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RENORMALIZED REDUCED MODELS FOR SINGULAR PDES

PANOS STINIS

We present a novel way of constructing reduced models for systems of ordinary
differential equations. In particular, the approach combines the concepts of
renormalization and effective field theory developed in the context of high energy
physics and the Mori–Zwanzig formalism of irreversible statistical mechanics.
The reduced models we construct depend on coefficients which measure the
importance of the different terms appearing in the model and need to be estimated.
The proposed approach allows the estimation of these coefficients on the fly by
enforcing the equality of integral quantities of the solution as computed from
the original system and the reduced model. In this way we are able to construct
stable reduced models of higher order than was previously possible. The method
is applied to the problem of computing reduced models for ordinary differential
equation systems resulting from Fourier expansions of singular (or near-singular)
time-dependent partial differential equations. Results for the 1D Burgers and the
3D incompressible Euler equations are used to illustrate the construction. Under
suitable assumptions, one can calculate the higher order terms by a simple and
efficient recursive algorithm.

1. Introduction

Spatial discretizations or Fourier expansions of the solutions of time-dependent par-
tial differential equations (PDEs) lead to systems of ordinary differential equations
(ODEs). The most difficult case arises when the solution of a PDE becomes singular
in finite time. At such instants the solution of the PDE develops activity down to
the zero length scale. A brute force numerical simulation (no matter how large) of
such a solution is bound to fail because the simulation has a finite resolution and
thus will be unable to resolve all the length scales down to the zero scale. When
the solution develops activity at a scale smaller than the smallest scale available to
the simulation, the numerically computed solution becomes underresolved. This
leads to a rapid deterioration of the accuracy of the simulation.

The notion of propagation of activity to smaller and smaller scales depends on
the physical context of the PDE. In some cases, like the 3D Euler or Navier–Stokes
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equations [14], this could mean a cascade of energy to smaller and smaller scales.
In other cases, such as the nonlinear focusing Schrödinger equation [24], this could
mean a cascade of mass to smaller and smaller scales. Irrespective of the specific
physical context, the problem facing the numerical analyst is how to use a finite
simulation and yet prevent the computed solution from suffering a loss of accuracy.
In other words, how to construct a numerical method which reproduces correctly
the features of the solution of the original equation at the length scales that are
available numerically. This is the motivation behind the construction of reduced
models (see [16; 10], for example).

By construction, a reduced model must allow for energy (mass) to escape from
the scales that are accessible to the simulation (called resolved scales or modes)
to the inaccessible scales (called unresolved). The main difficulty in constructing
an accurate reduced model is the need to estimate the correct rate at which activity
is propagated from the resolved to the unresolved scales. The Mori–Zwanzig (MZ)
formalism [8; 9] proceeds by dividing the available resolution into resolved and
unresolved parts. Then, it constructs a reduced model for the resolved scales and uses
the unresolved scales to effect the drain of energy (mass) out of the resolved scales.

Although the MZ formalism allows for the construction, in principle, of an exact
reduced model it has two drawbacks (which are also shared by any other reduction
formalism). First, the reduced model can be, in general, prohibitively expensive
to calculate. The reason is that one must obtain an accurate representation of the
behavior of the unresolved scales before they can be safely eliminated. Obtaining
this representation can be rather costly.

The second drawback is more subtle and has not been adequately appreciated
by the scientific computing community. It is specific to the case of constructing
reduced models for singular PDEs or in general for systems of ordinary differential
equations which are larger than any available numerical resolution. Suppose that
you have to construct a reduced model of a full system which is larger than any
available numerical simulation. Let us call this system S1. Exactly because S1 is
larger than any available numerical simulation, if we want to construct a reduced
model we have to use as a starting point a system, call it S2, whose size is smaller
than the size of S1. Suppose that you start with S2 and use the MZ formalism
(or any other reduction formalism for that matter) and construct an exact reduced
model S3 for a subset of S2. An exact reduced model means that if one evolves S2
and S3 separately, then the behavior of the scales resolved by S3 will be the same
as the behavior of the scales in S3 predicted by the simulation of the system S2.
However, and this is the heart of the problem, since S2 itself will become eventually
underresolved, the exact reduced model S3 will also become underresolved. In
other words, the predictions of the exact reduced model S3 can only be trusted for
as long as the predictions of the system S2 can be trusted. As a result, any reduced
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model that has any chance of being accurate for longer times cannot be exact.
There are examples of inexact reduced models, such as the t-model [9; 3; 20],

coming from the MZ formalism, which have been applied to singular PDEs and
shown numerically to be relatively accurate for long time intervals. However, the
t-model’s accuracy is difficult to assess beforehand and the reason for its relative
success has remained a mystery (see also [6] for an application to the 3D Navier–
Stokes equations which shows that the t-model, while not bad, is in need of some
modification). In order to construct better reduced models we need to incorporate
dynamic information from the full system which will help us decide which of the
terms appearing in the exact reduced model are the ones that are most important.
In this way, we can construct an inexact but accurate reduced model by keeping the
important terms and disregarding the unimportant ones.

The way we propose to address the problem of constructing better reduced models
is to embed the MZ reduced models in a larger class of reduced models which share
the same functional form as the MZ reduced models but have different coefficients
in front of the various terms that appear in the reduced models. Then, one can
estimate these coefficients on the fly while the original system of equations is still
valid. The estimation of the coefficients is achieved by requiring that certain integral
quantities (e.g., lp norms) involving only resolved scales, should acquire the same
values when computed from the original system and the reduced model. Before
the original system ceases to be valid, one reverts to the reduced model with the
various coefficients having their estimated values. We call the proposed approach
the renormalized Mori–Zwanzig (rMZ) algorithm. Note that the constraints used to
obtain the coefficients are the analog of the “matching conditions” used in effective
field theory [15]. Also, the approach is the time-dependent analog of the process of
renormalization used in high energy and condensed matter physics [11; 17].

A special case of the proposed method which utilized only the t-model term
was first presented by the author in [23]. The goal there was to construct a mesh
refinement scheme to allow us to reach the singularity instant more efficiently. For
that purpose the use of only the t-model term was adequate. In the current work, we
not only want to reach the singularity instant but also follow the solution accurately
for later times. This requires the use of higher order terms than the t-model term.
Under suitable assumptions (see Section 2.3.2) we are able to calculate recursively
and efficiently (and with minimal storage requirements) the higher order terms (see
also Sections 3.1 and 3.2).

It is interesting to see to what extent the values (or at least the form) of the
renormalized coefficients for the reduced model can be deduced from analytical
considerations. In Section 3.4 we include some numerical results which hint that
the value of the renormalized coefficients depends on the structure of the initial
condition and the scaling symmetries of the PDE.
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2. Renormalization of Mori–Zwanzig reduced models

In Section 2.1 we set up the notation for the original system and the reduced model in
an abstract way which does not make reference to any specific method for obtaining
the reduced model. In Section 2.2 we show how to obtain the coefficients for the
reduced model. In Section 2.3 we give a brief presentation of the MZ formalism
which allows us to obtain the functional form of the terms appearing in the reduced
model. In Section 2.4 we combine the ideas in Section 2.2 with the MZ formalism
from Section 2.3 to derive the proposed algorithm for computing renormalized MZ
reduced models.

2.1. Full and reduced systems. Suppose that we want to construct a reduced model
for the partial differential equation (PDE)

vt + H(t, x, v, vx , . . . )= 0,

where H is a operator (in general nonlinear) and x ∈ D ⊆ Rd (the construction
extends readily to the case of systems of partial differential equations). After
spatial discretization or expansion of the solution in series, the PDE transforms
into a system of ordinary differential equations (ODEs). For simplicity we restrict
ourselves to the case of periodic boundary conditions, so that a Fourier expansion
of the solution leads to system of ODEs for the Fourier coefficients. To simulate
the system for the Fourier coefficients we need to truncate at some point the Fourier
expansion. Let F ∪G denote the set of Fourier modes retained in the series, where
we have split the Fourier modes in two sets, F and G. We call the modes in F
resolved and the modes in G unresolved. The reduced model involving only the
resolved modes F will be called the reduced system and the system involving both
the resolved and unresolved modes F ∪G will be called the full system.

The main idea behind the algorithm is that the evolution of moments of the
reduced set of modes, for example lp norms of the modes in F , should be the
same whether computed from the full or the reduced system. This requirement will
eventually allow us to compute the coefficients appearing in the reduced model (see
Section 2.2).

The full system of equations for the modes F ∪G is given by

du(t)
dt
= R(t, u(t)),

where u = ({uk}), k ∈ F ∪ G is the vector of Fourier coefficients of u and R is
the Fourier transform of the operator H . The system should be supplemented
with an initial condition u(0) = u0. The vector of Fourier coefficients can be
written as u = (û, ũ), where û are the resolved modes (those in F) and ũ the
unresolved ones (those in G). Similarly, for the right-hand sides (RHS) we have
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R(t, u)= (R̂(t, u), R̃(t, u)). Note that the RHS of the resolved modes involves both
resolved and unresolved modes. In anticipation of the construction of a reduced
model we can rewrite the RHS as R(t, u)= R(0)(t, u)= (R̂(0)(t, u), R̃(0)(t, u)).

In general, when one constructs a reduced model, additional terms appear on the
RHS of the equations of the reduced model (see Section 2.3 for more details). The
role of these additional terms is to account for the interactions between the resolved
and unresolved modes, since the unresolved modes no longer appear explicitly in
the reduced model. As is standard in renormalization theory [4], one can augment
the RHS of the equations in the full system by including such additional terms. That
is accomplished by multiplying each of these additional terms by a zero coefficient.
In this way, the reduced and full systems’ RHSs have the same functional form. In
particular, for each mode uk , k ∈ F ∪G, we can rewrite R(0)k (t, u) as

R(0)k (t, u(t))=
m∑

i=1

a(0)i R(0)ik (t, u(t)),

where R(0)1k (t, u(t))= R(0)k (t, u(t)) and the R(0)ik (t, u(t)), for i = 2, . . . ,m are of the
same functional form as the additional terms which appear in the reduced model.
This is easy to do by taking a(0)1 = 1 and a(0)i = 0, for i = 2, . . . ,m. Thus, the
equation for the mode uk , k ∈ F ∪G is written as

duk(t)
dt
= Rk(t, u)= R(0)k (t, u(t))=

m∑
i=1

a(0)i R(0)ik (t, u(t)) (1)

Correspondingly, the reduced model for the mode u′k , k ∈ F , is given by

du′k(t)
dt
= R(1)k (t, û′(t))=

m∑
i=1

a(1)i R(1)ik (t, û′(t)) (2)

with initial condition u′k(0)= u0k .
Define m quantities Êi , i = 1, . . . ,m involving only modes in F . For example,

these could be lp norms of the reduced set of modes. To proceed we require that
these quantities’ rates of change are the same when computed from (1) and (2):

d Êi (û)
dt

=
d Êi (û′)

dt
, i = 1, . . . ,m. (3)

Similar conditions, albeit time-independent, lie at the heart of the renormalization
group theory for equilibrium systems [4, p. 154]. Also, the conditions (3) are the
analog of the “matching conditions” underlying the construction of effective field
theories [15].
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2.2. How to compute the coefficients of the reduced model. When we only know
the functional form of the terms appearing in the reduced model but not their
coefficients it is not possible to evolve a reduced system. We present a way of
actually computing the coefficients of the reduced model as needed. If the quantities
Êi , i = 1, . . . ,m are, for example, lp norms of the Fourier modes, then we can
multiply Equations (2) with appropriate quantities and combine with Equations (3)
to get

d Êi (û)
dt

=

m∑
j=1

a(1)j Bi j (t, û(t)),

where

Bi j =
∂

∂a(1)j

d Êi (û′)
dt

, i, j = 1, . . . ,m

are the new RHS functions that appear. Note that the RHS of the equations above
does not involve primed quantities. The reason is that here the reduced quantities
are computed by using the values of the resolved modes from the full system.
The above system of equations is a linear system of equations for the vector of
coefficients a(1). The linear system can be written as

Ba(1) = e, (4)

where e=
(
d Ê1(û)/dt, . . . , d Êm(û)/dt

)
. This system of equations can provide us

with the time evolution of the vector a(1).
The determination of coefficients for the reduced model through the system (4)

is a time-dependent version of the method of moments. We specify the coefficients
of the reduced model so that the reduced model reproduces the rates of change of a
finite number of moments of the solution of the original system. This ensures that
each term in the model is properly weighted so that the resulting reduced model
reproduces, at the scales accessible to the reduced model, the dynamics (see (3)) of
the original system.

By construction, the entry Bi j , i, j = 1, . . . ,m, of the matrix B measures the
contribution of the j-th term of the reduced model to the rate of change of Êi . In
fact, the j-th column of the matrix B is comprised of all the contributions of the
j -th term in the reduced model to the rates of change of the different Êi . While the
reduced system has no need to transfer activity from the resolved to the unresolved
scales, the columns of B corresponding to the activity-transferring terms will be
zero (to the numerical precision used). Thus, the matrix B will be singular. This
can be monitored by estimating the rank of the matrix through the Singular Value
Decomposition (SVD) [18]. When the smallest singular value becomes nonzero
for the numerical precision used the reduced system starts transferring activity to
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the unresolved scales. After that instant we can use the system (4) to estimate the
coefficient vector a(1) (see [23] for more details).

2.3. The Mori–Zwanzig formalism. We have presented in the previous section an
abstract way of writing the reduced system which does not make any reference to a
specific method for obtaining the functions R(1)k (t, û′(t)), k ∈ F , appearing on the
RHS of (2). In order to proceed we need to specify the functions R(1)k (t, û′(t)). We
will do that through the Mori–Zwanzig formalism [8; 9].

Suppose we are given the full system

du(t)
dt
= R(t, u(t)), (5)

where u = ({uk}), k ∈ F ∪ G with initial condition u(0) = u0. The system of
ordinary differential equations we are asked to solve can be transformed into a
system of linear partial differential equations

∂φk

∂t
= Lφk, φk(u0, 0)= u0k, k ∈ F ∪G, (6)

where L =
∑

k∈F∪G Rk(u0)∂/∂u0k . The solution of (6) is given by uk(u0, t) =
φk(u0, t). Using semigroup notation we can rewrite (6) as

∂

∂t
et Lu0k = Let Lu0k

Suppose that the vector of initial conditions can be divided as u0 = (û0, ũ0), where
û0 is the vector of the resolved variables and ũ0 is the vector of the unresolved
variables. Let P be an orthogonal projection on the space of functions of û0 and
Q = I − P .

Equation (6) can be rewritten as

∂

∂t
et Lu0k = et L PLu0k + et QL QLu0k +

∫ t

0
e(t−s)L PLes QL QLu0k ds, k ∈ F, (7)

where we have used Dyson’s formula

et L
= et QL

+

∫ t

0
e(t−s)L PLes QL ds. (8)

Equation (7) is the Mori–Zwanzig identity. Note that this relation is exact and is an
alternative way of writing the original PDE. The first term in (7) is usually called
Markovian since it depends only on the values of the variables at the current instant,
the second is called “noise” and the third “memory”. Note that Pet QL QLu0k = 0
and the operator et QL is called the orthogonal dynamics operator [8].
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We can project the Mori–Zwanzig equation (7) and find

∂

∂t
Pet Lu0k = Pet L PLu0k + P

∫ t

0
e(t−s)L PLes QL QLu0k ds. (9)

In order to proceed we need to compute the Markovian term and the memory term.
For the specific projection P we will be using the Markovian term is straightforward
to compute (see the definition of the operator P in Sections 3.1 and 3.2). On the
other hand, the memory term computation is rather involved due to the presence of
the evolution operator et QL . In fact, it is the presence of this operator which makes,
in general, the computation of MZ reduced models prohibitively expensive (see
[10] for a thorough discussion). One can start from (9) and based on assumptions
derive simplified reduced models that are easier to calculate [9; 3; 20; 22].

The memory term integrand in (9) contains two operators evolving on their own
time scales. The full dynamics operator e(t−s)L evolving on a time scale τ f and
the orthogonal dynamics operator es QL evolving on the time-scale τo. There are
three major cases: τ f � τo, τ f ∼ τo, and τ f � τo. The first and last correspond to
very short and very long memory respectively. The case of τ f ∼ τo corresponds
to absence of time-scale separation between the full dynamics and the orthogonal
dynamics. For the problem of constructing reduced models for singular PDEs, it
is plausible to assume absence of time-scale separation between the resolved and
unresolved variables and thus we expect this case to be of relevance.

If we assume that τ f ∼ τo and that both e(t−s)L and es QL are analytic, we can
expand the expression e(t−s)L PLes QL in Taylor series around s = 0. We have

P
∫ t

0
e(t−s)L PLes QL QLu0k ds

= t Pet L PL QLu0k +
1
2 t2 Pet L(PL QL QLu0k − L PL QLu0k)

+
1
6 t3 Pet L(L2 PL QLu0k − 2L PL QL QLu0k

+ PL QL QL QLu0k)+ O(t4). (10)

The terms in the Taylor expansion of e(t−s)L PLes QL beyond the first order (in t)
involve both resolved and unresolved variables. In order to construct a reduced
model which is closed in the resolved variables these terms need to be modified
while retaining the order of accuracy of the model (a way to achieve that is presented
in Section 2.3.3). However, there is a special case for which all the terms in (10)
are closed in the resolved variables. The simplification, if possible, is due to the
small value of the commutator [PL , QL] (see Section 2.3.2).

2.3.1. The commutative case. If [PL , QL] = 0 the only term that remains is the
Markovian one. This can be seen by observing that [PL , QL] = 0 implies that
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[L , QL] = 0. We have

∂

∂t
Pet Lu0k = PLet Lu0k = Pet L Lu0k = Pet L PLu0k + Pet L QLu0k

= Pet L PLu0k + P QLet Lu0k = Pet L PLu0k,

where in the last equation we have used the fact that P Q = 0.

2.3.2. The almost commutative case. We examine the case when [PL , QL] is
small. To see how this affects the computation of the memory term, we proceed
by rewriting the expression for the memory

∫ t
0 e(t−s)L PLes QL QLu0k ds. Through

Dyson’s formula (8) and the linearity of et L the memory term can be written as∫ t

0
e(t−s)L PLes QL QLu0k ds = et L(QLu0k − e−t Let QL QLu0k

)
By the identity I = P + Q and the Baker–Campbell–Hausdorff (BCH) series for
e−t Let QL (see [2], for instance), the above equation can be rewritten as∫ t

0
e(t−s)L PLes QL QLu0k ds = et L(QLu0k − eC(t,u0)QLu0k

)
, (11)

where C(t, u0)=−t PL + 1
2 [−t L , t QL] + · · · with all the higher terms involving

the commutator [−t L , t QL] = −t Lt QL − t QL(−t L). Note that we also have
[−t L , t QL] = [t L , t PL] = [t QL , t PL] = −[t PL , t QL]. Thus

C(t, u0)=−t PL − 1
2 [t PL , t QL] + · · · .

We want to examine when the approximation C(t, u0) ≈ −t PL is acceptable.
From the BCH series we have

e−t Let QL
− e−t PL

=−
1
2 [t PL , t QL] + O(t3). (12)

Depending on the initial conditions, [PL , QL] may be small and thus allow the
simplification of the memory term expression. In Section 3, where we present
numerical results for the 1D Burgers and 3D Euler equations, we comment briefly on
the form of initial conditions that make the commutator [PL , QL] small. However,
a more detailed analysis of the magnitude of [PL , QL] will be presented in a future
publication.

If we assume that [PL , QL] ≈ 0 and thus C(t, u0)≈−t PL , we get from (11)∫ t

0
e(t−s)L PLes QL QLu0k ds ≈ et L(QLu0k − e−t PL QLu0k

)
Expansion of the operator e−t PL in Taylor series around t = 0 gives
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P
∫ t

0
e(t−s)L PLes QL QLu0k ds ≈

∞∑
j=1

(−1) j+1 t j

j !
Pet L(PL) j QLu0k . (13)

One can obtain different simplified models by truncating the series in (13) after
different values of j . In particular, if we omit all the terms after the first one we
obtain the t-model which has been studied thoroughly [9; 3; 20]. Note that, if
we make the assumption [PL , QL] = 0, then the expansion in (10) reduces to the
expansion in (13).

As will be explained in Section 2.4, even if [PL , QL] is very small but still
finite, these simplified models are not guaranteed to be stable. This is reminiscent
of singular perturbation problems where there is change in the qualitative behavior
of the solution when the perturbation parameter changes from zero to nonzero [1].

2.3.3. The noncommutative case. For the sake of completeness, we comment briefly
on the case when [PL , QL] 6= 0 and not small. In this case we need to modify the
terms in the memory expansion to make them closed in the resolved variables while
retaining the accuracy of the model. For example, from (10), if we keep terms up
to the second order (in t) we have

P
∫ t

0
e(t−s)L PLes QL QLu0k ds = t Pet L PL QLu0k

+
1
2 t2 Pet L(PL QL QLu0k − L PL QLu0k

)
+ O(t3). (14)

The term et L L PL QLu0k can be written as Let L PL QLu0k . This term depends
on all the variables, resolved and unresolved. Thus we need to approximate it with a
term that depends only on the resolved variables and still keeps the O(t3) accuracy
of the approximation. To do that we observe that Let L PL QLu0k is the RHS of the
equation for the evolution of the quantity et L PL QLu0k . We have

∂

∂t
et L PL QLu0k = Let L PL QLu0k .

We can apply the (projected) Mori–Zwanzig formalism to this equation and get

∂

∂t
Pet L PL QLu0k = PLet L PL QLu0k = Pet L L PL QLu0k

= Pet L PL PL QLu0k + P
∫ t

0
e(t−s)L PLes QL QL PL QLu0k ds

= Pet L PL PL QLu0k + O(t). (15)

The fact that the memory term is O(t) can be seen by expanding (as before)
the memory integrand e(t−s)L PLes QL QL PL QLu0k in Taylor series around s = 0.
The difference is that now, we retain only the Markovian term in the equation
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for the evolution of et L PL QLu0k . Thus if we substitute in (14) the expression
Pet L PL PL QLu0k + O(t) for Pet L L PL QLu0k we have

P
∫ t

0
e(t−s)L PLes QL QLu0k ds

= t Pet L PL QLu0k +
1
2 t2 Pet L(PL QL QLu0k − PL PL QLu0k

)
+ O(t3). (16)

The last equation results from the multiplication of the O(t) term in (15) with t2

which gives a O(t3) term. What we have gained is that we have expressed the RHS
of the evolution equation for Pet Lu0k as a function only of the resolved variables
while retaining O(t3) accuracy. Similar constructions can be carried out for higher
order terms. Numerical results for this approach will be presented elsewhere (see
also discussion at the end of Section 3.3).

2.4. The renormalized Mori–Zwanzig algorithm. We focus on the case on Mori–
Zwanzig reduced models corresponding to the almost commutative case (see
Section 2.3.2).

As we have already mentioned, the computational advantage of (13) is that
it contains expressions which depend only on the resolved variables. The series
representation of the memory term in (13) is based on the assumption of analyticity
in time of the operator e−t PL . This assumption may be true for small t but it does
not have to hold for larger t . In other words, the Taylor expansion of the operator
e−t PL has, in general, only a finite radius of convergence. Insisting on using the
Taylor expansion of the operator e−t PL as is for later times is dangerous and can lead
to the instability of the reduced model (see also Section 3.3). In fact, when dealing
with full systems coming from discretizations of singular PDEs, the breakdown of
the Taylor expansion of the operator e−t PL is related to the onset of underresolution
on the part of the full system.

To proceed we put the MZ model given by (9) and (13) in the framework of
Section 2.1. To do that we set

R(1)1k = Pet L PLu0k, (17)

R(1)jk = (−1) j t j−1

( j − 1)!
Pet L(PL) j−1 QLu0k, j = 2, . . . . (18)

With this identification we have, in essence, embedded the reduced models derived
through the MZ formalism in a larger class of reduced models which share the
same functional form with the MZ models but which are allowed to have different
coefficients. In the notation of Section 2.1, the original MZ models correspond to
the coefficient vector a(1) = (1, 1, 1, . . . ).

While the original MZ models may suffer from instabilities (see also Section 3.3),
the new models can be made stable by assigning to each term in the reduced model
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the appropriate coefficient. The magnitude of the coefficient of a term reflects the
importance of the term in the reduced model. The values of the coefficients can
now be determined by solving the linear algebraic system (4). This ensures that
the coefficient of each term in the model is properly redefined (renormalized) so
that the resulting reduced model reproduces, at the scales accessible to the reduced
model, the dynamics (see (3)) of the original system.

We are now in a position to state the renormalized Mori–Zwanzig algorithm,
which constructs a reduced model with the necessary coefficients computed on the fly.

Renormalized Mori–Zwanzig (rMz) algorithm.

(1) Choose a number of terms, say m, to keep at the Taylor expansion of the
memory term.

(2) Evolve the full system and compute, at every step, using the SVD, the rank of
the (m+ 1)× (m+ 1) matrix B.

(3) When the smallest singular value σm+1 reaches a value larger than a prescribed
tolerance ε (we assume that the singular values are indexed from largest to
smallest), solve the system (4) for the coefficients.

(4) For the remaining simulation time, switch from the full system to the reduced
model with the estimated values of the coefficients.

To apply the algorithm, we need to specify the quantities Êi , i = 1, . . . ,m.
Also, we need to compute the expression for the Markovian term, as well as the
expressions for the terms in the Taylor expansion of the memory term.

3. Application of rMZ to 1D Burgers and 3D Euler equations

In this section we present results of the rMZ algorithm for the 1D Burgers and the
3D Euler equations.

3.1. 1D Burgers equation.

3.1.1. Setup of the reduced model. We use the 1D inviscid Burgers equation as an
instructive example for the constructions presented in this section. The equation is
given by

ut + uux = 0. (19)

Equation (19) should be supplemented with an initial condition u(x, 0)= u0(x) and
boundary conditions. We solve (19) in the interval [0, 2π ] with periodic boundary
conditions. This allows us to expand the solution in Fourier series

uM(x, t)=
∑

uk(t)eikx ,
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where F ∪ G = [−M/2,M/2 − 1]. We have written the set of Fourier modes
as the union of two sets in anticipation of the construction of the reduced model
comprising only of the modes in F = [−N/2, N/2 − 1], where N < M . The
equation of motion for the Fourier mode uk becomes

duk

dt
=−

ik
2

∑
p+q=k

p,q∈F∪G

u puq . (20)

To conform with the Mori–Zwanzig formalism we set

Rk(u)=−
ik
2

∑
p+q=k

p,q∈F∪G

u puq

and we have
duk

dt
= Rk(u) (21)

for k ∈ F ∪ G. The system (21) is supplemented by the initial condition u0 =

(û0, ũ0) = (û0, 0). We focus on initial conditions where the unresolved Fourier
modes are set to zero. We also define L by

L =
∑

k∈F∪G

Rk(u0)
∂

∂u0k
.

Note that Lu0k = Rk(u0).
We also need to define a projection operator P . For a function h(u0) of all the

variables, the projection operator we will use is defined by

P(h(u))= P(h(û0, ũ0))= h(û0, 0);

that is, it replaces the value of the unresolved variables ũ0 in any function h(u0) by
zero. Note that this choice of projection is consistent with the initial conditions we
have chosen. Also, we define the Markovian term

R̂(1)1 k(û0)= PLu0k = P Rk(u0)=−
ik
2

∑
p+q=k
p,q∈F

û0pû0q .

The Markovian term has the same functional form as the RHS of the full system
but is restricted to a sum over only the resolved modes in F . The full system
conserves the energy 1

2

∑
k∈F∪G |uk |

2 contained in all the modes. Similarly, the
Markovian term of the reduced model does not alter the energy content of the
resolved modes. The necessary energy transfer out of the resolved modes rests
on the memory terms. Based on our choice of projection operator and the scaling
symmetries of the Burgers equation we set N = M/2.
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With the definition of P given above, we find for QLu0k

QLu0k =−
ik
2

∑
p+q=k

q∈G
p∈F

u0pu0q −
ik
2

∑
p+q=k

q∈F
p∈G

u0pu0q −
ik
2

∑
p+q=k

q∈G
p∈G

u0pu0q .

The expression for QLu0k contains three terms which involve at least one wavenum-
ber in the unresolved range G. The terms in the Taylor expansion of the memory
term are given by

R(1)jk = (−1) j t j−1

( j − 1)!
Pet L(PL) j−1 QLu0k, j = 2, . . . .

For the j-th term we have

(PL) j−1 QLu0k

= (PL) j−1
(
−

ik
2

∑
p+q=k

q∈G
p∈F

u0pu0q −
ik
2

∑
p+q=k

q∈F
p∈G

u0pu0q −
ik
2

∑
p+q=k

q∈G
p∈G

u0pu0q

)
. (22)

3.1.2. Recursive computation of the memory terms. The expression in (22) for
(PL) j−1 QLu0k for the j-th term ( j = 2, . . . ) can be computed recursively using a
simple construction based on a Pascal triangle. Note that for our choice of projection
operator P , we have

(PL) j−1
(
−

ik
2

∑
p+q=k

q∈G
p∈G

u0pu0q

)
= 0.

We begin with the (first-order) term for j = 2, which is PL QLu0k . We find

PL QLu0k =−2
ik
2

∑
p+q=k

q∈G
p∈F

Pu0p PLu0q . (23)

The first order term can be computed by convolving the resolved part of Pu0p

with the unresolved part of PLu0q . In practice, all the convolutions sums can be
computed using Fast Fourier Transforms [5]. Note that the expression Pu0p is
linear in the Fourier modes while PLu0q is quadratic. Thus, the convolution sum
in PL QLu0k (including the factor −ik/2) can be denoted by (1r ∗ 2u), where ∗
stands for convolution while r and u stand for the resolved and unresolved parts.
This notation facilitates the recognition of the pattern for the higher order terms.
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With this notation, the first-order term can be written as

PL QLu0k = 2× 1(1r ∗ 2u), (24)

where we have used boldface to denote the coefficient. We continue with the second
order term PL PL QLu0k . We find

PL PL QLu0k = 2
(
−

ik
2

∑
p+q=k

q∈G
p∈F

Pu0p PL PLu0q −
ik
2

∑
p+q=k

q∈G
p∈F

PLPu0p PLu0q

)
. (25)

The convolution sums in this term can be denoted by (1r ∗ 3u) and (2r ∗ 2u). The
second order term can be written as

PL PL QLu0k = 2×
(

1(1r ∗ 3u)+ 1(2r ∗ 2u)
)

(26)

To see the pattern more clearly we need one more term:

PL PL PL QLu0k

= 2
(
−

ik
2

∑
p+q=k

q∈G
p∈F

Pu0p PL PL PLu0q − 2
ik
2

∑
p+q=k

q∈G
p∈F

PLPu0p PL PLu0q

−
ik
2

∑
p+q=k

q∈G
p∈F

PL PLPu0p PLu0q

)
. (27)

The terms in the parenthesis can be denoted by (1r ∗ 4u), (2r ∗ 3u) and (3r ∗ 2u).
The third order term can be written as

PL PL PL QLu0k = 2×
(
1(1r ∗ 4u)+ 2(2r ∗ 3u)+ 1(3r ∗ 2u)

)
. (28)

By examining the expressions in (24)–(28) we see that the memory terms can
be computed as weighted sums of convolution sums where the weights are given
by appropriate Pascal triangle coefficients (the boldface numbers). This was to
be expected since we started with a convolution sum (involving products) of two
functions and each new term in the Taylor series involves a differentiation. Moreover,
the number of convolution sums that need to be added is equal to the order of the
memory term in the Taylor expansion. Also, for each term, the convolution sums
involve expressions whose degree (in Fourier modes) follows an easily discernible
pattern. For the l-th order term in the Taylor series we need the convolution sums
(1r ∗ (l + 1)u), (2r ∗ lu), . . . , (lr ∗ 2u).

Finally, the expressions entering the convolution sums can also be computed
by a Pascal triangle construction. For example, in order to calculate the third
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order term, as can be seen from (27), one needs to compute and store only the
quantities Pu0p, PLu0p, PL PLu0p, PL PL PLu0p for p ∈ F ∪ G. Note that the
quantities Pu0p, PLPu0p and PL PLPu0p which are also needed are the same as
Pu0p, PLu0p and PL PLu0p for the resolved modes and zero for the unresolved
modes. So, they do not need to be stored. They can be quickly constructed when
needed. We see that the storage requirements for the calculation of the memory terms
grows only linearly in the order of the Taylor expansion. Also, the ability to calculate
the needed expressions through FFTs speeds up significantly the calculation of the
various memory terms.

The recursive estimation of the memory terms allows us to calculate memory
terms of very high order efficiently, without having to write down explicitly the
analytical expressions which become very complicated after the first few orders in
the expansion.

3.1.3. Results using rMZ. The construction of the renormalized MZ reduced models
in the previous section assume that the commutator [PL , QL] is small. It is not easy
to estimate the commutator in general. However, from (11) and (12), we see that we
are interested in the magnitude of the quantity et L

[PL , QL]QLu0k . For this quantity
to be zero for all time, we must have [PL , QL]QLu0k ≡ 0; that is, [PL , QL]QLu0k

must be the zero function. This is not possible unless [PL , QL] ≡ 0. However,
we can look for initial conditions u0 such that [PL , QL]QLu0k is small. The
expression for [PL , QL]QLu0k is

[PL , QL]QLu0k = 2
(
−

ik
2

) ∑
p+q=k

q∈F
p∈G

[PL , QL]u0pu0q

+2
(
−

ik
2

) ∑
p+q=k

q∈G
p∈F∪G

PLu0p PLu0q − 2
(
−

ik
2

) ∑
p+q=k

q∈F
p∈G

PLu0p QLu0q , (29)

where

[PL , QL]u0p = 2
(
−

i p
2

) ∑
r+s=p

s∈F
r∈G

PLu0r u0s − 2
(
−

i p
2

) ∑
r+s=p

s∈F
r∈F

QLu0r u0s .

It is straightforward to see from these expressions that if the initial condition is
smooth, in the sense that it contains only a few small wavenumber Fourier modes,
the value of et L

[PL , QL]QLu0k is small. The reason for that is the polynomial
nonlinearity which allows only a finite rate of propagation of activity to higher
wavenumbers. We have used the smoothest possible nontrivial initial condition
which is u0(x)= sin x . This leads to the formation of a standing shock at T = 1.
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Figure 1. 1D Burgers equation: comparison of the evolution of the energy in the resolved
modes computed by the random choice method, the t-model and various rMZ models.

Of course, due to the formation of the shock, the value of et L
[PL , QL]QLu0k

will eventually stop being small. However, it will allow us to renormalize the first
few terms in the memory term expansion and obtain a finite result (see also the
discussion in Section 3.3).

Figure 1 shows the evolution of 1
2

∑
k∈F |uk |

2 (energy) of the resolved modes
computed by reduced models of different orders and the random choice method [7].
All the reduced models use N = 16 Fourier modes while the full system has M = 32
modes. The results of the reduced models are compared to a converged solution of
the random choice method with N = 4096 points. The energy of the random choice
method solution was computed using only N = 16 modes. However, note that
practically all the energy of the random choice method solution is concentrated in
the first few Fourier modes, so even if we had computed the energy for all N = 4096
Fourier modes the results would not have changed. This is to be expected, since for
the initial condition we are using, a standing shock forms at time T = 1 and, thus,
by time T = 100 the only Fourier modes having some energy left in them are the
first few.

The quantities Êi used to set up the linear algebraic system needed to compute
the coefficients of the reduced system are lp norms of the solution. In particular,
for the first order model we use Êi =

∑
k∈F |uk |

2i , i = 1, 2. For the second order
model Êi =

∑
k∈F |uk |

2i , i = 1, 2, 3 and for the third order model Êi =
∑

k∈F |uk |
2i ,

i = 1, 2, 3, 4. In general, for the reduced model of order λ we need λ+1 quantities
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because we also have to compute the coefficient of the Markovian term. All the
calculations are done in double precision. The tolerance ε used to decide when it
is time to switch to the reduced model is set to 10−12. The systems of ordinary
differential equations for the different reduced models were solved using the Runge–
Kutta–Fehlberg method with the step-size control tolerance set to 10−10 [19].

The numerical problem of solving the linear system for the coefficients is hard
because the resulting system has very large condition number and very small
determinant. This happens for three reasons. First, the dominant contribution to the
linear system matrix comes from the Markovian term (except for the contribution
to the rate of change of the Ê1 =

∑
k∈F |uk |

2 which is zero). This means that the
coefficient of the Markovian term is practically 1. Second, the contributions of each
memory term to the rates of change of the different Êi vary dramatically. Third,
the contributions to each Êi by the different memory terms also varies substantially.
Of course, this situation is exacerbated if we use more terms in the expansion. For
the case when we retain up to the third order term in the memory expansion, we
have to deal with condition numbers of the order 1011 and determinant values of
order 10−20. Inevitably, even the use of double precision cannot provide us with an
accurate estimate of the coefficients. Since the linear system matrix is practically
singular (for the numerical precision used) we have chosen to solve the linear system
using the SVD algorithm [18].

A partial remedy to the problem comes from a slight modification in the way
of estimating the coefficients. Since we know that the Markovian term coefficient
is practically 1, we can set it to 1, and subtract the column of contributions of the
Markovian term from the RHS of the linear system. This allows us to reduce the
dimensionality of the linear system to be solved from (λ+1)×(λ+1) to λ×λ. This
practice of subtracting almost equal numbers is not advisable in general because it
leads to loss of significant digits [18]. However, in our case it helps to improve the
results by lowering the condition number of the matrix from about 1011 to about 105.
In , the estimation of the coefficients for the third order model using the reduced
dimension matrix is denoted by “rMZ-reduced 3rd”.

As shown in Figure 1, the rMZ models of first and second order give practically
the same results as the t-model. The third order model gives a slight improvement.
However, when the reduced dimension matrix is used, the energy evolution predicted
by the third order model is practically identical to the correct energy evolution of
the resolved modes predicted by the random choice method. If we increase the
resolution of the reduced model, the numerical problems for the calculation of
higher order coefficients become even more pronounced. This is to be expected,
since a larger resolution means that the renormalized coefficients of the reduced
model will be smaller. Thus, computing them with accuracy is more difficult.
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We have to note that the computation of the higher order coefficients is more
difficult for our choice of initial condition since it only involves one active Fourier
mode. Initial conditions with more active Fourier modes will transfer activity to
the unresolved scales at a higher rate and thus the corresponding renormalized
coefficients will be larger. A detailed study of the behavior of the coefficients for
different initial conditions will be presented elsewhere. For the first order model,
we have already presented in [23] a detailed study about the change of the value of
the renormalized coefficient with resolution up to the order of 105 Fourier modes.
In that work, the renormalized coefficient calculation was used to determine, in a
fixed point analysis, the blow-up exponent.

3.2. Incompressible Euler equations in 3D. Consider the incompressible Euler
equations in 3D with periodic boundary conditions in the cube [0, 2π ]3:

ut + u · ∇u =−∇ p, ∇ · u = 0, (30)

where u(x, t)= (u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t)) is the velocity,
p is the pressure and∇= (∂/∂x1, ∂/∂x2, ∂/∂x3). The system in 3.2 is supplemented
with the initial condition u(x, 0)= u0(x) which is also periodic and incompressible
and x = (x1, x2, x3). Since we are working with periodic boundary conditions, we
expand the solution in Fourier series keeping N modes in each spatial direction,

uM(x, t)=
∑

uk(t)eikx ,

where F ∪G = [−M/2,M/2−1]× [−M/2,M/2−1]× [−M/2,M/2−1]. Also
k = (k1, k2, k3) and uk(t)= (u1

k(t), u2
k(t), u3

k(t)).
The equation of motion for the Fourier mode uk becomes

duk

dt
=−i

∑
p+q=k

p,q∈F∪G

k · u p Akuq , (31)

where Ak = I − kkT /|k|2 is the incompressibility projection matrix and I is the
3× 3 identity matrix. The symbol · denotes inner product in R3. The system (31)
is supplemented by the initial condition u0 = {uk(0)} = {u0k}, k ∈ F ∪G, where
u0k are the Fourier coefficients of the initial condition u0(x).

To conform with the MZ formalism we set

Rk(u)=−i
∑

p+q=k
p,q∈F∪G

k · u p Akuq

and we have
duk

dt
= Rk(u) (32)
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for k ∈ F ∪ G. The system (32) is supplemented by the initial condition u0 =

(û0, ũ0)= (û0, 0). Note that we focus on initial conditions where the unresolved
Fourier modes are set to zero. We also define L by

L =
∑

k∈F∪G

Rk(u0)
∂

∂u0k
.

Note that Lu0k = Rk(u0). Consider the subset

F = [−N/2, N/2− 1]× [−N/2, N/2− 1]× [−N/2, N/2− 1]

for N < M . We will construct the reduced models for the Fourier modes uk with
k ∈ F.

We need to define a projection operator P . For a function h(u0) of all the vari-
ables, the projection operator we will use is defined by P(h(u))= P(h(û0, ũ0))=

h(û0, 0), i.e., it replaces the value of the unresolved variables ũ0 in any function
h(u0) by zero. Note that this choice of projection is consistent with the initial
conditions we have chosen. Based on our choice of projection operator and the
scaling symmetries of the Euler equations we set N = M

2 .
Define

R̂k(û0)= P Rk(u0)=−i
∑

p+q=k
p,q∈F

k · û0p Ak û0q .

The Markovian term has the same functional form as the RHS of the full system but
is restricted to a sum over only the resolved modes in F . The full system conserves
the energy 1

2

∑
k∈F∪G |uk |

2 contained in all the modes. Similarly, the Markovian
term of the reduced model does not alter the energy content of the resolved modes.
The necessary energy transfer out of the resolved modes rests on the memory terms.

With the definition of P given above, we find for QLu0k

QLu0k =−i
∑

p+q=k
q∈G
p∈F

k · u0p Aku0q −
∑

p+q=k
q∈F
p∈G

k · u0p Aku0q − i
∑

p+q=k
q∈G
p∈G

k · u0p Aku0q .

The expression for QLu0k contains three terms which involve at least one wavenum-
ber in the unresolved range G. The terms in the Taylor expansion of the memory
term are given by

R(1)jk = (−1) j t j−1

( j − 1)!
Pet L(PL) j−1 QLu0k, j = 2, . . . .
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Figure 2. 3D Euler equation. Comparison of the evolution of the energy in the resolved
modes computed by the t-model and various rMZ models.

For the j-th term we have

(PL) j−1 QLu0k

= (PL) j−1
(
−i

∑
p+q=k

q∈G
p∈F

k ·u0p Aku0q−i
∑

p+q=k
q∈F
p∈G

k ·u0p Aku0q−i
∑

p+q=k
q∈G
p∈G

k ·u0p Aku0q

)
. (33)

The different terms in the memory expansion can be computed recursively as in
the case of Burgers. However, there is a slight complication because the presence
of the incompressibility operator and of the inner product on the RHS destroys
the commutativity which allowed us in Burgers to group terms (the factor 2 which
appears outside every parenthesis there). This problem can be addressed by a
construction which uses 2 Pascal triangles instead of 1 used in the case of Burgers.
For each order, one adds up the corresponding terms from the 2 Pascal triangles and
obtains the desired memory term. Other than that, the recursive algorithm remains
the same and we omit the details. Also, note that all the higher order terms are
divergence-free by construction.

We have used the same quantities Êi as in the case of Burgers, with the obvious
generalizations, since for 3D Euler we have a 3-dimensional velocity vector instead
of the scalar velocity in Burgers. Also, even though for 3D Euler we have a
3-dimensional vector, we have assumed that the reduced model renormalized coeffi-
cients are the same for all 3 velocities. This is a simplifying assumption. Of course,
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one can use different renormalized coefficients for the different velocities at the
expense of having to solve a larger linear system for the renormalized coefficients.
A detailed study of that case will be presented in future work.

We have used the Taylor–Green initial condition (see [21], for example) which
is given by

u1(x, 0)= sin x1 cos x2 cos x3,

u2(x, 0)=−cos x1 sin x2 cos x3,

u3(x, 0)= 0.

Figure 2 shows the evolution of the energy 1
2

∑
k∈F |uk |

2 of the resolved modes
for different resolutions computed by rMZ reduced models of different orders
and the t-model. We have presented results for the rMZ reduced models using
the reduced linear system matrix approach discussed above to tame the condition
number of the matrix. Based on these results, we make two observations.

First, for 83 resolved modes, the rMZ third order model dissipates energy at a
slower rate than the t-model with 83 resolved modes. This is true not only for the
third order model but also for the first and second order models (we have omitted
those results to avoid cluttering the figure). This slower rate of energy dissipation
compared to the t-model holds also for the case of 163 resolved modes.

The second observation is that the rate of energy dissipation of the rMZ models
is consistent with the rate predicted by the t-model with higher resolution. This is to
be expected since a higher order model should result in a more accurate prediction
of the energy dissipation rate.

The reader may be concerned about the small resolutions used in the numerical
experiments. There are two reasons for that. First, if one keeps several terms in the
memory expansion, then, for a very smooth initial condition like the one we use,
the matrix B becomes even more ill-conditioned for large resolutions. However,
this is not a severe problem. On the contrary, it signifies that most of the higher
order terms should have small coefficients and thus can be safely removed from the
model.

The second reason we have used small resolutions both for Burgers and Euler is
because an accurate reduced model should be able to reproduce the correct energy
content for its resolved scales no matter how small the resolution. For example, for
Burgers, where we know what the energy content should be after the singularity,
we see that the rMZ model with a small resolution (163) indeed reproduces the
correct energy content for this resolution.

3.3. rMZ vs MZ. We show that the renormalized version of the MZ formalism is
advantageous with respect to the original MZ formalism. In particular, we show that
for the same order in the Taylor expansion of the memory term, the renormalized
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Figure 3. Comparison, for 3D Euler, of the value of the energy content of the resolved
modes for the third order renormalized and unrenormalized MZ models.
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Figure 4. Comparison, for 1D Burgers, of the value of the energy content of the resolved
modes for the third order renormalized and unrenormalized MZ models.

algorithm leads to the stabilization of the reduced model. Figure 3 compares, for
the 3D Euler equations, the energy 1

2

∑
k∈F |uk |

2 for 83 resolved modes for the
renormalized and unrenormalized third order models. The unrenormalized model
quickly becomes unstable and loses all predictive ability. Figure 4 compares the
behavior of the renormalized and unrenormalized third order models for Burgers.

The unrenormalized expansion leads to divergence of the predicted energy content
of the resolved modes. This is analogous to the divergences that plagued perturbative
calculations in quantum field theory (QFT) before the advent of renormalization
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[13]. In QFT, the reason for the divergences was that the perturbation expansion
was performed in a quantity (the bare mass, charge etc.) which turns out to be
ill-defined. The process of renormalization replaces the perturbation expansion in
powers of the ill-defined quantity with a perturbation expansion in powers of the
experimentally determined values of this quantity. This allows the subtraction of
the terms that cause divergences and leads to finite results.

In our case, the expansion of the memory of the MZ formalism is ill-defined
because the Taylor expansion at t = 0 breaks down after some time. On the other
hand, the renormalized MZ formalism takes into account dynamic information
from the evolution of the full system (while this system is still valid) and prescribes
to each term in the memory expansion an appropriate coefficient. The coefficient
measures how important this term is. In this way, the divergences are averted and
the results become finite.

We should emphasize that the reason the renormalization of the MZ model works
is the smoothness of the initial condition which renders higher order terms less
and less important. This is reflected in the values of the renormalized coefficients
which decrease with the order of the memory expansion. However, if we attempt to
renormalize the MZ model for an initial condition where all the resolved Fourier
modes are initially nonzero, we find that all the coefficients remain of O(1) as
in the nonrenormalized (and unstable) MZ model. This means that in this case
renormalization cannot help with the stabilization of the reduced model.

The last observation suggests that the road to stable reduced models for the case
when the initial condition has many nonzero Fourier modes may lie in a different
expansion than in a Fourier series. In particular, one may have to expand the solution
in a basis of appropriate collective degrees of freedom so that the initial condition
contains only a few nonzero collective modes. For the case of incompressible flows
these could be vortices or even Beltrami flows [12]. If one can do that, then the
framework presented in the current work will remain applicable.

3.4. Universality of the renormalized coefficients. In the introduction, we hinted
at the possibility that the renormalized coefficients may be determined by two factors:
the ratio of the smallest active scale in the initial condition to the smallest resolvable
scale, and the scaling symmetries of the equation under investigation. Even though
the numerical difficulties with the ill-conditioned linear system matrix do not allow
us at present to study accurately the higher order renormalized coefficients, we have
enough accuracy to study the first order renormalized coefficient both for 1D Burgers
and 3D Euler. Note that the two equations share the same scaling symmetries. Also,
we have chosen for Burgers the initial condition u0(x) = sin x which has only
one active Fourier mode (for k =±1) and for 3D Euler, the Taylor–Green initial
condition which also has only active Fourier modes for ki =±1, i = 1, 2, 3.



RENORMALIZED REDUCED MODELS FOR SINGULAR PDES 63

0.1 0.2 0.3 0.4 0.5
Ratio of smallest active scale in initial condition to smallest scale of reduced model 

0.1

0.2

0.3

0.4

0.5
V

al
u
e 

o
f 

fi
rs

t 
o
rd

er
 r

en
o
rm

al
iz

ed
 c

o
ef

fi
ci

en
t

3D Euler
1D Burgers

Linear fit with slope 0.998 +/- 0.0017 

Figure 5. Comparison, for 1D Burgers and 3D Euler, of the value of the renormalized
coefficient for the first order rMZ model for different resolutions. The initial conditions for
Burgers and Euler have only 1 active Fourier mode in each direction.

Figure 5 shows the comparison of the value of the renormalized first-order
coefficient for Burgers and 3D Euler as a function of the ratio of the smallest scale
active in the initial condition to the smallest scale of the reduced model. We make
two observations. First, the values of the renormalized coefficient for the two
equations are in remarkable agreement. Second, from the slope of the linear fit, we
see that the value of the coefficient is practically equal to the ratio of the smallest
scale active in the initial condition to the smallest scale of the reduced model.

Needless to say that one example is not enough to infer the generality of the result
for arbitrary initial conditions. A theoretical explanation of this result is lacking at
the moment. Note that due to the way we have defined the terms in the expansion
of the memory, all the terms have the same dimensions as the Markovian term and
the left-hand side of the equation for each Fourier mode. So, the corresponding
coefficients have to be dimensionless. Thus, we expect the coefficients to depend
on ratios of quantities with the same dimensions. Here we have investigated the
possibility that this ratio is that of the smallest active scale in the initial condition
to the smallest active scale of the reduced model.

We should comment here on the behavior of the rMZ algorithm for the 2D Euler
equations for which the 2D version of the Taylor–Green initial condition is an exact
solution, i.e., a steady state. Exactly because it is a steady state there is no need
for a reduced model. Application of the rMZ algorithm agrees with this. There
is never any need to transfer energy to the unresolved scales and thus, no need to
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switch to a reduced model. The contributions of the different memory terms to
the matrix B are all well below the double precision threshold. This allows the
freedom to assign to the renormalized coefficient the values shown in Figure 5
without incurring any trouble. In other words, the behavior of the solution of the
2D Euler for the Taylor–Green initial condition does not contradict the agreement
for the renormalized coefficient of the 1D Burgers and 3D Euler equations shown
in Figure 5.

4. Conclusions and future work

We have presented a new way of computing reduced models for systems of ordinary
differential equations. The approach combines renormalization and effective field
theory techniques with the Mori–Zwanzig formalism. The constructed reduced
models are stable because they transfer activity out of the resolved scales at a rate
which is dictated by the full system. The consistency between the rate of transfer
activity of the reduced model and the rate of transfer activity dictated by the full
system is the analog of the matching conditions employed in effective field theory.
The matching conditions lead to a redefinition (renormalization) of the coefficients
of a reduced model originally constructed through the Mori–Zwanzig formalism.

The results we have obtained for the 1D Burgers and 3D Euler equations are
rather encouraging. However, we have to deal with the ill-conditioning of the
linear system for the coefficients. We plan to address the problem through various
techniques designed to deal with ill-conditioned matrices. Also, it is very interesting
to study more to what extent the renormalized coefficients are determined by the
structure of the initial condition and the scaling symmetries of the PDE.

We note that the proposed approach can also be applied to the Navier–Stokes
equations [14]. The viscosity starts contributing from the second order memory
term. Also, the inclusion of viscosity does not complicate considerably the recursive
algorithm for the calculation of the higher order terms. The expressions needed
to compute the viscosity contributions can be estimated through terms already
computed in the construction of the inviscid terms.

The approach presented in the current work opens new possibilities for the
construction of accurate and stable reduced models for (large) systems of ordinary
differential equations. It also highlights the affinity between problems of model
reduction in scientific computing and the construction of effective field theories
in high energy physics. We hope that this connection will benefit the problem of
constructing reduced models and will be of use in tackling real world problems
which are impossible to address through brute force calculations.

In conclusion, as Steven Weinberg once put it [25], renormalization is indeed a
good thing.
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