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We give an alternative and unified derivation of the general framework developed
in the last few years for analyzing nonstationary time series. A different ap-
proach for handling the resulting variational problem numerically is introduced.
We further expand the framework by employing adaptive finite element algo-
rithms and ideas from information theory to solve the problem of finding the
most adequate model based on a maximum-entropy ansatz, thereby reducing
the number of underlying probabilistic assumptions. In addition, we formulate
and prove the result establishing the link between the optimal parametrizations
of the direct and the inverse problems and compare the introduced algorithm
to standard approaches like Gaussian mixture models, hidden Markov models,
artificial neural networks and local kernel methods. Furthermore, based on the in-
troduced general framework, we show how to create new data analysis methods
for specific practical applications. We demonstrate the application of the frame-
work to data samples from toy models as well as to real-world problems such as
biomolecular dynamics, DNA sequence analysis and financial applications.

1. Introduction

In the field of time series analysis, a common problem is the analysis of high-
dimensional time series containing possibly hidden information at different time
scales. Here we consider the analysis of persistent processes, those where the
temporal change of the underlying model parameters takes place at a much slower
pace than the change of the system variables themselves. Such systems could be
financial markets (where the underlying dynamics might drastically change due to
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market breakdowns, new laws, etc.) [27; 48; 63]; climate systems (depending on
the external factors like insolation, human activity, etc.) [54; 18; 39; 38; 32; 30];
ocean circulation models [22; 23] or biophysical systems [67; 37; 36; 41; 62; 68].

In the literature, the problem of data-based phase identification is addressed
by a huge number of approaches which can be roughly classified as either non-
dynamical or dynamical methods. The class on nondynamical methods exploits
solely geometrical properties of the data for clustering regardless of their temporal
occurrence. The most prominent approach is the k-means method [53], which
clusters data points according to their minimal distance to geometrical centroids of
point clouds.

Dynamical methods additionally take into account the temporal dynamics of
data. This class of methods can further be divided into Bayesian approaches, such
as the hidden Markov model (HMM) [4; 3; 56; 37; 36] or the Gaussian mixture
model (GMM) (see, e.g., [21]) and the so-called local kernel methods (moving
window methods) [20; 52]. Although the Bayesian methods have proven to be very
successful in applications ranging from speech recognition [64] over atmospheric
flows identification [54; 18] to conformation dynamics of biomolecules [17], they
are based on the restrictive assumption that the underlying dynamics are governed
by a stationary probabilistic model. Particularly, the assumption of stationarity
implies, e.g., a locally constant mean value and a locally constant variance. In
many real world applications, however, these implications are not valid due to
theoretical reasons or simply due to the lack of sufficiently long time series of
observations.

In local kernel methods the assumption of stationarity is relaxed by applying
nonparametric regression methods to estimate time-dependent statistical properties
of the underlying data. The key idea is the following: instead of considering every
element of the time series to be equally statistically important, for a fixed time t the
data is weighted with a suitable so-called kernel function, e.g., a Gaussian proba-
bility density function. The modified time series then is considered to be stationary
and, consequently, statistical objects can be computed by standard procedures.

The nonstationary time series analysis methods that have been developed in the
group of I. Horenko and that will be considered in the current manuscript can
be seen as a generalization of the idea described above. Therefore we explain
the procedure in more detail. Suppose we observed a time series of real-valued
observations discretely in time, denoted by X = (xt0, . . . , xtT ) with 0≤ t0 < . . . <
tT ≤ 1. Further suppose that the time series is appropriately described by the model

xti = µ(ti )+ εti , i = 0, . . . , T, (1)

where {εti } is a family of independent and identically distributed (i.i.d.) random
variables with E [ε(ti )]= 0. An estimator for µ(t), t ∈ [0, 1] is given by [19; 20]
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µ̂(t)=
1
b

T∑
j=0

xt j

∫ s j+1
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)
ds, (2)

where W ( · ) is a nonnegative kernel function satisfying the conditions∫
∞

−∞

W (s) ds = 1,
∫
∞

−∞

(W (s))2 ds <∞ (3)

and 0 = s0 ≤ t0 ≤ s1 ≤ t1 ≤ . . . ≤ tT ≤ sT+1 = 1. The parameter b ∈ R is
referred to as the window size associated with the kernel function and determines
the statistical importance of the data in the temporal vicinity of a time t . For
instance, if the kernel function is chosen to be the probability density function
(PDF) of the standard normal distribution,

W (s)=
1

√
(2π)

exp
(
−

s2

2

)
, (4)

then b is the standard deviation of the normal PDF W
( t−s

b

)
. Hence, only data

points within the window [t − b, t + b] significantly contribute to the estimator
in (2).

The effect of the Gaussian kernel on the estimation of µ(t) is exemplified on
a time series generated via a persistent switching process between two processes,
each wiggling around a constant mean value. The estimators µ̂(t) for different
choices of the window size b are depicted in Figure 1. As expected, although
the estimators for the smallest window size give good local estimations of the
respective constant mean, they are noisy and not constant. Moreover, the estimator
becomes poor for time points close to the beginning or the end of the time series
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Figure 1. Illustration of the local kernel method on a time series generated via a persistent
switching process between two processes each wiggling around a constant mean value
(µ1 = 0.7, µ2 = 1.4). The estimator µ̂(t) strongly depends on the specific choice of the
window size. Results for a Gaussian kernel and b = 0.01, 0.03 and 0.05.
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which is due to an insufficient statistics. In contrast, the graph of the estimators for
the biggest window size is smooth but gives poorly local estimations and, hence,
does not capture the intrinsic dynamics of the time series. Consequently, choosing
the “right” window size b is an ill-posed optimization problem which is basically
due to the local ansatz of the approach and the danger of overfitting.

The approach presented herein can be understood as a method to adaptively
identify nonlocal kernel-functions which enforces optimal regularization of the esti-
mators. The basic underlying idea is to simultaneously detect the hidden switching
process between persistent regimes (clusters) and their respective optimal parame-
ters characterizing local substitute models [39; 38; 31; 32; 30; 33]. Mathematically,
the hidden (affiliation) process defines a curve in parameter space. The optimal
paths and the associated optimal parameters of the local models are characterized
via the minimization of an appropriate clustering functional measuring the quality
of data approximation in terms of a fixed number of local error measures. In order
to avoid overfitting, or more generally spoken, to ensure well-posedness of the
clustering problem as an inverse problem, the smoothness of paths as a function of
time is limited in some appropriate function space, e.g., the Sobolev H 1 space [31;
33] or the larger class BV, consisting of functions with bounded variations [33].

The cluster algorithms arising from the H 1 approach and the BV-approach par-
tially result from finite element (FE) discretization of the 1-dimensional cluster
functional. This allows us to apply methods from the broad repository of existing
FE methods from the numerics of partial differential equations (PDEs). The H 1-
smoothness of the paths in parameter space is indirectly enforced by a Tikhonov reg-
ularization leading to numerically expensive constrained quadratic minimization
problems during the course of minimization of the cluster functional. In contrast,
the variational formulation in the BV-space amounts to solving linear programming
problems with linear constraints and, most importantly, allows the direct control of
the regularization of the paths in parameter space. The entire FEM-BV approach
will be explained in detail in Section 2.

The FEM-BV approach has two advantages; We neither have to make any as-
sumptions a priori on the probabilistic nature of the data, i.e., on the underlying
distribution of the data, nor we have to assume stationarity for the analysis of the
time series (in contrast to standard methods such as HMMs, GMMs or local ker-
nel methods). Moreover, as demonstrated in [31], the method covers geometrical
cluster approaches as well as dynamical ones. Furthermore, we will discuss in
Section 2.h the relation of the proposed approach to probabilistic methods.

The outcome of the FEM-BV methodology depends on the prescribed number of
clusters (local models) as well as on the prescribed regularity. Hence, the optimal
choice of these parameters is crucial for the interpretation and the meaningful-
ness of the analysis. The new idea presented in this paper is to select the model
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that describes the data best while involving the least number of free parameters
by combining an information theoretic measure — Akaike’s information criterion
(AIC) [1] — with the maximum entropy approach [43; 44]. The resulting modified
AIC then allows us to identify in a postprocessing step the optimal nonstationary
data-based substitute model. The main advantage of the modified AIC approach
(presented in this manuscript) to information theoretical approaches used until now
is that no explicit assumptions on the parametric form of observables’ distributions
have to be made. The only assumption is that a scalar process describing the time-
dependent error of the inverse problem is i.i.d.

Complementary to providing insight in the nonstationary behavior of the time
series, the optimal substitute model lends itself for predicting the dynamics, e.g.,
for different initial values. The prediction, however, is restricted to time instances
within the trained time span (as the underlying transition process in parameter space
is only available for that span). To overcome that restriction, a substitute model
for the (nonstationary) transition process itself is derived. Combining the two data
based models leads to a self-contained model that allows us to predict the dynamics
for any initial value at any time instance.

1.a. New contributions and organization of the paper. The main purpose of this
manuscript is threefold. First, in Section 2 we provide a complete, unified and
simplified derivation of the FEM-BV methodology originally introduced in [29;
30; 31; 32; 33; 34; 35] for analyzing nonstationary time series. Thereby, we ex-
emplify in Section 2.c the derivation of the framework for different models to give
a guideline how the developed methodology can be adapted and redesigned for
new applications. For the first time, specifically, we adapt the FEM-BV approach
to: (i) analyze periodic and partially observed (projected) data (torsion angles of a
biomolecule) and (ii) to pattern recognition in discrete data sequences (first chro-
mosome of the yeast).

The second purpose is to close the gap between the FEM-BV approach and
classical methods by investigating the assumptions and conditions under which
the FEM-BV methodology reduces to well-known methods for analyzing (non-
)stationary time series. For details see Section 2.h. Particularly, for the first time we
clarify in Section 2.g under what conditions the solution of the variational problem
(associated with the interpolation of the inverse model) can be interpreted as a
direct interpolation model (mixture model) for the data under consideration.

Additionally, we present a unified strategy for model selection in Section 3 that
allows the selection of an optimal mixture model — optimal in the sense that the
model provides maximal meaningfulness under minimal assumptions on the data.
The new model selection criterion combines a well known information criterion
with the maximum entropy approach for the inference of probabilistic distributions
from observables without assuming any parametric form.
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All these three aspects are eventually combined in a self-contained scheme for
predicting the nonstationary dynamics of the data beyond the analyzed time hori-
zon. The prediction scheme is motivated and described in detail in Section 4.

Finally, the applicability and usefulness of the presented methods is demon-
strated in Section 5 by analyzing realistic data ranging from torsion angle time
series of a biomolecule (trialanine), DNA nucleotide sequence data (from the first
chromosome of the yeast Saccharomyces cerevisiae) and financial data (prices of
oil futures). We end this manuscript by giving a conclusion in Section 6.

2. Finite element clustering method

2.a. The model distance function. Modeling processes in real world applications
amounts to seeking an appropriate parametric model function which is considered
to govern (explain) well the observed process. Suppose the observable of interest,
denoted by xt , is a d-dimensional vector. Furthermore, without loss of generality,
assume that the time series of observations is given at times t = 0, 1, . . . , T . Then,
the direct mathematical model is a function f ( · ) that relates an observation xt ∈

9 ⊂ Rd at a time t ≥ 0 to the history of observations up to the time t and a time-
dependent set of parameters θ(t) from some parameter space �. Formally, the
relation is written as1

xt = f (xt , . . . , xt−m, θ(t)) t ≥ m, (5)

where m ≥ 0 is the memory depth of the history dependence. Notice that the
formulation in (5) is most general in that it also covers implicit dependencies. See,
e.g., (26) in Section 2.c.ii.

The model function can be deterministic or can denote a random process. For
instance, the simplest model function incorporating randomness is given by

xt = f (θ(t)) def
= θ(t)+ εt , (6)

where {εt }, t ≥ 0 is a family of i.i.d. random variables with E [εt ]= 0, t ≥ 0. The
random variables εt model, for instance, errors in the measurement of observables
or they capture unresolved scales of a physical process such as fast degrees of
freedoms. Thus, the model function in (6) corresponds to the assumption that the
process under consideration has no dynamics and no memory.

Suppose we knew the parameters m and θ(t), t ≥ 0 then the direct mathematical
problem would be to find a process xt , t ≥ 0 satisfying the direct model in (5). Here
we are interested in the opposite question. Suppose we are given a time series of
observations X = (xt), t = 0, . . . , T and a known memory depth m. What are the
optimal parameters, i.e., the parameter function θ∗(t) explaining the given time

1For notational convenience, we prefer (5) to the equivalent relation 0= F(xt , . . . , xt−m , θ(t)).
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series of observations best? This inverse problem makes only sense if “best” is
quantified in terms of a fitness function measuring the quality of the approximation
for a given set of parameters. Throughout this manuscript a fitness function is
denoted by

g(xt , . . . , xt−m, θ(t)) :9m+1
×� 7→ R. (7)

Particularly, any metric d( · , · ) : 9 ×9 7→ R+0 on 9 naturally induces a fitness
function by defining g( · ) as

g(xt , . . . , xt−m, θ(t))=
(
d
(
xt , E

[
f (xt , . . . , xt−m, θ(t))

]) )2
. (8)

For instance, a reasonable model distance function for the direct mathematical
model in (6) is induced by the Euclidean norm, i.e.,

g(xt , θ(t))= ‖xt − θ(t)‖22. (9)

By employing a metric, the resulting function g( · ) measures the model error as the
squared distance between xt and the output of the average model function. There-
fore, we call g( · ) model distance function rather than fitness function. However,
any function g that is bounded from below measuring the approximation quality is
admissible within the following variational framework.

With the model distance function at hand, the optimal parameters explaining
the time series “best” can now formally be characterized as those satisfying the
variational problem

L def
=

T∑
t=m

g(xt , . . . , xt−m, θ(t))→ min
θ(t)∈�

. (10)

From now on, we will refer to L as the model distance function. In general, the
variational problem in (10) is ill-posed in the sense of Hadamard [26] as the pa-
rameter space � might be high- or even infinite-dimensional and, hence, may lead
to underdetermined or trivial solutions. For instance, the variational problem asso-
ciated with the model distance function in (9) admits the trivial but meaningless
solution (e.g., regarding the prediction skill of such a model, it requires the exact
knowledge of the infinite-dimensional function xt at all times)

θ∗(t)= xt , t = 0, . . . , T . (11)

In order to avoid such trivial solutions, the variational problem needs to be regular-
ized.

The key idea of an appropriate regularization is based on the observation that
in many real world processes the parameter function θ(t) varies much slower than
the observable xt in itself. Hence, local stationarity of the parameter function θ(t)
is a reasonable assumption, which eventually helps to overcome the ill-posedness
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of the variational problem in (10). Formally, we assume the existence of K dif-
ferent stationary yet unknown parameters 2 = (θ1, . . . , θK ) and time-dependent
weights 0(t)= (γ1(t), . . . , γK (t)) such that the model distance function g( · ) can
be expressed as a linear combination of local model distance functions, i.e.,

g(xt , . . . , xt−m, θ(t))=
K∑

i=1

γi (t)g(xt , . . . , xt−m, θi ), (12)

with (γ1(t), . . . , γK (t)) satisfying the convexity constraints

K∑
i=1

γi (t)= 1, ∀t,

γi (t)≥ 0, ∀t, i.

(13)

We call the vector 0(t) affiliation vector and we will use the shorthand 0 =
(0(t))t=m,...,T . It is important to realize that, unlike in standard methods such
as GMM/HMM, we do not assume the existence of K different local stationary
models. Our assumption is more general since it is an assumption on the de-
composability of the model error. However, as indicated by the name “affiliation
vector”, under certain conditions the entries of 0(t) can be interpreted as weights
in a mixture model of local models (Section 2.g).

Inserting the interpolation ansatz (12) into the model distance function yields
the average cluster functional

L(θ1, . . . , θK , 0)=

T∑
t=m

K∑
i=1

γi (t)g(xt , . . . , xt−m, θi ), (14)

which is the key-object in the FEM-BV methodology. Additionally to the opti-
mal (stationary) parameters 2∗ = (θ∗1 , . . . , θ

∗

K ) we seek for the optimal affiliation
vectors 0∗, which are finally characterized by the regularized variational problem

L(θ1, . . . , θK , 0)→ min
θ1,...,θK ,0

(15)

with 0 subject to the constraints in (13).

2.b. Numerical solution of the variational problem via the subspace algorithm.
Even for the regularized variational problem derived from the simple model given
in (6) there does not exist any analytical expression for the global minimizer, which
is due to the nonlinearity of the average cluster functional and the convexity con-
straint on 0. Fortunately, for many cases the model distance function g( · ) is con-
vex and analytical expressions for the unique optimal parameter 2∗ are available
provided that 0 is given and fixed. The same holds true for the optimal 0∗ if the
parameters 2 are fixed. Under weak conditions on the model distance function
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Require: Time series X , number of clusters K , persistence C, initial affiliations 00.
Ensure: Locally optimal affiliations 0∗, optimal parameters 2∗.

Repeat until convergence
(1) Compute 2(s+1) for fixed 0(s) via the unconstrained minimization problem

2(s+1)
= argmin

2

L(2, 0(s)) (16)

(2) Compute 0(s+1) for fixed 2(s+1) via the constrained minimization problem

0(s+1)
= argmin

0

L(2(s+1), 0) (17)

subject to (13).

Algorithm 1. The subspace algorithm.

g( · ) it was proven in [31] that iterating over these two steps yields an algorithm
guaranteed to converge to a local minimum of the average cluster functional L.

Throughout this paper when we speak of the subspace algorithm, we are actually
referring to an implementation of the iterative scheme described above and formally
summarized in Algorithm 1.

The subspace algorithm converges only to a local minimum. In order to find
the global minimum, an annealing-like Monte Carlo strategy can be employed,
i.e., the iterative procedure is started over several times with randomly initialized
0(0). If the number of repetitions is sufficiently large then the best solution among
the local minimizer is (almost sure) the global minimizer 0∗ and 2∗. Notice that
the described strategy for finding the global minimizers can straightforwardly be
parallelized.

2.c. Four important models. In this section we introduce four important models
that are broadly used in time series analysis and we derive their respective associ-
ated variational formulations. Numerical results will be given in Section 5.

2.c.i. Model I: Geometrical clustering. In the Section 2.a we introduced the sim-
plest nontrivial model one can think of; a model without memory,

xt = θ(t)+ εt , (18)

where xt ∈ Rd and εt denotes a noise process. If we choose the model distance
function induced by the Euclidean norm,

g(xt , θ(t))= ‖xt − θ(t)‖22, (19)
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then the regularized minimization problem in (15) simplifies to

L(θ1, . . . , θK , 0)=

T∑
t=0

K∑
i=1

γi (t)‖xt − θi‖
2
2→ min

θ1,...,θK ,0
(20)

subject to the constraints in (13). For fixed 0 the optimal 2∗ = (θ∗1 , . . . , θ
∗

K ) takes
the form [31]

θ∗i =

∑T
t=0 γi (t)xt∑T

t=0 γi (t)
. (21)

Furthermore, for fixed 2 the optimal affiliations are given by [33]

γ ∗i (t)=
{

1 if i = argmin j g(xt , θ j )= argmin j
{∥∥xt − θ j

∥∥2
2

}
,

0 otherwise,
(22)

which readily follows from the convexity conditions in (13).
The resulting subspace algorithm has a very nice interpretation: it is the well-

known and popular k-means algorithm for clustering geometrical data. To see that
note that each affiliation vector is deterministic, i.e., exactly one component is 1.0
while the remaining ones are 0.0. If we define the set Si = {xt : γ

∗

i (t) = 1} then,
by definition

‖xt − θi‖2 ≤
∥∥xt − θ j

∥∥
2 ∀xt ∈ Si , j = 1, . . . , K , (23)

and the optimal θ∗i reduces to the centroid of the point set Si ,

θ∗i =
1
|Si |

∑
xt∈Si

xt . (24)

2.c.ii. Model II: Takens-PCA clustering. A prominent example of a memoryless
model exhibiting dynamics is motivated by the observation that in many applica-
tions the essential dynamics of a high-dimensional process can be approximated
by a process on low-dimensional manifolds without significant loss of information
[70]. Recently, several cluster methods have been introduced which are based
on the decomposition of time series according to their essential linear attractive
manifolds, allowing the analysis of data of very high dimensionality with low-
dimensional dynamics [40; 29; 39; 38].

Formally, assume that the linear submanifolds are spanned by Q(t) ∈ Rd×n

consisting of n � d orthonormal d-dimensional vectors, i.e., Q†(t)Q(t) = Idn

where Idn denotes the n-dimensional identity matrix. To motivate the following
direct mathematical model, suppose that xt lives on the linear subspace spanned
by Q(t). Orthonormality then implies

xt = Q(t)Q†(t)xt , (25)
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where Q(t)Q†(t) is the orthogonal projector on the linear subspace at time t . How-
ever, in applications we only have xt ≈ Q(t)Q†(t)xt , which leads to the general
model function

(xt −µt)= Q(t)Q†(t)(xt −µt)+ εt , (26)

where the center vector µt ∈ Rd is the affine translation of the linear subspace and
εt is again some noise process with E [εt ] = 0. As shown in [38], adopting the
model distance function (θ(t)= (µ(t), Q(t)))

g(xt , θ(t))=
∥∥(xt −µt)− Q(t)Q†(t)(xt −µt)

∥∥2
2 (27)

results in analytical closed expressions for the optimal parameters. The center
vectors µ∗i ∈ Rd are given by

µ∗i =

∑T
t=0 γi (t)xt∑T

t=0 γi (t)
(28)

and the optimal matrices Q∗i satisfy an eigenvalue problem, respectively,( T∑
t=0

γi (t)(xt −µi )(xt −µi )
†
)

Q∗i = Q∗i 3i . (29)

For fixed 2, the optimal 0∗ is given analogously by (22).

2.c.iii. Model III: Discrete (or categorical) model. An alternative technique to
capture the essential dynamics of a complex system is coarse graining of the pro-
cess under consideration. The coarse grained process is a discrete process, i.e., it
attains only values in a finite set of discrete objects. Prominent examples are, e.g.,
conformational dynamics of (bio-)molecules [67] or climate research [30].

Let X = (x1, . . . , xT ) be a discrete time series and without loss of generality we
denote the discrete state space as S= {1, . . . ,M}. In order to apply the variational
framework we have to specify a model function and an appropriate model distance
function that are not readily available due to the discreteness of the state space.
Instead of considering the original data, the key idea here is to uniquely identify
each datum xt with a discrete probability distribution πt . More precisely, we define
πt = (πt(1), . . . , πt(M)) as the discrete Dirac measure with respect to xt ∈ S =

{1, . . . ,M},

πt(s)
def
=

{
1 if s = xt ,

0 otherwise.
(30)

Viewing discrete distributions as real valued vectors allows us to make use of, e.g.,
the model function given in (6), here written as

πt = θt + εt , (31)
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subject to the constraint that θt = (θt(1), . . . , θt(M)) is a discrete probability dis-
tribution,

θt(s)≥ 0 and
M∑

s=1

θt(s)= 1. (32)

Moreover, εt is a noise process as in the previous models.
Since we are particularly dealing with probability distributions, we define the

model distance function by means of a metric tailored to respect the underlying
probability space. Specifically, we chose the famous Kullback–Leibler divergence,
also referred to as the relative entropy, defined as

dK L(µ, η)=
∑
s∈S

µ(s) log
µ(s)
η(s)

(33)

for any two discrete probability distributions µ and η on the same probability space.
For an overview of metrics and divergences on probability spaces see [25], for
example.

The relative entropy directly induces a model distance function by defining

g(xt , θt)
def
= g(πt , θt)

def
= dK L(πt , θt)=−log θt(xt). (34)

A short calculation shows that the regularized minimization problem

L(θ1, . . . , θK , 0)=−

T∑
t=0

K∑
i=1

γi (t) log θi (xt)→ min
θ1,...,θK ,0

(35)

subject to the constraints (13) and (32) admits analytical solutions; the optimal
discrete probability distribution (θ∗1 , . . . , θ

∗

K ) takes the form

θ∗i (s)=
αi,s∑

z∈S αi,z
with αi,s =

T∑
t=0

δxt ,sγi (t), s = 1, . . . ,M (36)

and the optimal affiliation function 0∗ is given analogously by (22).

2.c.iv. Model IV: Markov regression model. The strategy proposed in Section 2.c.iii
to analyze time series of discrete observations can loosely be described as geomet-
rical clustering of probability distributions, geometrical in the sense that neither
dynamics nor memory are assumed to be of importance.

A discrete probabilistic model including memory and dynamics is the famous
Markov model. Generally, a discrete Markov process describes the evolution of
a transition process between a finite number of discrete states by means of time-
dependent one-step transition probabilities. If the transition probabilities are sta-
tionary (time-homogeneous) then the process is called a Markov chain and it is one
of the most exploited families of processes in this class of probabilities models.
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Formally, a stationary Markov process xt on a discrete state space S={1, . . . ,M}
is uniquely characterized by a time-independent transition (stochastic) matrix P ∈
RM×M (comprising of the stationary one-step transition probabilities) and an initial
distribution π0 ∈ RM . The evolution of the state probability vector p(t) ∈ RM ,
defined as

p j (t)
def
= P[xt = j], j ∈ S, (37)

is then governed by the master equation,

p†(t + 1)= p†(t)P, t = 0, 1, 2, . . . , T − 1. (38)

For more details on Markov chains, we refer the interested reader to, e.g., [9].
Recently in [34], the opposite question was addressed: suppose we are given a

time series of probability distributions (πt), πt ∈ RM , t = 0, 1, . . . , T and, addi-
tionally, a series of external data u(t) ∈ Rk . What is an appropriate nonstationary
Markov regression model explaining the given time series of distributions condi-
tioned on the external factors best? Following the lines of the FEM-BV approach
and motivated by the stochastic master Equation (38), it is reasonable to consider
the direct model function

π
†
t+1 = π

†
t P(t, u(t))+ εt (39)

where εt is a noise process as in the previous models and P(t, u(t)) ∈ RM×M is
stochastic, i.e.,

{P(t, u(t))}vw ≥ 0 ∀v,w, t, u(t), (40)

P(t, u(t))1M = 1M ∀t, ut (41)

with 1M = (1, . . . , 1) ∈ RM .
Additional to depending on the (resolved) external factors u(t) ∈ Rk , notice that

the transition matrices may explicitly depend on the time t . For details see [34].
The interpolation of the model distance function

g (πt+1, πt , P(t, u(t)))=
∥∥π†

t+1−π
†
t P(t, u(t))

∥∥2
2 (42)

results in

g ( · , · , P(t, u(t)))=
K∑

i=1

γi (t)g
(
· , · , P (i)(u(t))

)
(43)

where the stationary transition matrices (parameters), P (i)(u(t)) ∈ RM×M i =
1, . . . , K , have the form

P (i)(u(t))= P (i)0 +

k∑
l=1

ul(t)P
(i)
l i = 1, . . . , K (44)
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with P (i)0 , P (i)l ∈ RM×M i = 1, . . . , K satisfying the constraints

P (i)0 ≥ 0 (elementwise), (45)

P (i)0 1M = 1M , (46)

P (i)l 1M = 0 l = 1, . . . , k. (47)

Notice that the constraints (45)–(47) imply P (i)(u(t))1M = 1M independently of
u(t). The elementwise nonnegativity is ensured by the constraints

P (i)(u(t))≥ 0 i = 1, . . . , K , ∀u(t), (48)

which explicitly involve the external data u(t).
Assembling the pieces together, we finally end up with the variational problem

L(2, 0)=
T−1∑
t=0

K∑
i=1

γi (t)g
(
πt+1, πt , P (i)0 +

k∑
l=1

ul(t)P
(i)
l

)
→min

2,0
(49)

subject to the constraints (45)–(48). Unfortunately, no analytical expressions exist
for the optimal parameters due to the imposed constraints. Numerically, however,
the optimal Markov regression models P (i)(t, u(t)) are given by solutions of K
independent constrained quadratic programs. For the convenience of the reader,
they are stated in an Appendix.

The main challenge in numerical computation of the optimal parameters lies in
the enforcement of the constraints in (48) as a linear increase in the number of
external factors causes an exponentially increase in time and memory for minimiz-
ing (49). As shown in [34], the computational time and memory consumption can
be reduced by exploiting that (48) attains its unique maximum/minimum in a corner
of the convex hull of the set {u(t) : t = 0, . . . , T }. Hence, it is sufficient to requiring
the constraints in (48) only for the corners. For example, if the convex hull is
given by an k-dimensional hypercube then the reduced number of constraints, 2k ,
is independent of the length of the time series. This allows to substitute the time-
dependent set of constraints (48) by a time-independent set, making the entire
optimization problem numerically tractable.

2.d. Regularization of 0. As indicated in the examples introduced in the previous
section, for given parameters 2 the optimal 0∗ is given in terms of the model
distance function (compare (22), for example),

γ ∗i (t)=
{

1 if i = argmin j
{
g(xt , . . . , xt−m, θ j )

}
,

0 otherwise,
(50)

where each datum xt , t ≥ m is uniquely (deterministically) assigned to a single
cluster. However, even for the global optimal parameters 2∗, the resulting optimal
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0∗ might be a highly nonregular function. For instance, 0∗ might rapidly oscillate
between the K different clusters rather than describing a smooth and persistent
transition process. In other words, the optimal 0∗ does not continuously depend
on the data, which is again a violation of Hadamard’s postulate of a well-posed
problem. Consequently, the variational problem has to be regularized again.

One approach is to first incorporate some additional information about the reg-
ularity of the observed process by restricting the time dependent function 0( · )
on an appropriate function space and then apply a finite Galerkin discretization of
this infinite-dimensional Hilbert space. In the context of Tikhonov-based FEM-BV
methodology, this was done by restricting the functions γi ( · ) on the function space
of weakly differentiable functions. One way to incorporate this a priori information
into the optimization is to modify the variational problem in (15) by writing it in
the Tikhonov-regularized form [31]

Lε(2, 0, ε2)
def
= L(2, 0)+ ε2

K∑
i=1

‖∂tγi‖
2
L2(0,T )→ min

γ1,...,γK∈H1(0,T ),2
, (51)

where the norm ‖∂tγi‖
2
L2(0,T ) =

∫ T
0 (∂tγi (t))2dt measures the smoothness of the

function γi ( · ). A similar form of penalized regularization was first introduced
by A. Tikhonov to solve ill-posed linear least-squares problems [71] and has been
frequently used for nonlinear regression analysis in the context of statistics [28]
and multivariate spline interpolation [74].

The main problem one faces in this approach is the lack of the direct control of
the persistence of γi . To be more precise, Tikhonov regularization does not allow
us to directly incorporate the desired persistence constraints

‖∂tγi‖
2
L2(0,T ) ≤ C, i = 1, . . . , K , (52)

where 0≤ C bounds the smoothness of the functions γi ( · ). Another disadvantage
of the H 1 approach is the exclusion of functions with discontinuities such as jumps,
which is due to the requirement of weak differentiability. Fortunately, the two
problems can be overcome by considering a larger function space.

2.e. Persistence in the BV sense. A less restrictive class of functions is the class of
functions with bounded variation BV ([0, T ]), consisting of functions f : [0, T ]→
R with

‖ f ‖BV = sup
0=t0<t1<...<tM=T

{M−1∑
i=0

| f (ti+1)− f (ti )|
}
<∞, (53)

where the supremum is taken over all partitions of the interval [0, T ]. Notice that in
the time-continuous case H 1(0, T )⊂ BV (0, T ) holds true (cf. [58]), so “smooth”
H 1-transitions between cluster states are not excluded. However, the BV-norm of
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a function does not require any notion of differentiability and the class BV [0, T ]
covers transition processes with jumps between clusters.

For the remainder of this section, the memory depth m is, without loss of gen-
erality, assumed to be zero. In the following, we consider the functions γi , i =
1, . . . , K as discrete functions (vectors), which is emphasized by denoting γi ∈

RT+1. Now we are prepared to formulate the persistence condition in the time-
discrete BV sense:

‖γi‖BV =

T−1∑
t=0

|γi (t + 1)− γi (t)| ≤ C, i = 1, . . . , K , (54)

where 0≤ C is an upper bound for the maximal number of transitions between the
cluster state i and the remaining ones. In the rest of this section we will show that
the additional BV-constraints lead to a numerically convenient characterization of
0 via a linear minimization problem with linear constraints.

To this end, for given 2= (θ1, . . . , θK ) we define the row vectors

gθi = (g(x0, θi ), . . . , g(xT , θi )) ∈ RT+1, (55)

γi = (γi (0), . . . , γi (T )) ∈ RT+1. (56)

Then, the variational problem in (15) transforms to

L(θ1, . . . , θK , 0)=

K∑
i=1

〈
γi , gθi

〉
2→min

0,2
, (57)

subject to the constraints

‖γi‖BV ≤ C i = 1, . . . , K , (58)
K∑

i=1

γi (t) = 1 t = 0, . . . , T, (59)

γi (t) ≥ 0 t = 0, . . . , T, i = 1, . . . , K . (60)

Unfortunately, the additional constraints (58) turn the variational problem in (57)
into a nondifferentiable one. As a remedy, we retransform the problem into a
differentiable one by applying an upper-bound technique.

Suppose we had ηi (0), . . . , ηi (T − 1) ∈ R satisfying the constraints

|γi (t + 1)− γi (t)| ≤ ηi (t) t = 0, . . . , T − 1, (61)
T−1∑
t=0

ηi (t) ≤ C, (62)

ηi (t) ≥ 0 t = 0, . . . , T − 1, (63)
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then γi would satisfy the BV-constraint in (58). The key observation is that (61)
holds true for t ≥ 0 if and only if the following two linear inequalities hold true:

γi (t + 1)− γi (t)− ηi (t)≤ 0, (64)

−γi (t + 1)+ γi (t)− ηi (t)≤ 0. (65)

Consequently, if the upper bounds ηi = (η(0), . . . , η(T − 1)) are considered as
additional unknowns (additional to the unknowns γi ), then the BV-constraint in (58)
is satisfied if and only if the linear constraints (62)–(65) are satisfied.

Notice that the constraints (59)–(60) are linear constraints too. Finally, by defin-
ing

ω = (γ1, . . . , γK , η1, . . . , ηK ) ∈ RK (2T+1), (66)

c(2)= (gθ1, . . . , gθK , 0, . . . , 0︸ ︷︷ ︸
K T times

) ∈ RK (2T+1) (67)

we can express the original nondifferentiable optimization problem (57)–(60) as
the following differentiable optimization problem,

〈c(2), ω〉2→min
ω,2

(68)

subject to
Aeqω = beq,

Aneqω ≤ bneq,

ω ≥ 0,

(69)

where Aeq and beq readily result from the constraints (59) and Aneq and bneq from (60)
and ((62)–(65)).

The solution of the above minimization problem can be approached via the sub-
space iteration procedure presented in Section 2.b. Particularly, for fixed 2 the
problem reduces to a standard linear program, which can efficiently be solved by
standard methods such as the Simplex method or interior point method. Completely
analogously to the Tikhonov-regularized FEM-BV methodology [31], it can be
demonstrated that the iterative procedure converges towards a local minimum of
the problem (68)–(69) if some appropriate assumptions (convexity and differentia-
bility) of the model distance function (8) are fulfilled.

Unfortunately, since the dimensionality of the variable ω scales as K (2T + 1)
the numerical solution of the problem (68)–(69) for a fixed value of 2 becomes
increasingly expensive for long time series. Therefore a Finite Element Method
(FEM) will be introduced in the next section to reduce the dimensionality of the
above problem in a robust and controllable numerical manner.
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2.f. FEM discretization. Solving the problem (68)–(69) is numerically expensive
or even practically impossible for long time series, in terms of computational time
as well as in terms of memory usage. To overcome these limitations, a FEM is
proposed to reduce the dimensionality of the problem.

The idea is to approximate the (unknown) discrete functions γi (t) by a linear
combination of N � T + 1 continuous functions { f1(t), f2(t), . . . , fN (t)} with
bounded variation, i.e.,

γi (t)=
N∑

j=1

αi j f j (t) t = 0, . . . , T + 1. (70)

Traditionally, the finite element functions f j (t) ∈ BV [0, T ] are defined as noncon-
stant functions on overlapping supports. For practical examples of standard finite
element functions see, e.g., [8]. Here, however, we approximate the functions γi

with constant ansatz functions defined on nonoverlapping supports. This approach
is justified by the fundamental assumption that the time series under consideration
is persistent.

Let 0= τ0 < τ1 < τ2 < · · ·< τN = T be a partition dividing [0, T ] into N bins
[τ j , τ j+1], j = 0, . . . , N−1 with τ j /∈N, j = 1, . . . , N−1 and assume that all the
γi are piecewise constant on each of the intervals [τ j , τ j+1]. Moreover, let γ̂i ( j)
denote the value of γi on [τ j , τ j+1] and define

ĝθi ( j) def
=

∑
t∈[τ j ,τ j+1]

gθi (t). (71)

Then, the variation problem in (57) reduces to

L(θ1, . . . , θK , 0̂)=

K∑
i=1

〈
γ̂i , ĝθi

〉
2→min

0̂,2

, (72)

with γ̂i ∈ RN , ĝθi ∈ RN and subject to the constraints

‖Dγ̂i‖1 ≤ C i = 1, . . . , K , (73)
K∑

i=1

γ̂i (t) = 1 t = 0, . . . , N − 1, (74)

γ̂i (t) ≥ 0 t = 0, . . . , N − 1, i = 1, . . . , K . (75)

Analogously to the derivation given in the previous section, we finally end up
with the FEM discretization (in the BV sense) of the original variational problem
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in (15), 〈
ĉ(2), 0̂

〉
2→min

0̂,2

(76)

subject to the linear constraints (73)–(75).
Notice that the number of unknowns has reduced to K (2N + 1) being much less

than K (2T + 1) if N � T . Particularly, the number of unknowns and, hence, the
number of constraints does not explicitly depend on the total length T + 1 of the
time series anymore. Hence, the final variational problem allows the analysis of
long time series from real-world applications, as will be demonstrated in Section 5.

2.g. Identification of local models. The derivation of the average cluster func-
tional is based on the assumption that the model distance at a fixed time t can be rep-
resented by a convex combination of model distances with respect to K stationary
model parameters. Notice that this assumption is more general than the assumption
of the existence of K local stationary models. Nevertheless, the identification of
local stationary models gives additional insight into the data. More importantly,
it allows the simulation and prediction of time series, which ultimately leads to
constructing self-contained predictive models as will be explained in Section 4
below.

The identification of local stationary models depends crucially on the choice of
the model distance function and the derived optimal affiliation function 0∗. To see
that, recall the formal interpolation ansatz in (12), i.e.,

g(xt , . . . , xt−m, θ(t))=
K∑

i=1

γi (t)g(xt , . . . , xt−m, θi ). (77)

Accordingly, if we could find an θ(t) such that (77) held true then the local model
at time t would be given by f ( · ; θ(t)).

First suppose that the optimal 0∗ is deterministic, i.e., γ ∗i (t) ∈ {0, 1}. But this
immediately implies

θ(t)= θi with γ ∗i (t)= 1, (78)

as the ansatz trivially holds true with that choice. In the case of a nondetermin-
istic 0∗ the identification crucially depends on the model distance function. We
exemplify that by considering the model distance function

g(xt , . . . , xt−m, θ(t))=
∥∥xt − E

[
f (xt , . . . , xt−m, θ(t))

]∥∥2
2. (79)
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Theorem 2.1. If the direct model function f is linear in θ then

g
(

xt , . . . , xt−m,

K∑
i=1

γi (t)θi

)
≤

K∑
i=1

γi (t)g(xt , . . . , xt−m, θi ) (80)

The proof is straightforward and left for the interested reader. Consequently, if
the interpolation on the right-hand side in (80) is small then the model distance
function on the left-hand side with respect to θ(t) =

∑K
i=1 γi (t)θi is small too.

This, in turn, implies that the direct model function with respect to θ(t) is a good
approximation for a local model function at time t .

The minimization of the average cluster functional justifies the notion

xt ≈ x̂t
def
= E

[
f (xt , . . . , xt−m,

K∑
i=1

γ ∗i (t)θ
∗

i )

]
. (81)

However, the identification is only valid if the direct model function is linear with
respect to its parameters and the model distance function is strict convex. This is
the case for the model distance functions, e.g., in (19), (27), (34) and (42) described
above.

2.h. Relation to classical methods of unsupervised learning. We have already
seen that the direct model xt = θ(t)+ εt equipped with the model distance function
g(xt , θ(t))= ‖xt − θ(t)‖22 leads to the classical k-means algorithm for geometric
clustering provided that no regularity condition (C =∞) is imposed on the affilia-
tion function 0 (Section 2.c.i) and no FEM discretization is used for the numerical
solution of the resulting variational problem. In this section we further clarify the
link between the FEM-BV approach and classical methods for dynamical cluster-
ing. Particularly, we show that the presented method covers existent probabilistic
approaches as special cases by choosing specific model distance functions and
regularity constraints.

Let us first consider the discrete case, i.e., xt ∈ S = {1, . . . ,M}. A prominent
approach for dynamical clustering of persistent discrete time series is the hidden
Markov model [64]. Basically, it relies on three strong assumptions. Firstly, it is
assumed that the hidden (persistent) process is governed by a time-homogeneous
stationary Markov process. Secondly, it is assumed that an observation xt (trig-
gered by a jump of the hidden process) is distributed according to a stationary
distribution conditional on the current hidden state. Finally, one has to assume that
the observations are independent.

Here we make the most general assumption by imposing that the hidden process
is nonstationary and non-Markovian. Specifically, we assume that an observation
xt is distributed according to a discrete distribution θi ∈R|S| conditional on a hidden
state i ∈ {1, . . . , K }, which in turn is drawn from a discrete distribution 0(t) ∈ RK .
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Under the additional assumption of independence, the likelihood of a time series
X = (xt), t = 0, . . . , T takes the form

L(X;0,2)=
T∏

t=0

( K∑
i=1

γi (t)θi (xt)

)
, (82)

where we marginalize over the hidden states.

Theorem 2.2. If the model distance function is defined as

g(xt , θi )=−log(θi (xt)) (83)

then the associated average cluster functional is an upper bound of the negative
log-likelihood,

−log L(X;0,2)≤ L(0,2). (84)

Proof. Notice that −log x is a convex function. Hence, by applying Jensen’s in-
equality we conclude

−log L(X;0,2)=−
T∑

t=0

log
( K∑

i=1

γi (t)θi (xt)

)

≤

T∑
t=0

K∑
i=1

γi (t) (−log(θi (xt))) , (85)

where the upper bound in (85) is exactly the average cluster functional in (35)
resulting from the reasoning in the third example in Section 2.c.iii. �

In the probabilistic approach, the optimal parameters (distributions) of the model
are characterized by the ones that maximize the likelihood, i.e.,

(0∗,2∗)= argmax
0,2

L(X;0,2), (86)

which is equivalent to minimizing the negative log-likelihood function,

(0∗,2∗)= argmin
0,2

(−log L(X;0,2)). (87)

Therefore, the minimizer of the average cluster functional in (35) can be considered
as a good approximation of the maximizer 0∗,2∗ of the likelihood function in (82).
The fundamental difference between the two approaches, however, is that in the
FEM-BV approach non of the probabilistic assumptions on the nature of data have
to be made in order to derive the average cluster functional (35).

The presented reasoning readily carries over to the continuous case, i.e., xt ∈

Rd , by defining the model distance function in terms of the assumed underlying
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conditional probability density function ρ( · ; θi ),

g(xt , θi )
def
= −log ρ(xt ; θi ). (88)

It is straightforward to show that the upper bound for the negative log-likelihood
associated with probabilistic model coincides with the average cluster functional
resulting from the model distance function in (88).

For example, a widely used class of parametric probability density functions are
the d-dimensional Gaussian distributions,

ρG(xt ;µi , 6i )= ((2π)d |6|)−1/2 exp
(
−

1
2(xt −µi )

†6−1
i (xt −µi )

)
, (89)

with mean µi ∈ Rd and symmetric positive definite covariance matrix 6i ∈ Rd×d .
The induced model distance function then reads

g(xt , µi , 6i )=
1
2

(
cst.+ ln |6| + (xt −µi )

†6−1
i (xt −µi )

)
. (90)

Any method for inferring the optimal parameters of a Gaussian distribution relies
specifically on the assumption that the data “lives” in the full d-dimensional space
so that the covariance matrix is symmetric positive definite and, hence, invertible.
Unfortunately, in many applications this assumption is not met because, e.g., the
essential dynamics of a (Gaussian) process takes place in an n-dimensional subman-
ifold with n� d . In the FEM-BV approach, this limitation can be circumvented by
directly clustering with respect to the submanifolds by means of the PCA approach
presented in Section 2.c.ii.

At the end of this section, we comment on the relation of the FEM-BV approach
based on (90) to the stationary Gaussian mixture model (GMM). Analogously to
the reasoning above, the negative log-likelihood associated with a GMM can be
bounded from above, i.e.,

−

∑
t

log
( K∑

i=1

aiρG(xt ;µi , 6i )

)
≤−

∑
t

K∑
i=1

ai log ρG(xt ;µi , 6i ), (91)

where a = (a1, . . . , aK ) are the normalized weights of the Gaussian distributions,
i.e.,

∑K
i=1 ai = 1 and ai ≥ 0, i = 1, . . . , K . Now notice that the upper bound

in (91) coincides with the average cluster function induced by (90) if we assume
that in (54) C = 0, i.e., 0(t) ≡ a ∀t . However, the associated optimal affiliation
function,

a∗i =
{

1 if i = argmin j
{
−
∑

t log ρG(xt ;µ j , 6 j )
}
,

0 otherwise,
(92)

is deterministic, implying that the optimal substitute model (Gaussian mixture
model) consists only of one locally stationary model (Gaussian distribution) in-
dependent of the number K of assumed clusters.
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In contrast, the update formula for the weights a1, . . . , aK in the classical GMM
framework (see, e.g., [61]),

a(s+1)
i =

1
T + 1

T∑
t=0

q(i, t)∑K
j=1 q( j, t)

with q(i, t)=a(s) log ρG(xt ;µ
(s)
i , 6

(s)
i ), (93)

significantly differs from (92) and, generally, does not lead to a degenerated (de-
terministic) cluster affiliation as in the FEM-BV approach presented above.

This observation allows the conclusion that the upper bound derived in the GMM
framework is sharper than the corresponding average cluster function, e.g., in the
right-hand side of (91). However, the assumption of stationary weights (C = 0)
deployed in the GMM framework is very restrictive and it is not fulfilled in many
applications.

3. Model selection

The outcome of the FEM-BV methodology crucially depends on the specific choice
of the number of clusters K and the persistence threshold C as the choice expresses
a certain a priori knowledge on the nature of the data under consideration. In fact,
the identification of an optimal or best model among a set of possible models
is an important part of the clustering procedure itself. In this section we briefly
discuss several approaches that have been proposed in the context of the FEM-
BV methodology for the selection of the optimal parameters. Furthermore, we
present an extension of a recently introduced information-theoretical framework
that allows the simultaneous identification of the optimal parameters K and C.

The characterization of an optimal model in terms of its parameters K and C
on the basis of the average cluster function, L(K ,C), is hampered by the follow-
ing fact: if the number of clusters and the number of allowed transitions between
them is increased then the corresponding a priori knowledge is less restrictive and,
therefore, the value of the L(K ,C) decreases. Particularly, L(K ,C) attains its
minimum in the limit K = N ,C = ∞, which would imply that the correspond-
ing model is optimal in the sense that it explains the data best. As explained in
Section 2.d, however, the resulting model is meaningless due to the over-fitting
and does not reveal any insights in the underlying data. Therefore, a criterion for
selecting the optimal parameters should take both into account: how well the data
is explained and the total number of involved parameters such as the number of
clusters, the actual number of transitions between the clusters and the number of
model parameters in each cluster.

Several approaches have been proposed to tackle the problem of selecting an
optimal model within the context of the FEM-BV methodology. For instance, the
approach in [63] is based on the following observation. The increase of the number
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of clusters leads to an increase of uncertainty of the estimated model parameters
for each cluster as less data is assigned. Consequently, if one starts with a large
number of clusters, then this number can be reduced by combining the clusters
whose parameters have a nonempty intersection of their confidence intervals as
those clusters are statistically not distinguishable. The procedure is terminated if
all clusters are statistically distinguishable.

To choose the optimal persistence threshold C , techniques such as the L-Curve
method [50] can be applied. The idea is to analyze the graph of the average clus-
tering functional as a function of the persistence threshold C. The optimal C∗ is
then characterized by the point of maximum curvature of the graph.

Recently in [33], an information theoretical framework has been introduced for
the simultaneous identification of the optimal parameters K ∗ and C∗. It is moti-
vated by the principle of Occam’s razor: the best or optimal model among a set
of possible models is the one that exhibits maximal model quality (goodness of
fit) while its number of free parameters is minimal. The most prominent informa-
tion measure embodying that principle is the AIC (Akaike information criterion,
introduced in [1]), which, formally, is given by

AIC(M)=−2 ln L(M)+ 2|M |, (94)

where L(M) denotes the likelihood of the model M and |M | is the total number
of the model’s free parameter. The optimal model M∗ is then characterized by the
one that minimizes the criterion.

The AIC depends on the likelihood L(M) of the model as a measurement of the
model quality. Therefore, the criterion can not be generally applied in the FEM-BV
methodology because it is based on the more general notion of a model distance
function.

If the model distance function, however, is induced by, e.g., a discrete proba-
bility distribution (cf. (34) in Section 2.c.iii) then as justified by Theorem 2.2 (see
Section 2.h) the likelihood L(M) reduces to the likelihood given in (82). Analo-
gously, the reasoning carries over to a model distance function defined in terms of
a PDF (cf. (90) in Section 2.h) and to a model function preserving probability such
as the Markov regression model introduced in Section 2.c.iv.

It remains to consider the case, e.g., FEM-BV-k-means, if neither the model
function nor the model distance function allows a probabilistic interpretation. For-
tunately, the gap can be bridged by realizing that the distribution of the scalar time
series of model distances with respect to a fixed cluster i reflects how well the
corresponding local model explains the data. The key idea now is to employ these
distribution in order to define a likelihood of a scalar process and, eventually, to
arrive at a modified information criterion for detecting the optimal model in the
FEM-BV approach.
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Let supp(γi ) = {t : γi (t) > 0} denote the support of γi (t) and suppose for a
moment that the model distances in the cluster i = 1, . . . , K are each distributed ac-
cording to a parametric (conditional) probability density function (PDF) ρi ( · ;3i ),
i.e.,

P[g(xt , θi ) ∈ dx] = ρi (g(xt , θi );3i ) dx, i = 1, . . . , K , ∀t ∈ supp(γi ). (95)

Under the (restrictive) assumption of independence, we can define a likelihood
function L(K ,C) by

L(K ,C) def
=

∏
t

( K∑
i=1

γi (t)ρi (g(xt , θi );3i )

)
(96)

and, following the arguments from the original proof by Akaike [1], we arrive at
the modified information criterion

m AI C(K ,C)=−2 ln(L(K ,C))+ 2|M(K ,C)|. (97)

The total number of the model’s free parameters, |M(K ,C)|, consists of three
contributions; the total number of local stationary parameters, i.e., |2| = |θ1| +

· · · + |θK |, the total number of parameters needed for describing the conditional
PDFs, i.e., |3| = |31| + · · · + |3K | and, finally, the total number of parameters
needed to represent the affiliation function 0. To determine |0|, please recall that
0 is piecewise constant on a FEM-partition 0= τ0<τ1<τ2< · · ·<τN−1<τN = T
dividing the interval [0, T ] into N bins (Section 2.f). Hence, we conclude

|0| = K N . (98)

For instant, the total number of parameters in the FEM-BV-k-means model is
(Section 2.c.i)

|Mk-means(K ,C)| = Kd + K N + |3|. (99)

It remains to explain how to characterize the set of parametric PDFs, {ρi ( · ;3i )},
capturing the respective distribution of the cluster’s model distances appropriately.
One option is to assume that all distributions during the course of optimization
belong to a certain but fixed class of parametric PDFs, e.g., the class of Gaussians.
The parameters 3i are then efficiently calculated via the maximum likelihood ap-
proach. However, our numerical experiments showed that the assumption of a fixed
class of parametric PDFs is too restrictive and may lead to wrong optimal models.

To motivate the approach presented here, note that we actually do not know
anything about the parametric representations of the distributions. What we can
empirically compute, however, are statistical properties such as the expectation, the
variance and, more generally, the first k noncentralized moments. The key idea now
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is to choose the most unbiased distribution in each case, among those exhibiting
the empirical observed statistical properties. According to [43; 44; 55] the most
unbiased distribution is the one which admits the most uncertainty measured in
terms of entropy.

Let η j , j = 0, . . . , k be empirical estimates of the first k+ 1 noncentralized mo-
ments of a distribution with η0 = 1. The associated maximum entropy distribution
is characterized by a constrained variational problem

H(ρ)
def
= −

∫
ρ(x) ln ρ(x) dx→ max

ρ(x)∈L2(R)
(100)

subject to

η j =

∫
x jρ(x)dx, j = 0, . . . , k, (101)

where H(ρ) is the entropy of the PDF ρ.
Applying the calculus of variation yields the formal (unique) solution

ρ∗(x)= exp
k∑

j=0

λ j x j
= argmax
v(x)∈L2(R)

H(ρ), (102)

where the Lagrange multipliers λ0, . . . , λk enforce the constraints in (101). For
instant, if k = 2 then ρ∗ is basically given by a Gaussian distribution having the
prescribed moments. Unfortunately, for k > 2 no closed expression for ρ∗ exists
so that the Lagrange multipliers have to be computed numerically via, e.g., the
Newton method. For details on solving the problem (100)–(101) numerically see,
e.g., [76]. Moreover, for an overview on maximum entropy distributions associated
with constraints other than in (101) we refer to, e.g., [46; 55].

The maximum entropy ansatz finally allows us to characterize the parametric
representations of the distributions of the respective (scalar) cluster’s model dis-
tances

{g(xt , θi )}, t = 0, 1, . . . , T, i = 1, . . . , K (103)

as

ρi (x, λ
(i)
0 , . . . , λ

(i)
k )= exp

k∑
j=0

λ
(i)
j x j (104)

subject to∫
x jρi (x, λ

(i)
0 , . . . , λ

(i)
k )dx = Z−1

i

∑
t∈supp(γi )

(g(xt , θi ))
j j = 0, . . . , k, (105)

with Zi = |supp(γi )|. Inserting (104) in (94) we end up with the modified AIC,
denoted by m AI C(K ,C), for selecting the optimal model within the FEM-BV
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methodology. Notice that we only require in (104) and (105) the scalar “observ-
ables” g( · , θi ) to be i.i.d.2 Furthermore, the optimal number (order) k of moments
needed to approximate the underlying distribution can again be determined by em-
ploying the AIC.

We end this section by discussing a conceptual weakness of the presented model
selection approach. Despite its successful application and the numerical evidence
indicating its usefulness (see Section 5 below), the approach theoretically suf-
fers from the fact that the estimation of the ME-distributions is invariant under
translation, i.e., the ME-distributions estimated from, e.g., the scalar time series
(g(xt , θ

∗)), t ≥ 0 and (g(xt , θ
∗)+ a), a > 0, t ≥ 0 would be indistinguishable

from the view point of likelihood. Consequently, they would equally contribute
to the modified AIC although the former distribution is closer to the lower bound,
(say zero), and, hence, the associated underlying model should be the preferred one.
From the practical point of view, such scenarios are very unlikely to happen since
the model distance function g(xt , θ) is minimized during the subspace-procedure.
In fact, the occurrence of such a scenario would indicate that the underlying model
function f ( · , θ(t)) does not properly capture the dynamic of the time series under
consideration.

Generally spoken, the model selection approach theoretically suffers from not
explicitly incorporating the lower boundedness of the model distance function g( · ).
Bridging that gap is subject to ongoing research and will be discussed in a forth-
coming manuscript.

4. Self-containing predictive models

In the previous section, we presented for the FEM-BV approach a tailored strategy
to identify an optimal stochastic model in terms of the optimal number of clusters
K ∗ and the optimal persistence C∗. Furthermore, we elaborated in Section 2.g
under which conditions the optimal model parameters and the optimal cluster affil-
iations lead to a time-dependent mixture model for fitting the data best within the
trained time interval. In this section we present a prediction strategy allowing us
to predict the dynamics beyond the trained time interval.

Let 0∗
[m,T ] and θ∗1 , . . . , θ

∗

K∗ be the parameters of the optimal model associated
with a model function f ( · , · ) on the time interval [m, T ]. A reasonable fitting
(prediction) at t ∈ [m, T ], i.e., within the trained time span, is then given by the

2In this context it is important to recall the standard application of information functionals for
Bayesian time series analysis methods (such as GMMs and HMMs) [21; 49] relies on a very restric-
tive additional assumption, namely that the analyzed data xt are produced by a known parametric
multivariate distribution.
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average mixture model (cf. (81) in Section 2.g)

x̂t = E

[
f
(

xt , xt−1, . . . , xt−m,

K∗∑
i=1

γ ∗i,[m,T ](t)θ
∗

i

)]
. (106)

Now it is important to realize that the average mixture model is confined on the
interval [m, T ] because it explicitly depends on the time-dependent affiliation func-
tion 0∗

[m,T ] being only well defined on [m, T ]. However, if we could predict
the affiliation function 0̂[m,T+d](t) for t = T + 1, . . . , T + d, d > 0 then (106)
could readily be extended for predicting x̂T+1, . . . , x̂T+d by the following recursive
scheme

x̂T+r = E

[
f
(

x̂T+r , . . . , x̂T+r−m,

K∗∑
i=1

γ̂i,[m,T+d](T + r)θ∗i

)]
r = 1, . . . , d

(107)
with x̂s = xs and 0̂[m,T+d](s)= 0∗[m,T ](s) if s ≤ T .

A self-contained strategy for predicting 0̂[m,T+d] has been recently proposed in
[34]. It is based on two simple but fundamental observations. Firstly, 0∗

[m,T ](t), t =
m, . . . , T itself can be viewed as a time series of discrete probability distributions
due to the imposed convexity conditions in (13). Secondly, under the assumption
that the distributions 0∗

[m,T ](t), t = m, . . . , T are associated with a (hidden) time-
homogeneous and stationary Markov process, a model for the dynamics of the
cluster affiliations is readily given by (0 ≡ 0∗

[m,T ])

0†(t + 1)= 0†(t)P, (108)

where P ∈ RK∗×K∗ is a stochastic matrix, i.e., P is elementwise nonnegative and
the entries of a row sum up to 1.

Particularly, the dynamics in (108) allows the recursive prediction of 0̂[m,T+d],
e.g.,

0̂†(T + 1)= 0̂†(T )P (109)

with 0̂(T ) = 0∗
[m,T ](T ) and, finally, in combination with (107) leads to a self-

contained prediction scheme for the dynamics of the data under consideration.
This leaves us with the question how to estimate the stochastic matrix P from

the time series of affiliations. Of course, in general we can not expect that a matrix
P exists such that (108) exactly holds true. However, the FEM-BV methodology,
in particular the approach presented in the Section 2.c.iv, provides an elegant way
to deal with that situation by solving the following variational problem (cf. (42)):

T−1∑
t=0

∥∥0†(t + 1)−0†(t)P
∥∥2

2→min
P
, (110)
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subject to P being a stochastic matrix and 0 ≡ 0∗
[m,T ]. In order to study the

influences of external factors u(t) ∈ Rk , we additionally assume that the matrix
P = P(u(t)) can be decomposed as (cf. (44))

P(u(t))= P0+

k∑
l=1

ul(t)Pl, (111)

where the involved matrices satisfy the constraints (46)–(48). The final minimiza-
tion problem (110)–(111) with respect to the parameters P0, . . . , Pk ∈ RK∗×K∗ and
subject to the constraints (46)–(48) can be cast in a constrained quadratic program.
For details see the Appendix.

Next, suppose that an observation for xT+1 is available. What is the optimal
prediction for x̂T+2 conditioned on the additional observation xT+1? As motivated
in [34], instead of reanalyzing the updated time series (x0, . . . , xT+1) via the FEM-
BV approach and reapplying the prediction scheme described above, it is sufficient
to determine the optimal affiliation vector 0∗

[m,T+1](T + 1) simply by

γ ∗i (T + 1)=
{

1 if i = argmin j
{
g(xT+1, . . . , xT+1−m, θ

∗

j )
}
,

0 otherwise,
(112)

which by virtue of (108) and (107) yields the prediction x̂T+2. The generalization
of the conditional prediction in the presence of more than one new observation, say
(xT+1, . . . , xT+t ′), is straightforward. The resulting scheme is (r = 1, . . . , d)

(xT+t ′,2
∗)

via (112)
−→ 0∗

[m,T+t ′](T + t ′)
via (108)
−→ 0̂[m,T+t ′+d](T + t ′+ r)

via (107)
−→ x̂T+t ′+r . (113)

The remainder of this section is devoted to describing numerical strategies to
assess the prediction quality of the scheme given above. To this end, we compare
x̂T+k with standard prediction approaches such as the “zero” prediction model
frequently used in, e.g., the meteorological literature. Formally, it reduces to

x̂0
T+d ≡ xT . (114)

Furthermore, as frequently pointed out in this manuscript, stationarity is a widely
used and well accepted assumption in time series analysis. Thus, it is reasonable
to compare x̂T+d with the prediction x̂1

T+d resulting from an optimal stationary
substitute model, i.e. (analogously to (107))

x̂1
T+d = E

[
f
(
x̂1

T+d , . . . , x̂1
T+d−m, θ

∗
)]
, (115)

where θ∗ is derived3 from the time series under consideration.

3Numerically, this simply amounts to fix K = 1 in the course of the FEM-BV approach.
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The average relative prediction error of the d-step prediction scheme for a pre-
diction horizon [T+1, T+T ′] is then measured by

ed(T ′)
def
=

1
T ′− d + 1

T ′−d∑
t ′=T

∥∥xt ′+d − x̂t ′+d
∥∥

‖xt ′+d‖
, (116)

where ‖ ·‖ denotes a desired norm. That error is compared with the average relative
error ed

0(T ′) associated with the zero-prediction scheme and ed
1(T ′) resulting

from predicting via the stationary substitute model. See Section 5.e for a numeri-
cal example illustrating the described prediction schemes. Another possibility for
measuring the prediction error is given by the information-theoretical approaches
to model error assessment developed at the working group of A. Majda (NYU);
we refer the interested reader to, e.g., [55; 24] for more details on this matter.

5. Numerical examples

In this section we illustrate the presented FEM-BV methodology on various exam-
ples. In the first and second example we demonstrate the general feasibility of the
proposed method and discuss its properties on a simple model with known proper-
ties. In the third example, a modified version of the FEM-BV-k-means for periodic
angular data is developed and applied to analyze the conformational dynamics of
a small biomolecule. The fourth example deals with a problem in computational
biology and shows that the FEM-BV framework adapted for discrete data allows
us to analyze gene-sequences under minimal a priori assumptions. The analysis
of financial data is presented in the last example in which we also discuss the
usefulness of the self-contained prediction scheme presented in Section 4.

5.a. Toy model system I: FEM-BV-k-means. The k-means approach is a widely
used algorithm to cluster stationary data on the basis of geometric properties, i.e.,
the Euclidean distance to geometric centroids. However, even for low dimensional
examples k-means fails to identify the “right” clusters. In the first numerical ex-
periment we show for such a counter example that the additional information of
the temporal (persistent) ordering of the data is sufficient to separate geometric
clusters via of FEM-BV-k-means.

To this end we consider a time series of two dimensional data x(t)= (x1(t), x2(t))
generated via a mixture model consisting of a time dependent convex combination
of three (stationary) normal distributions,

xt ∼

3∑
i=1

γi (t)N(µi , 6i ) t = 1, . . . , 6000, (117)

where the weights (cluster affiliations) 0(t)= (γ1(t), γ2(t), γ3(t)) are deterministic
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Figure 2. Toy model I. Left: scatter plot of the a time series generated via (117) where
the parameters were chosen such that the data exhibits three geometric clusters. Right:
the graph of the cluster affiliations used as a persistent hidden process in parameter space
for the generation of the time series depicted in the left panel.

and prescribed. Particularly, 0(t) was chosen such that the (hidden) affiliation
process jumps only once from cluster one to cluster two and finally to cluster
three, i.e., ‖γ1‖BV = ‖γ3‖BV = 1 and ‖γ2‖BV = 2. For an illustration of 0(t)
see the right panel of Figure 2. As one can see in the scatter plot given in the
left panel of Figure 2, the means and covariance matrices (µi , 6i ), i = 1, 2, 3
were chosen such that a sufficiently long sample (here T = 6000) exhibits three
geometrically nonoverlapping clusters. However, the k-means algorithm for k = 3
failed to identify these clusters as illustrated in the left panel of Figure 3. Notice
that the misclassification of the data points is basically due to the different scales
of the x1 and x2 components of the data.
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Figure 3. Toy model I. Cluster affiliations of the data points resulting from the classical
k-means algorithm (left) and from the FEM-k-means method (right). Up to a few misclas-
sifications, the latter method led to the right assignment of the data points to the original
clusters, whereas the former one totally messed up.



206 PHILIPP METZNER, LARS PUTZIG AND ILLIA HORENKO

Next, we analyzed the time series with the FEM-BV approach which results
from the simple model in (6) and the model distance function in (9). Recall that
for C =∞ the average cluster functional admits an analytic solution for 0 and for
the cluster parameter 2 which both coincide with the respective update formulas in
the k-means algorithm (Section 2.a). Now the question is whether the persistence
of the prescribed cluster affiliations is sufficient to identify the three cluster while
using the same distance function as in the standard k-means approach?

To this end, we repeatedly launched the FEM-BV-k-means subspace algorithm
(cf. Section 2.b and (72)–(75)) for all combinations of

K = [2, 3, 4]×C = [2, 4, . . . , 12],

each time with a randomly drawn initial 0, until the global minimizer of the av-
erage cluster functional was found. For the respective optimal models we then
computed the modified AIC values via the Maximum-Entropy approach presented
in Section 3. For fixed K the graphs of m AI C(K ,C) as a function of C are given
in the left panel of Figure 4. The overall minimum is attained in K ∗ = 3,C∗ = 2
which are exactly the parameters of the original data. In the right panel of Figure 4,
we exemplarily illustrate the histogram of the residuals (6) of the right geometrical
cluster together with the graph of the fitted ME PDF (102) of order 3 which was
used to compute the modified AIC values. Finally, the correct (up to a few isolated
misfits) assignments of data points to the clusters based on the affiliation vector
0(t) is given in the right panel of Figure 3.

This simple but instructive example demonstrates that neglecting temporal per-
sistence in data may lead to misleading results even for toy examples. In con-
trast, besides yielding the correct partition of the data, the FEM-k-means-method
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Figure 4. Toy model I. Left: graphs of the (modified) AIC values (97) for fixed K as a
function of C. Right: the histogram of the residuals (6) of the right geometrical cluster
together with the graph of the fitted ME PDF (102) of order 3 (red line).
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combined with the model selection approach allowed us to reidentify the correct
parameters K = 3,C = 2.

5.b. Toy model system II: FEM-BV-PCA. In the first example, the geometrical
clustering of the time series basically relied on the separability via centroids, i.e.,
mean values. In the second example we demonstrate that even geometric cluster
with comparable means can be reidentified via the FEM-BV approach by addition-
ally incorporating spectral properties of covariances, i.e., principal components.

To this end, we consider time series of two dimensional data x(t) ∈ R2 of length
T = 10000 generated via

xt ∼ γ1(t)N2(0, 61)+ γ2(t)N2(0, 62). (118)

The prescribed weights (cluster affiliations) 0(t)= (γ1(t), 1− γ1(t)) are determin-
istic. For an illustration of γ1(t) see the right panel in Figure 5. The covariance
matrices 61 and 62 are chosen as

61 =

[
4 0
0 0.25

]
, 62(ρ)=

[
cos ρ sin ρ
−sin ρ cos ρ

]
61

[
cos ρ −sin ρ
sin ρ cos ρ

]
, (119)

where 62 results from rotating 61 by an angle ρ = 15 degrees. The scatter plot
of the time series generated via (118) is depicted in the left panel of Figure 5. As
one can see, the two clusters are almost identical and, by construction, are centered
around (0, 0). Therefore, any k-means clustering approach would fail to recover
the original temporal affiliation. The only chance to identify the (hidden) cluster
though is to cluster with respect to the eigenvectors of the (hidden) covariance
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Figure 5. Toy model II. Left: scatter-plot of a time series generated via the mixture model
in (118) consisting of a time dependent convex combination of two (stationary) normal
distributions with mean zero and covariance matrices given in (119) and a rotation angle
ρ = 15 degrees. Right: the prescribed affiliation function γ1(t) (solid line) completely
coincides with one obtained from the FEM-BV-PCA-analysis (red dashed line).
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Figure 6. Toy model II: part of the Viterbi path (1 ≤ t ≤ 1000) obtained from fitting a
two-dimensional stationary mixture model of two Gaussian distributions (via the GMM-
method) on the data shown in Figure 5.

matrices. But this is exactly the idea of the FEM-BV-PCA approach which will be
used here.

Before we present the results of the FEM-BV-PCA approach, we first apply the
GMM-method which is a classical and widely accepted method for unsupervised
clustering. We fitted (trained) a two-dimensional stationary mixture model of two
Gaussian distributions on the data via the Expectation-Maximization algorithm
[12]. Since Gaussians are involved in the time series generation, it is reasonable
to expect the GMM-method to be able to reidentify the parameters of the hidden
distributions. However, the estimated covariance matrices 6̃1 and 6̃2 significantly
differ from the original ones, indicated by, e.g., ‖62− 6̃2‖ = 5.2040.

The associated Viterbi path (partially depicted in Figure 6) reveals the reason for
the failure; it is highly oscillatory rather than being persistent. Consequently, the
majority of data points are incorrectly affiliated with regard to the original clusters
which, ultimately, leads to the incorrect estimation of the covariance matrices. The
irregularity of the Viterbi path, in turn, is a direct consequence of the strong station-
ary assumption underlying the GMM-method, i.e., time-independent distribution
parameters and time-independent affiliation weights.

In contrast, as will be demonstrated in the following, the FEM-BV-PCA-method
(see Section 2.c.ii) succeeded as it takes the persistence of the hidden dynamics
in the parameter space into account. Analogously to the procedure described in
the previous example in Section 5.a, we globally minimized the average cluster
functional resulting from the model distance function in (27) via the subspace
algorithm for all combinations of K ∈ {1, 2, 3} and C ∈ {2, 4, 6, 8, 10, 14, 20}.
The minimum of the corresponding modified AIC values is attained for K ∗ = 2
and C∗ = 8, which are exactly the parameters used for the time series generation.
Even more importantly, the numerically obtained affiliation vector is identical with
the original one (see right panel of Figure 5).
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5.c. Conformation analysis of a biomolecule (trialanine): FEM-BV-k-means.
The biological function of a biomolecule is strongly characterized by its ability to
assume almost constant geometrical configurations, referred to as conformations.
More precisely, a conformation denotes a mean geometrical configuration of a
molecule which is almost stable (metastable, persistent), i.e., the molecule’s geom-
etry wiggles around that configuration for a long period of time before it rapidly
switches to another conformation. For example, it is known that conformations
of certain proteins are responsible for severe human diseases [51]. For details on
the analysis of the conformational dynamics of molecules we refer the interested
reader to, e.g., [69] and the references therein.

It is common to analyze the conformational dynamics of a (bio-)molecule in
internal coordinates such as torsion angles rather than to consider the time series
of cartesian coordinates of all atomic positions. The reason is that torsion angles
are invariant with respect to translation and rotation of the molecule and, more
importantly, tremendously reduce the dimensionality of the time series. However,
the (nonlinear) projection of the cartesian coordinates on the torsion angle space
deflects the original dynamics and can lead to an incomplete picture of the confor-
mational dynamics of the molecule. This is in particular true if only a subset of
torsion angles is considered because of, e.g., numerical or statistical reasons. Con-
sequently, conformations which are geometrically distinguishable in the complete
torsion angle space might (completely) overlap in the reduced space. Thus, the
identification of conformations via geometrical clustering of incomplete observa-
tions of torsion angles is an ill-posed problem.

In the traditional transfer operator (TO) approach [65] to conformational dy-
namics the problem is addressed by assuming that the underlying dynamics in the
incomplete torsion angle space is a reversible, stationary and time-homogeneous
Markov process. Alternatively, we propose to tackle the ill-posedness by regular-
ization of the underlying persistent (metastable) dynamics in the BV sense and to
identify conformations via a modified FEM-BV-k-means approach.

To this end, we consider in this example a time series of three torsion an-
gles 8,9 and � obtained from a molecular simulation of the trialanine molecule
schematically illustrated as a ball-stick representation in the left panel of Figure 7.
The simulation was performed in vacuum at constant temperature and pressure
such that the resulting time series can be considered stationary for a sufficiently
long simulation time T . The details of the simulation procedure can be found in
[60]. As one can see in the right panel of Figure 7, the dynamics of the torsion
angles exhibits a strong persistence or metastability.

Recalling that the torsion angles are periodic on [−π, π], the 3d-scatter plot
in the left panel of Figure 8 clearly reveals five geometrical clusters indicating
five conformations. The projection on the two torsion angles 8 and 9, however,
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Figure 7. Biomolecule: molecular simulation of the trialanine molecule (left) reveals its
conformational dynamics observed in the time series of three torsion angles (right).
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Figure 8. Biomolecule: recalling the periodic nature of torsion angles, the scatter-plot
of the full time series (left) reveals five conformational clusters whereas the scatter-plot
of the projected time series (xt ) = (8t , 9t ) (right) suggests the existence of only three
conformations.

suggests the existence of only three conformations as illustrated in the right panel
of Figure 8. Consequently, the five clusters can only be recovered in the projection
by additionally capturing the inherent persistence of the dynamics. This will be
demonstrated in the remainder of this example.

To understand the following preprocessing steps, we briefly recall the transfer
operator approach to conformation dynamics. The basic idea is to represent the
dynamics underlying the time series of torsion angles as a reversible, stationary and
time-homogeneous Markov chain defined on a suitable discretization of the torsion
angle space, e.g., by boxes. The spectrum of the associated transition matrix P ,
then allows the characterization and extraction of the conformations as metastable
subsets via, e.g., the robust Perron-cluster cluster analysis (PCCA+) [14]. To be
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more precise, let λ1, λ1, . . . , λn be the first n dominant eigenvalues of P , i.e.,

1= λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. (120)

If a spectral gap exists, i.e., if one can find an index K such that |λK |� |λK+1|, then
one can prove that the discrete state space can be decomposed into K metastable
subsets (conformations), say A1, . . . , AK , based on the corresponding dominant
eigenvectors [11; 66; 42; 13]. A measure for the total metastability of the resulting
decomposition is then given by

η(A1, . . . , AK )=

K∑
i=1

P(Ai , Ai ), (121)

where
P(Ai , Ai )= P[x1 ∈ Ai |x0 ∈ Ai ]

is the (time-homogeneous) probability that the dynamics is in Ai after making a
transition out of Ai .

Accordingly, to ensure Markovianity while preserving the persistence, the orig-
inal time series was further subsampled by picking every 10-th time step resulting
in a time series (xt)= (8t , 9t) of total length T = 54455. Then, the 2-dimensional
space spanned by the torsion angles 8 and 9 was discretized into 30× 30 equidis-
tantly sized boxes and we ended up with a 372-state Markov chain since only 372
boxes are visited by xt .

The spectral gap between the third and fourth dominant eigenvalue (see left
panel in Figure 9) suggests an optimal decomposition into three clusters showing

1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

1

Index i of dominante eigenvalue

|λ
i|

10 20 30 40 50 60
−3.4

−3.3

−3.2

−3.1

−3

−2.9

−2.8

−2.7
x 10

4

C

m
A

IC
(K

,C
)

 

 

K=3
K=4
K=5
K=6

Figure 9. Biomolecule. Left: six dominant eigenvalues of the transition matrix P ∈
R372×372 and their confidence intervals, resulting from a 30× 30 box discretization of
the state space spanned by 8 and 9. Right: for fixed K = 3, 4, 5, 6 the graphs of the
mAIC values as a function of C obtained via the Maximum-Entropy approach with order
three. The minimum is attained for K∗ = 5 and C∗ = 40.
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Figure 10. Biomolecule. Decomposition of the time series (xt ) = (8t , 9t ) into five
clusters via periodic FEM-BV-k-means (upper left) and the TO approach (upper right).
The same decomposition of the time series visualized in a full three-dimensional feature
space (xt )= (8t , 9t , �t ) reveals the correct identification of the conformations (lower
left) by the FEM-BV-k-means method whereas the TO approach is not able to recover
them from the incomplete observation in xt (lower right).

that the TO approach fails to capture the persistence of the dynamics leading to five
conformations. Furthermore, as illustrated by the error bars, the high uncertainty4

of the fifth and sixth dominant eigenvalue indicates that they are statistically in-
distinguishable and so are the corresponding eigenvectors. Hence, any attempt to
decompose the state space into five clusters by additionally considering the fourth
and, particularly, the fifth dominant eigenvector would fail to properly separate
the conformations. This is confirmed in the right lower panel of Figure 10 and
by the fact that the total metastability (121) for the decomposition resulting from
the TO approach has the value ηTO = 4.106, significantly lower than the value
ηFEM = 4.900 resulting from the periodic FEM-BV-k-means method to be pre-
sented below.

4Based on a 800,000-member transition matrix ensemble generated via a sampling method intro-
duced in [57].
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From a more general viewpoint, the high uncertainty in the (less) dominant
eigenvalues reflects the ill-posedness of the cluster problem in the presence of
incomplete data. Hence, an appropriate regularization is needed such as provided
in the variational FEM-BV approach.

As demonstrated in Section 5.a, the simplest way to geometrical clustering while
taking persistence into account is the FEM-BV-k-means approach. The model
distance function in (9), however, does not capture the periodic nature of the data.
Fortunately, this can easily be fixed by adopting a distance model function defined
on the d-dimensional torus:

g(xt ,2t)=

d∑
j=1

∥∥ω([xt ] j )−ω([2t ] j )
∥∥2

2,

with ω(α)= (cosα, sinα) ∈ R2, (122)

where [y] j denotes the j-th component of y ∈ Rd . A straightforward calculation
shows that the average cluster functional associated with (122) attains for given
0(t) a local minimum in θ∗i ∈ Rd , elementwise given by

[θ∗i ] j = tan−1
∑T

t=0 γi (t) sin[xt ] j∑T
t=0 γi (t) cos[xt ] j

j = 1, . . . , d. (123)

Via the subspace algorithm, we globally minimized the average cluster func-
tional resulting for all combinations of K ∈ {3, 4, 5, 6} and C ∈ {10, 20, . . . , 60}.
The mAIC values are plotted in the right panel of Figure 9. The overall minimum
is assumed in K ∗ = 5 and C∗ = 40 suggesting the existence of five conformations.
Indeed, the according decomposition of the full time series (left lower panel of
Figure 10) based on the 2-dimensional clustering (left upper panel of Figure 10)
shows that the FEM-BV approach succeeded in identifying the conformations most
correctly.

In this example we have demonstrated that the FEM-BV-k-means approach
adapted for periodic data allows us to identify all of the relevant conformations
of a biomolecule based on incomplete torsion angle observations. In particular, we
have shown that the combination of BV-regularization with the model selection
via the modified AIC does not only yield the correct number but also the correct
assignment of the analyzed data to proper conformations. In contrast, although the
underlying assumptions necessary for formal applicability of the TO approach (e.g.,
homogeneity and Markovianity) are formally fulfilled for the analyzed time series,
it was demonstrated that the classical transfer operator approach can suffer from
the ill-posedness of the clustering problem resulting from the strong overlapping of
different conformational states in the reduced representations. The current example
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demonstrates that this ill-posedness can result in misleading conformational decom-
positions in context of the TO approach.

5.d. Yeast DNA. One of the major challenges in bioinformatics is the identifica-
tion of genes from biological data. In this example, we approach that problem with
the FEM-BV-categorical method derived in Section 2.c.iii and compare the results
to classical methods such as the unsupervised HMM.

Gene finding is the identification of coding (exons or genes) and noncoding
(introns) regions in nucleic acids (DNA and RNA) based on sequences of codons
which specify the amino acid production during the protein synthesis. A codon is
a sequence of three nucleotides out of the four possible nucleic bases adenine (A),
guanine (G), thymine (T) and cytosine (C). Thus, a single codon can code for a
maximum of 64 amino acids.

Traditional approaches to gene finding are based on supervised machine learn-
ing methods such as supervised HMMs [49], and rely on extensive previous training
and a high amount of a priori biological knowledge. Particularly, it is assumed that
the hidden process switches exactly between two states, coding and noncoding
regions, and that it is a stationary Markov process.

In contrast to the supervised methods, we propose the FEM-BV approach based
on the categorical model introduced in Section 2.c.iii as an unsupervised approach.
We exemplify the usefulness of the method by clustering a sequence ct of T =
10′000 codons resulting from the first 30′000 nucleotides of the first chromosome of
Saccharomyces cerevisiae, the ordinary yeast. The data is publicly available at [59].
Notice that in the variational approach the assumption of persistence corresponds
to the biological assumption that coding and noncoding regions are each connected.

After identifying each codon ct with a discrete state st ∈ S = {1, . . . , 64}
we globally minimized the average cluster functional in (35) (resulting from the
model distance function in (34)) for all combinations of K ∈ {1, . . . , 3} and C ∈
{4, . . . , 10, 15, 20, 30, 40, 50}. Unlike to the previous examples where we ap-
plied the Maximum-Entropy approach, here we computed the likelihood function
L(K ,C), involved in the modified AIC value (97), by exploiting that the sta-
tionary cluster parameters θ1, . . . , θK are probability distributions. Consequently,
L(K ,C) takes the form,

L(K ,C)=
T∏

t=1

K∑
i=1

γi (t)θi (st). (124)

As one can see in Figure 11, the optimal substitute model is attained for K ∗ = 2
and C∗ = 6. The interpretation of the two clusters as a coding and a noncoding
model is substantiated by comparing the associated affiliation function γ1(t) with
known positions of the genes in this part of the DNA sequence. As one can see
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Figure 11. Yeast DNA. The minimal mAIC value is assumed for K∗ = 2 and C∗ = 6
which, particularly, is consistent with the biological fact that codons can be divided into
coding and noncoding regions.

in the left panel of Figure 12, the affiliation path γ1(t) of the first cluster separates
mostly correctly between genes and noncoding regions. Only the gene SEO1 is
not identified which is in contrast to its graphical appearance and length in the left
panel of Figure 12. This conflict, however, can be resolved by the experimental
fact that this particular region encodes a protein but it does not exhibit a persistent
sequence of coding codons because it is highly fragmented, for details see [59].
This violates the persistence assumption inherent to the FEM-BV methodology.

From considering the highly oscillatory Viterbi path of an unsupervised two-
state HMM fitting (see right panel of Figure 12) one sees that the assumption of
stationarity impedes the traditional approaches to identify genes correctly unless
a large amount of biological knowledge is incorporated via supervised learning
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Figure 12. Yeast DNA. Left: a comparison of γ1(t) with the positions of some genes
justifies the interpretation of the two optimal clusters as coding and noncoding models.
Right: the first part of a Viterbi path of an unsupervised two-state HMM fitting reveals
that traditional methods assuming stationarity fail to capture the inherent persistence in
codon sequences.
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strategies. In contrast, respecting the inherent persistence in the sequence of the
codons via the variational FEM-BV approach allowed us to identify most of the
known gene positions. Even more important, the detection of coding and noncod-
ing regions, i.e., K ∗ = 2, was part of the result and not a priori included knowledge.

5.e. Financial data for commodities. In the final example, a time series of daily
closing prices of futures on oil is analyzed in order to address two important
question: Does the FEM-BV approach allow us to identify market phases (e.g.,
economic crises) and how do external factors affect the evolution of financial data.
In the remainder of the example, we apply the prediction scheme introduced in
Section 4 and compare its prediction skills with those of simple prediction methods.

In 1989 J. Hamilton [27] introduced a numerical method to identify what he
called hidden market phases in financial data which can be seen as the first combi-
nation of nonstationary time series analysis and mathematical finance. Since then
the method has been generalized and extended to multidimensional data. Promi-
nent phase-identification techniques are based, e.g., on linear vector autoregressive
(VAR) models [48], wavelets [2], Kalman filters [45], (G)ARCH [15; 7] or perfect
knowledge about the hidden process [10]. These methods, however, suffer from
infeasible numerical complexity in high dimensions (curse of dimensions) or are
based on strong model assumptions on the underlying dynamics, e.g., stationarity
or Markovianity.

The time series (xt) under consideration here consists of daily closing prices
of futures on the commodity oil for the time horizon 2005–2009 [73]. Futures are
very sensitive to changes in market phases because they are broadly traded on spec-
ulative reasons. The graph of prices is illustrated in Figure 13. Despite the noisy
fluctuations of the daily prices, one can clearly see two tendencies or market phases.
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Figure 13. Commodities. Price of oil futures for the timeframe 2005 to 2009. The first
90% of the time series (indicated by the horizontal dashed line) is used as a training set
for computing the optimal substitute model. The prediction skill of the nonstationary
prediction scheme derived in Section 4 is then assessed on the remaining 10%.
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Recall that we are interested in detecting market phases and, more importantly,
how their dynamics are affected by external factors. As explained in Section 2.c.iv,
the FEM-BV-Markov lends itself well to answer the questions since it allows us to
incorporate external factors, specifically.

To this end, the time series of daily prices (xt) is coarse grained by assigning
(xt) to one of the following categories: (i) The price increased significantly, (ii) no
major movement was detected or (iii) the price dropped by a significant amount.
Formally, we label the continuous prices by

st
def
=


1 if xt − xt−1 > ξ,

−1 if xt − xt−1 <−ξ,

0 otherwise,
(125)

where the threshold ξ separates noise from significant changes and was set to the
standard deviation of the time series. This data preparation approach is similar to
the one introduced in [27] to detect changes in the Markovian market dynamics.

The transformed time series (st), t = 0, . . . , T now takes values in the discrete
state space S = {−1, 0, 1}. Analogously to the proceeding in Section 2.c.iii, we
represent a state st by a Dirac-distribution πt which is defined for the discrete states
s =−1, 0, 1 as (cf. (30))

πt(s)
def
=

{
1 if s = st ,

0 otherwise.
(126)

The resulting time series (πt), t = 0, . . . , T encoding the inherent tendencies
of the price evolution in terms of probability distributions can now be analyzed
by the Markov regression model in (39). More importantly, the FEM-BV-Markov
approach allows us to investigate the influence of external factors. Specifically, we
would like to understand to which extent the price evolution is influenced by the
overall state of the US economy and the climate situation, especially, by the effects
of El Niño and La Niña [72].

To this end, the following external factors are considered:

u1 the daily closing value of the Dow Jones Industrial Average (available at [75])

u2 the El Niño-Southern Oscillation (ENSO) index 3.4 (available at [47]).

To test on memory effects, three additional external factors are taken into account:

u3 the Dow Jones shifted (delayed) by one day,

u4 the ENSO index delayed by 30 days,

u5 and the ENSO index delayed by 60 days.

Finally, the external factors are scaled to the interval [0, 1] to ensure compara-
bility of the influences as the Dow Jones takes values around 10, 000 while the
ENSO takes values between ±1.5.
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Besides the analysis of the data, the main goal of this example is to demonstrate
the skills of the prediction scheme presented in Section 4. Therefore, the time
series (πt) is divided into a training set, containing the first 90% of the data and a
prediction set, consisting of the remaining data. The analysis via FEM-BV-Markov
is based only on the training set, simulating the lack of knowledge about the future,
so that the prediction can then be compared to the prediction set.

Next, we describe in detail the clustering of the training set via the FEM-BV-
Markov approach and the subsequent optimal model selection. We globally min-
imized the average cluster functional resulting from the model distance function
in (42) for all combinations of K ∈ {1, . . . , 4} and C ∈ {3, . . . , 10} and all 25 pos-
sible subsets of combinations of external factors (ranging from no external factor
to all five factors).

Analogously to the proceeding in the previous example in Section 5.d, we ex-
ploit the fact that the average mixture model associated with the FEM-BV-Markov
approach (cf. Section 2.g and (106)),

π̂
†
t+1 =

K∑
i=1

γi (t)π
†
t P (i)(u(t)), (127)

preserves probability, i.e., π̂t+1 is again a probability distribution. Consequently,
the likelihood function L(K ,C) (involved in the modified AIC value (97)), here
can be computed via (127) by

L(K ,C)=
T−1∏
t=0

Pπ̂t+1[st+1] =

T−1∏
t=0

π̂t+1(st+1). (128)

The overall minimum of the modified AIC value with respect to all combinations
of clusters’ numbers, persistence values and all combination of external factors
is attained for K ∗ = 2, C∗ = 6 and without any external factors. That outcome
is consistent with the weak efficient-market hypothesis in [16], stating that any
information publicly available is instantly included in the price. The associated
affiliation vector (depicted in Figure 14) more or less separates the time horizon
of the training data set into two persistent regions. Interestingly, the time point of
change at the end of 2008 from cluster 1 to cluster 2 is very close to the beginning
of the financial crisis of the late 2000s.

The interpretation of 0∗(t) as an indicator of market phases is further substanti-
ated by looking at the constant transition matrices associated with the two clusters

P (∗1)
0 =

 0.0448 0.8955 0.0597
0.0989 0.8112 0.0899
0.1167 0.8000 0.0833

, P (∗2)
0 =

 0.2453 0.4528 0.3019
0.4030 0.3433 0.2537
0.3333 0.3778 0.2889

. (129)
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Figure 14. Commodities. The cluster affiliation γ ∗1 (t) associated with the optimal sub-
stitute model with K∗ = 2, C∗ = 6 and no external factors for the training set (first 90%
of the data). The majority of the second cluster is located from the end of 2007 onwards,
indicating a relation to the financial crisis.

Recalling that an entry Pi j , i, j ∈ {−1, 0, 1} of stochastic matrix P with respect
to to S denotes the conditional probability that the associated Markov chain jumps
from state i to state j , the second column in P (∗1)0 indicates that the noise state
s = 0 is metastable. In other words, cluster (market phase) i = 1 is characterized by
small movements without any specific tendencies. In contrast, the transition matrix
P (∗2)0 of the second cluster does not show any dominating state as the transition
probabilities are close to each other, thus, indicating no specific direction in price
movement. Additionally, the second column suggests that the average change in
price is increased compared to the first cluster. Both observations together imply
an increase of the variance in the price evolution which is consistent with the obser-
vations in [6; 15] stating that economic crises are characterized by high variance
whereas low-variance phases correspond to the normal state of the market.

The analysis was performed for different ending times of the training set, though
a relevant influence of the external factors could not be observed. However, if the
training set does not include the peak in the price, the analysis yields in select-
ing the stationary (K ∗ = 1) model. This is to be expected, as the second cluster,
representing the “crisis state”, has insufficient size to be statistically relevant.

The remainder of this section is devoted to the prediction scheme introduced
in Section 4. Rather than predicting the price evolution, we adapt the scheme for
predicting the probability distributions π̂t with respect to the discrete state space
S for t ≥ T + 1.

The fitting scheme associated with the optimal model (K ∗ = 2, C∗ = 6 and
without any external factors) reduces to

π̂
†
t+1 =

2∑
i=1

γ ∗i (t)π
†
t P (i)0 t = 0, . . . , T, (130)
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where P (∗1)0 and P (∗2)0 are given in (129). In order to extend (130) to t ≥ T + 1,
we estimated a stationary Markov regression model P∗(u(t)) based for the time
series (0∗(t)) of optimal affiliation vectors. Consistently with the analysis of (πt),
we thereby considered all combinations of external factors. It turned out that the
optimal stationary Markov regression model is independent of any external factors
too. Formally, we have P∗(u(t)) = P∗ and the prediction scheme for 0̂(t) takes
the form

0̂
†
[0,T+d](T + r)= (0∗

[0,T ])
†
(T )

[
P∗
]r
, r = 1, . . . , d. (131)

Combining (131) with (127) defines a self-contained nonstationary online pre-
diction scheme analogously to the scheme given in (113). We compare our scheme
with standard prediction schemes based on:

(1) An independent stationary model formally given by

π̂0
t+1 = µ, µ(s) def

=
1

T + 1

T∑
t=0

χs(st), s ∈ {−1, 0, 1}. (132)

(2) A stationary Markov regression model estimated from the time series (πt)

(without any external factors),(
π̂1

t+1
)†
=
(
π̂1

t
)†

P. (133)

(3) A zero-prediction model, where the prediction is the last known state

π̂
(2)
t+1 = π̂

(2)
t . (134)

(4) An artificial neural network, as used in pattern recognition (see [5], for in-
stance), using the external factors as input variables. For the test we have
chosen the optimal network configuration (i.e., number of hidden neurons,
transfer functions, etc.) with respect to prediction quality.

The average relative prediction error of the five d-step prediction schemes for
a prediction horizon [T + 1, T + T ′] on the prediction set is measured similar to
(116):

ed(T ′)
def
=

1
T ′− d + 1

T ′−d∑
t ′=T

‖xt ′+d − x̂t ′+d‖2
√

2
, (135)

where the additional factor 1
√

2
is introduced to normalize the error for the worst

prediction (the prediction of one state having probability one that is not fitting
the realization) to 1. As one can see in Figure 15 (left panel), our nonstationary
scheme outperforms the standard schemes. The highly oscillatory behavior of the
zero-prediction comes from the fact, that the error of a single prediction is either
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Figure 15. Commodities. The five prediction schemes (see page 220) are compared.
Shown are the graphs of the average relative prediction error ed (T ′) (left) and the median
of the relative prediction error (right) as functions of the prediction depth d . They clearly
reveal that the nonstationary prediction strategy outperforms the standard schemes.

0 or 1, thus maximizing the variance of the prediction and the small sample size
of the predicted time frame. More precisely, when using the median (or 50%-
quantile) of the error instead of the average, shown in Figure 15 (right panel), the
zero-prediction is more likely wrong than right.

To sum up, we can now answer the questions from the beginning of this section:
does the FEM-BV approach allow us to identify market phases (e.g., economic
crises) and how do external factors affect the evolution of financial data? First, the
FEM-BV-Markov model does not only allow the identification of market phases,
but also results in a more accurate model of the market that can be used to predict
further movements. Second, in line with the (weak) efficient market hypothesis, the
influence of the general US economy, represented by the Dow Jones, and the El
Niño/La Niña events were shown the be insignificant with respect to the analyzed
data. However, we are aware of the fact, that this might be a result of the insufficient
length of the analyzed time series and not a general fact.

We also want to emphasize, that we performed a qualitative analysis instead of
a quantitative, as we coarse grained the data to overcome noise effects. While the
results might be of no great practical use for investment strategists, it can be consid-
ered relevant for risk management, as we were able to verify the fact, that financial
unstable market situations yield in a higher volatility. This is a nonnegligible part
of most definitions of financial and economical risk.

6. Conclusion

A variational approach to nonstationary time series analysis developed in the last
years is presented as a unified framework for analysis, discrimination and predic-
tion of various types of observed processes. It was demonstrated, that persistence
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is one of the main characteristic features of many real life processes and that an
appropriate mathematical regularization strategy is the clue to its efficient recovery
from the observation data. Moreover, a unified model discrimination approach is
suggested based on a modified formulation of the information theoretic criterion
AIC. Furthermore, the paper contains a first systematic comparison of the FEM-
BV methodology with standard time series analysis methods and their underlying
mathematical assumptions. The framework is demonstrated on various examples
ranging from simple toy models to the analysis of real-world processes such as
biomolecular dynamics, DNA-sequence analysis and financial risk prediction.

The effect of nonstationarity is captured in the FEM-BV approach by identify-
ing a (hidden) process in parameter space describing transitions between differ-
ent regimes which are characterized by local models and their stationary param-
eters. The presented clustering scheme involves several numerical optimization
techniques combining elements of convex optimization, linear programming and
Finite Element methods. This allows the employment of fast and numerically ro-
bust solvers which ensure an efficient analysis of high dimensional time series. As
demonstrated in the present paper, the variational framework is very flexible with
respect to different (non-)dynamical scenarios because only the estimators for the
optimal parameters have to be provided either analytically or numerically whereas
the estimation of the transition process remains general. Therefore, the FEM-BV
approach can be straightforwardly adapted and redesigned to new model functions
and new applications.

In contrast to classical methods such as HMM, GMM, neuronal networks or
local kernel methods, the approach presented here does not rely on a priori prob-
abilistic assumptions (e.g., stationarity, independence, Gaussianity, Markovianity,
etc.). Instead of the probabilistic assumptions made in standard statistical methods,
here firstly it is assumed that the dynamics under consideration are persistent, i.e.,
the parameters of the process vary much more slowly than the process itself. Sec-
ondly, it is assumed that the hidden process in parameter space can be described by
a function with bounded variation. The latter assumption leads to a direct control
of the regularity of the hidden process within the course of optimization and, thus,
allows us to explicitly incorporate persistence or metastability. For the nonregu-
larized case, it was demonstrated that standard methods such as k-means or (time-
dependent) probabilistic mixture models are recovered by the FEM-BV approach
as special cases. Although these assumptions are quite general, it is important to
emphasize that their fulfillment is crucial for postprocessing and interpretation of
the obtained results.

Another aim of this paper was to present a novel self-contained model selection
strategy to simultaneously identify the optimal number of clusters and the opti-
mal regularity of the paths in parameter space. As demonstrated in the numerical
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examples, the clusterwise approximation of the scalar residuals via maximum en-
tropy distributions in conjunction with the subsequent evaluation of the modified
Akaike information criterion successfully allows us to identify the essential nonsta-
tionary patterns in various time series. The maximum entropy ansatz follows the
philosophy of the FEM-BV approach in that it requires as less as possible explicit a
priori knowledge. The central mathematical assumption underlying this strategy is,
however, that the scalar residuals are independent. Hence, further research has to be
done to generalize this setting in order to cover the case of dependent residuals by,
e.g., fitting scalar regression models by means of the maximum entropy principle.

Furthermore, a unified concept for nonstationary time series prediction is pre-
sented. While predicting within the trained time span is reduced to evaluation
of mixture models, the construction of predictive models beyond that time span re-
quires the understanding of the underlying (learned) transition process in parameter
space. To this end, the process of affiliation vectors interpreted as a time series of
discrete probability distributions was approximated in terms of a (single) discrete
time Markov chain. Predicting an affiliation vector for t = T + 1 then allows the
approximation of xT+1 via a mixture model and so on. However, we are aware that
the resulting self-contained prediction strategy crucially relies on the assumption
that the memory depth of the affiliation process is at most one. This issue is also
the matter of future research.

Appendix

In the appendix we compactly state the constrained quadratic program characteriz-
ing the optimal Markov regression model in the FEM-BV-Markov approach. For
details see Section 2.c.iv).

Let vec(P (i)l ) ∈ RM2
be the vector which results from concatenating all columns

of the matrix P (i)l , i.e.,

vec(P (i)l )
def
=
(
P (i)l ( · , 1), . . . , P (i)l ( · ,M)

)
∈ RM2

. (136)

Furthermore, we denote the concatenation of all matrices P (i)l , l = 0, . . . , k as

p(i) def
=
(
vec(P (i)0 ), . . . , vec(P (i)k )

)
∈ R(k+1)M2

. (137)

If we define

b(i) =−2
T−1∑
t=0

γi (t)b(t) and H (i)
= 2

T−1∑
t=0

γi (t)H(t) (138)

with u0(t)≡ 1,

b(t)=
(
u0(t)vec(πtπ

†
t+1), . . . , uk(t)vec(πtπ

†
t+1)

)
∈ R(k+1)M2

(139)
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and H(t) ∈ R((k+1)M2)×((k+1)M2) consists of blocks Hl1l2(t), l1, l2 = 0, . . . , k with

Hl1l2(t)= ul1(t)ul2(t)diag(πtπ
†
t , . . . , πtπ

†
t ) ∈ RM2

×M2
(140)

then for fixed 0 the solution of the variational problem with respect to i-th local
stationary Markov model 2(i) = (P (i)0 , . . . , P (i)k ),

L(2(i), 0)=
T−1∑
t=0

K∑
i=1

γi (t)
∥∥∥∥πt+1

†
−πt

†
(

P (i)(0) +
k∑

l=1

ul(t)P
(i)
(l)

)∥∥∥∥2

2
→min

2(i)
, (141)

subject to the constraints (45)–(48) is given by the solution of

L( p(i))= 1
2

〈
p(i), H (i) p(i)

〉
2+

〈
b(i), p(i)

〉
2→min

p(i)
(142)

subject to the following linear constraints:

• Nonnegativity constraints (45):

(IdM2, 0, . . . , 0)︸ ︷︷ ︸
∈RM2×(k+1)M2

p(i) ≥ 0, (143)

• Constraints (46) and (47):
R(1M) 0 0 0

0 R(1M) 0 0
. . .

0 0 0 R(1M)


︸ ︷︷ ︸

∈R(k+1)M×(k+1)M2

p(i) =


1M

0
...

0

 (144)

with R(1M)= (IdM , . . . , IdM) ∈ RM×M2
.

• Overall nonnegativity constraint in (48):(
IdM2, û1IdM2, . . . , ûkIdM2

)︸ ︷︷ ︸
∈RM2×(k+1)M2

p(i) ≥ 0 (145)

for all (û1, . . . , ûk) ∈ {a1, b1}× . . .×{ak, bk} with

al =min{ul(t) : t = 0, . . . , T } and bl =max{ul(t) : t = 0, . . . , T }. (146)
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