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We present a method to approximate the law of positive random variables defined
by their Laplace transforms. It is based on the study of the error in the Laplace
domain and allows for many behaviors of the law, both at 0 and infinity. In most
cases, both the Kantorovich/Wasserstein error and the Kolmogorov–Smirnov er-
ror can be accurately computed. Two detailed examples illustrate our results.

1. Introduction

The topic of Laplace transform inversion is an old problem which relates to physics,
probability theory, analysis and numerical methods. The number of publications
dedicated to it is so large that it is possible to write surveys of surveys on the
subject; see [5, Chapter 9]. If f is a positive integrable function on R+, we define
the Laplace transform operator as follows,

L[ f (x)](t)= L(t)=
∫
∞

0
e−t x f (x) ds,

When L is given, the inverse Laplace transform operator L−1 applied to L yields
the original function f . Two of the most important results related to L−1 are the
Bromwich integral (see section 2.2 in [5]):

L−1
[L(t)](x)= f (x)=

1
2π i

∫ c+i∞

c−i∞
ext L(t) dt, (1-1)

for some c chosen so that the path of integration makes sense for L , and the Post–
Widder formula: (see [8], section VII.6):

f (x)= lim
n→+∞

(−1)n

n!

(n
x

)n+1
L(n)(n/x). (1-2)

However, there are many other ingenious ways to obtain f from L . Most tech-
niques of Laplace transform inversion belong to one of the five families of methods
listed in Table 1.
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Method based on References

i) the Bromwich integral [4], [26], [5, Chapters 4 and 6]
ii) the Post–Widder formula [2], [25], [24], [5, Chapter 7]

iii) Fredholm equations of the first kind [7], [22, §12.5-3], [14], [5, Chapter 8]
iv) rational approximation [12], [15], [16], [5, Chapter 5]
v) series expansion [5, Chapter 3]

Table 1

The references related to these methods are of course far from exhaustive.
All of these approaches lead to numerical approximations. A recent survey on

the efficiency of some of these procedures was recently carried out by Masol and
Teugels in [18]. The families of techniques can further be categorized into two
broader sets:

• i) + ii) + iii): methods for which the initial function, L , is exact, but the
inversion approximate (discretization of the integral in (1-1) or choice of a
large, but finite, n in (1-2))

• iii)+ iv)+v): methods for which the inversion is exact, but the target function
is an approximation of the initial Laplace transform

(Some methods from the third family can belong to both sets.)

The approximations stemming from the second set of techniques take the form

L(t)≈
N∑

k=1

ck Lk(t) ⇐⇒ f (x)≈
N∑

k=1

ck fk(x) (1-3)

The core idea of this paper is to take advantage of the properties of Laplace
transforms in probability to choose the Lk (and thus fk) wisely, depending on some
properties of f . We present an iterative procedure which progressively reduces the
Kantorovich error induced by the approximation. The main contribution of our
approach is that when f is bounded from above, this method provides a uniform
maximum for the error made on the cumulative distribution function. Such results
are quite rare in the literature, but one reference in a slightly different setting is [23].

This method can be used, for instance, to approximate the law of positive in-
finitely divisible distributions, which are usually characterized by their Laplace
transform.

The paper is organized as follows: in Section 2, we detail some of the prop-
erties of f which can be inferred from L and which will be used further on. In
Section 3, we detail our method and some error related results, and, lastly, we
provide numerical examples in Section 4.
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2. Some properties of the density

The aim of this section is to recall a few classical results which show that many
properties of f can be derived from a thorough study of L .

We begin with some notations. Throughout the paper, we will consider two
positive random variables X and Y with densities f and g, cumulative distribution
functions (CDFs) F and G and Laplace transforms L and M respectively. We also
denote by F̄(x) = 1− F(x) and Ḡ(x) = 1−G(x) their survival functions. The
function L (resp. F) will be the original Laplace transform (resp. CDF) and M
(resp. G) its approximation.

For a function f = f (0), f (n) will denote its n-th derivative and in some asymp-
totic settings, we will write f (x)∼ g(x) for f (x)/g(x)→ 1.

Support. The first basic piece of information required to characterize a distribution
is its support.

Theorem 2.1. Let A denote the left point of the support of the positive random
variable X. Then if B is the set of real numbers b such that ebt L(t) = O(1) as
t→∞, we have

A = sup
b∈B

b

Proof. If A = 0, then, for any x < 0, ext L(t)→ 0 (t→+∞). For x > 0,

ext L(t)≥
∫ x

0
est f (x−s) ds≥ηeδt Leb{s ∈[δ, x] : f (x−s)≥η}→∞, t→+∞,

where Leb is the Lebesgue measure and δ, η > 0 were chosen such that

Leb{s ∈ [δ, x] : f (x − s)≥ η}> 0,

which is possible, since A = 0. The case A > 0 follows by direct translation. �

Another way to obtain the lower bound of the support of X is in fact to compute
the limit of −L ′(t)/L(t) when t →∞. Indeed, by Hölder’s inequality, Log L is
convex, hence L ′/L is increasing. Since it is bounded above by zero, it converges
to some negative limit. A simple analysis shows that this limit at infinity is in fact
−A.

In order to find the upper bound of the support of X , we propose a test, based
on the following proposition. Note that it is easy to compute E[X ] with the sole
knowledge of L , since E[X ] = −L ′(0).
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Proposition 2.2. If the positive random variable X is almost surely bounded above
by C , then for any A > 0 and γ ≥ 1,

L(t)≤ 1− E[Xγ
]
1− e−A

Aγ
tγ for all t ∈ [0, A/C].

Proof. The proof relies on the inequality

yγ − xγ ≥ e−x yγ − e−y xγ , γ ≥ 1, 0< x < y.

Setting x = t X , y = A and applying the expectation operator yields the result. �

Hence, if L(t)> 1− t E[X ](1−e−A)/A in the vicinity of 0, then X is unbounded.
The test usually performs better for A� 1.

In the same spirit, note that Theorem 7(b) in [10] makes it possible to build
another test based on E[Xγ

] for γ < 1. Since they depend on the interval [0, A/C],
these results make it even possible to derive bounds for C .

By Theorem 2.1 and Proposition 2.2, we will henceforth, without much loss of
generality, restrict ourselves to distributions with supports on the whole positive
real line.

Tail behaviors. This subsection recalls classical Tauberian theorems in probability
(see for instance [8, XIII.5]). These results show the strong link that exists between
the behavior of f near zero and that of L near infinity and vice-versa. The general
form of the de Bruijn exponential Tauberian theorem can be found in [3], Theorem
4.12.9, but we recall below a more peculiar form, derived from Corollary 4.12.6 of
the same monograph.

Theorem 2.3. Let 0 < γ < 1, δ ∈ R, C > 0 and X a positive random variable.
Then,

log E[e−t X
] ∼ −Ctγ (log(t))δ, t→∞

if and only if

log P[X ≤ x] ∼ −[Cγ γ (1− γ )1−γ−δx−γ (− log x)δ]1/(1−γ ), x ↓ 0.

In a series of papers, Nakagawa provides conditions on L to determine whether
a distribution has a heavy or a light tail. We state one of his results below (see [19]
and the references therein). For a complex number z = a+ ib, if L(z) converges
for a > a0 and diverges for a < a0, then a0 is said to be the abscissa of convergence
of L(z).

Theorem 2.4. If a0 is the abscissa of L such that −∞ < a0 < 0 and a0 is a pole
of L , then

lim
x→∞

1
x

log P[X > x] = a0.
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When the asymptotic behaviors are not exponential but of power form, we can
also resort to [3, Corollary 8.1.7] and [8, XIII.5, Theorem 2], which we recall
below (with l(x)= C log(x)β).

Proposition 2.5. For 0≤ α < 1, β ≥ 0 and C > 0, the following are equivalent:

1− L(t)∼−Ctα log(t)β, t ↓ 0.

1− F(x)∼ C
log(x)β

xα0(1−α)
, x→∞.

Proposition 2.6. For α, β ≥ 0 and C > 0, the following are equivalent:

L(t)∼ C
log(t)β

tα
, t→∞.

F(x)∼−C
log(x)xα

0(1+α)
, x ↓ 0.

The first result allows one to accurately determine the tail of a distribution when
it is very heavy. For other power tail behaviors (when α > 1), we refer to Theorem
8.1.6 in [3].

Lastly, we recall the initial value theorem:

f (0+)= lim
t→∞

t L(t).

Boundedness. It can be very convenient to know whether a distribution has a
bounded density. In order to do so, it is possible to build a test based on the
following corollary of the Post–Widder formula.

Lemma 2.7. A function L , defined on R+ is the Laplace transform of a probability
density bounded above by c if and only if L(0)= 1 and

0≤ (−1)n L(n)(t)≤
cn!
tn+1

for all n = 0, 1, . . . and t > 0.

3. The approximation method

3.1. Introductory remarks. We shall henceforth consider a given positive function
L defined on R+, satisfying L(0)= 1,

(−1)n L(n)(t)≥ 0 for all t > 0 and all n ≥ 0 (3-1)

and
lim

t→∞
t L(t) <∞. (3-2)
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Any function L for which (3-1) holds is called a complete monotone function.
Such functions have the following well-known property (see Theorem 7.11 in [27]
for instance).

Theorem 3.1. A function h is completely monotone on R+ if and only if it is the
Laplace transform of a nonnegative finite Borel measure ν, i.e., if

h(x)=
∫
∞

0
e−xtν(dt).

Therefore, (3-1) and L(0)= 1 are necessary and sufficient conditions for prob-
abilistic Laplace transforms.

Our approach is essentially error driven: many inversion techniques do not allow
to compute the error made on f (x) or F(x). Some techniques come with error
bounds, but these bounds usually increase with x (see for instance (4.61) and (6.19)
in [5]). Our method will focus on

∫
∞

0 |F(x)−G(x)| dx , where F is the original
CDF and G the approximate one. As we will see, this is an appropriate choice,
because when f is bounded, it yields a uniform bound on |F − G|, which is a
strong result.

The main problem with the L1 error on F is that it cannot be retrieved from∣∣∫∞
0 (F(x)−G(x)) dx

∣∣, unless the sign of F − G does not change. Notice that
focusing on cumulative distribution functions is critical since it can occur that G
is dominated by F on R+ while this is impossible for two probability densities.
The aim of our method is thus to find G as close to F as possible, satisfying
G(x)≥ F(x) (or G(x)≤ F(x)) for all x ≥ 0.

This property is connected to a notion called stochastic ordering. We will say
that the positive random variable X is less than Y in the usual stochastic order,
abbreviated i.u.s.o., if

1− F(x)= P[X ≥ x] ≤ P[Y ≥ x] = 1−G(x) for all x ≥ 0.

If X is less than Y i.u.s.o., then an integration by parts yields L(t)≥ M(t) for
all t ≥ 0. Sadly, the converse is not always true. A counter-example is given by
the densities f (x)= 1

2(1(0,1)(x)+ 1(2,3)(x)) and g(x)= 1(1,2)(x). In this case, the
CDFs are not ordered, while

L(t)=
1− e−t

+ e−2t
− e−3t

2t
≥

e−t
− e−2t

t
= M(t), t ≥ 0.

In order to make sure that G(x) ≥ F(x) for all x ≥ 0, we will quite logically
resort to completely monotone functions. Given L , our aim is to find (or build)
another probabilistic Laplace transform M , as close as possible (in some sense) to
L and such that

t 7→ L[G(x)− F(x)](t)=
M(t)− L(t)

t
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is a completely monotone function. Under these conditions, the error made on the
cumulative distribution functions will have a constant sign. In fact, this idea can
be applied any finite number of times in order to get G as close to F as desired.

Practical implementation. We proceed in two steps.

Step 1. The first step is to find M , a rough proxy of L . Inspired by the results on tail
behaviors (pages 234 and 235), we propose families of approximants depending
on tail behaviors.

If X is light-tailed, then a relevant tool to work with is the gamma distribution. In-
deed, its tail is light and it allows for any power behavior near the origin, including
f (0+) > 0. M and G then have the form

M(t)=
ab

(a+ t)b
, G(x)= γ (b, ax)/0(b), g(x)=

abxb−1e−ax

0(b)
, a, b > 0,

where γ ( · , · ) is the lower gamma function.

If X has heavy tails, then the choice of the Pareto distribution seems quite straight-
forward when f (0+) > 0. That is,

M(t)=babeat tb0(−b, at), G(x)=1−
ab

(a+x)b
, g(x)=

bab

(a+x)b+1 , a, b>0,

where 0( · , · ) is the upper gamma function. In this case, M(t)∼ ba−1/t , t→∞.

If f (0+)= 0 (and X is heavy-tailed), we propose the following two choices:

• If f goes slowly to 0 (x ↓ 0), set

M(t)=
b(b− 1)

at
(1−eat(at)b(at+b)0(−b, at)), G(x)=1−ab−1 a+ bx

(a+ x)b
,

g(x)=
b(b− 1)ab−1x
(a+ x)b+1 , a > 0, b > 1.

• If f goes rapidly to 0, set

M(t)=
2

0(b)
(at)b/2Kb(2

√
at), G(x)=

0(b, a/x)
0(b)

, g(x)=
abe−a/x

0(b)xb+1 ,

with a, b> 0, where Kν(x) is the modified Bessel function of the second kind
with index ν (see 3.471-9 in [9] for the computation of the Laplace transform).
This is a generalization of both the Lévy and the inverse chi-square laws, often
referred to as the inverse gamma distribution.

The purpose of the rough proxy is to mimic as well as possible the behavior of
L at 0 and/or infinity while satisfying the condition that ∓(M − L) is a completely
monotonic function.
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Step 2. Without loss of generality, we consider M − L > 0. The error made
with the rough proxy N (t)= M(t)− L(t) is usually not satisfactory and requires
improvement. The trick is thus to find an easily Laplace-inverted minorant µ of
N (i.e., µ(x) < N (x) for all x > 0) such that (N (t)− µ(t))/t is a completely
monotone function. Consequently,

G(x)≥ G(x)− L−1
[µ(t)](x)≥ F(x), x ≥ 0,

and the new approximation is better than the preceding one at any point in R+.
The aim of step 2 is to reduce the error of a prior approximation, hence it can be

carried out several times. However, in our examples, we will show that only one
iteration of step 2 may be sufficient to obtain a reasonably small error.

Because µ must satisfy µ(0) = limt→0 µ(t) = 0, good candidates for µ are
differences of Laplace transforms of stochastically ordered distributions. Taking,
for instance, gamma or 1

2 -stable laws yields the forms

µ(t)= c
(

aν

(a+ t)ν
−

bν

(b+ t)ν

)
, c, ν > 0, a > b > 0 (3-3)

and
µ(t)= c

(
e−
√

at
− e−

√
bt), c > 0, b > a > 0. (3-4)

We underline that the choice of a proper µ is crucial as it will enhance the
approximation in a very peculiar way. For instance, choosing (3-3) will have
a considerable impact on the tail of the Laplace approximation and thus on the
behavior of the new CDF near 0; however, on the contrary, µ defined in (3-4) is
negligible near infinity, but not near zero, thereby having the opposite effect on the
target CDF: little impact near zero, but a significant modification of the tail of the
approximating distribution.

Once µ is chosen (this task usually requires a fitting tool from a quantitative
software), the critical point is to check that h(t)/t := (N (t)−µ(t))/t is indeed a
completely monotone function. We recall that, for any Cn function h,(

h( · )
·

)(n)
(t)=

1
tn+1

n∑
i=0

(−1)i n!
(n− i)!

tn−i h(n−i)(t)

=
h(n)(t)− n (h( · )/ · )(n−1) (t)

t
, (3-5)

which can be proven iteratively.
The function h(t)− th′(t) requires a particular focus since it is associated with

the first derivative. If the functions tnh(n)(t) are smooth then some patterns can be
identified for n small enough. If h( · )/ · is indeed completely monotone, then, in
(3-5), the relative weight of h(n) compared to that of n(h( · )/ · )(n−1) will decrease
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as n increases. The idea, based on empirical results, is to test to what extent

dn(t) := −t
(h( · )/ · )(n)(t)
(h( · )/ · )(n−1)(t)

= n−
h(n)(t)

(h( · )/ · )(n−1) (t)
≈ n for all t ≥ 0.

We provide examples below to illustrate this matter (Figures 1 and 2).
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Figure 1. Graph of dn for various n in two cases, for Example 4.1.
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Figure 2. Graph of dn for various n in two cases, for Example 4.2.

Among these four graphs, the two on the right fail the test: not only does dn drift
away from n, but there is a sign change at some point. The wave shape in three
of the graphs is due to the fact that the function h(t)− th′(t) has a local minimum
away from zero. In this case, the successive derivatives may progressively (as n
increases) hit zero in the vicinity of this local minimum. When there is no local
minimum away from zero, our empirical tests have shown that the dn are close to
a constant or a slightly increasing affine function (as in the left graph of Figure 2).

Error results. We define N = M − L , H = G − F and recall that L[H(x)](t) =
N (t)/t is the Laplace transform of the error on the CDFs. The following proposi-
tion provides the Mellin transform of H (given N ) and the Kantorovich distance
between X and Y , which we define by

K (X, Y )= sup
{∫
∞

0
f (x)(F(dx)−G(dx)); f ∈ Lip

}
, (3-6)
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where Lip is the set of 1-Lipschitz functions. Dall’Aglio proved in [6] that, in fact,

K (X, Y )=
∫ 1

0
|F−1(x)−G−1(x)| dx =

∫
∞

0
|F(x)−G(x)| dx

because the support of X and Y is R+.
We recall that in our setting, the functions N and H are either nonnegative

or nonpositive. For simplicity, and without any loss of generality, we henceforth
assume that they are nonnegative.

Proposition 3.2. For 0< b < 1, whenever these integrals make sense,∫
∞

0

N (t)
t1+b dt = 0(1− b)

∫
∞

0
xb−1 H(x) dx =

0(1− b)
b

∫
∞

0
H(x1/b) dx

Moreover,

lim
t↓0

N (t)/t =
∫
∞

0
H(x) dx = K (X, Y ) (3-7)

Proof. The first equality is simply Fubini’s theorem combined with the identity∫
∞

0 e−xt t−bdt = 0(1 − b)xb−1 and a standard change of variable; the second
equality is obvious. �

In some cases, it is possible to obtain an upper bound for the L p quasi-norm of
H for p ∈ (0, 1), using Jensen’s (reversed) inequality.

Lastly, we would like to recall the link between the Kantorovich distance and
the Kolmogorov–Smirnov (uniform) distance supx≥0 |F(x)−G(x)|. Intercalating
the Lévy and Prohorov metrics (using the results from [11, pp. 35–36] and [21,
p. 43]), we get

sup
x≥0
|F(x)−G(x)| ≤

(
(1+ c)

∫
∞

0
|F(x)−G(x)| dx

)1/2

where c is the maximum value (over R+) of f = F ′, the density of X .

4. Examples

We test our method on two heavy-tailed distributions for which a rather simple
closed form for f or F is available. The driving criterion for our approximations
will be to get a finite Kantorovich distance.

Example 4.1. A generalized Mittag-Leffler distribution. We follow the notations
of [13]. Generalized Mittag-Leffler distributions are a two-parameter family of
laws with Laplace transforms

L(t)= (1+ tα)−β, β > 0, 0< α ≤ 1
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and cumulative distribution function

F(x)=
∞∑

k=0

(−1)k0(β + k)xα(β+k)

k!0(β)0(1+α(β + k))

We will focus on the simple case α = 1/2, and β = 2. First notice that since
0(2k+2)

0(k+2)(2k)! =
1
k!(2− 1/(k+ 1)),

∞∑
k=0

0(2+ 2k)x (2+2k)/2

(2k)!0(1+ (2+ 2k)/2)
= ex(2x − 1)+ 1

Next, the odd integers are dealt with using the infinite series representation of the
error function (8.253-1 in [9])

ex erf(
√

x)=
2
√
π

∞∑
k=0

2k xk+1/2

(2k+ 1)!!

where (2k+ 1)!! = 1 · 3 · 5 . . . (2k+1), and the identity

0(2k+ 3)
(2k+ 1)!0(k+ 5/2)

= (2k+ 2)
2k+2

√
π(2k+ 3)!!

which yields in the end

F(x)= ex(2x − 1)erfc(
√

x)− 2
√

x/π + 1

From L(t)= (1+
√

t)−2, we know that f (0+)= 1 and that f has a heavy tail. We
thus choose the Pareto family with a = n in order to have the proper asymptotic
behavior for L (when t→∞). In fact, the domination condition imposes a, n≥ 1/2
and a few tests show that a = n = 1/2 is a relevant choice, yielding

M(t)=
√

tet/20(−1/2, t/2)

2
√

2
, t ≥ 0

As expected, the approximation is not satisfactory and we must resort to an
appropriate µ.

We wish to stress the importance of the choice of µ and we will test the perfor-
mance of two functions, namely µ1 and µ2. The first naive choice was to take µ
of the form

µ1(t)= c
(

a3/2

(a+ t)3/2
−

b3/2

(b+ t)3/2

)
and an admissible set of parameters was a = 3, b = 0.05 and c = 0.135. This triple
was the result of a fitting algorithm from a quantitative software.
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Unfortunately, this approximation does not allow to compute the Kantorovich
error because it is not good enough near 0. In order to be able to compute (3-7),
we recall the expansion of L at zero (derived from that of (1+ t)−2):

(1+
√

t)−2
= 1− 2

√
t + 3t − 4t3/2

+ O(t2), t ↓ 0

Therefore, a strong improvement of the approximation should satisfy

M(t)−µ2(t)∼ 1− 2
√

t + O(t), t ↓ 0.

By [20, 45:5:2] combined with [1, 6.5.17 and 7.1.5], we have
√

tet/20(−1/2, t/2)

2
√

2
= 1−

√
π tet

2

(
1− erf(

√
t/2)

)
= 1−

√
π t/2+ t + O(t3/2)

as t ↓ 0. Moreover,

e−
√

at
= 1−

√
at + 1

2at + O(t3/2), t ↓ 0;

hence we propose µ2(t)= c(e−
√

at
− e−

√
bt) with a, b, c satisfying c(

√
a−
√

b)=
−2+

√
π/2. The triple a = 0.777, b = 20 and c = 0.206 yields promising results

with a Kantorovich distance of approximately 0.02 (computed via (3-7)).
Of course, in both cases, we have checked, using the dn for n ∈ {1, . . . , 9}, that

the error h was such that h(t)/t was a completely monotone function.
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Figure 3. Graph of L and its proxies for t ∈ (0, 0.02) and t ∈ [0.02, 30].
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Figure 4. Graph of F and its proxies for x ∈ (0, 2) and x ∈ (2, 100).
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We provide the graphical results below (Figures 3 and 4). M is the Laplace
transform of the Pareto distribution with a = n = 1/2, M1(t)= M(t)−µ1(t) and
M2(t)= M(t)−µ2(t). Their CDF counterparts are G, G1 and G2. It is plain on
the graphs that M1 and M2 are quite close, except near zero; this explains why only
G2 is a good fit for F for x large (as expected).

Example 4.2. A positive stable distribution. Our next example is the one-parameter
one-sided stable laws with Laplace transform

L(t)= e−tα , α ∈ (0, 1)

The case α= 1
2 is sometimes referred to as the Lévy distribution, which is connected

with the first passage time of the Brownian motion over fixed levels. The case α= 1
3

also has a closed-form density (see B.25 in [17] for instance):

f (x)=
K1/3

(√
4/(27x)

)
3πx3/2 , x ≥ 0

We will thus aim at approximating L(t) = e−t1/3
. In this case, f (0+) = 0 and f

has a fat tail. Moreover,

L(t)= 1− t1/3
+

1
2 t2/3
−

1
6 t + O(t4/3), t ↓ 0 (4-1)

The choice of the inverse gamma family with n = 1/3 seems relevant, as it
satisfies (see 51:6:1 in [20])

M(t)=
2

0
( 1

3

)(at)1/6K1/3(2
√

at)= 1+
a1/30

(
−

1
3

)
0
( 1

3

) t1/3
+3at/2+O(t4/3), t ↓ 0.

Hence, for a =−0
(1

3

)
3/0

(
−

1
3

)
3, the t1/3 term in the error will vanish, by (4-1),

but the t2/3 term will remain. This leads to the following choice of µ:

µ(t)= 2c

(
(bt)1/3K2/3(2

√
bt)

0
( 2

3

) −
(dt)1/3K2/3(2

√
dt)

0
( 2

3

) )

= c
0
(
−

2
3

)
0
( 2

3

) (b2/3
− d2/3)t2/3

+ 3c(b− d)t + O(t5/3), t ↓ 0.

Notice that this time, the ordering is in the opposite way: L(t)≥ M(t) for all t ≥ 0.
In this setting, an admissible set of parameters is c = 6, b = 0.4 and d = 0.43,
which yields a Kantorovich distance of less than 0.06 (see Figures 5 and 6 on the
next page, where M1(t)= M(t)+µ(t)).

Of course, in both examples, it is possible to further reduce the error by repeating
step 2 on page 237 at least one time (using a minorant µ∗ of M−µ−L for instance).
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Figure 5. Graph of L and its proxies for t ∈ (0, 0.02) and t ∈ [0.02, 30].
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Figure 6. Graph of F and its proxies for x ∈ (0, 2) and x ∈ (2, 100).

Remarks. We did not study distributions with lighter tails in the examples because
when 1− F(x)≤ cx−α , with c> 0 and α > 1 for any large x , then it is much easier
to obtain a finite Kantorovich error, as the original survival function is already
integrable.

Using the exact same procedure as in the second example, it would thus take
n− 2 iterations of step 2 to obtain an approximation with finite Kantorovich error
for the stable law with Laplace transform equal to e−t1/n

. The same holds for
generalized Mittag-Leffler distributions defined by L(t) = (1+ t1/n)−p, for any
real p ≥ n. These assertions are a consequence of the Taylor expansion of L at
0. In the stable case, when α ∈

( 1
2 , 1

)
, it is possible to obtain a finite Kantorovich

measure by taking M(t)= e−
√

t and µ such that µ(t)∼ tα −
√

t when t ↓ 0.

Finally, we stress that even though we have assumed (for simplicity) that the law
of X was absolutely continuous, our method remains valid for most positive laws.
It is indeed possible to make do without densities throughout the whole process,
especially if the law of X has a finite number of atoms and an absolutely continuous
part. However, it is not clear whether this method can perform well for some rather
unusual distributions, such as those which possess an infinite number of atoms.
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