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We present an unsplit method for the time-dependent compressible Navier–Stokes
equations in two and three dimensions. We use a conservative, second-order
Godunov algorithm. We use a Cartesian grid, embedded boundary method to
resolve complex boundaries. We solve for viscous and conductive terms with
a second-order semiimplicit algorithm. We demonstrate second-order accuracy
in solutions of smooth problems in smooth geometries and demonstrate robust
behavior for strongly discontinuous initial conditions in complex geometries.

1. Introduction

In this paper, we present an unsplit method for the time-dependent compressible
Navier–Stokes equations in two and three dimensions. This algorithm is an extension
of the algorithm in [9] to flows with viscous and thermal diffusion. The Navier–
Stokes equations contain parabolic terms that arise from conductivity and viscosity.
There are several methods to advance these terms. In [10], for example, a kinetic
energy equation is evolved to get a stable approximation to the viscous term in the
energy equation. This solution is elegant but also difficult to extend to multiple
dimensions. We use a conservative, semiimplicit method in which the hyperbolic
terms are advanced explicitly and the parabolic terms advanced implicitly. This
approach to the compressible Navier–Stokes equations has been used without
embedded boundaries [3; 30; 16; 14; 11]. Our algorithm follows the basic outline in
the mapped grid algorithm presented in [30], in which the velocity and temperature
evolution are split. They use a Crank–Nicolson time evolution with the energy-
momentum coupling term treated explicitly. We use a hybrid approach to energy-
momentum coupling. Also, since Crank–Nicolson has been shown to be marginally
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stable in certain cases [23], we use the L0-stable algorithm presented in [31] for
elliptic coupling. We present our changes to the [31] algorithm that were necessary
to make the linear equations tractable in the presence of small cells. This algorithm
has been implemented with adaptive mesh refinement (AMR) as described in [4; 2].
All our cut cells are refined to the finest level, reducing all coarse-fine interactions
(such as refluxing and coarse-fine interpolation) to exactly those described in [30].

Dragojlovic et al. [12] present a two-dimensional algorithm for viscous, con-
ducting compressible flow with embedded boundaries. They use a split hyperbolic
scheme, explicit updates of the viscous state and the (formally inconsistent) extended
state algorithm developed in [24]. Our algorithm uses an unsplit scheme (as seen
in [8; 25; 1]) and works in two and three dimensions. Ghias et al. [13] present
an immersed boundary method to solve the same set of equations for subsonic
applications. Hartmann et al. [15] present a cut-cell method that uses a form of cell
merging to achieve small-cell stability. Berger et al. [5] survey a wide variety of
these algorithmic permutations. We use redistribution (first presented by Chern et
al. [7]) for small-cell stability. We use the (formally consistent) approach in [9] to
construct extended states. To evaluate viscous fluxes at the embedded boundary we
use the ray-casting algorithm developed in [18] for Poisson’s equation. Also, for
increased stability, we treat the viscous stress and conductivity terms implicitly.

This algorithm is suitable for use in applications where compressibility is im-
portant and the geometries are complex. Our target application is flow inside of
capillary tubes in laser wakefield particle accelerators. In these accelerators, the
pressure and temperature is driven very high along the axis of a capillary tube.
The resulting flow produces a low density core through which lasers are shot. The
capillary is connected to fill tubes which are used to fill the capillary with gas [27;
19; 20; 29]. We present a simplified version of this problem as our example to
demonstrate robustness while acknowledging that other physics in these problems
(such as ionization and magnetization) are very important. We drive a capillary
tube with a large pressure pulse to demonstrate the stability of the algorithm under
extreme conditions. The geometric configuration is derived from the experimental
set-up described in [29].

There are of course many regimes for which the compressible Navier Stokes
equations are relevant. The regime of interest for this algorithm has substantial
compressibility effects (including shocks) as well as substantial viscous effects. We
are also interested in time-accurate (as opposed to steady state calculations). For
algorithm validation,we run several examples which demonstrate the efficacy of the
algorithm in this regime.

First we present convergence tests demonstrating second-order solution error
accuracy in two and three dimensions. For these tests, we use a smooth, subsonic
(M = 0.5) flow inside a sphere. This demonstrates that, even with compressibility
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effects, we get the expected convergence rate for smooth problems.
Next, for more a quantitative validations, we present a boundary layer calculation

and a viscous shock reflection calculation. Charest et al. [6] present a low-Mach-
number algorithm for steady state calculations. They present a boundary layer
calculation that reproduces the behavior of the similarity solution which emerges
from analysis (a Blasius boundary layer profile). We present a similar run which
also reproduces Blasius behavior. This demonstrates that the algorithm has correct
boundary layer behavior.

Glaz et al. [14] present a comparison between inviscid calculations of shock
reflections and experimental results. They show a case where viscous effects cause
substantial changes in the reflection pattern. We present both viscous and inviscid
calculations of the same problem and show good agreement with their results. This
demonstrates, that even in this very complex, time-dependent flow, we compare
well with experiment.

2. Notation

Cartesian grids with embedded boundaries are useful to describe finite-volume
representations of solutions to partial differential equations in the presence of
irregular boundaries. In Figure 1, the gray area represents the region excluded from
the solution domain. The underlying description of space is given by rectangular
control volumes on a Cartesian mesh ϒi =

[
(i − 1

2v)h, (i + 1
2v)h

]
, i ∈ ZD , where

D is the dimensionality of the problem, h is the mesh spacing, and v is the vector
whose entries are all one. Given an irregular domain �, we obtain control volumes
Vi = ϒi ∩� and faces Ai±ed/2 which are the intersection of the boundary of ∂Vi

with the coordinate planes
{

x : xd =
(
id ±

1
2

)
h
}
. We also define AB

i to be the
intersection of the boundary of the irregular domain with the Cartesian control
volume: AB

i = ∂�∩ϒi . For ease of exposition, we will assume here that there is
only one control volume per Cartesian cell. The algorithm described here has been
generalized to allow for boundaries whose width is less that the mesh spacing.

To construct finite-volume methods using this description, we will need several
quantities derived from these geometric objects.

Figure 1. Illustration of cut cells. The shaded area is outside the solution domain.
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• Volume fractions κ and area fraction α:

κi =
|Vi |

hD , αi+es/2 =
|Ai+ed

s /2|

hD−1 , αB
i =
|AB

i |

hD−1 .

• The centroids of the faces and of AB
i ; and n, the average of outward normal of

∂� over AB
i .

xi+ed/2 =
1

|Ai+ 1
2 ed |

∫
Ai+ed/2

x d A− (i + ed/2)h,

x B
i =

1
|AB

i |

∫
AB

i

x d A− ih, ni =
1
|AB

i |

∫
AB

i

n d A.

Here D is the dimension of space and 1≤ d ≤ D. We assume we can compute all
derived quantities to O(h2). With just these geometric descriptors, we can define a
conservative discretization of the divergence operator. Let EF = (F1 . . . F D) be a
function of x, then

∇ · EF ≈
1
|Vi |

∫
Vi

EF dV =
1
|Vi |

∫
∂Vi

EF · n d A.

We discretize the divergence of the flux as

κD(F)i =
1
h

( D∑
d=1

∑
±=+,−

±αi±ed/2 Fd(xi±ed/2)+α
B
i ni · EF(x B

i )

)
, (1)

where (1) is obtained by replacing the normal components of the vector field EF
with the values at the centroids. This converges to the exact divergence by the
relation D(F)i =∇ · F +O(h/κi ) in cells which intersect the embedded boundary
and converges to O(h2) away from the boundary. The elliptic operators in this
calculation all take the form

L(φ)= a(x)φ+ D(F(φ)).

We refer to a in this context as the identity coefficient.

3. System of equations

We are solving the compressible Navier–Stokes equations, given here in conservation
form with hyperbolic terms to the left and elliptic terms to the right.
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∂ρ

∂t
+∇ · (ρu)= 0,

∂(ρu)
∂t
+∇ · (ρuu+ pI )=∇ · σ,

∂(ρE)
∂t
+∇ · (ρuE + u p)=∇ · (σu)+∇ · (ξ(∇T )). (2)

In these equations, ρ is the mass density, u is the velocity, ξ is the thermal con-
ductivity, p is the pressure, and T is the temperature. The shear stress tensor σ is
given by

σ = µ(∇u+∇uT )+ λ(∇ · u)I,

where µ and λ are the viscosity coefficients (typically λ=−2
3µ). The total energy

is given by E = e+ 1
2 |u|

2; the internal energy is given by e = CvT (where Cv
is the specific heat at constant volume). The fluid is assumed to be an ideal gas
(p = Cv(γ − 1)ρT ).

4. Algorithm description

We define U = (ρ, ρu, ρE) and we define L H (U )=∇ · F , the divergence of the
hyperbolic flux. The flux is given by

F =

 ρu
ρuu+ pI
ρuE + u p

 .
The divergence and the fluxes are computed in the same way as in [9]. To summarize,
a Taylor series extrapolation is done to produce second-order (in both space and
time) approximations to the fluxes at the centroids of the faces. A conservative
approximation to the divergence (Dc(F)) is computed using (1). Ideally, we would
use Dc(F) for our hyperbolic divergence. The difficulty with this approach is that
the CFL (Courant–Friedrichs–Lewy) stability constraint on the time step for an
algorithm using the conservative divergence for an explicit update is at best

1t = O
(

h
vmax

i
(κi )

1/D
)
,

where vmax
i is the magnitude of the maximum wave speed for the i-th control volume.

This is the well-known small-cell problem for embedded boundary methods. Instead,
we compute a stable, nonconservative approximation to the divergence (Dnc(F))
using an extended state where necessary and ignoring the embedded boundary. This
extended state is extrapolated from the interior. The effective divergence is

L H (U )= κDc(F)+ (1− κ)Dnc(F).
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The mass difference (δM) between using L H and using only the conservative
divergence Dc(F) is given by

δM = κ(1− κ)(Dc(F)− Dnc(F)).

This mass difference is redistributed to neighboring cells. The redistribution al-
gorithm is described in [7]. This hybrid formulation preserves conservation and
allows this algorithm to be stable using a time step constraint based on full cells.
We compute our time step as follows:

1t =
CF h
W max , (3)

where W max is the maximum wave speed in the problem and CF is the Courant
number (0< CF < 1).

Define Lv to be the elliptic terms in the system of equations

Lv(U )i =

 0
Lm(u)i

Lk(T )i + Ld(u)i

 .
The term Lm is the discretization of the viscous stress term (Lm

∇ · σ ) and is
described in Section 5.3. The term Lk

≈ ∇ · ξ∇T is a discretization of the heat
conduction term and is described in Section 5.2. The term Ld

≈ ∇ · (σu) is the
viscous heating term and is described in Section 5.1.

4.1. Outline. We begin with the state at time U n
= U (n1t), we advance the

solution as follows.

1. Compute U∗, the solution advanced explicitly using only hyperbolic terms.

U∗i =U n
i −1t L H

i (U
n).

This produces the final value of density (ρn+1
= ρ∗). From U∗, we compute u∗

and T ∗, the intermediate values of velocity and temperature (which exclude the
effects of conduction and viscosity).

2. Compute L0-stable approximations to the momentum diffusion Lm(U )=∇ · σ
by advancing the diffusion equation

ρ
∂u
∂t
= Lm(u)

using the method described in Section 5:

un+1
= GLm (ρn+1)u∗.

The symbol G is defined in (6). The stable approximation to Lm(u) is calculated
as
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(Lm(u))n+
1
2 = ρn+1 un+1

− u∗

1t
,

giving us the final value of momentum:

(ρu)n+1
= (ρu)∗+1t(Lm(u))n+

1
2 .

The operator Lm is described in Section 5.3.

3. Using the value of u calculated above, calculate the viscous dissipation of energy
(Ld
≈ ∇ · (σu)) as described in Section 4.2. We then update the energy with the

term
(ρE)∗∗ = (ρE)∗+1t Ld(un+1).

From E∗∗, we compute the intermediate value of temperature T ∗∗.

4. Compute L0-stable approximations to the conduction term

Lk(T )=∇ · ξ∇T

by advancing the diffusion equation

ρCv
∂T
∂t
= Lk(T )

using the method described in Section 5:

T n+1
= GLm (ρn+1Cv)T ∗∗,

where G is described in Equation (6). The stable approximation to Lk(T ) is
computed by

(Lk(T ))n+
1
2 = ρn+1Cv

T n+1
− T ∗∗

1t
,

giving us the final value of energy:

(ρE)n+1
= (ρE)∗∗+1t(Lk(T ))n+

1
2 .

The operator Lk(T ) is described in Section 5.2.

4.2. Viscous dissipation calculation. To avoid small-cell instabilities, we split up
the Ld(U ) into conservative and nonconservative approximations much as we
did with L H . The conservative approximation to Ld,c

= ∇ · (σu) is described in
Section 5.1. The nonconservative form of the operator is given by the volume-
weighted average of the neighbor’s conservative operator evaluations. Define N (i)
to be the set of cells reachable from i by a unit monotone path. The nonconservative
approximation of Ld is

Ld,nc(u)i =
∑

j∈N (i)(κLd,c(u)) j∑
j∈N (i) κj

.
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We use a linear combination of conservative and nonconservative versions of the
divergence to advance the solution:

Ld(U )= κLd,c(u)+ (1− κ)(Ld,nc(u)).

To preserve conservation, we compute the energy difference between this version
and the conservative version:

δE =1tκ(1− κ)(Ld,c
− Ld,nc).

We push this energy correction δE into the solution implicitly. First we set a right
hand side R= 0 and redistribute δE into the cells of R that can be reached by a unit
monotone path (as described in [7]). We then solve for a temperature difference
that can account for this energy using the conduction operator(

ρn+1Cv I −1t Lk)δT
=1t R.

This change in temperature is interpreted as an increment to the energy as follows:

(δE)∗∗ = ρ∗CvδT .

We add (δE)∗∗ into E∗∗.

5. Stable parabolic discretizations

Twizell et al. [31] present a second-order L0-stable algorithm to advance the constant
coefficient heat equation. Given the equation

∂φ

∂t
= νLφ, (4)

their time advance takes the form

φn+1
= (I −µ1L)−1(I −µ2L)−1(I +µ3L)φn, (5)

where µ1, µ2, µ3 are constants. In the present algorithm we have two parabolic
equations of the form

a
∂φ

∂t
= L(φ),

where a = a(x) > 0 is the identity coefficient. Define the operator M(φ)= L(φ)/a.
In the case of our viscous operator (Section 5.3) Mm

= Lm(u)/ρ and the case of
conduction (Section 5.2), Mk(T )= Lk(T )/(ρCv). In both cases, the denominators
are positive and restricted away from zero. In each case, a naive interpretation of
(5) yields

φn+1
= (I −µ1 M)−1(I −µ2 M)−1(I +µ3 M)φn.
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This is problematic in the presence of small cells because this would involve dividing
by the volume fraction to evaluate M (see (1)) and volume fractions here can be
arbitrarily close to zero. Using the matrix identity (AB)−1

= B−1 A−1, we refactor
the preceding equation, obtaining

φn+1
= GL(a)φ = (κaI −µ1κL)−1(κa)(κaI −µ2κL)−1(κaI +µ3κL)φn. (6)

This is the implicit advance we use for stable discretizations of Lm(u) and Lk(T ).

5.1. Viscous heating operator. The viscous heating operator flux is an approxima-
tion to the shear stress dotted with the velocity (Fh

= σ · u):

Fh
= (µ(∇u+∇uT )+ λI∇ · u) · u. (7)

We compute the shear stress as described in Section 5.3. To get face-centered
velocities, we average from neighboring cells:

ui+ed/2 =
1
2(ui+ed + ui ).

At embedded boundaries and domain boundaries we set this flux to zero because
the no slip condition requires that u|∂� = 0. We then can find the conservative
discretization of the operator Ld,c as given by (1).

5.2. Conductivity operator. Our operator for heat conduction

Lk(T )=∇ · (ξ∇T )

is an extension to variable coefficients of the operator described by Schwartz et
al. [28]. The flux at face centers for the discretization in (1) is given by

FT
i+ed/2 = ξi+ed/2

Ti+ed − Ti

1x
.

Since we are representing thermally insulated embedded boundaries, FT
B = 0. Given

these fluxes, discretization of the operator is given by (1).

5.3. Viscous stress operator. For viscous diffusion, we first calculate the cell-
centered gradient of the solution using centered differences:

∂ud1

∂xd2
=

ud1
i+ed2 − ud1

i−ed2

21x
.

The face centered gradient uses this gradient for tangential gradients and differences
normal gradients directly:

(∇u)d
′

i+ed/2 =

{
(1/h)(ui+ed − ui ) if d = d ′,
1
2

(
(∇u)d

′

i+ed + (∇u)d
′

i
)

if d 6= d ′,
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where

(∇u)di =
1

2h
(ui+ed − ui−ed ).

We then construct the flux at the face using the appropriate gradients:

Fv = µ(∇u+∇uT )+ λI∇ · u. (8)

At the embedded boundary, we have a physical boundary condition that u=0. Define
a local coordinate system rotated to align with the normal to the embedded boundary
n̂ and the tangent plane (t̂1, t̂2). The Jacobian J of this rotational transformation is
given by

J =

 n̂
t̂1

t̂2

 .
The transformation between a vector in Cartesian space (v) and a vector in rotated
space (vR) is given by

vR
= Jv.

We start by treating each component of the velocity as a scalar φ. To create our
boundary flux, we use the Johansen extrapolation [18] to compute the normal
gradient of φ, (∇φR,n). We set the tangential components of the gradient of φ to
zero (a consequence of the no-slip condition). So, in the rotated frame (∇φ)R

=

(∇φR,n, 0, 0). We then compute the Cartesian gradient of φ:

∇φ = J−1(∇φ)R.

We then construct the boundary flux using (8). Given these fluxes, discretization of
the operator is given by (1).

5.4. Performance implications of implicit parabolic discretization. The time step
constraint for the present algorithm is given by (3). Since we are advancing our
elliptic terms implicitly, this adds no additional time step constraint. Suppose we
were to advance (4) explicitly:

φn+1
= φn

+ ν1texpL(φn). (9)

In the absence of cut cells, the stability constraint on this method is

1tnoeb
exp <

1x2

2Dν
.

where D is the dimensionality of the problem. For the conductivity operator at
constant density with constant coefficients, this relationship is exact with ν =
ξ/(ρCv).
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To illustrate the performance tradeoff in the design decision to use the implicit
discretization, we compare the number of operator evaluations required to advance
the solution. Define Nexp to be the number of operator evaluations needed to advance
the solution to a fixed time t f using (9):

Nexp =
t f

1texp
.

Define Nimp to be the number of operator evaluations needed to advance the solution
to a fixed time t f using (6). We solve our elliptic equations using multigrid and we
measure how many times the operators are applied. This puts the implicit method
in the worst light possible because coarse and fine applications of the operator
(through multigrid) are counted the same.

The problem in Section 7 is the target application for this algorithm. When we run
this problem with 4 levels of refinement for a final time of 0.7µs (which accounts
for 3 steps at the coarsest level and 48 total steps at all levels), the conductivity
operator is called Nimp = 600 times. For these parameters, the time step restriction
for the explicit advance is 1tnoeb

exp = 2.63·10−10, so an explicit advance would
call the operator Nexp = 2665 times. For problems with less resolution or lower
viscosity, this performance tradeoff can easily flip and make the explicit method
more efficient. In the shock-boundary layer calculation presented in Section 9, for
example, 1tnoeb

exp >1t , which means that the explicit parabolic advance for this case
presents no addition time step constraint in the absence of embedded boundaries.

With embedded boundaries, however, the time step constraint for the explicit
advance (Equation (9)) is far more severe. If κmin is the smallest volume fraction in
the domain, the true time step constraint for the explicit advance is given by

1texp <
1x2(κmin)

2/D

2Dν
.

In this context, let us reconsider the shock-boundary layer calculation for a final
time of 0.57µs (and all other parameters described in Section 9), which is one
time step at the coarsest level and 97 time steps at all levels. The smallest volume
fraction at the finest level of this calculation is κmin = 3.83·10−7, which means that
1texp = 4.26·10−15 and the number of operator evaluations required for stability is
given by Nexp = 1.34·108. The number of operator evaluations we count for our
implicit algorithm is Nimp = 37536. Clearly, in the presence of small cells, the
implicit advance is the more efficient algorithm to advance our elliptic terms.

6. Convergence tests

To test the convergence rate of the algorithm we start with an initial condition
of flow within a sphere (or a circle in two dimensions). All tests are done using



110 GRAVES, COLELLA, MODIANO, JOHNSON, SJOGREEN AND GAO

Richardson extrapolation which means that an average of a finer solution is used
as an exact solution. Define Ah−2h to be a volume-weighted averaging operator.
Given S f to the set of fine volumes which cover a coarse volume i ,

Ah−2h( f )i =

∑
i f ∈S f

κi f f i f∑
i f ∈S f

κi f

.

Uh is defined to be our solution on a grid with resolution h. For an exact solution
U e, we use U e

2h = Ah−2h(Uh) and the error is given by

εh
=U h(t)−U e(t). (10)

The order of convergence $ is estimated by

$ =
log(‖ε2h

‖/‖εh
‖)

log 2
. (11)

We compute the convergence rates using compute using L∞, L1, and L2 norms (all
these norms are defined in [9]). The geometry of the test is a sphere with radius in
the center of a domain of length L . The initial condition of the tests is given by an
axisymmetric Gaussian disturbance f (r)= exp(−30(r/r0− 0.5)2). The maximum
Mach number is set to M = 0.5. Define (x, y, z) to be Cartesian coordinates
in a coordinate system whose origin is the sphere center. Define the distance
r = (x2

+ y2
+ z2)1/2. The velocity is given by u= (−M f (r)y/r0,M f (r)x/r0) in

two dimensions and u = (M f (r)(z− y)/r0,M f (r)(x − z)/r0,M f (r)(y− x)/r0)

in three dimensions. Define v to be the magnitude of the velocity vector. The
density and pressure are given by ρ = γ (1+ v2/r), p = (1+ v2/r). See Table 1
for other solution parameters.

Solution error is a measure of the convergence rate of the solution run to a fixed
time. All refinements were advanced to a fixed time t f = 32µs. The finest solution
was advanced 64 time steps with 1t = 0.5µs. Each successively coarser solution
was advanced half as many steps with twice as big a time step. This results in a
Courant number (CF , see (3)) of approximately 0.1 for full cells. The results of
the solution error test are given in Tables 2 and 3. We demonstrate second-order
accuracy in all norms.

µ= 2.1·10−5 kg/(m s) L = 1.0·10−2 m

λ=−1.4·10−5 kg/(m s) r0 = 4.5·10−3 m

Cv = 3.00·102 J/(kg K) γ = 7
5

ξ = 1.7·10−2 W/(m K)

Table 1. Initial condition set-up for the convergence tests. See text for variable definitions.
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norm variable e4h→2h $ e2h→h

ρ 1.103·10−2 1.980 2.796 ·10−3

L∞ (ρu)x , (ρu)y 2.740·10−3 1.822 7.748 ·10−4

ρE 2.006·10−2 1.978 5.092 ·10−3

ρ 2.519·10−3 1.982 6.377 ·10−4

L1 (ρu)x , (ρu)y 3.645·10−4 1.822 1.031 ·10−4

ρE 4.560·10−3 1.978 1.158 ·10−3

ρ 3.900·10−3 1.978 9.903 ·10−4

L2 (ρu)x , (ρu)y 6.795·10−4 1.824 1.920 ·10−4

ρE 7.066·10−3 1.973 1.801 ·10−3

Table 2. Solution error convergence rates in two dimensions using the L∞-, L1- and
L2-norms for h = 1

1024 cm.

norm variable e4h→2h $ e2h→h

(ρ) 3.536·10−2 1.979 8.968 ·10−3

L∞ (ρu)x , (ρu)y , (ρu)z 7.406·10−3 1.814 2.107 ·10−3

(ρE) 6.887·10−2 1.978 1.748 ·10−2

(ρ) 4.167·10−3 1.986 1.053 ·10−3

L1 (ρu)x , (ρu)y , (ρu)z 4.503·10−4 1.805 1.289 ·10−4

(ρE) 7.767·10−3 1.983 1.965 ·10−3

(ρ) 7.931·10−3 1.982 2.007 ·10−3

L2 (ρu)x , (ρu)y , (ρu)z 1.060·10−3 1.810 3.024 ·10−4

(ρE) 1.495·10−2 1.980 3.790 ·10−3

Table 3. Solution error convergence rates in three dimensions using the L∞-, L1- and
L2-norms for h = 1

1024 cm.

7. Capillary tube simulation

Our target application is the flow inside of capillary tubes in laser wakefield particle
accelerators. We present a simplified version of this problem as our robustness
calculation while acknowledging that other physics in these problems (such as
ionization and magnetization) are very important. Refer to Figure 2. The main
tube (C) and the fill tubes (A) are filled with gas. The experimentalists drive the
core pressure pcore along the axis of the tube to a high value using electrical charge,
leaving the density constant. The resulting flow causes the core to expand and create
a low density, high energy core. In the experiment, the laser (B) is shot through
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A

B

C

Figure 2. Illustration of wakefield accelerator. The main tube (C) and fill tubes (A) are
filled with gas. The pressure and temperature are initialized to high values up along the
axis of the tube. The resulting flow causes this region to expand and create a low density,
high-energy core. A laser (B) is shot through this core.

this low density core. Ideally this core should be cylindrical and have a relatively
flat density profile There is some concern in the community, however, that the fill
tubes can alter the core shape before the laser is shot.

We present both two- and three-dimensional runs that are meant to approximate
to this problem. For a computational geometry we intersect a 200 micron diameter
main tube with a perpendicular fill tube 50 microns in diameter. Figure 3 shows the

Figure 3. Geometric configuration of the three-dimensional example. The core tube’s
diameter is 200 microns; the filler tube’s diameter is 50 microns. The core tube’s length is
1.2 mm; the filler tube’s length is 0.85 mm.

Figure 4. Two-dimensional plot of log ρ after 35µs. The base grid is 2562 and there are 2
levels of refinement, all by a factor of 2. This means the effective grid resolution is 10242.
Though the density profile in the core is relatively flat, the core shape is no longer circular.
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Figure 5. Two-dimensional plot of log ρ after 35µs. The base grid is 128× 64 and there
are 3 levels of refinement, all by a factor of 2. This means the effective grid resolution
is 1024× 512. Though the density profile in the core is relatively flat, the filler tube has
distorted the profile.

Figure 6. Axial slice through three-dimensional run plot of log ρ after 50µs. This is a
one-level calculation with resolution 256× 128× 128. Though the density profile in the
core is relatively flat, the filler tube has distorted the profile.

geometric configuration. Both are filled with argon at 1 Pa, 1 kg/m3. We initialize
the core pressure to be pcore = 20 Pa, leave the density constant and initialize the
velocity everywhere to zero. The core diameter is 100 microns. Figure 4 (on the
previous page) shows a two-dimensional run of the plane normal to the central
tube cutting through a filler tube. We plot the logarithm of density after 35µs.
Though the density profile in the core is relatively flat, the core shape is no longer
circular. Figure 5 shows a two-dimensional run of the plane along the central
tube cutting through a filler tube. We plot the logarithm of density after 35µs.
Though the density profile in the core is relatively flat, the core shape is once again
distorted by the presence of the filler tube. Figure 6 shows an axial slice through
a three-dimensional run after 50µs and shows a similar result. To be clear, since
we do not include any source terms for the effects of ionization or magnetization,
this is greatly simplified approximation. We have, however, managed to show that
purely hydrodynamic effects can distort the shape of the low density core.
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poutside = 1.0 Pa µ= 2.1·10−5 kg/(m s)
pcore = 20.0 Pa λ=−1.4·10−5 kg/(m s)

ρoutside = 1.0 kg/m3 Cv = 3.00·102 J/(kg K)
ρcore = 1.0 kg/m3 ξ = 1.7·10−2 W/(m K)

γ = 5
3

Table 4. Initial condition set-up for capillary tube problem. The initial velocity is zero.

8. Boundary layer similarity solution

Given a semiinfinite flat plate in a flow field at zero incidence to the flow, the
velocity profile over the plate can be calculated using a similarity solution in the
absence of thermal and compressibility effects. Define x to be the distance along
the plate and y to be the distance from the surface of the plate and ν to be the
kinematic viscosity and U = Mc is the incident velocity (refer to Figure 7). The
similarity variable η is given by

η = y

√
U
νx
. (12)

This reduces the equations to a nonlinear ordinary differential equation, the solution
of which is the familiar Blasius boundary layer. See Schlichting [26] or White [32]
for a full exposition of this derivation. Charest et al. [6] present a low-Mach-number
algorithm for steady state calculations. In this calculation, they present a boundary
layer calculation that reproduces the behavior Blasius layer. Berger et al. [5] present
a wide variety of these calculations.

We cut a rectangular grid with a wedge of angle θ . Refer to Figure 8 and Table 5
for the initial and boundary conditions. The density and temperature are set to
constants ρ = ρ0, T = T0 = P0/(RT0). The velocity is set to (U cos θ,U sin θ)
everywhere. The velocity boundary conditions are inflow-outflow left to right (the

U

y

x

u

Figure 7. Formulation of semiinfinite flat plate boundary layer problem. U is the (con-
stant) inflow velocity, x is the distance along the plate and y is the distance above the
plate.
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p0 = 2.4·105 Pa µ= 1.2649·10−2 kg/(m s)
ρ0 = 1.0 kg/m3 λ=−8.4327·10−3 kg/(m s)
L = 3.0 m Cv = 5.00·102 J/(kg K)
D = 8.0 m ξ = 1.7·10−2 W/(m K)
W = 4.0 m ReL = 3.0·104 W/(m K)
M = 0.2 θ = 5◦

γ = 5
3

Table 5. Initial conditions for the boundary layer calculation. The velocity everywhere is
initialized to (Mc cos θ,Mc sin θ). See Figure 8 for variable definitions.

top boundary is an outflow boundary). The boundary conditions at the embedded
boundary begin as slip conditions and become no-slip to simulate the start of the
semiinfinite plate (the cross-hatched region of Figure 8). Our inflow Mach number
is set to M = 0.2 and the viscosity is set to make a Reynolds number ReL = 30000.
Temperature boundary conditions top and bottom are insulated; at the inflow T = T0.
We present two calculations, both with a base grid of 256×256. We refine near the
boundary by a factor of 16 (four levels of refinement, each factor of two) to make
an effective resolution near the boundary of 4096× 4096. The solution is allowed
to run to steady state. We cast rays into the fluid at every point along the boundary
within the local Reynolds number ranges 5000 < Rex < 15000. In Figure 9, we
present a scatter plot of the normalized velocity versus the similarity variable η.
We compare our results to the Blasius profile. We show good agreement with the
similarity solution.

D U = Mc

W
L

D

θ

Figure 8. Initial and boundary conditions for boundary layer calculation. The density
and temperature are set to constants. The velocity is set to (U cos θ,U sin θ) everywhere.
The embedded boundary cuts the grid at an angle θ from the bottom of the domain. The
no-slip condition for velocity is only in effect in the crosshatched region. Values for these
quantities are given in Table 5.
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Figure 9. Results of boundary layer calculation as compared with the Blasius solution.
This is a scatter plot of normalized velocity versus the similarity variable η at two different
resolutions. The magnitude of solution velocity is |u|, c is the sound speed and the
similarity variable η is defined in (12). The Blasius solution is in blue. The solution with
effective resolution of 4096× 4096 is in red. We cast a ray from every point along the
boundary where the local Reynolds number is in the range 5000< Rex < 15000. We plot
every point along every ray. The rays are 30 points long.

9. Shock reflection

Define M to be the Mach number of a shock propagating into a gas at rest. Glaz
et al. [14] present a comparison between inviscid calculations of shock reflections
and experimental results. They show a case where viscous effects cause substantial
changes in the reflection pattern. For M = 7.1 shock reflection from a 49 degree
wedge, they show that the Mach stem is much shorter in the experiment than in
an inviscid calculation. The reason cited for this difference is that the viscosity of
argon varies strongly with temperature and the temperature behind the shock is
quite high (the initial temperature behind the diaphragm is 10265 K). The viscosity
is approximated to vary with the Sutherland’s power law (dynamic viscosity varies
with T 3/2). We use the viscosity shown in Table 6. We compute this viscosity using
the highest value given in [22] and extrapolating to the initial high temperature.
The specific heat and conductivity of argon are left at the room temperature values.
These approximations are sufficient to illustrate the phenomenon.

Refer to Figure 10 for an illustration of the initial conditions. Table 6 has the
numerical values of the inputs. Both calculations have a 128× 64 base grid with
seven levels of adaptive mesh refinement, all by a factor of 2. This makes the
effective resolution 16384× 8192. All embedded boundary cells are refined to the
finest level. This gives resolution at the boundary layer h = 9.1 microns.
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p0 = 1.95·103 Pa Y3 = 7.50·10−2 m
p1 = 7.42·105 Pa µ= 1.21·10−3 kg/(m s)
ρ0 = 3.29·10−2 kg/m3 λ=−8.08·10−4 kg/(m s)
ρ1 = 3.61·10−1 kg/m3 Cv = 3.00·102 J/(kg K)
X1 = 9.0·10−2 m ξ = 1.7·10−2W/(m K)
X2 = 1.0·10−1 m θ = 49◦

X3 = 1.5·10−1 m γ = 5
3

Table 6. Initial condition set-up for shock reflection problem. The initial velocity is zero.
See Figure 10 for variable definitions.

Y3
p1, ρ1 p0, ρ0

θ

X1

X2
X3

Figure 10. Shock tube set-up. The initial velocity is zero. The initial pressures and
densities are tailored to make a M = 7.1 shock. See Table 6 for details.

Figure 11 illustrates the Mach reflection problem. Figure 12 shows the viscous
and inviscid calculations at the same scale after 9.61µs. The viscous calcula-
tion shows an interesting shock-boundary layer interaction, which is magnified in
Figure 14. The shock reflects off of the boundary layer, creating a separation bubble.
This is followed by a compression (from the reflected shock) and boundary layer
reattachment. For steady shocks interacting with laminar boundary layers, this is
the classical lambda shock phenomenon. Both Schlichting [26] and Liepmann et
al. [21] explain this in detail and include a wealth of experimental images. This is
also observed (albeit barely) in the experiment presented in [14]. The interferogram
they show has only two or three density contours in that region which makes the
feature difficult to see.

Figure 12 clearly shows that the viscous boundary layer has reduced the Mach
stem substantially and a density stratification on the left. Recall that the problem
is configured as a shock tube. The initial conditions are zero velocity with a
discontinuity in pressure and density. As the shock moves to the right, a rarefaction
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p1, ρ1 p0, ρ0

L M

L R

Figure 11. Shock reflection illustration. The ratio of the Mach stem length L M to the
shock distance L R is the quantity of interest.

Figure 12. Mass density (kg/m3) in the inviscid (top) and viscous(bottom) calculations of
M = 7.1, with 49◦ shock reflection at 9.6µs. This calculations were run 128× 64 base
grid with seven levels of adaptive mesh refinement, all by a factor of 2. This makes the
effective resolution 16384× 8192. All embedded boundary cells are refined to the finest
level. This gives resolution at the boundary layer h = 9.1 microns.
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Figure 13. Mass density (kg/m3) in the inviscid (top) and viscous (bottom) calculation of
M = 7.1, with 49◦ shock reflection at 9.6µs, zoomed in to show the reflection pattern.

Figure 14. Magnification of the lambda shock-boundary layer pattern in the viscous
calculation. Density (in kg/m3) shown here.

fan moves to the left, producing this density variation. We show the two shock
reflection patterns more closely in Figure 13. For a quantitative look at this reduction,
we refer to the experimental and computational results in [14]. See Figure 11 for
an illustration of the relevant lengths. The ratio of the Mach stem length L M to the
shock distance L R is the quantity of interest:

Rm =
L M

L R
.

Glaz et al. report a value of Rm = 0.07 in their inviscid calculation and Rm = 0.038
for an experimental result (see Figure 10 in [14]). Our inviscid calculation has
Rm = 0.072 and our viscous calculation has Rm = 0.03. We believe that our
agreement is reasonable since not all the experimental set-up information is available
(the time at which the interferogram is taken, for example, is not available). For
more examples of this viscous effect, see Henderson et al. [17].
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10. Conclusion

We have presented a stable, second-order method for solving the two- and three-
dimensional compressible Navier–Stokes equations in the presence of complex
geometries. This semiimplicit method advances parabolic terms implicitly and
hyperbolic terms explicitly. This allows a time step controlled by the CFL constraint
associated with the hyperbolic wave speeds. We demonstrate second-order accuracy
for smooth initial conditions in smooth geometric configurations and robust behavior
in the presence of strong discontinuities and geometric complexity that mimic the
conditions in a plasma wakefield accelerator in the absence of magnetic or ionization
effects. We also show good quantitative agreement with experimental results in a
viscous shock reflection problem and a boundary layer problem.
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