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The discontinuous Galerkin (DG) method is combined with the spectral deferred
correction (SDC) time integration approach to solve the fluid dynamic equations.
The moment limiter is generalized for nonuniform grids with hanging nodes that
result from adaptive mesh refinement. The effect of characteristic, primitive, or
conservative decomposition in the limiting stage is studied. In general, primitive
variable decomposition is a better option, especially in two and three dimen-
sions. The accuracy-preserving total variation diminishing (AP-TVD) marker
for troubled-cell detection, which uses an averaged-derivative basis, is modified
to use the Legendre polynomial basis. Given that the latest basis is generally
used for DG, the new approach avoids transforming to the averaged-derivative
basis, what results in a more efficient technique. Further, a new error estimator
is proposed to determine where to refine or coarsen the grid. This estimator is
compared against other estimator used in the literature and shows an improved
performance. Canonical tests in one, two, and three dimensions are conducted
to show the accuracy of the solver.

1. Introduction

The discontinuous Galerkin (DG) method belongs to the finite element (FE) family
and uses a piecewise discontinuous space for the test function and the numerical
solution [7]. The use of the same function space for the test function and solution
defines all Galerkin methods. Usually, the basis to form the space is composed
of Legendre [7] or Lagrange [10] polynomials, although other options have been
studied in the literature [43]. The discontinuity is localized at the boundary of each
element and the coupling between elements is done by computing fluxes as in finite
volume (FV) schemes, e.g., using an approximate Riemann solver. This kind of
coupling allows DG to formulate each element locally, making the implementation
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highly parallelizable, h-p adaptivity friendly, compatible with complex geometries,
and is capable of achieving high-orders of accuracy even with unstructured grids
and hanging nodes (e.g., see Remacle et al. [33]). Given that DG is a result of FE
and FV, the terms element and cell are generally used indistinctly in this context.

The time integration scheme most widely used has been the ubiquitous 3rd-order
TVD Runge–Kutta (RK) method, leading to what is known as the RKDG method
[5; 4; 3; 6]. Given that DG has the ability to easily achieve high-order spatial
accuracy, some effort to maintain comparable time accuracy has been reported
[40]. Under some conditions, especially with higher order derivatives, the time
step required for stability of the RKDG method can be very limiting. Recently,
Xu and Shu [40] suggested that the spectral deferred correction (SDC) method,
derived by Dutt et al. [8], may be an alternative time stepping scheme. It has
been shown that SDC can be used in an explicit, semiimplicit, or fully implicit
form, and it is easy to extend to high-order accuracy in time [27]. Xia et al. [38]
studied a semiimplicit SDC method, in addition to other alternative techniques,
to use with the local discontinuous Galerkin (LDG) method. SDC combined with
DG (SDC-DG) has not yet been used extensively for practical applications. Grooss
and Hesthaven [14] used a semiimplicit SDC to solve the incompressible Navier–
Stokes with free-surface flows. Here, we report on new results that demonstrate
the potential of SDC-DG with explicit integration and compare it against RKDG.
Even though Gottlieb et al. [13] presented RK methods of order higher than 3,
these schemes are very difficult to derive, while the extension of SDC to any order
is straightforward. In addition, TVD-RK methods of 4th-order or greater require
the governing equation to be invariant to time reversal [12; 13]. The Euler equations
are invariant to this transformation, but the Navier–Stokes (NS) equations are not.
Although we do not use the NS equations in this report, viscous fluxes will be
included in future studies. Hence, TVD-RK schemes of 4th-order or higher are
not considered here. The possibility of an SDC method with the strong stability
preserving (SSP) property was studied by Gottlieb et al. [11] and more extensively
by Liu et al. [26]. Note that TVD schemes are SSP schemes that were originally
derived using the total variation norm [13], instead of a generic norm. Therefore,
in practice the TVD and the SSP properties are equivalent, but TVD could be con-
sidered a particular case of SSP. Liu et al. [26] showed that SSP-SDC algorithms
can be obtained, but the derivation gets very complicated as the order increases
and the CFL coefficient is smaller than for the SSP-RK. Thus, in the current study
we use SDC without the SSP property.

The current method also combines the SDC-DG approach with adaptive mesh
refinement (AMR) to dynamically and locally refine or coarsen the grid based
on an estimation of the numerical error. Issues with the implementation such as
hanging nodes, particularly in quadrilateral or hexahedral grids are addressed. The
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DG formulation works well with AMR because of its local nature [33] and its
performance is demonstrated in this paper.

As with other numerical approaches, it is well known that DG methods may
cause nonphysical oscillations close to discontinuities due to the Gibbs phenom-
enon, especially when higher order schemes are used because of lower numeri-
cal dissipation. Therefore, some approach to “limit” this effect is needed. One
common technique consists of applying limiters inherited from FV techniques,
several of which have been developed in the last two decades. Cockburn and
Shu [5] demonstrated a modified minmod limiter for the DG method, but it has
the disadvantages of dropping the order of accuracy when it is activated and relies
on a user-defined parameter to make it total variation bounded (TVB) instead of
total variation diminishing (TVD). Qiu and Shu [31] showed that the weighted
essentially nonoscillatory (WENO) approach, borrowed from FV, can smooth the
un-desired oscillations but increases the size of the stencil and loses the subcell
information that DG provides. In a later study, Qiu and Shu [30] used a modified
WENO scheme based on Hermite polynomials to reduce the stencil.

Other limiters, such as the moment limiter (ML), originally proposed by Biswas
et al. [2] for uniform grids and further improved, e.g., by Krivodonova [22], has also
been proposed for DG applications. The ML is generally applied to a Legendre
polynomial basis limiting the conservative or the characteristic variables. Yang
and Wang [42] modified the ML for unstructured grids for a spectral difference
(SD) method, applying it to a polynomial basis based on the averaged derivatives
along the cell, instead of estimating the derivatives at the cell center as in [22].
The hierarchical reconstruction (HR) method, introduced by Liu et al. [24], was
applied to DG with a WENO-type reconstruction at each hierarchical level [41].
In this approach characteristic decomposition is not used, but rather small over-
shoots/undershoots appear especially as the order of accuracy is increased [25].
For DG schemes with very high order elements, artificial dissipation to smooth
out discontinuities has also been proposed [16; 28; 1]. In this paper the ML as
presented in [22] is modified for nonuniform grids with hanging nodes. The ML
is usually applied to characteristic variables, which is only consistent in a one-
dimensional sense. Therefore, we study the consequences of limiting the conser-
vative, primitive, or characteristic variables to later apply it to multidimensional
cases.

Even though good limiters tend to keep the original order of accuracy in smooth
regions, they may increase the error slightly [29; 22]. Hence, the application of
such limiters within the domain needs to be minimized. This task is carried out by
what is usually called a troubled-cell detector, which identifies the cells that may
be becoming oscillatory or unstable, and thus require a limiter. Moreover, if the
detector is computationally faster than the limiter, the speed of the solver can be
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increased by reducing the number of cells where the limiter is applied. In the past,
several limiters were adapted as detectors [29], and the ones with best success are
the minmod-based TVB limiter [5], the shock-detector by Krivodonova et al. [21]
(KXRCF), and the indicator based on Harten’s subcell resolution [15]. In [42],
the accuracy-preserving TVD (AP-TVD) detector is suggested in an SD frame
and compared against the other detectors just mentioned above and was shown to
produce better agreement. Therefore, we adapt the AP-TVD to the DG method
with some additional modifications, as reported below.

AMR requires an indicator to determine where to refine or coarsen the grid based
on an estimated numerical error. This numerical error depends on the scheme, thus
error estimators used in FV or finite differences (FD) are not valid here. Consid-
erable research has been invested in estimating the numerical error for the DG
method for conservative hyperbolic equations [9], but usually these approaches
are computationally expensive and therefore inefficient. Faster, though perhaps
less accurate methods have also been derived for DG. Remacle et al. [33] used
a simple error estimator based on the jump between elements, which is the same
principle as used in the shock-detector KXRCF. Trouble-cell detectors have also
been used as error estimators [34; 45]. Zhu et al. [45] compared a few of them and
found that KXRCF provided very good results for typical one-dimensional shock
problems. In addition, Leicht and Hartmann [23] used the jump between elements
to determine the direction for anisotropic refinement. In this study we propose a
new estimator which results from a combination of some of these detectors and
has better efficiency.

The current paper is organized in the following way. Section 2 introduces the
governing equation relevant to this study. Section 3 presents the numerical schemes
and algorithm behind the solver. Section 4 includes the test cases that show the suc-
cess of the method being proposed. Finally, Section 5 summarizes the observations
and suggests areas where future work is necessary.

2. Governing equations

The governing equations are the conservation laws written in the general form{
∂u
∂t
+∇ · F(u)= 0 for t > 0,

u = u0 for t = 0,
(1)

where u is the solution vector, F is the inviscid flux, and u0 is the initial value.
Unless specified otherwise, they correspond to the Euler equation, so that

u = (ρ, ρv1, ρv2, ρv3, ρET )
T (2)

and
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F1 =


ρv1

ρv2
1 + p
ρv1v2

ρv1v3

(ρET + p)v1

 F2 =


ρv2

ρv1v2

ρv2
2 + p
ρv2v3

(ρET + p)v2

 F3 =


ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρET + p)v3

 ,
where ρ is the density, v j is the velocity component in the x j direction, p is the
pressure, ET is the total energy defined as ET = e +

∑3
i=1

1
2v

2
i where e is the

internal energy. The ideal gas equation of state is ρe = p/(γ − 1) where γ is the
specific heat ratio and it is assumed constant. In addition, the speed of sound c is

c =
√
γ

p
ρ
. (3)

The state vector u in (2) is given in conservative form. The state vector for the
primitive form as used in this study is

up = (ρ, v1, v2, v3, p)T . (4)

Although in this paper we focus on the Euler equations to show the ability and
accuracy of the proposed method, extension to full Navier–Stokes equations are
also being evaluated and will be reported in the near future.

3. Numerical method

The DG method is applied to the conservation law described in (1). The domain,
�, is divided into N nonoverlapping elements:

�=

N⋃
l=1

�l . (5)

The solution vector u is approximated per element by Ul , defined by the basis φ:

Ul =

p∑
i=0

φi ci,l, (6)

where p defines the order of the finite element and ci,l is the weight corresponding
to each element of the basis φ. After multiplying by the test function, which is
equal to the basis φ, and integrating by parts we arrive at the weak form of the DG
method [7]:
∫
�l

φ
∂Ul
∂t

dV −
∫
�l

∇φ ·F(Ul) dV +
∫
∂�l

φ F̂(U−,U+) d S=0 for t>0,∫
�l

φUl dV =
∫
�l

φu0 dV for t=0,
(7)
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with appropriate boundary conditions. Here, F̂ is a numerical flux normal to the
boundary of the element and needs to be properly defined given that it is computed
at the face of the elements, which may be discontinuous. U− is the value of Ul

according to the current element l at the face and U+ is the value of Um at the face
based on the neighboring element m.

The numerical flux should be an exact or approximate Riemann solver. Here
the local Lax–Friedrichs flux is used as it is known to provide good results and is
simple to compute [5]. In this study, the spatial integration in (7) is done with a
full quadrature rule using Lobatto points [20; 5; 4; 3; 6].

3.1. Time integration. Time integration is conducted explicitly using the Runge–
Kutta (RK) method or the spectral deferred correction (SDC) method. Both ap-
proaches treat the governing equations as a system of ordinary differential equa-
tions (ODE):

du
dt
= G(t, u), (8)

where G(t, u)=−∇ · F(u). In this study, unless specified otherwise, for elements
of polynomial order p a time integration of order p+ 1 is used. Unless specified
otherwise, the time step is given by

1t = min
l=1...N

[
C

2pl + 1
· min

i=1...nd

(
1xi,l

vi,l + cl

)]
, (9)

where nd is the number of dimensions and C is a constant. The flow velocity
vi,l and the speed of sound c are considered at the centroid of element l. We use
C = 0.5 unless specified otherwise. It is usually replaced by 1.0 (see [7]), however,
in this study we choose 0.5 to be more conservative. Maximum stable time-step
size for RKDG has been shown elsewhere [7]. Stability limits for SDC-DG have
not been studied in the literature, at least to the author’s knowledge. Equation (9)
turns out to provide a stable condition for the tests presented in this study also for
SDC-DG when the order in time is equal to p+ 1.

3.1.1. The Runge–Kutta method. The Runge–Kutta method is a well known family
of schemes. The current study used the total variation diminishing RK (TVD-RK)
of second and third orders [35], which can be summarized in three steps:

Step 1:
u0
= un. (10)

Step 2:

ui
=

i−1∑
l=0

αilw
il, wil

= ul
+
βil

αil
1tG

(
ul, t +1t · dl

)
, for i = 1, . . . , K . (11)
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Step 3:
un+1 = uK , (12)

where the superindexes of u determine intermediate steps between un and un+1.
The parameters are given in Table 1. A good property for these 2nd- and 3rd-order
TVD schemes is that if for some seminorm | · |, we have that |wil

| ≤ |ul
|, then

|un+1| ≤ |un|.

Order αil βil dl

2 1 1 0
1/2 1/2 0 1/2 1

1 1 0
3 3/4 1/4 0 1/4 1

1/3 0 2/3 0 0 2/3 1/2

Table 1. Parameters for TVD-RK of order 2 and 3.

3.1.2. The spectral deferred correction method. Although details of this method
are given elsewhere [8; 27; 26; 40], we include the main algorithm for complete-
ness. The scheme is based on first-order explicit integration of substeps and it-
erative correction [8]. For stiff problems, the scheme can be varied with a more
implicit character, but only the explicit method is addressed here. Each time step
[tn, tn+1] is divided into J substeps: tn = tn,0 < tn,1 < · · ·< tn,m < tn,m+1 < · · ·<

tn,J = tn+1. These points are chosen as quadrature points (Lobatto points in the
current study). This approach makes the scheme more stable because it avoids a
uniform distribution and leads to the spectral characteristic of the scheme [8]. This
property is important to stabilize higher orders. Initially, the governing equations
are integrated with a first-order explicit integration from tn to tn+1 using tn,m points:

u1
n,m+1 = u1

n,m +1tn,mG
(
tn,m, u1

n,m
)

for m = 0, . . . , J − 1, (13)

where u1
n,0 = un and 1tn,m = tn,m+1− tn,m .

Now K iterations are computed for k= 1, . . . , K and m= 0, . . . , J−1 (m being
the inner loop):

uk+1
n,m+1

= uk+1
n,m + θ1tn,m

(
G(tn,m, uk+1

n,m )−G(tn,m, uk
n,m)

)
+ I m+1

m
(
G(tn,m, un,m)

)
, (14)

where 0≤ θ ≤ 1 and I m+1
m (G(tn,m, un,m)) is the integral of the interpolating poly-

nomial along the quadrature points:

I m+1
m (G(tn,m, un,m))=

∫ tn,m+1

tn,m
G(τ, u(τ )) dτ. (15)
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Finally, un+1= uK+1
n,J . Here, we use θ = 1 as in the original study [8] and K = J−1.

For the cases studied in this report, we observed that neglecting the second term
on the right-hand side, i.e., using θ = 0, provides similar results but with greater
numerical error.

3.2. The basis. Several options can be used to form the finite element space. Our
basis φ is built on the Legendre polynomials Pi , which leads to an orthogonal,
hierarchical, polynomial basis — an advantage in comparison with computationally
more expensive functions (e.g., trigonometric or exponential). Another numerical
advantage is an advantage in comparison with computationally more expensive
functions the lower condition number of the Vandermonde matrix, which trans-
forms from modal space to nodal space. The mass matrix is diagonal when the
basis is orthogonal and the Jacobian is constant inside the element; indeed, if the
basis is correctly normalized and the Jacobian is constant, the mass matrix is just
the identity matrix times the Jacobian.

The normalized Legendre polynomials are given by

φi = Pi

√
2i + 1

2
for i = 0, . . . , p, (16)

and they are orthonormal:
∫
�l
φiφ j dV = δi j , where δi j is Dirac’s delta function.

For quadrilateral and hexahedral elements the basis can easily be generated from
the 1D basis by applying a tensor product. Thus, in 2D we have

φi j (ξ, η)= φi (ξ) φ j (η), (17)

and in 3D
φi jk(ξ, η, ζ )= φi (ξ) φ j (η) φk(ζ ). (18)

3.3. Adaptive mesh refinement. The solver relies on a tree to handle the hierar-
chical structure of the grid adaptations. The initial grid is composed of root cells,
corresponding to the lowest level. Each cell can have children. A cell that does
not have children is called a leaf cell. If a root cell does not have children it is also
tagged as a leaf cell. The root cells correspond to level 1 and the maximum level is
given by `max, which may depend on the problem. Each face of every cell has to be
connected to a neighbor or to a boundary element. A cell can connect to a neighbor
at the same level or at a lower level, but never at a higher level. In addition, there
is a ghost tree to handle the ghost cells for interprocessor communications. Details
about the tree structures are given in [19; 17].

When a cell is marked for refinement it is split into two, four, or eight, in dimen-
sion 1, 2, or 3. The variables from the parent are projected onto the children with
an identity projection. On the other hand, when all the children of a cell are marked
for coarsening, the variables from the children are projected onto the parent cell
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with a least-squares projection. Note that if the order p is kept constant, no data is
lost when refinement is done; however, data is lost when coarsening is done.

Cells are marked for adaptation based on an error estimator. The error εl of cell
l is then normalized by the maximum error εmax found in the whole domain. Then,
a logarithmic scale is applied as in [9]. The current hierarchical level in the tree
for cell l is `(l). A target level `t is estimated as

`t =max
(
1, `max− INT

(
log(εmax/ε j )/ log d

))
(19)

where d is a parameter that determines the sensibility of the refinement, the larger
its value, the more refinement will be done. Even though the accuracy is expected to
increase as d is raised, the computational cost will be higher too. The default value
adopted here is d = 10 as in [9], which is a good balance between computational
cost and accuracy. If `t is greater than `(l) then cell l is marked for refinement. If
`t is lower than `(l) then cell l is merged for coarsening. Note that for coarsening
to actually be feasible, all the children have to be marked for coarsening.

The level difference between neighboring cells is not allowed to be larger than
1. For example, suppose cells 1 and 2 are neighbors, with `(1)= 3 and `(2)= 4.
If cell 2 is marked for refinement, then cell 1 will be marked for refinement also.

For the sake of simplicity and computational speed, a simple error estimator is
used here. More accurate approaches are slower and may increase the overhead,
making the adaptivity too costly.

Zhu et al. [45] compared a few different shock-detectors as estimators for re-
finement, and concluded that the most efficient based on their 1D discontinuous
problems was the KXRCF [21]:

εA,l =

∣∣∣∣∫
δ�−l

(U−−U+) d S
∣∣∣∣

h
p+1

2
l

∫
δ�−j

d S ‖Ul‖

, (20)

where U is some relevant variable, δ�−l is the element boundary where the velocity
is going into the element, hl is the radius of the circle circumscribed to the element l,
and the norm is based on an element average. In [33] the following error estimator
was used for element l:

εB,l =

∫
�l

|U−−U+| d S. (21)

Here, we combine the best of (20) and (21) to obtain

εC,l =

∫
δ�l
|U−−U+|d S∫
δ�l

d S.
(22)
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In the current implementation the error is already normalized by the maximum error
in the domain — see (19) — and so the additional normalization needed in (20) is
not required. For the Euler equation two error estimators based on the density and
the total energy are used. Below we refer to the estimators in (20)–(22) as KXRCF,
JUMP1, and JUMP2, respectively. The difference between JUMP1 and JUMP2
can only be observed in 2 and 3 dimensions, so for the 1D cases JUMP1 is not
used.

3.4. Moment-limiter for nonuniform grids. The limiting strategy of the ML is
shown below for 1D. However, for completeness, the 2D and 3D extensions are
discussed in the Appendix. In Section 3.4.2, we extend the original ML to nonuni-
form grids for 1D, but its extension to higher dimensions is trivial, except for when
a neighbor is split due to refinement, in which case the average of the two is used,
and when the neighbor is coarser, in which case a virtual refinement of the neighbor
is done. This last step has no analytical complexity, but its implementation may
not be trivial. Figure 1 shows the stencil used for limiting purposes when coarser,
finer, or equal level neighbors are present. For the neighbor on the right-hand side,
a virtual refinement was created, similar to the idea of partial neighboring cells
in [41]. The neighbors on the top are virtually merged.

Figure 1. Example of a 2D stencil used for limiting when coarser, finer, or equal-level
neighbors are present.

3.4.1. The moment-limiter concept. The idea is to limit the i-th derivative in x of
Ul in the following way:

∂ iŨl

∂x i =minmod
(
∂ iUl

∂x i , βi D+i , βi D−i

)
(23)



DG WITH SDC AND A MODIFIED MOMENT LIMITER FOR AMR 143

where

minmod(a, b, c)=
{

sgn a min(|a|, |b|, |c|) if sgn a = sgn b = sgn c,
0 otherwise,

(24)

and Ũl is the solution Ul after the limiter is applied. D+/−i is an estimation of the
i-th derivative based on one-sided differences:

D+i =

∂ i−1Ul+1

∂x i−1 −
∂ i−1Ul

∂x i−1

x̄l+1− x̄l
, D−i =

∂ i−1Ul

∂x i−1 −
∂ i−1Ul−1

∂x i−1

x̄l − x̄l−1
, (25)

where x̄l is the location of the centroid of element l, and βi is a parameter to control
the sensibility of the limiter. If there is a boundary condition against one of the
faces of the element, then that side is neglected in (23).

In the literature (e.g., [22]) it is recommended to apply limiting to the character-
istic variables when a system of equations is being solved. This means replacing
(23) by (

L
∂ i Ũl

∂x i

)
k
=minmod

((
L
∂ i Ul

∂x i

)
k
, βi (L D+i )k, βi (L D−i )k

)
, (26)

where L is a matrix composed by the left eigenvectors of the Jacobian ∂F/∂u,
and the subindex k refers the k-th characteristic variable. Each characteristic vari-
able is limited individually and this means that if a variable in a given element
is not limited the others can still be limited. If limiting is applied in an element
the resulted characteristic variables have to be converted back to the conservative
variables, multiplying the characteristic variables by the inverse of L, which is
composed by the right eigenvectors of ∂F/∂u. In addition, if one wants to use
primitive variables for this stage, L should be replaced by the Jacobian, ∂up/∂u,
where up is the state vector in primitive variables.

The algorithm to apply the limiter is the following:

(1) Apply (23) for i = p to every element. If

∂ iŨl

∂x i =
∂ iUl

∂x i , (27)

then mark the element as not needing limiting anymore.

(2) Apply (23) for i = p− 1 to every element that still needs to be limited.

(3) Continue for i = p− 2, . . . , 1 or until no element requires limiting.

Note that only the derivatives are modified, not the mean value; thus the limiter
does not violate the conservation property.

As in [22], we also add the following steps at the end of the limiting procedure
for each element to avoid nonphysical values:
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(1) If any integration point has a nonphysical state (e.g., negative pressure), make
all the quadratic and higher-order moments equal to zero and go to step 2,
otherwise the procedure is completed.

(2) If any integration point still has a nonphysical state (e.g., negative pressure),
make all the linear moments equal to zero. This makes the solution piecewise
constant.

Obviously, when these steps are applied the accuracy is forced to drop locally.
Nonetheless, this is not needed often.

3.4.2. The ML using a Legendre basis. The (i − 1)-th derivative with respect to x
of Ul , given in (6), can be expressed as

∂ i−1Ul

∂x i−1 =

(
2
1xl

)i−1
[√

2i−1
2

(2i − 3)!! cl,i−1+
∂ i−1

∂ξ i−1

p∑
k=i

cl,kφk(ξ)

]
(28)

and the i-th derivative in x of (6) can be expressed as

∂ i Ul

∂x i =

(
2
1xl

)i
[√

2i+1
2

(2i − 1)!! cl,i +
∂ i

∂ξ i

p∑
k=i+1

cl,kφk(ξ)

]
, (29)

where 1xl is the length of element l.
At the same time, the i-th derivative could be estimated from the forward or

backward differences of ∂ i−1Ul/∂x i−1:

∂ i Ul

∂x i =

(
∂ i−1Ul+1

∂x i−1 −
∂ i−1Ul

∂x i−1

)
2

1xl+1+1xl
, (30)

∂ i Ul

∂x i =

(
∂ i−1Ul

∂x i−1 −
∂ i−1Ul−1

∂x i−1

)
2

1xl +1xl−1
. (31)

Therefore, ignoring higher order derivatives we obtain

cl,i =
2ϑ+

1+ϑ+

√
2i−1
2i+1

1
2(2i−1)

(
ϑ i−1
+

cl+1,i−1− cl,i−1
)
, (32)

cl,i =
2ϑ−

1+ϑ−

√
2i−1
2i+1

1
2(2i−1)

(
cl,i−1−ϑ

i−1
−

cl−1,i−1
)
, (33)

where ϑ− = 1xl/1xl−1 and ϑ+ = 1xl/1xl+1. Note that if the grid is uniform
ϑ− = 1, ϑ+ = 1, and the derived equations converge to the solution in [22]. Thus,
the difference between the current derivation and the one in [22] starts in (30) and
(31), where we do not assume a constant 1x .

One could apply the limiter as

c̃l,i =minmod
(
cl,i ,1

+

i ,1
−

i

)
, (34)
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where 1+ and 1− are the right-hand sides of (32) and (33). However, to make the
limiter less numerically diffusive, [22] uses an expression equivalent to

c̃l,i =minmod
(
cl,i , 2 (2i − 1)1+i , 2 (2i − 1)1−i

)
. (35)

This equation should be the actual implementation of what (23) represents. The
same procedure is easily extended to 2D and 3D. Note that this formulation is equiv-
alent to what was presented in [22] except for the generalization for nonuniform
grids and how to handle neighbors of different adaptive level.

3.5. Troubled-cell detector. The detector presented in this study is a modification
of the AP-TVD detector presented in [42] for a spectral difference (SD) scheme.
The adapted technique consists of two steps:

1. For each cell l compute

Ūmax,l =max
(
Ūl−1, Ūl, Ūl+1

)
, (36)

Ūmin,l =min
(
Ūl−1, Ūl, Ūl+1

)
, (37)

where Ūl indicates the average of U in cell l. If for any node i in element l
we have Ui,l > 1.001 Ūmax,l or Ūi,l < 0.999 Ūmin,l , then proceed to step 2; else
the element is not marked.

2. For each dimension j the idea is to compute

∂2Ũl

∂x2
j
=minmod

(
∂2Ul

∂x2
j
, β

∂Ul+1
∂x j

−
∂Ul
∂x j

xl+1− x j
, β

∂Ul
∂x j
−
∂Ul−1
∂x j

xl − xl−1

)
. (38)

The derivatives are estimated from the Legendre polynomials as in 3.4.2, so
the implementation of (38) is

c̃l,2 =minmod
(

cl,2, %ϑ+
ϑ+cl+1,1− cl,1

1+ϑ+
, %ϑ−

cl,1− cl−1,1ϑ−

1+ϑ−

)
(39)

where % = 2
√

3/5. If c̃2,l 6= c2,l the cell is marked for limiting. According to
[42]; β is a parameter between 1 and 2, the higher its value the less dissipative
the scheme will be. We use β = 2 to make it consistent with the ML used
here.

There are two main differences in the current limiter with respect to the AP-TVD
developed earlier [42]. The first one is in step 1 where every node in the element is
tested, while in [42] only the nodes at element boundaries are checked. The second
difference is in the way the derivatives are estimated in step 2, averaged-derivatives
were used in [42], while here we suggest using estimations of the derivatives, as
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done in the ML based on Legendre polynomials to avoid computing the averaged-
derivatives. Thus, we call the current detector the moment-based AP-TVD or MB-
AP-TVD.

Usually, the detection is done based on the conservative variables, instead of
transforming to characteristic or primitive variables, in order to keep this stage as
computationally cheap as possible.

4. Results and discussion

Various test cases used in past studies are used to establish the capability of this new
numerical algorithm. In addition, we use some 2D and 3D cases to demonstrate
the potential of the method for more complex problems. The details of the test
cases and the rationals for them are summarized in Table 2.

Test case Purpose

Order of convergence – Order of accuracy in space with a smooth
linear linear problem.

Order of convergence – Order of accuracy in space with a smooth
nonlinear nonlinear problem.

Accuracy in time Order of accuracy in time with a smooth
solution using RK and SDC.

Advection of mixed pulses Order of accuracy with a nonsmooth solution
with and without detector.

High order for a smooth Order of accuracy with a localized
and nonsmooth solution discontinuity.

Sod’s problem Limiting variables, with and
without detector, and with and without AMR.

Lax’s problem Limiting variables, with and
without detector, and with and without AMR.

Blast waves Limiting variables, with and
without detector, and with and without AMR.

Shock-entropy waves Limiting variables, with and
interaction without detector, and with and without AMR.

2D convection Detector and AMR in 2D.
Double-Mach reflection Example in 2D.
Vortex convection Smooth example in 2D.
Shock-vortex interaction Example in 2D.
Spherical shock test Multidimensional symmetry (3D).

Table 2. Summary of test cases.
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4.1. Order of convergence – linear. The order of convergence is studied with the
one-dimensional convection equation because the exact solution is known:

∂u(x, t)
∂t

+ c
∂u(x, t)
∂x

= 0, (40)

u(x, t = 0)= sin x,

where u is a passive scalar and c is the constant convection velocity equal to 1.
The exact solution is u(x, t) = sin(x − ct). The domain has a length of 2π and
periodic boundary conditions. The number of cells N and the polynomial order p
are varied in this study.

This case is run without detector to show the effect of the limiters on smooth
solutions. Moreover, given that the governing equation is not a system of equations,
no characteristic decomposition is needed.

The time integration schemes used here are the SDC and the TVD-RK of 3rd
order with a time step of 10−5. This gives an error in time of the order of 10−15,
which is negligible with respect to the spatial error and of the order of the round-off
error. The L∞ error, eL∞ , at t = 2 is computed at the centroid of the element and
with respect to the exact solution, i.e.,

eL∞ = max
l=1,...,N

|Ul(x̄l, t)− u(x̄l, t)| (41)

where x̄l is the centroid of element l. The L∞ error in the plots is normalized by
the case with the largest error. As shown in Figure 2, elements of order p lead to an
order of accuracy of p+1, as the literature predicts [7]. Although the solutions with
limiter have the same order of accuracy, they have a greater error. Therefore, the
limiter should not be used unless really needed. The curves in Figure 2 get flattened
out for very low errors (around O(10−11)) due to accumulated round-off error.
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Figure 2. Grid convergence for different orders when a smooth solution is convected, for
the 3rd-order TVD-RK (left) and the 3rd-order SDC (right).
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4.2. Order of convergence – nonlinear. Now the order of convergence in space
is studied with the one-dimensional burger equation as in [7]:

∂u(x, t)
∂t

+
∂(u(x, t)2/2)

∂x
= 0, (42)

u(x, t = 0)= 1
4 +

1
2 sin(π(2x − 1)),

where u is the velocity. The domain has a unit length and periodic boundary con-
ditions. The number of cells N and the polynomial order p are varied in this study.
The exact solution is estimated with N = 2048, p = 2, 3rd-order TVD-RK, and
without limiter. The problem is solved until t = 0.05, when the solution is still
smooth.

This case is run without detector to show the effect of the limiters on smooth
solutions.

The time integration schemes used here are the SDC and the TVD-RK of 3rd
order with a time step of 10−5. This gives an error in time of the order of 10−15,
which is negligible with respect to the spatial error and of the order of the round-
off error. The L∞ error, eL∞ , at t = 0.05 is computed at the centroid of the
element and with respect to the estimated exact solution as in the previous case.
As shown in Figure 3, the order of accuracy in space matches closely with what
the theory predicted even for a nonlinear problem. Even though the solutions with
limiter have the same order of accuracy, they have a greater error. Therefore, the
limiter should not be used if it is not really needed. The curves in Figure 3 get
flattened out for very low errors due to accumulated round-off error. In conclu-
sion, the observations for the nonlinear case are very similar to the linear case
above.
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Figure 3. Grid convergence for different orders with a smooth nonlinear problem, for the
3rd-order TVD-RK (left) and the 3rd-order SDC (right).



DG WITH SDC AND A MODIFIED MOMENT LIMITER FOR AMR 149

4.3. Accuracy in time. The time integration is studied with the equation

∂u(x, t)
∂t

+ 0
∂u(x, t)
∂x

= u(x, t), (43)

u(x, 0)= 1,

which has the exact solution u(x, t)= et . The convection velocity is 0 so that the
truncation error in space is zero and the truncation error in time can be studied
by itself. A 1D domain of unit length, periodic boundaries and 100 elements is
used. The time integration is performed with the TVD-RK and SDC methods for
different order. The L∞ error is computed at t = 6.28 for different number of time
steps and shown in Table 3 along with the order of accuracy. The results are also
shown in Figure 4 for a more clear appreciation. The order of accuracy for Ni

elements (knowing that Ni = 2Ni−1) is computed as

log(ei/ei−1)

log(0.5)
. (44)

The fact that the computed order approaches the order of the scheme verifies
the proper implementation of the temporal integration. Also, note that at equal
theoretical order, SDC results to be more accurate while they have very similar
order of accuracy.

Number of 2nd order TVD-RK 3rd order TVD-RK 2nd order SDC
time steps eL∞ order eL∞ order eL∞ order

8 1.6537 ·102 — 3.5302 ·101 — 1.6537 ·102 —
16 6.0804 ·101 1.4435 6.1493 ·100 2.5213 6.0804 ·101 1.4435
32 1.8276 ·101 1.7342 9.0205 ·10−1 2.7691 1.8276 ·101 1.7342
64 4.9757 ·100 1.8770 1.2200 ·10−1 2.8863 4.9757 ·100 1.8770

128 1.2948 ·100 1.9422 1.5861 ·10−2 2.9434 1.2948 ·100 1.9422
256 3.2999 ·10−1 1.9722 2.0219 ·10−3 2.9717 3.2999 ·10−1 1.9722

Number of 3rd order SDC 4th order SDC 5th order SDC
time steps eL∞ order eL∞ order eL∞ order

8 1.9510 ·101 — 1.2840 ·100 — 7.2084 ·10−2 —
16 2.8648 ·100 2.7677 9.2132 ·10−2 3.8007 2.4229 ·10−3 4.8949
32 3.7984 ·10−1 2.9150 6.0812 ·10−3 3.9213 7.7303 ·10−5 4.9700
64 4.8588 ·10−2 2.9667 3.8890 ·10−4 3.9669 2.4288 ·10−6 4.9922

128 6.1332 ·10−3 2.9859 2.4556 ·10−5 3.9852 7.5987 ·10−8 4.9984
256 7.7005 ·10−4 2.9936 1.5422 ·10−6 3.9931 2.3588 ·10−9 5.0096

Table 3. Error eL∞ for TVD-RK (2nd and 3rd order) and for SDC (2nd to 5th order).
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Figure 4. Normalized error for TVD-RK and SDC.

Figure 5 shows the CPU time against the eL∞ obtained for different orders and
schemes. The CPU time is normalized by the fastest case. The curves closer to the
bottom left corner represent a more efficient scheme. For the same order, TVD-RK
is more efficient than SDC. At the same time, the efficiency is increased with the
order. For instance for this case 5th order SDC is more efficient than 3rd order
TVD-RK.

In conclusion, the advantage of SDC with respect to RK is that the extension to
higher orders is trivial. One could argue that SDC does not have the TVD property
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Figure 5. CPU time for different time integration schemes and orders.
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of TVD-RK of 2nd and 3rd order, however, RK schemes of 4th order or greater are
not TVD either. For certain problems where the error in time is important higher
orders may be more suitable. Thus, explicit SDC seems to be a possible approach
for high-order time integration of DG schemes.

The test cases below tend to have a dominant spatial error, thus very high orders
in time are not required.

4.4. Advection of mixed pulses. The convection equation (40) is used with the
initial value given by

u(x,0)=



1
6 (G(x, β, z−δ)+G(x, β, z+δ)+4G(x, β, z)) if −0.8≤ x ≤−0.6,

1 if −0.4≤ x ≤−0.2,

1−|10(x−0.1)| if 0 ≤ x ≤ 0.2,
1
6 (F(x, α,a−δ)+F(x, α,a+δ)+4F(x, α, z)) if 0.4≤ x ≤ 0.6,

0 otherwise,

for

G(x, β, z)= e−β(x−z)2 and F(x, α, a)=
√

max(1−α2(x − a)2, 0),

with a = 0.5, z =−0.7, δ = 0.005, α = 10, and β = log 2/(36δ2). The domain is
a uniform grid from x =−1 to x = 1 with periodic boundary conditions.

The SDC method of 3rd order is used. The ML is applied on every element or
on the ones flagged by the MB-AP-TVD detector. The result at t = 8.0 is shown
in Figure 6 for p = 2, 4 and for 200 cells.

Figure 7 shows the L1 error computed at the center of the elements for different
number of cells and polynomial orders:

eL1 =

N∑
l=1

∫
�l

|Ul(x, t)− u(x, t)|dx (45)

where U is the numerical result and u is the exact solution (or its estimation). In
the previous test case L∞ was used, which is an adequate parameter to analyze
smooth solution, however, for discontinuous solutions L1 is more appropriate.

A few observations can be made from this figure. The error is reduced as the
number of elements n or the polynomial order p increases. Also, using the detector
improves the accuracy. Note that the order of accuracy is approximately 1 because
of the presence of discontinuities in the solution. Therefore, increasing the order
p when discontinuities are present reduces the error, but not the order of accuracy.

The same case is run using the original AP-TVD detector, and the efficiency of
the AP-TVD and MB-AP-TVD detectors are compared in Figure 8. Curves closer
to the bottom left corner represent more accurate schemes.
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Figure 6. Convection of mixed pulses at t = 8, with 200 cells and p = 2, 4. Top: ML
applied to all cells. Bottom: ML applied only to troubled cells flagged by the detector.
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Figure 7. L1 error for different orders and number of elements for the convection of
mixed pulses.

Note that for the same number of elements AP-TVD tends to be slower, while the
error is similar. Thus, MB-AP-TVD ends up being a better choice than AP-TVD
when the default basis of the element is formed by Legendre polynomials. Given
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Figure 8. CPU time versus L1 error for different orders for the convection of mixed pulses.

this, we only use the MB-AP-TVD for the cases below. In addition, Figure 8 shows
that for this case, which contains discontinuities, increasing the order of the scheme
does not improve its efficiency.

4.5. High order for a smooth and nonsmooth solution. The same case as in
Section 4.2 is observed here for a longer period of time. At t = 0.4 a discontinuity
is found at approximately x = 0.1, while the rest of the solution is smooth. The
error is usually computed taking into account the whole domain. However, in order
to analyze only the region with a smooth solution, it can be computed for part of
the domain. For this purpose we define ẽL1 :

ẽL1 =

N∑
l=1

0.3≤x≤0.9

∫
�l

|Ul(x, t)− u(x, t)|dx (46)

This is similar to (45), but the integration is done away from the discontinuity,
i.e., for 0.3 ≤ x ≤ 0.9. We estimate the exact solution with 512 elements with
p = 6, and using the SDC of 7th order. The problem is studied using p = 2, 4, 6,
N = 10, 20, 30, 40, 80, 160, SDC of order p+ 1, and limiting on all the elements
or as flagged by the MB-AP-TVD detector. The errors eL1 and ẽL1 are shown in
Tables 4 and 5. Note that the order of accuracy based on ẽL1 is close to p+1, while
for eL1 it is close 1. At very low errors the order drops due to accumulated round-
off error. For p = 4 and p = 6 using 20 elements the order is much greater then
p+ 1 since the error for N = 10 is relatively large. This is due to the propagation
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Number of Whole domain (p=2) Whole domain (p=4) Whole domain (p=6)
time steps eL1 order eL1 order eL1 order

10 3.0333 ·10−2 — 2.6758 ·10−2 — 2.5755 ·10−2 —
20 1.2243 ·10−2 1.3089 1.1347 ·10−2 1.2376 1.1102 ·10−2 1.2140
30 7.6765 ·10−3 1.1513 7.2367 ·10−3 1.1093 7.1097 ·10−3 1.0991
40 5.6299 ·10−3 1.0778 5.3411 ·10−3 1.0558 5.2764 ·10−3 1.0366
80 2.7534 ·10−3 1.0319 2.6630 ·10−3 1.0041 2.0933 ·10−3 1.3338

160 1.3740 ·10−3 1.0029 9.1757 ·10−4 1.5372 1.1018 ·10−3 0.9260

Number of Smooth region (p=2) Smooth region (p=4) Smooth region (p=6)
time steps ẽL1 order ẽL1 order ẽL1 order

10 4.4679 ·10−4 — 5.0581 ·10−5 — 3.8820 ·10−5 —
20 2.8444 ·10−5 3.9734 1.3111 ·10−8 11.914 2.1739 ·10−9 14.1242
30 6.2605 ·10−6 3.7332 1.2282 ·10−9 5.8399 2.3454 ·10−12 16.8493
40 2.2165 ·10−6 3.6093 2.3009 ·10−10 5.8220 1.8132 ·10−13 8.8985
80 1.9190 ·10−7 3.5298 5.1326 ·10−12 5.4864 9.6648 ·10−14 0.9077

160 1.7365 ·10−8 3.4661 1.7473 ·10−13 4.8765 1.0902 ·10−13
−0.1738

Table 4. The error eL1 (top half) and ẽL1 (bottom half) with limiting on all the elements.

Number of Whole domain (p=2) Whole domain (p=4) Whole domain (p=6)
time steps eL1 order eL1 order eL1 order

10 2.7784 ·10−2 — 2.4803 ·10−2 — 2.3243 ·10−2 —
20 9.7931 ·10−3 1.5044 7.6011 ·10−3 1.7063 8.0117 ·10−3 1.5366
30 4.4951 ·10−3 1.9205 4.7370 ·10−3 1.1663 4.6348 ·10−3 1.3498
40 4.5546 ·10−3 0.0457 3.2698 ·10−3 1.2885 3.3924 ·10−3 1.0848
80 1.5292 ·10−3 1.5745 1.6939 ·10−3 0.9489 1.7780 ·10−3 0.9321

160 6.5156 ·10−4 1.2308 9.6828 ·10−4 0.8068 9.5344 ·10−4 0.8990

Number of Smooth region (p=2) Smooth region (p=4) Smooth region (p=6)
time steps ẽL1 order ẽL1 order ẽL1 order

10 1.5107 ·10−4 — 4.2981 ·10−5 — 1.5876 ·10−5 —
20 9.2714 ·10−6 4.0263 6.3106 ·10−9 12.7336 9.5822 ·10−12 20.6600
30 2.2911 ·10−6 3.4477 6.1355 ·10−10 5.7483 4.4873 ·10−13 7.5500
40 8.4867 ·10−7 3.4521 1.2682 ·10−10 5.4799 1.2121 ·10−13 4.5497
80 8.4769 ·10−8 3.3236 3.3972 ·10−12 5.2223 9.6667 ·10−14 0.3265

160 9.0416 ·10−9 3.2289 1.4398 ·10−13 4.5604 1.0951 ·10−13
−0.1799

Table 5. The error eL1 (top half) and ẽL1 (bottom half) with limiting based on the MB-
AP-TVD detector.
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to smooth regions of instabilities generated at the discontinuity. For a large enough
number of elements, N ≥ 20, the instabilities do not affect the smooth area being
considered in (46) for ẽL1 .

Figure 9 shows the efficiency of the scheme for different orders, with and without
the MB-AP-TVD detector. The error and CPU time are normalized based on the
case with the largest error.

As observed for previous cases, the troubled-cell detector helps improve the
accuracy and efficiency of the solver. For lower L1 error high-order schemes be-
come more efficient. The limiter reduces numerical oscillations at discontinuities,
but with a minimal numerical diffusion, so small instabilities still exist. As the
number of elements is increased the numerical error originated at the discontinuity
is localized in a smaller region. Thus, probably, p-adaptivity could improve the
efficiency by dropping the order at the discontinuity and keeping high order in the
smooth region.
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Figure 9. Efficiency of the scheme for different orders for a solution with one discontinu-
ity. The limiter is applied to all the elements or based on the MB-AP-TVD detector. Top:
eL1 for the whole domain. Bottom: ẽL1 for the smooth region.
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4.6. Sod’s problem. The initial conditions are

(ρ, v, p)=
{
(1.0, 0.0, 1.0) if x ≤ 0.5,
(0.125, 0.0, 0.1) if x > 0.5.

(47)

A 1D domain is used and it extends from x = 0 to x = 1. The case is run with
different number of elements and the limiting is based on conservative, primitive,
or characteristic variables. In addition, two options are tested, one applies the ML
with the MB-AP-TVD detector, and the second option applies the ML to all cells.
The grid is uniform with p = 2, and the time integration is performed using the
3rd-order SDC. The simulation is run until t = 0.2. The normalized CPU time
versus the L1 error of the final density is shown for the three cases in Figure 10(a).

Limiting with primitive or characteristic variables requires computing the respec-
tive Jacobians for each element, so it is computationally slightly more expensive
than using conservative variables, but the error is lower. For primitive and charac-
teristic variables, using the MB-AP-TVD detector to apply the ML to only troubled
cells increases the efficiency and lowers the error since the solution is smooth in a
large portion of the domain.

The same case is run enabling the adaptive mesh refinement for `max = 1, 2, 3.
The CPU time versus the L1 error of the density is shown in Figure 10(b) for
limiting with primitive variables. Note that both variables are normalized by the
fastest simulation. As `max is increased the curves get slightly closer to the origin.
This means that for this test case enabling the adaptivity produces some increase
in the efficiency of the solver. Here, the MB-AP-TVD also shows to improve the
efficiency.

The estimators are compared using `max = 3, the MB-AP-TVD detector, and
limiting with primitive variables. The efficiency is represented in Figure 10(c).
Clearly, JUMP2 is more efficient than KXRCF for this case.

4.7. Lax’s problem. The initial solution is:

(ρ, v, p)=
{
(0.445, 0.698, 3.528) if x ≤ 0,
(0.5, 0, 0.571) if x > 0.

(48)

The problem is solved in the 1D domain [−0.5, 0.5] until t = 0.13.
Initially, the effect of the variables used for limiting is studied. A uniform grid

is used with N = 64, 128, 256, 512 and p = 2 with the limiter applied to either
all cells or those flagged by the MB-AP-TVD detector. The integration in time is
done with the 3rd-order SDC method. The CPU time versus the L1 error of the
density is shown in Figure 11(a). These results show that for this particular test
problem the MB-AP-TVD detector increases the efficiency for conservative and
characteristic variables, while for primitive variables it did not affect significantly.
The CPU time is very similar independent of the set of variables used. Even though
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(a) Comparison for different limiting variables with and without detector.
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(c) Estimator comparison, limiting using primitive variables; the MB-AP-TVD detector and `max=3.

Figure 10. Sod’s problem for different solver options. The curves closer to the bottom
left corner represent a more efficient set of options.



158 LEANDRO D. GRYNGARTEN, ANDREW SMITH AND SURESH MENON

10-1 100

Normalized L1  Density Error

100

101

102
No

nd
im

en
si

on
al

 C
PU

 T
im

e

Primitive MB-AP-TVD
Primitive All
Characteristic MB-AP-TVD
Characteristic All
Conservative MB-AP-TVD
Conservative All

(a) Limiting comparison.
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(b) AMR comparison; limiting using primitive variables.
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(c) Estimator comparison; limiting using primitive variables, the MB-AP-TVD detector and `max = 3.

Figure 11. Lax problem for different solver options.
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conservative variables do not require to compute the Jacobian to transform between
the variables, they may require more steps of the limiter.

Now the effect of the adaptation is studied, limiting with primitive variables.
The same grid is used, but the adaptation is enable with `max = 1, 2, 3. The result
is shown in Figure 11(b). When `max is raised, the efficiency of the solver in-
creases and it improves more using the MB-AP-TVD detector. The estimators are
compared using `max = 3, the MB-AP-TVD detector, and limiting with primitive
variables. The efficiency is represented in Figure 11(c). Clearly, JUMP2 is more
efficient than KXRCF for this case.

4.8. Blast waves. Consider the initial data ρ = 1.0, v = 0.0, and

P =


1000 if 0≤ x < 0.1,
0.01 if 0.1≤ x < 0.9,
100 if 0.9≤ x ≤ 1.0.

(49)

This problem is a common test case first presented in [37]. Walls are located at
x = 0 and x = 1.

The problem is run until t = 0.038 s for p = 2, `max = 1, 2, 3, different number
of root cells and the 3rd-order SDC. This test case does not have an exact solution,
so it is approximated using a uniform mesh with N = 4096, p = 2, `max = 1, the
ML without detector and with characteristic decomposition, similar to [21].

Figure 12 shows the CPU time versus the L1 error in density, both variables
are normalized by the fastest run. Part (a) shows the effect of the detector and the
limiting variables. Part (b) represents the efficiency of the AMR approach using
primitive variables. The efficiency of the solver clearly improves increasing `max.
In this case the MB-AP-TVD detector does not produce any significant difference
when studying the refinement aspects. The estimators are compared using `max = 3,
the MB-AP-TVD detector, and limiting with primitive variables and the results are
in Figure 12(c). JUMP2 tends to be more efficient than KXRCF for this case.

4.9. Shock-entropy wave interaction. Consider the Euler equation with the fol-
lowing initial values:

(ρ, v, p)=
{
(3.857143, 2.629369, 10.333333) if x <−4,
(1.0+ 0.2 sin(5x), 0.0, 1.0) if x ≥−4.

(50)

The problem is solved in the 1D domain [−5, 5] until t = 1.8.
As before, the effect of the variables used for limiting are studied on a uniform

grid with N = 64, 128, 256, 512 and p= 2. The integration in time is done with the
3rd-order SDC method. The CPU time versus the L1 error of the density is shown
in Figure 13. For this problem limiting using primitive variable is advantageous
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(c) Estimator comparison; limiting using primitive variables, the MB-AP-TVD detector and `max = 3.

Figure 12. Interacting blast waves for different solver options.
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(b) AMR comparison; limiting using the primitive variables.
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(c) Estimator comparison; limiting using primitive variables, the MB-AP-TVD detector and `max = 3.

Figure 13. Shock-entropy wave interaction problem for different solver options.
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Figure 14. Shock-entropy wave interaction at t = 1.8 for N = 256, p = 2: density ρ as
a function of location. The bottom pane shows a detail, to the left of the drop.

compared with conservative variables. Figure 14 shows the solution at t = 1.8;
it clearly presents that limiting using primitive variables captures the smooth os-
cillations much more accurately than with conservative variables. Characteristic
limiting provides a even more efficient solution than with primitive variables. Also,
the MB-AP-TVD detector improves the efficiency. Using AMR for this test case
gives no efficiency gains in the low element count (larger normalized error) regime,
but AMR is more justified at lower errors where the number of elements increases.

The estimators are compared in Figure 13 using `max = 3, the MB-AP-TVD
detector, and limiting with primitive variables. JUMP2 tends to be more efficient
than KXRCF for this case.

4.10. Convection in 2D. The limiter and adaptivity approach is studied in 2D us-
ing the two-dimensional convection equation

∂u(x, t)
∂t

+ c1
∂u(x, t)
∂x

+ c2
∂u(x, t)
∂y

= 0 (51)

with initial condition

u(x, t = 0)=
{

1 for (x1− 0.5)2+ (x2− 0.5)2 ≤ 0.252,

0 otherwise,
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where u is a passive scalar, and c1 and c2 are the constant convection velocities
equal to 1. The domain is the unit square [0, 1] × [0, 1] with periodic boundary
conditions. The time integration used is the 3rd-order SDC. Figure 15 shows the
CPU time versus the L1 error at t = 1 for different solver options varying the
number of element. In part (a), `max is varied together with the detector. Increasing
the `max improves the efficiency, and using the MB-AP-TVD helps too. In part
(b), the error estimator for AMR is varied. For this 2D case JUMP1 and JUMP2
produce slightly different results, and JUMP2 is the most efficient of the three
estimators.
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(a) AMR comparison, with and without detector.
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(b) Estimator comparison, using the MB-AP-TVD detector and `max = 3.

Figure 15. Two-dimensional convection for different solver options.
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4.11. Double Mach reflection. This is a very common test case for the Euler equa-
tion first used by Woodward and Colella [37]. It was also solved by Krivodonova
[22] using the ML with a uniform grid and without trouble-cell detector. This
case consists of a strong shock impacting a wedge with a half-angle of 30◦, thus
it is usually simulated by a rectangular domain with a frame rotated 30◦ over the
original horizontal axis.

The rectangular domain has a size of [0, 4] × [0, 1]. A right-moving Mach 10
shock is initially located forming an angle of 60◦ with the x-axis passing by the
coordinate x = 1

6 , y = 0. The undisturbed air on the right of the shock has a
density of 1.4 and a pressure of 1. The specific heat ratio is γ = 1.4. A slip-
wall boundary is located at the lower boundary from x = 1

6 to x = 4. The right
boundary is a supersonic outflow. The left boundary and bottom boundary for
x < 1

6 are supersonic inflow. The reason for applying supersonic inflow at the
bottom boundary is to mimic the effect of the wedge. The top boundary mimics
the exact motion of the moving shock.

The grid has 48× 12 cells with `max = 5. The ML is used with the MB-AP-
TVD detector. Second-order polynomial elements are used with the 3rd-order SDC
method.

The results are shown for t = 0.2. Figure 16 shows 60 equally spaced density
contours; the inset shows in black the cells flagged by the MB-AP-TVD detector
as troubled cells. Note that the ML is not applied here where the flow is uniform,
as intended. Figure 17 shows the level of refinement l. It can be noted that the

Figure 16. Double Mach reflection: density map at t = 0.2 and (inset) troubled cells.

Figure 17. Double Mach reflection: refinement level.
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level is increased where the features of the flow are smaller, as can be expected
from Figure 16.

4.12. Vortex convection. As we have seen with previous tests, the global effi-
ciency does not improve significantly for problems dominated by discontinuities
when the order is increased. We studied simple smooth cases in 1D, but here we
extend the study to a slightly more applicable case in 2D. An isentropic vortex is
centered at the center of the domain (xc, yc)= (0.5, 0.5). The flow is described by

v1 = M
√
γ + ε τ eα(1−τ

2) sin θ, v2 =−ε τ eα(1−τ
2) cos θ,

ρ =
(

1− γ−1
4αγ

ε2 e2α(1−τ 2)
) 1
γ−1

, p = ργ ,

where M = 0.3 and

τ =
r
rc
, r =

√
(x − xc)

2
+ (y− yc)

2, θ = arctan y−yc
x−xc

.

Three parameters describe the vortex: its the strength ε, its the decay rate α, and the
critical radius rc. For this test the following values are used: ε= 0.3, α= 0.204, and
rc = 0.05. The domain is a unit square with periodic boundaries in every direction.
Different number of elements and spatial orders, p, are used. Even though this is
a smooth problem, the ML limiter with the MB-AP-TVD detector are used. The
range of length scales is very narrow, so AMR is not needed.

Figure 18(a) presents the CPU time versus the L1 error after one period using
the SDC of order p+ 1. The same pattern as for previous 1D cases is observed
here. The efficiency increases with the order at in the high accuracy range since
at equal CPU time the numerical error is smaller. However, in the low accuracy
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Figure 18. Efficiency for the convection of an isentropic vortex: SDC of order p+1 (left)
and of order 3 (right).
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range low order schemes perform more efficiently. Even though this problem is
dominated by convection, the time-step size is limited by the acoustic time, so one
could assume that we are over-resolving in time. Thus, we rerun the same cases
with the 3rd-order SDC for every p. Note that in this case the CFL has to be
adjusted for p > 2. We use C = 0.5, C = 0.45, and C = 0.4 for p = 2, p = 4, and
p = 6, respectively. Now higher orders in space have a greater advantage. In cases
where the error in time is more significant, increasing the order of the scheme in
time would make improvements. In this case, however, higher orders in time only
add more computational cost.

It can be concluded that the limiting procedure can be freely applied in the whole
domain even where smooth features are present. This aspect is important for large-
scale applied problems where several types of features can be present at the same
time, so a generic and robust scheme is wanted. The shock-vortex interaction case
shown below elaborates more on this.

4.13. Shock-vortex interaction. This problem consists of a vortex going through
a shock and helps to test how the solver behaves when smooth features interact with
discontinuities. For more information on this kind of problems see [32]. The initial
conditions are the same as in [42; 18]. The size of the domain is [0, 2] × [0, 1].
Reflective boundary conditions are used on top and bottom. The left boundary is
a supersonic inflow, while the right boundary is an outflow. A stationary shock is
located at x = 0.5, its preshock Mach number is Ms = 1.1, and the left side state is
defined by ρ = 1, u = Ms

√
γ , v = 0 and p = 1. The right state can be determined

from the left state by using the stationary shock relations. An isentropic vortex is
centered at (xc, yc)= (0.25, 0.5). Therefore, on the left-hand side of the shock the
flow is described by

v1 = Ms
√
γ + ε τ eα(1−τ

2) sin θ, v2 =−ε τ eα(1−τ
2) cos θ,

ρ =

(
1−

(γ − 1) ε2 e2α(1−τ 2)

4αγ

) 1
γ−1
, p = ργ

where
τ =

r
rc

, r =
√
(x − xc)

2
+ (y− yc)

2, θ = arctan y−yc
x−xc

.

For this test the values used are ε = 0.3, α = 0.204, and rc = 0.05.
A uniform grid with 32 × 16 cells and `max = 4 is used with p = 2. The

time integration is done with the 3rd-order SDC method. The ML is used with
the MB-AP-TVD detector. The pressure at t = 0.8 are shown in Figure 19 with
60 equally spaced contours. The two parts of Figure 20 indicate how the solver
adapt to the solution to avoid instabilities and waste computational resources. The
vortex successfully goes through the shock and features with different length scales
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are properly be resolved. Similar results were observed in [42; 18] using other
numerical schemes.

Figure 19. Pressure isocontours for a shock-vortex interaction.

Figure 20. Shock-vortex interaction: troubled cells (left) and refinement level (right)

4.14. Spherical shock test. The final test is a spherical shock case in a cube de-
fined in [0, 1]×[0, 1]×[0, 1]. The initial conditions are similar to the typical Sod’s
problem, but in this case spherical symmetry is used:

(ρ, v1, v2, v3, p)=
{
(1.0, 0.0, 0.0, 0.0, 1.0) if r ≤ 0.5,
(0.125, 0.0, 0.0, 0.0, 0.1) if r > 0.5,

(52)

where r is the distance from (0, 0, 0). The initial grid has 323 p = 2 elements,
each allowed to refine to a level `max = 3. The integration in time is done with the
3rd-order SDC method.

An “exact” solution is estimated solving the Euler equation in spherical coordi-
nates assuming spherical symmetry. Thus, the equation being solved in the domain
[0, 1] is

∂u
∂t
+
∂F(u)
∂x

= S, (53)



168 LEANDRO D. GRYNGARTEN, ANDREW SMITH AND SURESH MENON

0.0 0.2 0.4 0.6 0.8 1.0
Distance from the origin, r

0.2

0.4

0.6

0.8

1.0

De
ns

ity
, ρ

�r=(0,0,1)

�r=(0,1,0)

�r=(1,0,0)

�r=(1,1,1)

Exact

0.0 0.2 0.4 0.6 0.8 1.0
Distance from the origin, r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
es

su
re
, p

�r=(0,0,1)

�r=(0,1,0)

�r=(1,0,0)

�r=(1,1,1)

Exact

Figure 21. Spherical shock test at t = 0.15 over four different vectors.

where S=−2/x
(
ρv1, ρv

2
1, (ρET + p)v1

)T . This 1D problem is solved on a grid
with 1024 cells with p = 2 and integrated in time with the 3rd-order SDC method.

A very similar test case to this one was studied in 2D in [39; 36].
The density and pressure at t = 0.2 over four different vectors are shown in

Figure 21. Each of these four vectors are: (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1).
Given that the density on the different trajectories match, the scheme successfully
respects the spherical symmetry of the problem. Note that the results shown do
not match exactly the classical one-dimensional Sod shock-tube problem due to
3D effects. Figure 22 on the next page demonstrates the ability of AMR to track
the shock and rarefaction waves as required.

5. Conclusions

The Euler equations are solved using the discontinuous Galerkin method with adap-
tive mesh refinement and high-order of accuracy in space and time.

It was shown using high-order schemes that problems with discontinuities can
present high order of convergence in the smooth regions, while the global order
of accuracy is close to 1 in the L1 and L∞ norm. Most of the cases studied in-
clude discontinuities. Therefore, in such cases the order in space and time of the
scheme used is 3, since, as it was shown, increasing the order of the solver does not
improve its efficiency significantly when discontinuities dominate. Given that the
time step is limited by the acoustic time, convection-dominated problems end up
being over-resolved in time, so in such cases increasing the order in time produces
an unnecessary computational cost.

A simple and effective error estimator for adaptivity based on the interelement
jump is suggested and it was shown to be more efficient than other estimator
found in the literature. From a computational-resources point of view, the most
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Figure 22. Spherical shock test: density contours and grid refinement.

efficient combination of maximum levels of refinement and initial number of cells
is problem-dependent. In a few of the tested problems the overhead caused by the
adaptation made it unnecessary. However, in no case with a wide range of scales
AMR caused a significant loss of efficiency.

The AP-TVD detector in [42] was modified replacing the averaged-derivative
basis that it originally required by the Legendre polynomial basis, which is com-
monly used in DG. Therefore, the current approach avoids the transformation and
a better efficiency of the scheme is observed. We named it the moment-based
AP-TVD (MB-AP-TVD) since it uses the default moments of the solution — like
the moment limiter (ML) does. Yang and Wang [42] showed that the AP-TVD
detector gives better results than the more common detectors used in [29], so the
MB-AP-TVD should be even more efficient than those.
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The troubled cells were treated with a ML modified for nonuniform meshes
with hanging nodes. The limiting stage is done using primitive, characteristic, and
conservative variables and then appropriately evaluated. The optimal choice of
limiting variables and where to apply the limiter is case-specific, but based on the
results of the one-dimensional tests limiting using primitive variables and the MB-
AP-TVD detector is the recommended starting point, especially for multidimen-
sional problems since the ML is inherently multidimensional and the characteristic
decomposition, slightly better than primitive variables in 1D, cannot be applied in 2
or 3 dimensions. The computational cost due to the conversion from conservative
to the other variables seems to be negligible. This Jacobian (and its inverse) is
computed each time an element is being limited, but the CPU advantage of con-
servative variables seems to be lost since worse limiting requires more correction
steps of the limiter.

In addition, most test cases were studied with SDC method, what shows that it is
an adequate time-integration scheme that could be considered as an alternative to
the Runge–Kutta methods for certain applications, especially as the order increases
since it is easier to derive and implement. More research is still necessary to deter-
mine the numerical properties of SDC-DG, such as its maximum CFL number and
its numerical dissipation at different frequencies. For cartesian, low-order cases
DG may perform similarly to FD or FV [44]. However, it is important to note
that when the conditions are more sophisticated (e.g., unstructured, noncartesian,
high-order), where other schemes cannot even be applied, DG still performs well.

The scheme, including our new developments, are relatively simple to imple-
ment, robust, with great numerical properties. Thus, it presents a technique that
should be exploited for more generic applications.

For steady-state problems the proposed approach may not be highly efficient.
Common modifications to improve the convergence to a steady state include some
type of filter in time for the limiter and other discrete operations, since they create
oscillations that do not let the residual decrease enough. However, the goal of this
study is to investigate methods needed for time dependent problems.

p-adaptivity could be useful especially for problems with discontinuities, which
are better treated with low-order schemes. Application to the full Navier–Stokes
equation will be reported in the near future.
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Appendix: Moment limiter in two and three dimensions

The 1D momentum limiter presented in Section 3.4 is discussed here in two and
three dimensions for completeness.

A.1. Two-dimensional moment limiter. In this case cross derivatives should be
taken into account. Hence, for element l,m,

∂ i+ jŨl,m

∂x i
1∂x j

2

=minmod
(
∂ i+ jUl,m

∂x i
1∂x j

2

, βi j Dx1+
i j , βi j Dx1−

i j , βi j Dx2+
i j , βi j Dx2−

i j

)
(54)

where the frame (x1, x2) is a rotation of (x, y) aligned to the computational coor-
dinates (ξ, η) of the current element.

In this case, the limiting starts from orders (p, p), and continuous with the pair
(p, p−1) and (p−1, p), then with the pair (p, p−2) and (p−2, p), and so on until
(p, 0) and (0, p). Then the loop starts again from (p−1, p−1), and continuous
with (p−1, p−2) and (p−2, p−1), and so on. Whenever a pair is not changed
the limiting procedure is stopped.

If a neighboring cell is split because of refinement, the average between the
two neighboring children is used. If a neighboring cell is coarser because the
current cell is more refined, the modes of the neighbor have to be computed as
it were refined too. Note that the characteristic decomposition is only consistent
in a 1D sense. Given that the ML can be multidimensional, the characteristic
decomposition would have to be done in an arbitrary direction. Therefore, for mul-
tidimensional cases a primitive-variable decomposition may be more appropriate.

A.2. Three-dimensional moment limiter. In this case, for element l,m, n,

∂ i+ j+kŨl,m,n

∂x i
1∂x j

2∂xk
3

=minmod
(
∂ i+ j+kUl,m,n

∂x i
1∂x j

2∂x j
3

, βi jk Dx1+
i jk , βi jk Dx1−

i jk ,

βi jk Dx2+
i jk , βi jk Dx2−

i jk , βi jk Dx3+
i jk , βi jk Dx3−

i jk

)
, (55)

where the frame (x1, x2, x3) is a rotation of (x, y, z) aligned to the computational
coordinates (ξ, η, ζ ) of the current element.

In this case, the limiting starts from orders (p, p, p), and continuous for the
triad (p, p, p−1), (p, p−1, p) and (p−1, p, p), then for the triad (p, p, p−2),
(p, p−2, p) and (p−2, p, p), and so on until (p, p, 0), (p, 0, p) and (0, p, p).
Then the loop starts again from (p−1, p−1, p−1), and continues for (p−1, p−1,
p−2), (p−1, p−2, p−1) and (p−2, p−1, p−1), and so on. Whenever a triad
is not changed the limiting procedure is stopped.
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If a neighboring cell is split because of refinement, the average between the four
neighboring children is used. Like in the 2D case, a primitive-variable decomposi-
tion may be the optimal approach.
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