infinity and vice-versa. The general
form of the de Bruijn exponential Tauberian theorem can be found in [3], Theorem
4.12.9, but we recall below a more peculiar form, derived from Corollary 4.12.6 of
the same monograph.

Theorem 2.3. Let 0 < γ < 1, δ ∈ R, C > 0 and X a positive random variable.
Then,

log E[e−t X
] ∼ −Ctγ (log(t))δ, t→∞

if and only if

log P[X ≤ x] ∼ −[Cγ γ (1− γ )1−γ−δx−γ (− log x)δ]1/(1−γ ), x ↓ 0.

In a series of papers, Nakagawa provides conditions on L to determine whether
a distribution has a heavy or a light tail. We state one of his results below (see [19]
and the references therein). For a complex number z = a+ ib, if L(z) converges
for a > a0 and diverges for a < a0, then a0 is said to be the abscissa of convergence
of L(z).

Theorem 2.4. If a0 is the abscissa of L such that −∞ < a0 < 0 and a0 is a pole
of L , then

lim
x→∞

1
x

log P[X > x] = a0.

When the asymptotic behaviors are not exponential but of power form, we can
also resort to [3, Corollary 8.1.7] and [8, XIII.5, Theorem 2], which we recall
below (with l(x)= C log(x)β).
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Proposition 2.5. For 0≤ α < 1, β ≥ 0 and C > 0, the following are equivalent:

1− L(t)∼−Ctα log(t)β, t ↓ 0.

1− F(x)∼ C
log(x)β

xα0(1−α)
, x→∞.

Proposition 2.6. For α, β ≥ 0 and C > 0, the following are equivalent:

L(t)∼ C
log(t)β

tα
, t→∞.

F(x)∼−C
log(x)xα

0(1+α)
, x ↓ 0.

The first result allows one to accurately determine the tail of a distribution when
it is very heavy. For other power tail behaviors (when α > 1), we refer to Theorem
8.1.6 in [3].

Lastly, we recall the initial value theorem:

f (0+)= lim
t→∞

t L(t).

Boundedness. It can be very convenient to know whether a distribution has a
bounded density. In order to do so, it is possible to build a test based on the
following corollary of the Post–Widder formula.

Lemma 2.7. A function L , defined on R+ is the Laplace transform of a probability
density bounded above by c if and only if L(0)= 1 and

0≤ (−1)n L(n)(t)≤
cn!
tn+1

for all n = 0, 1, . . . and t > 0.

3. The approximation method

3.1. Introductory remarks. We shall henceforth consider a given positive function
L defined on R+, satisfying L(0)= 1,

(−1)n L(n)(t)≥ 0 for all t > 0 and all n ≥ 0 (3-1)

and
lim

t→∞
t L(t) <∞. (3-2)

Any function L for which (3-1) holds is called a complete monotone function.
Such functions have the following well-known property (see Theorem 7.11 in [27]
for instance).
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Theorem 3.1. A function h is completely monotone on R+ if and only if it is the
Laplace transform of a nonnegative finite Borel measure ν, i.e., if

h(x)=
∫
∞

0
e−xtν(dt).

Therefore, (3-1) and L(0)= 1 are necessary and sufficient conditions for prob-
abilistic Laplace transforms.

Our approach is essentially error driven: many inversion techniques do not allow
to compute the error made on f (x) or F(x). Some techniques come with error
bounds, but these bounds usually increase with x (see for instance (4.61) and (6.19)
in [5]). Our method will focus on

∫
∞

0 |F(x)−G(x)| dx , where F is the original
CDF and G the approximate one. As we will see, this is an appropriate choice,
because when f is bounded, it yields a uniform bound on |F − G|, which is a
strong result.

The main problem with the L1 error on F is that it cannot be retrieved from∣∣∫∞
0 (F(x)−G(x)) dx

∣∣, unless the sign of F − G does not change. Notice that
focusing on cumulative distribution functions is critical since it can occur that G
is dominated by F on R+ while this is impossible for two probability densities.
The aim of our method is thus to find G as close to F as possible, satisfying
G(x)≥ F(x) (or G(x)≤ F(x)) for all x ≥ 0.

This property is connected to a notion called stochastic ordering. We will say
that the positive random variable X is less than Y in the usual stochastic order,
abbreviated i.u.s.o., if

1− F(x)= P[X ≥ x] ≤ P[Y ≥ x] = 1−G(x) for all x ≥ 0.

If X is less than Y i.u.s.o., then an integration by parts yields L(t)≥ M(t) for
all t ≥ 0. Sadly, the converse is not always true. A counter-example is given by
the densities f (x)= 1

2(1(0,1)(x)+ 1(2,3)(x)) and g(x)= 1(1,2)(x). In this case, the
CDFs are not ordered, while

L(t)=
1− e−t

+ e−2t
− e−3t

2t
≥

e−t
− e−2t

t
= M(t), t ≥ 0.

In order to make sure that G(x) ≥ F(x) for all x ≥ 0, we will quite logically
resort to completely monotone functions. Given L , our aim is to find (or build)
another probabilistic Laplace transform M , as close as possible (in some sense) to
L and such that

t 7→ L[G(x)− F(x)](t)=
M(t)− L(t)

t
is a completely monotone function. Under these conditions, the error made on the
cumulative distribution functions will have a constant sign. In fact, this idea can
be applied any finite number of times in order to get G as close to F as desired.
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Practical implementation. We proceed in two steps.

Step 1. The first step is to find M , a rough proxy of L . Inspired by the results on tail
behaviors (pages 234 and 235), we propose families of approximants depending
on tail behaviors.

If X is light-tailed, then a relevant tool to work with is the gamma distribution. In-
deed, its tail is light and it allows for any power behavior near the origin, including
f (0+) > 0. M and G then have the form

M(t)=
ab

(a+ t)b
, G(x)= γ (b, ax)/0(b), g(x)=

abxb−1e−ax

0(b)
, a, b > 0,

where γ ( · , · ) is the lower gamma function.

If X has heavy tails, then the choice of the Pareto distribution seems quite straight-
forward when f (0+) > 0. That is,

M(t)=babeat tb0(−b, at), G(x)=1−
ab

(a+x)b
, g(x)=

bab

(a+x)b+1 , a, b>0,

where 0( · , · ) is the upper gamma function. In this case, M(t)∼ ba−1/t , t→∞.

If f (0+)= 0 (and X is heavy-tailed), we propose the following two choices:

• If f goes slowly to 0 (x ↓ 0), set

M(t)=
b(b− 1)

at
(1−eat(at)b(at+b)0(−b, at)), G(x)=1−ab−1 a+ bx

(a+ x)b
,

g(x)=
b(b− 1)ab−1x
(a+ x)b+1 , a > 0, b > 1.

• If f goes rapidly to 0, set

M(t)=
2

0(b)
(at)b/2Kb(2

√
at), G(x)=

0(b, a/x)
0(b)

, g(x)=
abe−a/x

0(b)xb+1 ,

with a, b> 0, where Kν(x) is the modified Bessel function of the second kind
with index ν (see 3.471-9 in [9] for the computation of the Laplace transform).
This is a generalization of both the Lévy and the inverse chi-square laws, often
referred to as the inverse gamma distribution.

The purpose of the rough proxy is to mimic as well as possible the behavior of
L at 0 and/or infinity while satisfying the condition that ∓(M − L) is a completely
monotonic function.

Step 2. Without loss of generality, we consider M − L > 0. The error made
with the rough proxy N (t)= M(t)− L(t) is usually not satisfactory and requires
improvement. The trick is thus to find an easily Laplace-inverted minorant µ of
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N (i.e., µ(x) < N (x) for all x > 0) such that (N (t)− µ(t))/t is a completely
monotone function. Consequently,

G(x)≥ G(x)− L−1
[µ(t)](x)≥ F(x), x ≥ 0,

and the new approximation is better than the preceding one at any point in R+.
The aim of step 2 is to reduce the error of a prior approximation, hence it can be

carried out several times. However, in our examples, we will show that only one
iteration of step 2 may be sufficient to obtain a reasonably small error.

Because µ must satisfy µ(0) = limt→0 µ(t) = 0, good candidates for µ are
differences of Laplace transforms of stochastically ordered distributions. Taking,
for instance, gamma or 1

2 -stable laws yields the forms

µ(t)= c
(

aν

(a+ t)ν
−

bν

(b+ t)ν

)
, c, ν > 0, a > b > 0 (3-3)

and
µ(t)= c

(
e−
√

at
− e−

√
bt), c > 0, b > a > 0. (3-4)

We underline that the choice of a proper µ is crucial as it will enhance the
approximation in a very peculiar way. For instance, choosing (3-3) will have
a considerable impact on the tail of the Laplace approximation and thus on the
behavior of the new CDF near 0; however, on the contrary, µ defined in (3-4) is
negligible near infinity, but not near zero, thereby having the opposite effect on the
target CDF: little impact near zero, but a significant modification of the tail of the
approximating distribution.

Once µ is chosen (this task usually requires a fitting tool from a quantitative
software), the critical point is to check that h(t)/t := (N (t)−µ(t))/t is indeed a
completely monotone function. We recall that, for any Cn function h,(

h( · )
·

)(n)
(t)=

1
tn+1

n∑
i=0

(−1)i n!
(n− i)!

tn−i h(n−i)(t)

=
h(n)(t)− n (h( · )/ · )(n−1) (t)

t
, (3-5)

which can be proven iteratively.
The function h(t)− th′(t) requires a particular focus since it is associated with

the first derivative. If the functions tnh(n)(t) are smooth then some patterns can be
identified for n small enough. If h( · )/ · is indeed completely monotone, then, in
(3-5), the relative weight of h(n) compared to that of n(h( · )/ · )(n−1) will decrease
as n increases. The idea, based on empirical results, is to test to what extent

dn(t) := −t
(h( · )/ · )(n)(t)
(h( · )/ · )(n−1)(t)

= n−
h(n)(t)

(h( · )/ · )(n−1) (t)
≈ n for all t ≥ 0.



APPROXIMATION OF PROBABILISTIC LAPLACE TRANSFORMS AND INVERSES 239

We provide examples below to illustrate this matter (Figures 1 and 2).
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Figure 1. Graph of dn for various n in two cases, for Example 4.1.
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Figure 2. Graph of dn for various n in two cases, for Example 4.2.

Among these four graphs, the two on the right fail the test: not only does dn drift
away from n, but there is a sign change at some point. The wave shape in three
of the graphs is due to the fact that the function h(t)− th′(t) has a local minimum
away from zero. In this case, the successive derivatives may progressively (as n
increases) hit zero in the vicinity of this local minimum. When there is no local
minimum away from zero, our empirical tests have shown that the dn are close to
a constant or a slightly increasing affine function (as in the left graph of Figure 2).

Error results. We define N = M − L , H = G − F and recall that L[H(x)](t) =
N (t)/t is the Laplace transform of the error on the CDFs. The following proposi-
tion provides the Mellin transform of H (given N ) and the Kantorovich distance
between X and Y , which we define by

K (X, Y )= sup
{∫
∞

0
f (x)(F(dx)−G(dx)); f ∈ Lip

}
, (3-6)

where Lip is the set of 1-Lipschitz functions. Dall’Aglio proved in [6] that, in fact,

K (X, Y )=
∫ 1

0
|F−1(x)−G−1(x)| dx =

∫
∞

0
|F(x)−G(x)| dx
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because the support of X and Y is R+.
We recall that in our setting, the functions N and H are either nonnegative

or nonpositive. For simplicity, and without any loss of generality, we henceforth
assume that they are nonnegative.

Proposition 3.2. For 0< b < 1, whenever these integrals make sense,∫
∞

0

N (t)
t1+b dt = 0(1− b)

∫
∞

0
xb−1 H(x) dx =

0(1− b)
b

∫
∞

0
H(x1/b) dx

Moreover,

lim
t↓0

N (t)/t =
∫
∞

0
H(x) dx = K (X, Y ) (3-7)

Proof. The first equality is simply Fubini’s theorem combined with the identity∫
∞

0 e−xt t−bdt = 0(1 − b)xb−1 and a standard change of variable; the second
equality is obvious. �

In some cases, it is possible to obtain an upper bound for the L p quasi-norm of
H for p ∈ (0, 1), using Jensen’s (reversed) inequality.

Lastly, we would like to recall the link between the Kantorovich distance and
the Kolmogorov–Smirnov (uniform) distance supx≥0 |F(x)−G(x)|. Intercalating
the Lévy and Prohorov metrics (using the results from [11, pp. 35–36] and [21,
p. 43]), we get

sup
x≥0
|F(x)−G(x)| ≤

(
(1+ c)

∫
∞

0
|F(x)−G(x)| dx

)1/2

where c is the maximum value (over R+) of f = F ′, the density of X .

4. Examples

We test our method on two heavy-tailed distributions for which a rather simple
closed form for f or F is available. The driving criterion for our approximations
will be to get a finite Kantorovich distance.

Example 4.1. A generalized Mittag-Leffler distribution. We follow the notations
of [13]. Generalized Mittag-Leffler distributions are a two-parameter family of
laws with Laplace transforms

L(t)= (1+ tα)−β, β > 0, 0< α ≤ 1

and cumulative distribution function

F(x)=
∞∑

k=0

(−1)k0(β + k)xα(β+k)

k!0(β)0(1+α(β + k))
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We will focus on the simple case α = 1/2, and β = 2. First notice that since
0(2k+2)

0(k+2)(2k)! =
1
k!(2− 1/(k+ 1)),

∞∑
k=0

0(2+ 2k)x (2+2k)/2

(2k)!0(1+ (2+ 2k)/2)
= ex(2x − 1)+ 1

Next, the odd integers are dealt with using the infinite series representation of the
error function (8.253-1 in [9])

ex erf(
√

x)=
2
√
π

∞∑
k=0

2k xk+1/2

(2k+ 1)!!

where (2k+ 1)!! = 1 · 3 · 5 . . . (2k+1), and the identity

0(2k+ 3)
(2k+ 1)!0(k+ 5/2)

= (2k+ 2)
2k+2

√
π(2k+ 3)!!

which yields in the end

F(x)= ex(2x − 1)erfc(
√

x)− 2
√

x/π + 1

From L(t)= (1+
√

t)−2, we know that f (0+)= 1 and that f has a heavy tail. We
thus choose the Pareto family with a = n in order to have the proper asymptotic
behavior for L (when t→∞). In fact, the domination condition imposes a, n≥ 1/2
and a few tests show that a = n = 1/2 is a relevant choice, yielding

M(t)=
√

tet/20(−1/2, t/2)

2
√

2
, t ≥ 0

As expected, the approximation is not satisfactory and we must resort to an
appropriate µ.

We wish to stress the importance of the choice of µ and we will test the perfor-
mance of two functions, namely µ1 and µ2. The first naive choice was to take µ
of the form

µ1(t)= c
(

a3/2

(a+ t)3/2
−

b3/2

(b+ t)3/2

)
and an admissible set of parameters was a = 3, b = 0.05 and c = 0.135. This triple
was the result of a fitting algorithm from a quantitative software.

Unfortunately, this approximation does not allow to compute the Kantorovich
error because it is not good enough near 0. In order to be able to compute (3-7),
we recall the expansion of L at zero (derived from that of (1+ t)−2):

(1+
√

t)−2
= 1− 2

√
t + 3t − 4t3/2

+ O(t2), t ↓ 0
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Therefore, a strong improvement of the approximation should satisfy

M(t)−µ2(t)∼ 1− 2
√

t + O(t), t ↓ 0.

By [20, 45:5:2] combined with [1, 6.5.17 and 7.1.5], we have
√

tet/20(−1/2, t/2)

2
√

2
= 1−

√
π tet

2

(
1− erf(

√
t/2)

)
= 1−

√
π t/2+ t + O(t3/2)

as t ↓ 0. Moreover,

e−
√

at
= 1−

√
at + 1

2at + O(t3/2), t ↓ 0;

hence we propose µ2(t)= c(e−
√

at
− e−

√
bt) with a, b, c satisfying c(

√
a−
√

b)=
−2+

√
π/2. The triple a = 0.777, b = 20 and c = 0.206 yields promising results

with a Kantorovich distance of approximately 0.02 (computed via (3-7)).
Of course, in both cases, we have checked, using the dn for n ∈ {1, . . . , 9}, that

the error h was such that h(t)/t was a completely monotone function.
We provide the graphical results below (Figures 3 and 4). M is the Laplace

transform of the Pareto distribution with a = n = 1/2, M1(t)= M(t)−µ1(t) and
M2(t)= M(t)−µ2(t). Their CDF counterparts are G, G1 and G2. It is plain on
the graphs that M1 and M2 are quite close, except near zero; this explains why only
G2 is a good fit for F for x large (as expected).
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Figure 3. Graph of L and its proxies for t ∈ (0, 0.02) and t ∈ [0.02, 30].
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Figure 4. Graph of F and its proxies for x ∈ (0, 2) and x ∈ (2, 100).
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Example 4.2. A positive stable distribution. Our next example is the one-parameter
one-sided stable laws with Laplace transform

L(t)= e−tα , α ∈ (0, 1)

The case α= 1
2 is sometimes referred to as the Lévy distribution, which is connected

with the first passage time of the Brownian motion over fixed levels. The case α= 1
3

also has a closed-form density (see B.25 in [17] for instance):

f (x)=
K1/3

(√
4/(27x)

)
3πx3/2 , x ≥ 0

We will thus aim at approximating L(t) = e−t1/3
. In this case, f (0+) = 0 and f

has a fat tail. Moreover,

L(t)= 1− t1/3
+

1
2 t2/3
−

1
6 t + O(t4/3), t ↓ 0 (4-1)

The choice of the inverse gamma family with n = 1/3 seems relevant, as it
satisfies (see 51:6:1 in [20])

M(t)=
2

0
( 1

3

)(at)1/6K1/3(2
√

at)= 1+
a1/30

(
−

1
3

)
0
( 1

3

) t1/3
+3at/2+O(t4/3), t ↓ 0.

Hence, for a =−0
( 1

3

)
3/0

(
−

1
3

)
3, the t1/3 term in the error will vanish, by (4-1),

but the t2/3 term will remain. This leads to the following choice of µ:

µ(t)= 2c

(
(bt)1/3K2/3(2

√
bt)

0
( 2

3

) −
(dt)1/3K2/3(2

√
dt)

0
(2

3

) )

= c
0
(
−

2
3

)
0
( 2

3

) (b2/3
− d2/3)t2/3

+ 3c(b− d)t + O(t5/3), t ↓ 0.

Notice that this time, the ordering is in the opposite way: L(t)≥ M(t) for all t ≥ 0.
In this setting, an admissible set of parameters is c = 6, b = 0.4 and d = 0.43,
which yields a Kantorovich distance of less than 0.06 (see Figures 5 and 6 on the
next page, where M1(t)= M(t)+µ(t)).

Of course, in both examples, it is possible to further reduce the error by repeating
step 2 on page 238 at least one time (using a minorant µ∗ of M−µ−L for instance).

Remarks. We did not study distributions with lighter tails in the examples because
when 1− F(x)≤ cx−α , with c> 0 and α > 1 for any large x , then it is much easier
to obtain a finite Kantorovich error, as the original survival function is already
integrable.

Using the exact same procedure as in the second example, it would thus take
n− 2 iterations of step 2 to obtain an approximation with finite Kantorovich error
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Figure 5. Graph of L and its proxies for t ∈ (0, 0.02) and t ∈ [0.02, 30].
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Figure 6. Graph of F and its proxies for x ∈ (0, 2) and x ∈ (2, 100).

for the stable law with Laplace transform equal to e−t1/n
. The same holds for

generalized Mittag-Leffler distributions defined by L(t) = (1+ t1/n)−p, for any
real p ≥ n. These assertions are a consequence of the Taylor expansion of L at
0. In the stable case, when α ∈

( 1
2 , 1

)
, it is possible to obtain a finite Kantorovich

measure by taking M(t)= e−
√

t and µ such that µ(t)∼ tα −
√

t when t ↓ 0.

Finally, we stress that even though we have assumed (for simplicity) that the law
of X was absolutely continuous, our method remains valid for most positive laws.
It is indeed possible to make do without densities throughout the whole process,
especially if the law of X has a finite number of atoms and an absolutely continuous
part. However, it is not clear whether this method can perform well for some rather
unusual distributions, such as those which possess an infinite number of atoms.
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OPTIMAL STABILITY POLYNOMIALS FOR NUMERICAL
INTEGRATION OF INITIAL VALUE PROBLEMS

DAVID I. KETCHESON AND ARON J. AHMADIA

We consider the problem of finding optimally stable polynomial approximations
to the exponential for application to one-step integration of initial value ordinary
and partial differential equations. The objective is to find the largest stable step
size and corresponding method for a given problem when the spectrum of the ini-
tial value problem is known. The problem is expressed in terms of a general least
deviation feasibility problem. Its solution is obtained by a new fast, accurate, and
robust algorithm based on convex optimization techniques. Global convergence
of the algorithm is proven in the case that the order of approximation is one and
in the case that the spectrum encloses a starlike region. Examples demonstrate
the effectiveness of the proposed algorithm even when these conditions are not
satisfied.

1. Stability of Runge–Kutta methods

Runge–Kutta methods are among the most widely used types of numerical integra-
tors for solving initial value ordinary and partial differential equations. The time
step size should be taken as large as possible since the cost of solving an initial value
problem (IVP) up to a fixed final time is proportional to the number of steps that
must be taken. In practical computation, the time step is often limited by stability
and accuracy constraints. Either accuracy, stability, or both may be limiting factors
for a given problem; see [24, Section 7.5] for a discussion. The linear stability and
accuracy of an explicit Runge–Kutta method are characterized completely by the
so-called stability polynomial of the method, which in turn dictates the acceptable
step size [6; 12]. In this work we present an approach for constructing a stability
polynomial that allows the largest absolutely stable step size for a given problem.

The problem of finding optimal stability polynomials is of fundamental im-
portance in the numerical solution of initial value problems, and its solution or
approximation has been studied by many authors for several decades Indeed, it
is closely related to the problem of finding polynomials of least deviation, which
goes back to the work of Chebyshev. A nice review of much of the early work on

MSC2010: primary 65L06, 65M20; secondary 90C26.
Keywords: absolute stability, initial value problems, Runge–Kutta methods.
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Runge–Kutta stability regions can be found in [44]. The most-studied cases are
those where the eigenvalues lie on the negative real axis [1; 3; 2; 4; 38; 23; 25; 27;
33; 35; 36; 43; 8], on the imaginary axis [21; 20; 22; 26; 43; 32; 46], or in a disk of
the form |z+w| ≤ w [15; 46]. Many results and optimal polynomials, both exact
and numerical, are available for these cases. Some authors have considered the
solution of Problem 1 for other spectra corresponding to PDE semidiscretizations
[17; 31; 38; 26; 28; 39].

Two very recent works serve to illustrate both the progress that has been made
in solving these problems with nonlinear programming, and the challenges that re-
main. In [39], optimal schemes are sought for integration of discontinuous Galerkin
discretizations of wave equations, where the optimality criteria considered include
both accuracy and stability measures. The approach used there is based on sequen-
tial quadratic programming (local optimization) with many initial guesses. The
authors consider methods of at most fourth order and situations with s − p ≤ 4
“because the cost of the optimization procedure becomes prohibitive for a higher
number of free parameters.” In [28], optimally stable polynomials are found for
certain spectra of interest for 2 ≤ p ≤ 4 and (in a remarkable feat!) s as large
as 14. The new methods obtained achieve a 40–50% improvement in efficiency for
discontinuous Galerkin integration of the 3D Maxwell equations. The optimization
approach employed therein is again a direct search algorithm that does not guaran-
tee a globally optimal solution but “typically converges. . . within a few minutes”.
However, it was apparently unable to find solutions for s > 14 or p > 4. The
method we present in the next section can rapidly find solutions for significantly
larger values of s, p, and is provably globally convergent under certain assumptions
(introduced in Section 2).

In the remainder of this section, we review the stability concepts for Runge–
Kutta methods and formulate the stability optimization problem. Our optimization
approach, described in Section 2, is based on reformulating the stability optimiza-
tion problem in terms of a sequence of convex subproblems and using bisection. We
examine the theoretical properties of the proposed algorithm and prove its global
convergence for two important cases.

A key element of our optimization algorithm is the use of numerical convex
optimization techniques. We avoid a poorly conditioned numerical formulation
by posing the problem in terms of a polynomial basis that is well-conditioned
when sampled over a particular region of the complex plane. These numerical
considerations, which become particularly important when the number of stages
of the method is allowed to be very large, are discussed in Section 3.

In Section 4 we apply our algorithm to several examples of complex spectra.
Cases where optimal results are known provide verification of the algorithm, and
many new or improved results are provided.
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Determination of the stability polynomial is only half of the puzzle of designing
optimal explicit Runge–Kutta methods. The other half is the determination of
the Butcher coefficients. While simply finding methods with a desired stability
polynomial is straightforward, many additional challenges arise in that context; for
instance, additional nonlinear order conditions, internal stability, storage, and em-
bedded error estimators. All of these concerns can be dealt with using the software
package RK-opt [19], which also includes the algorithm presented herein. The
development of full Runge–Kutta methods based on optimal stability polynomials,
using the present approach and additional tools from RK-opt, is conducted in [30].

1.1. The stability polynomial. A linear, constant-coefficient initial value problem
takes the form

u′(t)= Lu, u(0)= u0, (1)

where u(t) : R→ RN and L ∈ RN×N . When applied to the linear IVP (1), any
Runge–Kutta method reduces to an iteration of the form

un = R(hL)un−1, (2)

where h is the step size and un is a numerical approximation to u(nh). The stability
function R(z) depends only on the coefficients of the Runge–Kutta method; see [9,
Section 4.3], [6], [12]. In general, the stability function of an s-stage explicit
Runge–Kutta method is a polynomial of degree s

R(z)=
s∑

j=0

a j z j . (3)

Recall that the exact solution of (1) is u(t) = exp(t L)u0. Thus, if the method is
accurate to order p, the stability polynomial must be identical to the exponential
function up to terms of at least order p:

a j =
1
j !

for 0≤ j ≤ p. (4)

1.2. Absolute stability. The stability polynomial governs the local propagation of
errors, since any perturbation to the solution will be multiplied by R(z) at each
subsequent step. The propagation of errors thus depends on ‖R(hL)‖, which leads
us to define the absolute stability region

S = {z ∈ C : |R(z)| ≤ 1}. (5)

For example, the stability region of the classical fourth-order method is shown in
Figure 1(b).
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given an initial value problem (1), let 3 ∈ C denote the spectrum of the matrix
L . We say the iteration (2) is absolutely stable if

hλ ∈ S for all λ ∈3. (6)

Condition (6) implies that un remains bounded for all n. More importantly, (6) is
a necessary condition for stable propagation of errors. Thus the maximum stable
step size is given by

hstable =max{h ≥ 0 : |R(hλ)| ≤ 1 for λ ∈3}. (7)

Note that for nonnormal L , it may be important to consider the pseudospectrum
rather than the spectrum; see Section 4.3.

As an example, consider the advection equation

∂

∂t
u(x, t)+

∂

∂x
u(x, t)= 0, x ∈ (0,M),

discretized in space by first-order upwind differencing with spatial mesh size 1x

U ′i (t)=−
Ui (t)−Ui−1(t)

1x
, 0≤ i ≤ N ,

with periodic boundary condition U0(t) = UN (t). This is a linear IVP (1) with
L a circulant bidiagonal matrix. The eigenvalues of L are plotted in Figure 1(a)
for 1x = 1, N = M = 20. To integrate this system with the classical fourth-order
Runge–Kutta method, the time step size must be taken small enough that the scaled
spectrum {hλi } lies inside the stability region. Figure 1(c) shows the (maximally)
scaled spectrum superimposed on the stability region.
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Figure 1. (a) Spectrum of first-order upwind difference matrix using N = 20 points in space.
(b) Stability region of the classical fourth-order Runge–Kutta method. (c) Scaled spectrum
hλ with h = 1.39. (d) Scaled spectrum hλ for optimal ten-stage method with h = 6.54.
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The motivation for this work is that a larger stable step size can be obtained by
using a Runge–Kutta method with a larger region of absolute stability. Figure 1(d)
shows the stability region of an optimized ten-stage Runge–Kutta method of order
four that allows a much larger step size. The ten-stage method was obtained using
the technique that is the focus of this work. Since the cost of taking one step is
typically proportional to the number of stages s, we can compare the efficiency of
methods with different numbers of stages by considering the effective step size h/s.
Normalizing in this manner, it turns out that the ten-stage method is nearly twice
as fast as the traditional four-stage method.

1.3. Design of optimal stability polynomials. We now consider the problem of
choosing a stability polynomial so as to maximize the step size under which given
stability constraints are satisfied. The objective function f (x) is simply the step
size h. The stability conditions yield nonlinear inequality constraints. Typically
one also wishes to impose a minimal order of accuracy. The monomial basis
representation (3) of R(z) is then convenient because the first p+ 1 coefficients
{a0, a1, . . . , ap} of the stability polynomial are simply taken to satisfy the order
conditions (4). As a result, the space of decision variables has dimension s+ 1− p,
and is comprised of the coefficients {ap+1, ap+2, . . . , as}, as well as the step size
h. Then the problem can be written as

Problem 1 (stability optimization). Given 3⊂ C, order p, and number of stages
s,

maximize
ap+1,ap+2,...,as ,h

h

subject to |R(hλ)| − 1≤ 0 for all λ ∈3.

We use Hopt to denote the solution of Problem 1 (the optimal step size) and Ropt

to denote the optimal polynomial.
The set 3 may be finite, corresponding to a finite-dimensional ODE system

or PDE semidiscretization, or infinite (but bounded), corresponding to a PDE or
perhaps its semidiscretization in the limit of infinitesimal mesh width. In the latter
case, Problem 1 is a semi-infinite program (SIP). In Section 4 we approach this by
using a finite discretization of 3; for a discussion of this and other approaches to
semi-infinite programming, see [13].

2. An efficient algorithm for design of globally optimal stability polynomials

Evidently, finding the global solution of Problem 1 is in general quite challenging.
Although sophisticated optimization algorithms such as the interior point method
can guarantee polynomial time solutions to convex problems, and convex program-
ming techniques are valuable in efficiently seeking minima, the stability constraints
in Problem 1 are nonconvex. As a result, suboptimal local minima may exist and
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certificates of optimality may require either approximations to the solution of the
problem or greater than polynomial time. See [5] for an overview of convex opti-
mization programming techniques, and [29] for an introduction to approximation
algorithms and local search heuristics for nonconvex problems.

2.1. Reformulation in terms of the least deviation problem. The primary theoret-
ical advance leading to the new results in this paper is a reformulation of Problem 1.
Note that Problem 1 is nonconvex for s > 2 since R(hλ) is a nonconvex function
in h.

Instead of asking for the maximum stable step size we now ask, for a given
step size h, how small the maximum modulus of R(hλ) can be. This leads to a
generalization of the classical least deviation problem.

Problem 2 (least deviation). Given 3⊂ C, h ∈ R+ and p, s ∈ N

minimize
ap+1,ap+2,...,as

max
λ∈3

(
|R(hλ| − 1

)
.

We denote the solution of Problem 2 by rp,s(h,3), or simply r(h,3). Note
that |R(z)| is convex with respect to a j , since R(z) is linear in the a j . Therefore,
Problem 2 is convex. Problem 1 can be formulated in terms of Problem 2:

Problem 3 (reformulation of Problem 1). Given 3⊂ C, and p, s ∈ N,

maximize
ap+1,ap+2,...,as

h

subject to rp,s(h,3)≤ 0.

2.2. Solution via bisection. Although Problem 3 is not known to be convex, it is
an optimization in a single variable. It is natural then to apply a bisection approach,
as outlined in Algorithm 1.

Algorithm 1 (simple bisection).
Select hmax (see Section 2.3)
hmin = 0
while hmax− hmin > ε do

h = (hmax+ hmin)/2
Solve Problem 2
if rp,s(h,3)≤ 0 then

hmin = h
else

hmax = h
end if

end while
return Hε = hmin
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Since r(0,3)=−1 and limh→∞ r(h,3)=+∞, then there exists hmax > 0 such
that r(h,3)= 0 for some h ∈ [hmin, hmax]. Global convergence of the algorithm
is assured only if the following condition holds:

rp,s(h0,3)= 0 =⇒ rp,s(h,3)≤ 0 for all 0≤ h ≤ h0. (8)

We now consider conditions under which condition (8) can be established. We
have the following important case.

Theorem 1 (global convergence when p = 1). Let p = 1, 3 ⊂ C and s ≥ 1.
Take hmax large enough so that r(hmax,3) > 0. Let Hopt denote the solution of
Problem 1. Then the output of Algorithm 1 satisfies

lim
ε→0

Hε = Hopt.

Proof. Since r(0,3)= 0< r(hmax,3) and r(h,3) is continuous in h, it is sufficient
to prove that condition (8) holds. We have |Ropt(Hoptλ)| ≤ 1 for all λ ∈3. We will
show that there exists Rµ(z)=

∑s
j=0 a j (µ)z j such that a0 = a1 = 1 and

|Rµ(µHoptλ)| ≤ 1 for all λ ∈3 and 0≤ µ≤ 1.

Let â j be the coefficients of the optimal polynomial:

Ropt(z)= 1+ z+
s∑

j=2

â j z j ,

and set
a j (µ)= µ

1− j â j .

Then

Rµ(µHoptλ)= 1+µHoptλ+

s∑
j=2

µ1− j â jµ
j H j

optλ
j
= 1+µ

( s∑
j=1

â j H j
optλ

j
)

= 1+µ(Ropt(Hoptλ)− 1),

where we have defined â1 = 1. Define gλ(µ)= Rµ(µHoptλ). Then gλ(µ) is linear
in µ and has the property that, for λ ∈ 3, |gλ(0)| = 1 and |gλ(1)| ≤ 1 (by the
definition of Hopt, Ropt). Thus by convexity |g(µ)| ≤ 1 for 0≤ µ≤ 1. �

For p > 1, condition (8) does not necessarily hold. For example, take s = p = 4;
then the stability polynomial (3) is uniquely defined as the degree-four Taylor ap-
proximation of the exponential, corresponding to the classical fourth-order Runge–
Kutta method that we saw in the introduction. Its stability region is plotted in
Figure 1(b). Taking, e.g., λ= 0.21+ 2.3i , one finds |R(λ)|< 1 but |R(λ/2)|> 1.
Although this example shows that Algorithm 1 might formally fail, it concerns
only the trivial case s = p in which there is only one possible choice of stability
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polynomial. We have searched without success for a situation with s > p for which
condition (8) is violated.

2.3. Selection of hmax. The bisection algorithm requires as input an initial hmax

such that r(hmax,3) > 0. Theoretical values can be obtained using the classical
upper bound of 2s2/x if3 encloses a negative real interval [x, 0], or using the upper
bound given in [34] if 3 encloses an ellipse in the left half-plane. Alternatively,
one could start with a guess and successively double it until r(hmax,3) > 0 is
satisfied. Since evaluation of r(h,3) is typically quite fast, finding a tight initial
hmax is not an essential concern.

2.4. Convergence for starlike regions. In many important applications the rele-
vant set 3 is an infinite set; for instance, if we wish to design a method for some
PDE semidiscretization that will be stable for any spatial discretization size. In
this case, Problem 1 is a semi-infinite program (SIP) as it involves infinitely many
constraints. Furthermore, 3 is often a closed curve whose interior is starlike with
respect to the origin; for example, upwind semidiscretizations of hyperbolic PDEs
have this property. Recall that a region S is starlike if t ∈ S implies µt ∈ S for all
0≤ µ≤ 1.

Lemma 1. Let 3 ∈ C be a closed curve passing through the origin and enclosing
a starlike region. Let r(h,3) denote the solution of Problem 2. Then condition (8)
holds.

Proof. Let 3 be as stated in the lemma. Suppose r(h0,3) = 0 for some h0 > 0;
then there exists R(z) such that |R(hλ)| ≤ 1 for all λ ∈ 3. According to the
maximum principle, the stability region of R(z) must contain the region enclosed
by 3. Choose h such that 0 ≤ h ≤ h0; then h3 lies in the region enclosed by 3,
so |R(hλ)| ≤ 1 for λ ∈3. �

The proof of Lemma 1 relies crucially on 3 being an infinite set, but in practice
we numerically solve Problem 2 with only finitely many constraints. To this end
we introduce a sequence of discretizations 3n with the following properties:

1. 3n ⊂3.

2. n1 ≤ n2 =⇒3n1 ⊂3n2 .

3. limn→∞3n =3.

4. limn→∞ νn = 0 where νn denotes the maximum distance from a point in 3 to
the set 3n:

νn =max
γ∈3

min
λ∈3n
|γ − λ|.

For instance, 3n can be taken as an equispaced (in terms of arc-length, say) sam-
pling of n points.
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By modifying Algorithm 1, we can approximate the solution of the semi-infinite
programming problem for starlike regions to arbitrary accuracy. At each step we
solve Problem 2 with 3n replacing 3. The key to the modified algorithm is to only
increase hmin after obtaining a certificate of feasibility. This is done by using the
Lipschitz constant of R(z) over a domain including h3 (denoted by L(R, h3)) to
ensure that |R(h3)| ≤ 1. The modified algorithm is stated as Algorithm 2.

Algorithm 2 (bisection for SIP).
hmin = 0
hmax = 2s2/max |λ|
n = n0

while hmax− hmin > ε do
h = (hmax+ hmin)/2 F Bisect
Solve Problem 2
if r(h,3n) < 0 and νn <−2r/L(R, h3) then F Certifies that r(h,3) < 0

hmin = h
else if r(h,3n) > 0 then F Certifies that r(h,3) > 0

hmax = h
else F r(h,3n)≤ 0

n← 2n F Reduce the discretization spacing
end if

end while
return Hε = hmin

The following lemma, which characterizes the behavior of Algorithm 2, holds
whether or not the interior of 3 is starlike.

Lemma 2. Let h[k] denote the value of h after k iterations of the loop in Algorithm 2.
Then either

• Algorithm 2 terminates after a finite time with outputs satisfying r(hmin,3)≤ 0,
r(hmax,3) > 0; or

• there exists j <∞ such that r(h[ j],3)= 0 and h[k] = h[ j] for all j ≥ k.

Proof. First suppose that r(h[ j],3) = 0 for some j . Then neither feasibility nor
infeasibility can be certified for this value of h, so h[k] = h[ j] for all j ≥ k.

On the other hand, suppose that r(h[k],3) 6= 0 for all k. The algorithm will
terminate as long as, for each h[k], either feasibility or infeasibility can be certified
for large enough n. If r(h[k],3) > 0, then necessarily r(h[k],3n) > 0 for large
enough n, so infeasibility will be certified. We will show that if r(h[k],3) < 0,
then for large enough n the condition

νn <−2r/L(R, h3) (9)
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must be satisfied. Since r(h,3n) ≤ r(h,3) is bounded away from zero and
limn→∞ νn = 0, (9) must be satisfied for large enough n unless the Lipschitz con-
stant L(R, h3) is unbounded (with with respect to n) for some fixed h. Suppose
by way of contradiction that this is the case, and let R[1], R[2], . . . denote the
corresponding sequence of optimal polynomials. Then the norm of the vector of
coefficients a[i]j appearing in R[i] must also grow without bound as i →∞. By
Lemma 3, this implies that |R[i](z)| is unbounded except for at most s points z ∈ C.
But this contradicts the condition |R[i](hλ)| ≤ 1 for λ ∈3n when n > s. Thus, for
large enough n we must have νn <−2r/L(R, h3). �

In practical application, r(h,3) = 0 will not be detected, due to numerical
errors; see Section 3.1. For this reason, in the next theorem we simply assume that
Algorithm 2 terminates. We also require the following technical result.

Lemma 3. Let R[1], R[2], . . . be a sequence of polynomials of degree at most s
(s ∈ N fixed) and denote the coefficients of R[i] by a[i]j ∈ C (i ∈ N, 0≤ j ≤ s):

R[i](z)=
s∑

j=0

a[i]j z j , z ∈ C.

Further, let a[i] := (a[i]0 , a[i]1 , . . . , a[i]s )
T and suppose that the sequence ‖a[i]‖ is

unbounded in R. Then the sequences R[i](z) are unbounded for all but at most s
points z ∈ C.

Proof. Suppose to the contrary there are s + 1 distinct complex numbers, say,
z0, z1, . . . , zs such that the vectors ri := (R[i](z0), R[i](z1), . . . , R[i](zs))

T (i ∈ N)
are bounded in Cs+1. Let V denote the (s + 1)× (s + 1) Vandermonde matrix
whose kth row (0 ≤ k ≤ s + 1) is (1, zk, z2

k, . . . , zs
k). Then V is invertible and we

have a[i] = V−1ri (i ∈ N), so if |||·||| denotes the induced matrix norm, then

‖a[i]‖ = ‖V−1ri‖ ≤ |||V−1
||| ‖ri‖.

But, by assumption, the right side is bounded, whereas the left side is not. �

Theorem 2 (global convergence for strictly starlike regions). Let 3 be a closed
curve that encloses a region that is starlike with respect to the origin. Suppose that
Algorithm 2 terminates for all small enough ε, and let Hε denote the value returned
by Algorithm 2 for a given ε. Let Hopt denote the solution of Problem 1. Then

lim
ε→0

Hε = Hopt.

Proof. Due to the assumptions and Lemma 2, we have that r(hmin,3) < 0 <
r(hmax,3). Then Lemma 1 implies that hmin < Hopt < hmax. Noting that also
hmax− hmin < ε, the result follows. �
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Despite the lack of a general global convergence proof, Algorithm 1 works very
well in practice even for general 3 when p > 1. In all cases we have tested and
for which the true Hopt is known (see Section 4), Algorithm 1 appears to converge
to the globally optimal solution. Furthermore, Algorithm 1 is very fast. For these
reasons, we consider the (much slower) Algorithm 2 to be of primarily theoretical
interest, and we base our practical implementation on Algorithm 1.

3. Numerical implementation

We have made a prototype implementation of Algorithm 1 in Matlab. The imple-
mentation relies heavily on the CVX package [11; 10], a Matlab-based modeling
system for convex optimization, which in turn relies on the interior-point solvers
SeDuMi [37] and SDPT3 [42]. The least deviation problem (Problem 2) can be
succinctly stated in four lines of the CVX problem language, and for many cases
is solved in under a second by either of the core solvers.

Our implementation re-attempts failed solves (see Section 3.2) with the alternate
interfaced solver. In our test cases, we observed that the SDPT3 interior-point
solver was slower, but more robust than SeDuMi. Consequently, our prototype
implementation uses SDPT3 by default.

Using the resulting implementation, we were able to successfully solve problems
to within 0.1% accuracy or better with scaled eigenvalue magnitudes |hλ| as large
as 4000. As an example, comparing with results of [4] for spectra on the real axis
with p = 3, s = 27, our results are accurate to 6 significant digits.

3.1. Feasibility threshold. In practice, CVX often returns a small positive objec-
tive (r ≈ 10−7) for values of h that are just feasible. Hence the bisection step is
accepted if r < ε where ε� 1. The results are generally insensitive (up to the first
few digits) to the choice of ε over a large range of values; we have used ε = 10−7

for all results in this work. The accuracy that can be achieved is eventually limited
by the need to choose a suitable value ε.

3.2. Conditioning and change of basis. Unfortunately, for large values of hλ, the
numerical solution of Problem 2 becomes difficult due to ill-conditioning of the
constraint matrix. Observe from (3) that the constrained quantities R(hλ) are re-
lated to the decision variables a j through multiplication by a Vandermonde matrix.
Vandermonde matrices are known to be ill-conditioned for most choices of abscis-
sas. For very large hλ, the resulting CVX problem cannot be reliably solved by
either of the core solvers.

A first approach to reducing the condition number of the constraint matrix is
to rescale the monomial basis. We have found that a more robust approach for
many types of spectra can be obtained by choosing a basis that is approximately
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orthogonal over the given spectrum {3}. Thus we seek a solution of the form

R(z)=
s∑

j=0

a j Q j (z), where Q j (z)=
j∑

k=0

b jkzk . (10)

Here Q j (z) is a degree- j polynomial chosen to give a well-conditioned constraint
matrix. The drawback of not using the monomial basis is that the dimension of
the problem is s + 1 (rather than s + 1− p) and we must now impose the order
conditions explicitly:

s∑
j=0

a j b jk =
1
k!

for k = 0, 1, . . . , p. (11)

Consequently, using a nonmonomial basis increases the number of design variables
in the problem and introduces an equality constraint matrix B ∈ Rp×s that is rela-
tively small (when p� s), but usually very poorly conditioned. However, it can
dramatically improve the conditioning of the inequality constraints.

The choice of the basis Q j (z) is a challenging problem in general. In the
special case of a negative real spectrum, an obvious choice is the Chebyshev
polynomials (of the first kind) T j , shifted and scaled to the domain [hx, 0] where
x =minλ∈3 Re(λ), via an affine map:

Q j (z)= T j

(
1+

2z
hx

)
. (12)

The motivation for using this basis is that |Q j (hλ)| ≤ 1 for all λ ∈ [hx, 0]. This
basis is also suggested by the fact that Q j (z) is the optimal stability polynomial
in terms of negative real axis inclusion for p = 1, s = j . In Section 4, we will
see that this choice of basis works well for more general spectra when the largest
magnitude eigenvalues lie near the negative real axis.

As an example, we consider a spectrum of 3200 equally spaced values λ in the
interval [−1, 0]. Figure 2 shows the relative error as well as the condition number
of the 3200× s inequality constraint matrix obtained by using the monomial (3)
and Chebyshev (12) bases for p = 1 and s ranging from 2 through 50. The optimal
objective value is h = 2s2, and the condition number of the inequality constraint
matrix is measured for the feasibility problem at this value. The condition number
of the monomial basis scales exponentially, while the condition number of the
Chebyshev basis constraint matrix has a weak linear dependence on s. Typically,
the solver is accurate until the condition number reaches about 1016. This supports
the hypothesis that it is the conditioning of the inequality constraint matrix that
leads to failure of the solver. The Chebyshev basis keeps the condition number
small and yields accurate answers even for very large values of h.
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Figure 2. Condition number of principal constraint matrix and relative solution accuracy
versus optimal step size. The points along a given curve correspond to different choices of
s. The values plotted correspond to s = 2, 3, . . . , 9, 10, 15, 20, . . . , 45, 50 and a spectrum
of 3200 equally spaced values in the interval [−1, 0]. The constraint matrix is formed
using the optimal value h = 2s2. The Chebyshev basis keeps the condition number small
and yields accurate answers even for very large values of h.

4. Examples

We now demonstrate the effectiveness of our algorithm by applying it to determine
optimally stable polynomials (i.e., solve Problem 1) for various types of spectra.
As stated above, we use Algorithm 1 for its simplicity, speed, and effectiveness.
When 3 corresponds to an infinite set, we approximate it by a fine discretization.

4.1. Verification. In this section, we apply our algorithm to some well-studied
cases with known exact or approximate results in order to verify its accuracy and
correctness. In addition to the real axis, imaginary axis, and disk cases below, we
have successfully recovered the results of [28]. Our algorithm succeeds in finding
the globally optimal solution in every case for which it is known, except in some
cases of extremely large step sizes for which the underlying solvers (SDPT3 and
SeDuMi) eventually fail.

Negative real axis inclusion. Here we consider the largest h such that [−h, 0] ∈ S
by taking 3= [−1, 0]. This is the most heavily studied case in the literature, as it
applies to the semidiscretization of parabolic PDEs and a large increase of Hopt is
possible when s is increased (see, e.g., [33; 44; 27; 4; 35]). For first-order accurate
methods (p = 1), the optimal polynomials are just shifted Chebyshev polynomials,
and the optimal timestep is Hopt = 2s2. Many special analytical and numerical
techniques have been developed for this case; the most powerful seems to be that
of Bogatyrev [4].

We apply our algorithm to a discretization of 3 (using 6400 evenly spaced
points) and using the shifted and scaled Chebyshev basis (12). Results for up
to s = 40 are shown in Table 1 (note that we list Hopt/s2 for easy comparison,
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Hopt/s2

Stages p = 1 p = 2 p = 3 p = 4 p = 10

1 2.000
2 2.000 0.500
3 2.000 0.696 0.279
4 2.000 0.753 0.377 0.174
5 2.000 0.778 0.421 0.242
6 2.000 0.792 0.446 0.277
7 2.000 0.800 0.460 0.298
8 2.000 0.805 0.470 0.311
9 2.000 0.809 0.476 0.321

10 2.000 0.811 0.481 0.327 0.051
15 2.000 0.817 0.492 0.343 0.089
20 2.000 0.819 0.496 0.349 0.120
25 2.000 0.820 0.498 0.352 0.125
30 2.001 0.821 0.499 0.353 0.129
35 2.000 0.821 0.499 0.354 0.132
40 2.000 0.821 0.500 0.355 0.132

Table 1. Scaled size of real axis interval inclusion for optimized methods.

since Hopt is approximately proportional to s2 in this case). We include results
for p = 10 to demonstrate the algorithm’s ability to handle high-order methods.
For p = 1 and 2, the values computed here match those available in the literature
[43]. Most of the values for p = 3, 4 and 10 are new results. Figure 3 shows some
examples of stability regions for optimal methods. As observed in the literature,
it seems that Hopt/s2 tends to a constant (that depends only on p) as s increases.
For large values of s, some results in the table have an error of about 10−3 due to
inaccuracies in the numerical results provided by the interior point solvers.

Imaginary axis inclusion. Next we consider the largest h such that [−ih, ih] ∈ S
by taking 3= xi, x ∈ [−1, 1]. Optimal polynomials for imaginary axis inclusion

140 120 100 80 60 40 20 0
10

0

10

p = 4

s = 20

140 120 100 80 60 40 20 0
10

0

10

p = 10

s = 20

Figure 3. Stability regions of some optimal methods for real axis inclusion.
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Hopt/s
Stages p = 1 p = 2 p = 3 p = 4

2 0.500
3 0.667 0.667 0.577
4 0.750 0.708 0.708 0.707
5 0.800 0.800 0.783 0.693
6 0.833 0.817 0.815 0.816
7 0.857 0.857 0.849 0.813
8 0.875 0.866 0.866 0.866
9 0.889 0.889 0.884 0.864

10 0.900 0.895 0.895 0.894
15 0.933 0.933 0.932 0.925
20 0.950 0.949 0.949 0.949
25 0.960 0.960 0.959 0.957
30 0.967 0.966 0.966 0.966
35 0.971 0.971 0.971 0.970
40 0.975 0.975 0.975 0.975
45 0.978 0.978 0.978 0.977
50 0.980 0.980 0.980 0.980

Table 2. Scaled size of imaginary axis inclusion for optimized methods.

have also been studied by many authors, and a number of exact results are known
or conjectured [43; 46; 20; 21; 22; 44]. We again approximate the problem, taking
N = 3200 evenly spaced values in the interval [0, i] (note that stability regions are
necessarily symmetric about the real axis since R(z) has real coefficients). We use
a “rotated” Chebyshev basis defined by

Q j (z)= i j T j

(
i z
hx

)
,

where x =maxi (| Im(λi )|). Like the Chebyshev basis for the negative real axis, this
basis dramatically improves the robustness of the algorithm for imaginary spectra.
Table 2 shows the optimal effective step sizes. In agreement with [43; 21], we find
H = s−1 for p= 1 (all s) and for p= 2 (s odd). We also find H = s−1 for p= 1
and s even, which was conjectured in [46] and confirmed in [44]. We find

Hopt =
√

s(s− 2)

for p = 2 and s even, strongly suggesting that the polynomials given in [20] are
optimal for these cases; on the other hand, our results show that those polynomials,
while third order accurate, are not optimal for p = 3 and s odd. Figure 4 shows
some examples of stability regions for optimal methods.
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Figure 4. Stability regions of some optimal methods for imaginary axis inclusion.

Disk inclusion. In the literature, attention has been paid to stability regions that
include the disk

D(h)= {z : |1+ z/h| ≤ 1}, (13)

for the largest possible h. As far as we know, the optimal result for p= 1 (Hopt= s)
was first proved in [15]. The optimal result for p= 2 (Hopt= s−1) was first proved
in [46]. Both results have been unwittingly rediscovered by later authors. For p> 2,
no exact results are available.

We use the basis

Q j (z)=
(

1+
z
h

) j
.

Note that Q j (z) is the optimal polynomial for the case s = j , p= 1. This basis can
also be motivated by recalling that Vandermonde matrices are perfectly conditioned
when the points involved are equally spaced on the unit circle. Our basis can be
obtained by taking the monomial basis and applying an affine transformation that
shifts the unit circle to the disk (13). This basis greatly improves the robustness of
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Figure 5. Relative size of largest disk that can be included in the stability region (scaled
by the number of stages).
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Figure 6. Stability regions of some optimal methods for disk inclusion.

the algorithm for this particular spectrum. We show results for p ≤ 4 in Figure 5.
For p = 3 and s = 5, 6, our results give a small improvement over those of [16].
Some examples of optimal stability regions are plotted in Figure 6.

4.2. Spectrum with a gap. We now demonstrate the effectiveness of our method
for more general spectra. First we consider the case of a dissipative problem with
two time scales, one much faster than the other. This type of problem was the
motivation for the development of projective integrators in [8]. Following the ideas
outlined there we consider

3= {z : |z| = 1,R(z)≤ 0} ∪ {z : |z−α| = 1}. (14)

We take α = 20 and use the shifted and scaled Chebyshev basis (12). Results are
shown in Figures 7 and 8. A dramatic increase in efficiency is achieved by adding
a few extra stages.

Figure 7. Optimal effective step size for spectrum with a gap (14) with α = 20.
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Figure 8. Optimal stability region for p = 1, s = 6, α = 20 (stable step size ≈ 1.975).

4.3. Legendre pseudospectral discretization. Next we consider a system obtained
from semidiscretization of the advection equation on the interval [−1, 1] with ho-
mogeneous Dirichlet boundary condition:

ut = ux , u(t, x = 1)= 0.

The semidiscretization is based on pseudospectral collocation at points given by
the zeros of the Legendre polynomials; we take N = 50 points. The semidiscrete
system takes the form (1), where L is the Legendre differentiation matrix, whose
eigenvalues are shown in Figure 9(a). We compute an optimally stable polynomial
based on the spectrum of the matrix, taking s = 7 and p = 1. The stability region
of the resulting method is plotted in Figure 9(c). Using an appropriate step size,
all the scaled eigenvalues of L lie in the stability region. However, this method is
unstable in practice for any positive step size; Figure 9(e) shows an example of a
computed solution after three steps, where the initial condition is a Gaussian. The
resulting instability is nonmodal, meaning that it does not correspond to any of the
eigenvectors of L (compare [41, Figure 31.2]).

This discretization is now well-known as an example of nonnormality [41, Chap-
ters 30–32]. Due to the nonnormality, it is necessary to consider pseudospectra in
order to design an appropriate integration scheme. The ε-pseudospectrum (see
[41]) is the set

{z ∈ C : ‖(z I − L)−1
‖2 > 1/ε}.

The ε-pseudospectrum (for ε= 2) is shown with the eigenvalues in Figure 9(b); note
that the pseudospectrum includes small islands around the isolated eigenvalues,
though they are not visible at the scale plotted. The instability observed above
occurs because the stability region does not contain an interval on the imaginary
axis about the origin, whereas the pseudospectrum includes such an interval.

We now compute an optimally stable integrator based on the 2-pseudospectrum.
This pseudospectrum is computed using an approach proposed in [40, Section 20],
with sampling on a fine grid. In order to reduce the number of constraints and
speed up the solution, we compute the convex hull of the resulting set and apply
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Figure 9. Results for the Legendre differentiation matrix with N = 50. Top row: eigenval-
ues (a) and eigenvalues with pseudospectrum (b). The boundary of the 2-pseudospectrum
is plotted. Middle row: Optimized stability region based on eigenvalues (c) and on the
pseudospectrum (d). Bottom row: Solution computed with method based on spectrum (e)
and with method based on pseudospectrum (f).
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our algorithm. The resulting stability region is shown in Figure 9(d). It is remark-
ably well adapted; notice the two isolated roots that ensure stability of the modes
corresponding to the extremal imaginary eigenvalues. We have verified that this
method produces a stable solution, in agreement with theory (see Chapter 32 of
[41]); Figure 9(f) shows an example of a solution computed with this method. The
initial Gaussian pulse advects to the left.

4.4. Thin rectangles. A major application of explicit Runge–Kutta methods with
many stages is the solution of moderately stiff advection-reaction-diffusion prob-
lems [14; 45]. For such problems, the stability region must include not only a large
interval on the negative real axis, but also some region around it, due to convective
terms. If centered differences are used for the advective terms, it is natural to
require that a small interval on the imaginary axis be included. Hence, one may be
interested in methods that contain a rectangular region

3κ = {λ ∈ C : −β ≤ Im(λ)≤ β, −κ ≤ Re(λ)≤ 0}. (15)

for given κ, β. Most methods in the literature do not satisfy this requirement (with
the notable exception of those in [47]. Most available approaches for devising
methods with extended real axis stability (including those of [38]) cannot be ap-
plied to such regions. Because of this, most existing methods are applicable only
if upwind differencing is applied to convective terms [45; 38].

For this example, rather than parametrizing by the step size h, we assume that
a desired step size h and imaginary axis limit β are given based on the convective
terms, which generally require small step sizes for accurate resolution. We seek to
find (for given s, p) the polynomial (3) that includes 3κ for κ as large as possible.
This could correspond to selection of an optimal integrator based on the ratio of
convective and diffusive scales (roughly speaking, the Reynolds number). Since
the desired stability region lies relatively near the negative real axis, we use the
shifted and scaled Chebyshev basis (12).

Stability regions of some optimal methods are shown in Figure 10. The out-
line of the included rectangle is superimposed in black. The stability region for
β = 10, s = 20, shown in Figure 10 is especially interesting as it is very nearly
rectangular. A closeup view of the upper boundary is shown in Figure 11. These
regions appear to satisfy the hypothesis stated in [38] that their boundary is tangent
to the prescribed boundary at s− p points in the upper half plane.

5. Discussion

The approach described here can speed up the integration of IVPs for which

• explicit Runge–Kutta methods are appropriate;
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Figure 11. Closeup view of upper boundary of the rectangular stability region plotted in Figure 10.

• the spectrum of the problem is known or can be approximated; and

• stability is the limiting factor in choosing the step size.

Although we have considered only linear initial value problems, we expect our
approach to be useful in designing integrators for nonlinear problems via the usual
approach of considering the spectrum of the Jacobian. A first successful application
of our approach to nonlinear PDEs appears in [30].
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The amount of speedup depends strongly on the spectrum of the problem, and
can range from a few percent to several times or more. Based on past work and on
results presented in Section 4, we expect that the most substantial gains in efficiency
will be realized for systems whose spectra have large negative real parts, such as for
semidiscretization of PDEs with significant diffusive or moderately stiff reaction
components. As demonstrated in Section 4, worthwhile improvements may also be
attained for general systems, and especially for systems whose spectrum contains
gaps.

The work presented here suggests several extensions and areas for further study.
For very high polynomial degree, the convex subproblems required by our algo-
rithm exhibit poor numerical conditioning. We have proposed a first improvement
by change of basis, but further improvements in this regard could increase the
robustness and accuracy of the algorithm. It seems likely that our algorithm ex-
hibits global convergence in general circumstances beyond those for which we
have proven convergence. The question of why bisection seems to always lead
to globally optimal solutions merits further investigation. While we have focused
primarily on design of the stability properties of a scheme, the same approach
can be used to optimize accuracy efficiency, which is a focus of future work. Our
algorithm can also be applied in other ways; for instance, it could be used to impose
a specific desired amount of dissipation for use in multigrid or as a kind of filtering.

One of the most remarkable aspects of our algorithm is its speed, which opens
up the potential for a new kind of adaptive time stepping in which the time inte-
gration method itself is designed on-the-fly during the computation. For nonlinear
problems, the method could be adapted, for instance, when a significant change in
the spectrum of the linearized semidiscretization is detected. Whereas traditional
automatic integrators dynamically adjust the step size and scheme order, choosing
from a small set of preselected methods, our algorithm could be used as the basis for
an implementation that also automatically adjusts details of the stability polynomial
at each step. Practical implementation of this idea is dependent on the ability to
efficiently approximate this spectrum and might require an implementation of our
algorithm in a compiled language.

The problem of determining optimal polynomials subject to convex constraints
is very general. Convex optimization techniques have already been exploited to
solve similar problems in filter design [7], and will likely find further applications
in numerical analysis.

Companion website

The codes used in producing the numerical results in this paper are available at
http://www.runmycode.org/CompanionSite/Site158 [18].



OPTIMAL STABILITY POLYNOMIALS FOR INITIAL VALUE PROBLEMS 269

Acknowledgments

We thank Lajos Lóczi for providing a simplification of the proof of Lemma 3. We
are grateful to R. J. LeVeque and L. N. Trefethen for helpful comments on a draft
of this work. We thank the anonymous referees for their comments that improved
this paper.

References

[1] A. Abdulle, On roots and error constants of optimal stability polynomials, BIT 40 (2000), no. 1,
177–182. MR 2001a:65080 Zbl 0956.65068

[2] , Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput. 23
(2002), no. 6, 2041–2054. MR 2003g:65074 Zbl 1009.65048

[3] A. Abdulle and A. A. Medovikov, Second order Chebyshev methods based on orthogonal poly-
nomials, Numer. Math. 90 (2001), no. 1, 1–18. MR 2002i:65071 Zbl 0997.65094

[4] A. B. Bogatyrev, Effective solution of the problem of the best stability polynomial, Mat. Sb.
196 (2005), no. 7, 27–50, In Russian; translated in Sbornik: Math. 196 (2005), 959–981.
MR 2007b:34124a

[5] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cambridge,
2004. MR 2005d:90002 Zbl 1058.90049

[6] J. C. Butcher, Numerical methods for ordinary differential equations, 2nd ed., Wiley, Chich-
ester, 2008. MR 2009b:65002 Zbl 1167.65041

[7] T. Davidson, Enriching the art of FIR filter design via convex optimization, IEEE Signal Proc.
Mag. 27 (2010), 89–101.

[8] C. W. Gear and I. G. Kevrekidis, Projective methods for stiff differential equations: problems
with gaps in their eigenvalue spectrum, SIAM J. Sci. Comput. 24 (2003), no. 4, 1091–1106.
MR 2004c:65065 Zbl 1034.65056

[9] S. Gottlieb, D. Ketcheson, and C.-W. Shu, Strong stability preserving Runge–Kutta and multi-
step time discretizations, World Scientific, Hackensack, NJ, 2011. MR 2012f:65107 Zbl 1241.
65064

[10] M. C. Grant and S. P. Boyd, Graph implementations for nonsmooth convex programs, Recent
advances in learning and control (V. Blondel, S. Boyd, , and H. Kimura, eds.), Lecture Notes
in Control and Inform. Sci., no. 371, Springer, London, 2008, pp. 95–110. MR 2409077
Zbl 1205.90223

[11] , CVX: MATLAB software for disciplined convex programming, Tech. report, 2011.

[12] E. Hairer and G. Wanner, Solving ordinary differential equations, II: Stiff and differential-
algebraic problems, 2nd ed., Springer Series in Computational Mathematics, no. 14, Springer,
Berlin, 1996. MR 97m:65007 Zbl 0859.65067

[13] R. Hettich and K. O. Kortanek, Semi-infinite programming: theory, methods, and applications,
SIAM Rev. 35 (1993), no. 3, 380–429. MR 94g:90152 Zbl 0784.90090

[14] W. Hundsdorfer and J.Verwer, Numerical solution of time-dependent advection-diffusion-reaction
equations, Springer Series in Computational Mathematics, no. 33, Springer, Berlin, 2003. MR
2004g:65001 Zbl 1030.65100

[15] R. Jeltsch and O. Nevanlinna, Largest disk of stability of explicit Runge–Kutta methods, BIT 18
(1978), no. 4, 500–502. MR 80b:65099 Zbl 0399.65051



270 DAVID I. KETCHESON AND ARON J. AHMADIA

[16] R. Jeltsch and M. Torrilhon, Flexible stability domains for explicit Runge–Kutta methods, Some
topics in industrial and applied mathematics (R. Jeltsch, T.-T. Li, and I. H. Sloan, eds.), Ser. Con-
temp. Appl. Math. CAM, no. 8, Higher Ed. Press, Beijing, 2007, pp. 152–180. MR 2008m:65180
Zbl 1171.65415

[17] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit Runge–Kutta schemes
for the compressible Navier–Stokes equations, Appl. Numer. Math. 35 (2000), no. 3, 177–219.
MR 2001k:65111 Zbl 0986.76060

[18] D. I. Ketcheson and A. J. Ahmadia, Optimal stability polynomials for numerical integration of
initial value problems, Tech. report, 2012.

[19] D. I. Ketcheson and M. Parsani, RK-opt: Software for the design of optimal runge–kutta meth-
ods, Tech. report, 2012.

[20] I. P. E. Kinnmark and W. G. Gray, One step integration methods of third-fourth order accuracy
with large hyperbolic stability limits, Math. Comput. Simulation 26 (1984), no. 3, 181–188.
MR 85k:65069 Zbl 0539.65051

[21] , One step integration methods with maximum stability regions, Math. Comput. Simula-
tion 26 (1984), no. 2, 87–92. MR 85f:65079 Zbl 0539.65050

[22] , Fourth-order accurate one-step integration methods with large imaginary stability
limits, Numer. Methods Partial Differential Equations 2 (1986), no. 1, 63–70. MR 89b:65175
Zbl 0623.65077

[23] J. D. Lawson, An order five Runge–Kutta process with extended region of stability, SIAM J.
Numer. Anal. 3 (1966), 593–597. MR 35 #7589 Zbl 0154.40602

[24] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations: Steady-
state and time-dependent problems, Soc. Industrial and Applied Math., Philadelphia, PA, 2007.
MR 2009a:65173

[25] J. Martín-Vaquero and B. Janssen, Second-order stabilized explicit Runge–Kutta methods for
stiff problems, Comput. Phys. Comm. 180 (2009), no. 10, 1802–1810. MR 2678453 Zbl 1197.
65006

[26] J. L. Mead and R. A. Renaut, Optimal Runge–Kutta methods for first order pseudospectral
operators, J. Comput. Phys. 152 (1999), no. 1, 404–419. MR 2000a:65083 Zbl 0935.65100

[27] A. A. Medovikov, High order explicit methods for parabolic equations, BIT 38 (1998), no. 2,
372–390. MR 99i:65096 Zbl 0909.65060

[28] J. Niegemann, R. Diehl, and K. Busch, Efficient low-storage Runge–Kutta schemes with op-
timized stability regions, J. Comput. Phys. 231 (2012), no. 2, 364–372. MR 2012m:65202
Zbl 1243.65113

[29] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity,
Prentice-Hall, Englewood Cliffs, NJ, 1982, Reprinted Dover, Mineola, NY, 1998. MR 84k:90036
Zbl 0503.90060

[30] M. Parsani, D. I. Ketcheson, and W. Deconinck, Optimized explicit Runge–Kutta schemes for
the spectral difference method applied to wave propagation problems, preprint, 2012, to appear
in SIAM J. Sci. Comput. arXiv 1207.5830

[31] J. Pike and P. L. Roe, Accelerated convergence of Jameson’s finite-volume Euler scheme using
van der Houwen integrators, Comput. & Fluids 13 (1985), no. 2, 223–236. MR 87d:65095
Zbl 0571.76003

[32] R. A. Renaut, Two-step Runge–Kutta methods and hyperbolic partial differential equations,
Math. Comp. 55 (1990), no. 192, 563–579. MR 91d:65128 Zbl 0724.65076



OPTIMAL STABILITY POLYNOMIALS FOR INITIAL VALUE PROBLEMS 271

[33] W. Riha, Optimal stability polynomials, Computing (Arch. Elektron. Rechnen) 9 (1972), 37–43.
MR 47 #4450 Zbl 0234.65076

[34] J. M. Sanz-Serna and M. N. Spijker, Regions of stability, equivalence theorems and the Courant–
Friedrichs–Lewy condition, Numer. Math. 49 (1986), no. 2-3, 319–329. MR 87i:65140 Zbl
0574.65106

[35] L. M. Skvortsov, Explicit stabilized Runge–Kutta methods, Zh. Vychisl. Mat. Mat. Fiz. 51
(2011), no. 7, 1236–1250, In Russian: translated in Comput. Math. and Math. Phys. 51 (2011),
1153–1166. MR 2906150 Zbl 1249.65156

[36] B. P. Sommeijer and J. G. Verwer, On stabilized integration for time-dependent PDEs, J. Com-
put. Phys. 224 (2007), no. 1, 3–16. MR 2008e:65263 Zbl 1119.65382

[37] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optim. Methods Softw. 11/12 (1999), no. 1-4, 625–653. MR 1778433

[38] M. Torrilhon and R. Jeltsch, Essentially optimal explicit Runge–Kutta methods with application
to hyperbolic-parabolic equations, Numer. Math. 106 (2007), no. 2, 303–334. MR 2008d:65074
Zbl 1113.65074

[39] T. Toulorge and W. Desmet, Optimal Runge–Kutta schemes for discontinuous Galerkin space
discretizations applied to wave propagation problems, J. Comput. Phys. 231 (2012), no. 4,
2067–2091. MR 2012m:65353 Zbl 1242.65190

[40] L. N. Trefethen, Computation of pseudospectra, Acta numerica, 1999, Acta Numer., no. 8,
Cambridge Univ. Press, Cambridge, 1999, pp. 247–295. MR 2002b:65062 Zbl 0945.65039

[41] L. N. Trefethen and M. Embree, Spectra and pseudospectra: The behavior of nonnormal ma-
trices and operators, Princeton University Press, Princeton, NJ, 2005. MR 2006d:15001

[42] R. H. Tütüncü, K. C. Toh, and M. J. Todd, Solving semidefinite-quadratic-linear programs us-
ing SDPT3, Math. Program. 95 (2003), no. 2, Ser. B, 189–217. MR 2004c:90036 Zbl 1030.90082

[43] P. J. van der Houwen, Explicit Runge–Kutta formulas with increased stability boundaries, Nu-
mer. Math. 20 (1972), 149–164. MR 47 #6094 Zbl 0233.65039

[44] , The development of Runge–Kutta methods for partial differential equations, Appl.
Numer. Math. 20 (1996), no. 3, 261–272. MR 97f:65053 Zbl 0857.65094

[45] J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer, RKC time-stepping for advection-diffusion-
reaction problems, J. Comput. Phys. 201 (2004), no. 1, 61–79. MR 2005h:65151 Zbl 1059.65085

[46] R. Vichnevetsky, New stability theorems concerning one-step numerical methods for ordinary
differential equations, Math. Comput. Simulation 25 (1983), no. 3, 199–205. MR 85b:65082
Zbl 0573.65052

[47] C. J. Zbinden, Partitioned Runge–Kutta–Chebyshev methods for diffusion-advection-reaction
problems, SIAM J. Sci. Comput. 33 (2011), no. 4, 1707–1725. MR 2012m:65208 Zbl 1245.
65120

Received July 12, 2012. Revised November 23, 2012.

DAVID I. KETCHESON: david.ketcheson@kaust.edu.sa
Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

ARON J. AHMADIA: aron@ahmadia.net
Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

mathematical sciences publishers msp





Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
msp.berkeley.edu/camcos.

Originality. Submission of a manuscript acknowledges that the manuscript is
original and and is not, in whole or in part, published or under consideration
for publication elsewhere. It is understood also that the manuscript will not be
submitted elsewhere while under consideration for publication in this journal.

Language. Articles in CAMCoS are usually in English, but articles written in
other languages are welcome.

Required items. A brief abstract of about 150 words or less must be included. It
should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and subject
classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties
of TEX, and exceptionally in other formats, are acceptable. Initial uploads should
be in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article ti-
tles and page ranges. All references in the bibliography should be cited in the
text. The use of BibTEX is preferred but not required. Tags will be converted to
the house format, however, for submission you may use the format of your choice.
Links will be provided to all literature with known web locations and authors are
encouraged to provide their own links in addition to those supplied in the editorial
process.

Figures. Figures must be of publication quality. After acceptance, you will need
to submit the original source files in vector graphics format for all diagrams in
your manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure that
what you are saving is vector graphics and not a bitmap. If you need help, please
write to graphics@msp.org with details about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated
corresponding author) at a Web site in PDF format. Failure to acknowledge the
receipt of proofs or to return corrections within the requested deadline may cause
publication to be postponed.

http://msp.berkeley.edu/camcos
mailto:graphics@msp.org


Communications in Applied Mathematics
and Computational Science

vol. 7 no. 2 2012

133Discontinuous Galerkin method with the spectral deferred correction
time-integration scheme and a modified moment limiter for adaptive grids

Leandro D. Gryngarten, Andrew Smith and Suresh Menon

175Analysis of persistent nonstationary time series and applications
Philipp Metzner, Lars Putzig and Illia Horenko

231Approximation of probabilistic Laplace transforms and their inverses
Guillaume Coqueret

247Optimal stability polynomials for numerical integration of initial value
problems

David I. Ketcheson and Aron J. Ahmadia

1559-3940(2012)7:2;1-3

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.7,
no.2

2012


	 vol. 7, no. 2, 2012
	Masthead and Copyright
	Leandro D. Gryngarten and Andrew Smith and Suresh Menon
	Philipp Metzner and Lars Putzig and Illia Horenko
	Guillaume Coqueret
	David I. Ketcheson and Aron J. Ahmadia
	Guidelines for Authors
	Table of Contents

