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Extracorporeal shock wave therapy (ESWT) is a noninvasive treatment for a
variety of musculoskeletal ailments. A shock wave is generated in water and
then focused using an acoustic lens or reflector so the energy of the wave is
concentrated in a small treatment region where mechanical stimulation in princi-
ple enhances healing. In this work we have computationally investigated shock
wave propagation in ESWT by solving a Lagrangian form of the isentropic Euler
equations in the fluid and linear elasticity in the bone using high-resolution finite
volume methods. We solve a full three-dimensional system of equations and use
adaptive mesh refinement to concentrate grid cells near the propagating shock.
We can model complex bone geometries, the reflection and mode conversion at
interfaces, and the propagation of the resulting shear stresses generated within
the bone. We discuss the validity of our simplified model and present results
validating this approach.

1. Introduction

Extracorporeal shock wave therapy (ESWT) is a noninvasive treatment for musculo-
skeletal conditions such as bone fractures that fail to heal (nonunions), necrotic
wounds, and strained tendons [55; 40]. In this treatment a shock wave is generated
in water and then focused using an acoustic lens or reflector so that the energy of
the wave is concentrated in a small treatment region. This technique has been used
since the 1980’s, more widely in Europe and Asia than in the US, where it is still
considered experimental and has limited FDA approval.

Although the underlying biological mechanisms are not well understood [42],
the mechanical compressional and/or shear stress caused by the propagating shock
wave is thought to stimulate healing [42; 54; 26; 39; 53; 43; 44; 30; 13; 27; 11;
23]. In addition to stress, a number of other biological mechanisms potentially play
a role in the body’s response to ESWT. The focus of this study, however, is on
mechanical stress deposition and computational tools for studying this phenomenon.
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Computational models for shock wave propagation and focusing can aid in
the study of ESWT. In particular, there are many open questions concerning the
interaction of shock waves with complex three-dimensional geometries such as
bone embedded in tissue. In this paper we present a new method for studying
ESWT that incorporates the fluid and solid materials in a set of coupled, nonlinear
partial differential equations that are solved using high-resolution finite volume
methods. In order to model the wave interaction with complex three-dimensional
geometries, we employed adaptive mesh refinement to concentrate the finest grid
around then propagating shock wave.

Because of the difference in material properties, a wave hitting the tissue/bone
interface will be partially reflected, and the transmitted wave will have a modified
strength and direction of propagation. This can greatly affect the location and size
of the focal region and the peak pressure amplitude. Also, although the shock wave
is primarily a pressure wave in soft tissue (which has a very small shear modulus),
at a bone interface mode conversion takes place and shear waves as well as compres-
sional waves are transmitted into the bone, generating a dynamically applied load.

The medical shock wave devices are similar to those used for extracorporeal
shock wave lithotripsy (ESWL), a widely used nonsurgical treatment for kidney
stones in which the focused shock waves have sufficient amplitude to pulverize
the kidney stone. In shock wave therapy the amplitudes are generally smaller
and the goal is mechanical stimulation rather than destruction, although in some
applications such as the treatment of heterotopic ossifications (HO) (see Section 5.4)
larger amplitudes may be used.

Figure 1 shows the geometry of a laboratory shock wave device modeled on the

Figure 1. Cartoon of the Dornier HM3 Lithotripter. Left: the spherical wave is generated
at F1, reflects off the ellipsoid and the reflected wave focuses at F2. Right: the creation of
the edge waves at the corner of the ellipsoid and the contribution of negative pressure to
the tail of the ESWT pressure wave.
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clinical Dornier HM3 lithotripter. The three-dimensional axisymmetric geometry
consists of an ellipsoidal reflector made out of metal and a cavity filled with water. A
spark plug at the focus of the ellipse marked F1 generates a bubble which collapses
and creates a spherical shock wave that reflects and focuses at F2. The major
and minor axes of the ellipsoid in the HM3 are a = 140 mm and b = 79.8 mm,
respectively. The foci of this ellipse are at (±115, 0, 0) and the reflector is truncated
at 100 mm from F1, or (−10, 0, 0).

In the laboratory, this reflector is immersed in a bath of water and objects can be
placed at the second focus of the ellipsoid, F2. This device is in use at the Center
for Industrial and Medical Ultrasound (CIMU) at the University of Washington
Applied Physics Laboratory and we have used this geometry in order to compare
directly with some laboratory experiments. Some preliminary comparisons were
presented in [19].

Computationally, we use this geometry to calculate the initial condition by solving
two-dimensional axisymmetric Euler equations with the Tammann equation of state
(see Section 2). These initial conditions are then fed into a full three-dimensional
calculation near the focus at F2.

In addition to the HM3, we have also used the geometry of the hand-held
Sanywave device used in clinical studies by our collaborator Dr. Michael Chang.
Some sample calculations related to the study of HOs are presented in Section 5.4.

In each case, the ESWT pressure wave form that is generated has a similar shape.
There is a sharp increase in pressure from atmospheric pressure (∼ 0.1 MPa) to a
peak pressure ranging from 35 to 100 MPa over a very short rise time (∼ 10 ns),
followed by a decrease in pressure to ∼−10 MPa over ∼ 5µs. The negative fluid
pressure in the tail can lead to cavitation bubbles, as discussed below.

Bone healing is thought to be regulated in part by mechanical factors [39; 53; 45;
26; 23; 53]. Several studies have shown that the application of cyclic compressive
and shear displacements can enhance healing through increased callus formation
and ossification [39; 45; 46; 50; 43; 56]. The results also indicate that treatment is
also dependent upon the rate, mode and magnitude of the stress deposition [39], as
well as the gap size [14].

Carter et al. [11], as well as Claes and Heigele [13], proposed a model for skeletal
tissue development based on hydrostatic pressure and tensile displacements [13].
Other research has proposed a different model for skeletal tissue formation based on
shear strain and fluid flow [44; 30]. Augat et al. [2] found that tensile displacements
are not effective in enhancing bone formation. This was further validated when
Isaksson et al. [27] investigated the models in [13; 11; 44; 30] and found that shear
strain and fluid flow, were more accurate predictors of bone growth. However, no
single model was able to predict certain features of the bone formation and healing
process [39], highlighting the need for further research in this area.
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The shear waves generated at the fluid/solid interface have also been shown to
be important in the effective break up of kidney stones [49; 20]. An additional
effect of ESWT is the formation and collapse of cavitation bubbles that can cause
tissue damage. While the shock wave is a compression wave, it is followed by a
rarefaction wave of expansion, and in the tail the fluid pressure typically drops to
negative values. Reflection at interfaces can lead to enhanced regions of expansion
and to sufficiently negative pressures that cavitation bubbles can form [38; 51; 17].

To better understand all of these effects, it is desirable to have a three-dimensional
computational model that can simulate the focusing of nonlinear shock waves and
their interaction with arbitrarily complex interfaces between different materials.

In this paper we present an approach to this problem that has allowed the study of
some of these issues in a simplified context. In particular, we consider an idealized
situation in which soft tissue is replaced by water, ignoring its viscoelastic properties,
and modeled by the nonlinear compressible Euler equations with the Tammann
or Tait equation of state. This has been used for prior ESWT work in water as
well as biological-like materials [28; 41]. Bone is modeled as an isotropic and
homogeneous linear elastic material [21; 29].

In reality, soft tissue and bone are very complex multiscale materials with
microstructures, inhomogeneities, and anisotropic properties. Any attempt to model
the biological effect of shock wave propagation through such materials may require
a more sophisticated and detailed model than used here. However, we believe that
many of the macroscale shock propagation issues discussed above can be adequately
and most efficiently studied with a simplified model of the form considered here,
since the dominant effect we hope to capture is the reflection and transmission of
waves at interfaces between materials.

The compressible Euler equations with the Tammann equation of state (see
Section 2.1) in two-dimensional axisymmetric geometry is used to model the initial
formation of the focusing shock wave. These initial conditions are then fed into
a code that uses a simpler nonlinear model, the Tait equation of state, in a three-
dimensional simulation of the fluid. The compressible fluid equations are written
using a Lagrangian formulation that easily couples to the isotropic linear elasticity
equations used in the bone-like material. The resulting equations have the same
form everywhere, with a different stress-strain relationship in the different materials.

A high-resolution finite volume method is used to solve these equations. We use
the wave-propagation algorithms described in [35] and implemented in Clawpack
[15]. These are Godunov-type methods for the hyperbolic system that use solutions
to the Riemann problem between adjacent grid cells to determine a set of waves
used to update the solution, and second-order correction terms with slope limiters
are added to resolve the nearly discontinuous shock waves with minimal smearing
or nonphysical oscillation.
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These methods are used on a purely rectangular Cartesian grid. Each grid cell has
associated with it a set of material parameters determining the material in the cell,
in a unified manner so that both fluid and solid can be modeled. Complex geometry
is handled by using appropriate averaged values of these parameters in cells that
are cut by the interface. This is described further in Section 4.4. Averaging across
the interface works quite well when the material properties are sufficiently similar
and in Section 4.4 we show that this is the case even for fluid/solid boundaries of
the type we consider.

We also use patch-based adaptive mesh refinement (AMR) to concentrate grid
cells in regions where they are most needed to resolve features of interest. The
Clawpack software contains AMR software in both two and three space dimensions
and this software has been used directly for the two-dimensional axisymmetric com-
putations of the initial shock wave described in Section 5. For the three-dimensional
problem we have used ChomboClaw [10], an interface between Clawpack and
the Chombo code [1] developed at the Lawrence Berkeley National Laboratory
(LBL), which provides an implementation of AMR on parallel machines using MPI.
Using ChomboClaw, the code originally developed using Clawpack was easily
converted into a code that was run on an NSF TeraGrid machine at Texas Advanced
Computing Center (TACC) and tested using up to 128 processors.

Extensive laboratory experiments have been performed on shock wave devices
to measure the wave form of shock waves produced by various devices, the shape
of the focal region, the peak amplitudes of pressure observed in these regions, and
other related quantities. Most of these experiments have been done in a water
tank where the shock wave propagates and focuses in a homogeneous medium
where measurements are easily done, or with phantoms (acrylic objects with well
understood photoelastic properties) that are placed in the water as a proxy for bones
or kidney stones, with instrumentation such as pressure gauges or photographs
used to explore the interaction of the shock wave with the object. In some cases
high-speed photographs of the shock wave have been obtained. Creating phantoms
from clear birefringent materials and using polarized light it is even possible to
photograph the shock wave propagating through the object [48]. We have used
some of these experiments to help validate our numerical approach [19].

Other researchers have also developed computational models for shock wave
therapy and lithotripsy. In prior work the pressure field has been modeled using
linear and nonlinear acoustics as well as the Euler equations with the Tait equation
of state. Hamilton [24] used linear geometrical acoustics, which holds under the
assumption of weak shock strength, to calculate the reflection of the spherical wave.
The diffraction of the wave at the corner of the reflector was calculated using the
Kirchoff integral method. Christopher’s model [12] of the HM3 lithotripter used
Hamilton’s result as a starting point and considered nonplanar sources. Coleman
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et al. [17], Averkiou and Cleveland [3] used models based on the KZK equation.
Tanguay [51] solved the full Euler equations and incorporated cavitation effects as
well as the edge wave.

Our approach differs from these in that we consider the wave propagation in
both the fluid and solid by solving a single set of equations that can model both
materials. This approach allows us to investigate not only compression and tension
effects of ESWT, but also the propagation of shear waves in the solid. Sapozhnikov
and Cleveland [16] have investigated the effect of shear waves on spherical and
cylindrical stones using linear elasticity with a plane wave initial condition. This
initial condition is an unfocused wave, which yields good results for small objects,
but would fail to capture the full ESWT pressure wave interaction with three-
dimensional bone geometries.

2. Model equations

To accurately model shock wave formation and propagation it is generally necessary
to use nonlinear equations of compressible flow. In this work we use nonlinear
equations for compressible liquids in the fluid domain (water or soft tissue) and
linear elasticity in the solid domain (bone). The nonlinear compressible equations
are written in a Lagrangian framework in terms of a reference configuration, as
is done for the linear elasticity equations. This allows both sets of equations to
be written in the same form. We apply finite volume methods to this form of the
equations so that a single computational grid (or set of nested grids with AMR) can
be used over the entire domain. Interfaces between fluid and solid are represented
by choosing averaged material parameters in each grid cell, as discussed further in
Section 4.4.

The system of equations we solve has the general form of a hyperbolic system
of 9 equations

qt + f (q, x, y, z)x + g(q, x, y, z)y + h(q, x, y, z)z = 0, (1)

where the vector q consists of the 6 components of the symmetric strain tensor
followed by the momenta, and the fluxes in general may be spatially varying based
on material properties:

q =
[
ε11 ε22 ε33 ε12 ε23 ε13 ρu ρv ρw

]T
,

f (q, x, y, z)=
[
u 0 0 v/2 0 w/2 σ 11 σ 12 σ 13]T

,

g(q, x, y, z)=
[
0 v 0 u/2 w/2 0 σ 12 σ 22 σ 23]T

,

h(q, x, y, z)=
[
0 0 w 0 v/2 u/2 σ 13 σ 23 σ 33]T

.

(2)

In these expressions, T denotes transposition, ρ = ρ(x, y, z) is the density of the
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material (the “background density” independent of the wave propagating through
the material) and the stress tensor σ = σ(q, x, y, z) is in general a spatially varying
function of q , linear in the solid and nonlinear in the fluid.

Within the fluid domain σ =−pI , where p is the scalar pressure and I is the
identity matrix. The pressure is a nonlinear function of the strain as discussed
further below. In the solid domain, σ is a linear function of ε and is nondiagonal,
allowing us to model the propagation of shear waves as well as compressional
waves.

In Section 2.1 below we present the compressible fluid equations in their standard
Eulerian form (the Euler equations) and discuss two possible equations of state,
the Tammann EOS and the simpler Tait EOS in which the pressure is a function of
density (or strain) alone, allowing us to drop the energy equation from the Euler
equations. Then in Section 2.2 we rewrite these equations in the Lagrangian form
given above. This can be done when modeling ESWT because the deformations are
sufficiently small that the geometric nonlinearity of the equations can be ignored,
adopting a Lagrangian frame and only considering the nonlinearity of the stress-
strain relation as given by the equation of state.

In Section 2.3 we discuss the linear elasticity model used to model bone.

2.1. Compressible fluids in Eulerian form. Much of the previous work on ESWT
has been centered around the use of the Euler equations with the Tait or Tammann
equations of state. These equations of state are typically used for modeling under-
water explosions like the spark plug source of the lithotripter device [24; 28]. In
this section we discuss the full Euler equations and proceed to show why the Tait
equation of state is sufficient for modeling ESWT. Since this equation of state is a
function only of the density, and can be rewritten as a function of strain, we show
in Section 2.2 how it can be modeled within the framework of elasticity, which
enables us to model both the fluid and solid with the single system of equations
given above.

In three space dimensions the Euler equations take the form

∂

∂t


ρ

ρu
ρv

ρw

E

+ ∂

∂x


ρu

ρu2
+ p

ρuv
ρuw

u(E + p)

+ ∂

∂y


ρv

ρuv
ρu2
+ p

ρvw

v(E + p)

+ ∂

∂z


ρv

ρuw
ρvw

ρw2
+ p

w(E + p)

= 0. (3)

The total energy is E = ρe+ 1
2(u

2
+ v2
+w2).

Several of the problems we investigated are axially symmetric and this enabled
us to reduce the three-dimensional equations to a two-dimensional form. If we first
rewrite the equations in cylindrical coordinates (r, θ, z) and assume no variation and
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zero velocity in the θ direction, the system we obtain is reduced to two variables, r
and z. The equations are

∂

∂t


ρ

ρur

ρwz

E

+ ∂

∂r


ρur

ρu2
r + p

ρurwz

ur (E + p)

+ ∂

∂z


ρwz

ρurwz

ρw2
z + p

wz(E + p)

=

−(ρur )/r
−(ρu2

r )/r
−(ρurwz)

ur (E + p)/r

 , (4)

where ur and wz denote the velocities in the r and z directions. These equations
are of the same form as the two-dimensional Euler equations, with the addition
of geometric source terms that are a result of the variable transformation. The
source terms are never evaluate at r = 0 since we are using a finite volume method
where quantities are evaluated at cell-centers, that is, the smallest value of r in a
calculation is 1x/2. We prefer to keep the equations in conservation form, so they
can be efficiently solved using finite volume methods.

In order to solve the system (3) or (4), we need to close the system with a
relation between the pressure and conserved variables. The Tammann EOS [28]
is applicable to a wide range of liquids, even with very strong shock waves. This
equation of state has the form

p = p(ρ, e)= (γ − 1)ρe− γ p∞, (5)

where p, ρ and e are the pressure, density and specific internal energy, respectively,
while γ and p∞ are constants depending on the fluid. If p∞ = 0 this is the standard
EOS for an ideal gas, with γ generally satisfying 1 < γ < 5/3, while for water
γ ≈7.15 and p∞≈300 MPa. For sufficiently weak shocks, this can be approximated
by the Tait equation of state,

p = p(ρ)= B
[(

ρ

ρ0

)n

− 1
]
, (6)

where B is a pressure term that is a weak function of entropy, but is typically treated
as a constant, and corresponds to p∞ from (5) while n corresponds to γ . Here ρ0

is the background density measured at one atmospheric pressure. In our work we
take B = 300 MPa and n = 7.15.

It has been common practice to use the Tait EOS in shock wave therapy and
lithotripsy models [47; 41]. This has been justified by noting studies that show
that entropy changes across the shock are very small even up to pressure jumps
of 200 MPa [41], which is beyond the range used in ESWT. To verify this as-
sumption, we performed computational experiments to compare the Tammann and
Tait equations of state for typical ESWT shock waves. Since we have used the
f-wave approach in our computational model, we can solve (4) with a spatially
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Figure 2. Left: comparison of a pressure wave calculation performed using both the Tait
(blue dashed curve) and Tammann (black curve) equations of state. The results are nearly
identical. Right: Comparison of the pressure pulse at F2 obtained in the Euler calculation
(blue dashed curve) and the Lagrangian calculation (black curve). It is clear that the
two sets of equations give good agreement. The wave in the Lagrangian case is slightly
attenuated, but this may be due to error in initializing the calculation. In these calculations
1x = 0.5 mm.

varying equation of state. We set up an experiment where the resulting shockwave
(generated using the Tammann equation of state), was over 150 MPa. Figure 2,
left, shows the results from this experiment. The black solid curve is the result
from solving with the Tammann EOS in the entire domain. The blue dashed curve
shows the result gotten by switching to the Tait EOS at x = 50. This enabled us to
compare the two equations of state with the exact same initial condition. There is
a small disagreement at x = 50 caused by a slight reflection at the interface due
to the change in the equation of state. Otherwise, the pressure profiles are nearly
identical, giving confidence that the calculations we are interested in can be done
by solving the Euler equations with the Tait equation of state. This allows us to
drop the equation for energy and obtain the simplified system

∂

∂t


ρ

ρu
ρv

ρw

+ ∂

∂x


ρu

ρu2
+ p

ρuv
ρuw

+ ∂

∂y


ρv

ρuv
ρv2
+ p

ρvw

+ ∂

∂z


ρw

ρuw
ρvw

ρw2
+ p

=


0
0
0
0

 . (7)

2.2. Compressible fluids in Lagrangian form. In the case of a fluid where the
shear modulus is zero, the stress tensor can be written as σ(ε) = −pI , where
p is the pressure in the fluid and I is the identity matrix. In the case of ESWT,
the pressure only depends on changes in the density, and we can write p(ε) as a
function of the strain tensor ε. Consider the movement of a material with respect to
a reference configuration and let δ = (δx , δy, δz) be the infinitesimal displacement.
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In three space dimensions, the full strain tensor is

ε =

 δx
x

1
2(δ

x
y + δ

y
x )

1
2(δ

x
z + δ

z
x)

1
2(δ

x
y + δ

y
x ) δ

y
y

1
2(δ

y
z + δ

z
y)

1
2(δ

z
x + δ

x
z )

1
2(δ

z
y + δ

y
z ) δz

z

 , (8)

where subscripts denote partial derivatives.
In the case of small deformations, we have from conservation of mass that

ρ =
ρ0

1+ tr(ε)
(9)

where ρ0 is the equilibrium density.
If we insert this into the Tait equation of state (6) we get

p(ε)= B
[(

1
1+ tr(ε)

)n

− 1
]
. (10)

Using the Lagrangian form is only valid in the case where the displacements
are small, so we calculated the maximum value of the displacements in a two-
dimensional axisymmetric calculation with the Euler equations. We found that for
a maximum peak pressure of 50 MPa, the corresponding maximum velocity was
10−3 m/s. We then calculated the maximum displacement by integrating the velocity
over the time of the calculation and found this to be on the order of 10−5 mm. The
size of the grid cell is on the order of 10−1 mm, so the displacements are 4 orders
of magnitude smaller than the width of the grid cells. It is therefore reasonable
to assume that the density in each grid cell is essentially constant and that the
Lagrangian framework of the elasticity equations will be valid for the fluid.

To test this, we took the same initial condition for the two-dimensional axisym-
metric Euler equations with the Tammann equation of state and the corresponding
two-dimensional axisymmetric Lagrangian form of the equations with the Tait
equation of state and measured the pressure at the focus, F2. The results in Figure 2,
right, demonstrate reasonably good agreement between the two cases, but the
Lagrangian form is slightly attenuated. This may be due to conversion of the initial
condition from the conserved variables in the Euler equations (4) to those in the
elasticity equations (1).

Since the displacements are small, we also considered the possibility that nonlin-
earity in the fluid could be ignored, so we could instead use a linearized version of
the Tait equation of state. Then we would be able to simply use the linear elasticity
equations throughout the domain, in both the fluid and solid materials. If we assume
a small perturbation to the strain, ε + δε, we can expand the Tait EOS (6) as a
Taylor series about ε,
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p(ε+ δε)= p0+ p′(δε)ε+
p′′(δε)

2
ε2
+ · · · . (11)

If we keep the first two terms of the expansion, the EOS has been linearized and we
will call this the linear Tait EOS. Similarly, we will refer to the equation obtained
by keeping the first three terms of the expansion as the quadratic Tait EOS. One-
dimensional tests of both possibilities are shown in Figure 3, for three different wave
amplitudes. For a wave with maximum amplitude less than 3 MPa there is fairly
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Figure 3. Pressure gauge measurement at F2 of different versions of the Tait EOS at
different amplitudes. The triangular markers indicate the full nonlinear Tait EOS, the solid
line is a linearized version and the square markers are a quadratic version. The linearized
versions of the EOS work reasonably well at small amplitudes, but it’s clear from the
bottom figure that as the pressures increase to those observed in ESWT, the full nonlinear
equation of state must be used.
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good agreement, however, as the amplitude is increased, as is required for ESWT,
the linear and quadratic equations of state do not capture the correct behavior. Thus
we used the full Tait EOS in the fluid domain.

2.3. Elasticity equations. In the current work we model bone as a linear isotropic
solid. We use the equations (1) together with Hooke’s law

σ 11
= C11ε

11
+C12ε

22
+C13ε

33, (12)

σ 22
= C21ε

11
+C22ε

22
+C23ε

33, (13)

σ 33
= C31ε

11
+C32ε

22
+C33ε

33, (14)

σ 12
= C44ε

12, (15)

σ 13
= C55ε

13, (16)

σ 23
= C66ε

23, (17)

where the spatially varying scalar coefficients Ci j (x, y, z) are determined by the
properties of the material being modeled. The parameters used for the bone model
were found in [37].

For an isotropic material we can relate the Ci j above to the two Lamé parameters,
λ and µ, that are used to model different elastic materials. Ci i = λ + 2µ for
i = 1, . . . , 3, Ci i = 2µ for i = 4, . . . , 6, and Ci j = λ for i 6= j . Here µ is the shear
modulus and λ+ 2µ is the bulk modulus of the material. Note that the λ here is
different from the λi used to denote the eigenvalues elsewhere in the paper.

Linear elasticity has been used extensively in the literature to model both tra-
becular and cortical bone [29; 21]. Linear viscoelastic models have also been used
for ultrasound wave propagation in bone [22]. Our model could be extended to
orthotropic models, requiring 9 material parameters, as has also been used for bone
modeling; see, for example, [52].

3. Eigenstructure of the hyperbolic system

The full three-dimensional system of equations (1) models both the nonlinear fluid
and the linear elastic bone as described in the preceding sections. This system can
be written in quasilinear form:

qt + A(q, x, y, z)qx + B(q, x, y, z)qy +C(q, x, y, z)qz = 0, (18)

where A, B and C are the Jacobians of the flux functions in the x , y and z directions
respectively. For the multidimensional methods implemented in Clawpack, we need
the solution to the Riemann problem along slices in each coordinate direction. Here
we provide the details for the solution in the x direction, but the solution in the y
and z directions are similar with appropriate permutations to the B and C matrices.
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The corresponding Jacobian for this system in the x direction is:

A(q, x, y, z)=
∂ f (q, x, y, z)

∂x

=−



0 0 0 0 0 0 1
ρ0

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2ρ0

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2ρ0

σ 11
ε11 σ

11
ε22 σ

11
ε33 0 0 0 0 0 0

0 0 0 σ 12
ε12 0 0 0 0 0

0 0 0 0 0 σ 13
ε13 0 0 0



,

(19)

where σ 11
ε33 , for example, denotes the partial derivative of σ 11 with respect to ε33.

In the linear elastic case this is simply the coefficient C13, but the above form
also applies to the nonlinear compressible equations. The spatial variation in
f (q, x, y, z) and the Jacobian A result from allowing the material parameters such
as density and elastic moduli to vary in space. The Jacobians in the y and z directions
are similar with the entries permuted appropriately.

The eigenvalues for system (19) are

λ1,2
=±

√
σ 11
ε11

ρ0
; λ3,4

=±

√
σ 12
ε12

2ρ0
; λ5,6

=±

√
σ 13
ε13

2ρ0
; λ7,8,9

= 0. (20)

When modeling a fluid where the shear stress is zero, there are seven zero-speed
eigenvalues since σ 12

ε12 = σ
13
ε13 = 0. Only the compressional waves corresponding to

λ1,2 propagate with nonzero speed. Note that the Tait equation of state (10) gives

σ 11
ε11 =

∂σ 11

∂ε11 = Bn
(

1
1+ ε11+ ε22+ ε33

)n+1

=
n(p+ B)
1+ tr ε

. (21)

In the small amplitude acoustic limit ε→ 0, from (20) we obtain the wave speeds

±

√
n(p+ B)

ρ0
, (22)

which are the expected waves speeds for compressional waves in the Lagrangian
form with this equation of state.

For the elastic solid, on the other hand, waves 1 and 2 correspond to P-waves
while waves 4–6 correspond to S-waves, and the expected wave speeds are recovered
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based on the elastic coefficients given in Section 2.3. For example, in the x direction
the P-wave speeds are

±

√
C11

ρ0
, (23)

and the S-wave speeds are

±

√
C44

2ρ0
and ±

√
C55

2ρ0
. (24)

The corresponding eigenvectors for system (19) are

r1,2
=
[
1 0 0 0 0 0 ±

√
ρ0σ 11

ε11
0 0

]T
,

r3,4
=
[
0 0 0 1 0 0 0 ±

√
2ρ0σ

12
ε12 0

]T
,

r5,6
=
[
0 0 0 0 0 1 0 0 ±

√
2ρ0σ 13

ε13

]T
,

(25)

for the P-waves and S-waves, and

r7
=
[
−σ 11

ε22 σ 11
ε11 0 0 0 0 0 0 0

]T
,

r8
=
[
−σ 11

ε33 0 σ 11
ε11 0 0 0 0 0 0

]T
,

r9
=
[
0 0 0 0 1 0 0 0 0

]T
,

(26)

for the stationary waves.

3.1. Axisymmetric form of the equations. We used the two-dimensional axisym-
metric form of the equations to generate an initial condition for our three-dimen-
sional calculations, as well as for validation of our model.

The three-dimensional equations in cylindrical coordinates are:

εrr
t =

∂u
∂r
, εθθt =

u
r
+

1
r
∂v

∂θ
, εzz

t =
∂w

∂z
,

εr z
t =

1
2

(
∂u
∂z
+
∂w

∂r

)
, εrθ

t =
1
2

(
∂v

∂r
+

1
r
∂u
∂θ
−
v

r

)
, εθ z

t =
1
2r

(
∂w

∂θ
+
∂v

∂z

)
,

ρut =
1
r
∂σ rθ

∂θ
+
∂σ rr

∂r
+
σ rr
− σ θθ

r
+
∂σ r z

∂z
,

ρvt =
1
r
∂σ θθ

∂θ
+
∂σ rθ

∂r
+

2σ rθ

r
+
∂σ zθ

∂z
,

ρwt =
1
r
∂σ zθ

∂θ
+
∂σ zz

∂z
+
∂σ r z

∂r
+
σ r z

r
.

(27)
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If we assume that v = εθ z = εrθ = 0 and there is no variation in the θ direction,
then the system (27) simplifies to

εrr
t =

∂u
∂r
, εθθt =

u
r
, εzz

t =
∂w

∂z
, εr z

t =
1
2

(
∂u
∂z
+
∂w

∂r

)
,

ρut =
∂σ rr

∂r
+
σ rr
− σ θθ

r
+
∂σ r z

∂z
,

ρwt =
∂σ zz

∂z
+
∂σ r z

∂r
+
σ r z

r
.

(28)

It is interesting to note here that the strain in the θθ direction is nonzero and in
this case is called the hoop strain. A uniform radial displacement is not a rigid
body motion, as it would be in the two-dimensional plane strain case, but instead
produces a circumferential strain. This is because the original circumference of the
cylinder is 2πr , but when there is a strain in the radial direction the circumference
grows to 2π(r + ur ), inducing a strain 2πur/2πr = ur/r .

The Jacobian for system (28) in the z direction is

f ′(q)=−



0 0 0 0 1
ρ0

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1
2ρ0

σ rr
εrr

σ rr
εzz

0 0 0 0

0 0 0 σ r z
εr z

0 0


, (29)

and has an eigenstructure that is equivalent to the two-dimensional elasticity equa-
tions, with the addition of a second zero-speed eigenvalue.

These equations have the structure

qt + f (q)r + g(q)z = S(q, r), (30)

with source terms

εθθt =
u
r
, ρut =

σrr − σθθ

r
, ρwt =

σr z

r
. (31)

In Clawpack, we solve these equations with a fractional-step method. The full
problem is split into two subproblems that are solved independently. We first
solve the homogeneous system obtained by setting S ≡ 0 in (30) using the wave
propagation algorithm described in Section 4, and then solve

qt = S(q, r), (32)

with an appropriate ODE solver. For (31), we use forward Euler.
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4. Numerical methodology

We used the wave-propagation algorithms described in [35] and implemented in
Clawpack [15] to solve the hyperbolic systems of PDEs derived in the preceding
sections. In this section we provide the basic details of the numerical methodology
and the approximate solution to the Riemann problem with a spatially varying flux
function, similar to what was done in [36]. We also discuss computational issues
that require the use of adaptive mesh refinement.

4.1. Riemann solvers and wave-propagation algorithms. Recall that the “Rie-
mann problem” is the initial value problem for a one-dimensional hyperbolic
system of the form

qt + f (q, x)x = 0, (33)

with special initial data consisting of two constant states separated by a discontinuity

q0(x)=
{

Ql if x < 0,
Qr if x > 0.

(34)

If the flux function is spatially varying then we also use a piecewise-defined flux
function with

f (q, x)=
{

fl(q) if x < 0,
fr (q) if x > 0.

(35)

The Riemann problem plays a fundamental role in the theory and computation of
hyperbolic problems, since the Riemann solution consists of waves propagating at
constant speeds and can generally be computed. For nonlinear systems of equations
this is often replaced by an approximate Riemann solver as will be discussed below.

For a linear system of equations qt + A(x)qx = 0 the Riemann solution is easily
computed in terms of the eigenvectors and eigenvalues of the matrices Al to the left
of the interface and Ar to the right of the interface. We begin by discussing the linear
case with a constant matrix A and turn to the variable-coefficient (heterogeneous
media) case in Section 4.3. We assume the matrix A is diagonalizable,

A = R3R−1, (36)

where R is the matrix of eigenvectors and 3 is the diagonal matrix of eigenvalues.
The Riemann solution is computed by decomposing 1Q = Qr − Ql as a linear
combination of eigenvectors of A,

1Q =
m∑

p=1

α pr p, where α = R−11Q. (37)

We denote the p-th wave by Wp = α
pr p, where p = 1, 2, . . . ,m and the number

of waves m is equal to the number of equations in the system.



MATERIAL INTERFACES AND EXTRACORPOREAL SHOCK WAVE THERAPY 175

We use finite volume methods in which Qn
i represents a cell average of the vector

q in cell i at time tn (still in one space dimension). In Godunov’s method the cell
average is updated by the waves entering the cell from the interfaces to the left and
the right, and each wave updates the cell average by Wp, the jump in q across the
wave, multiplied by the distance the wave propagates over the time step and divided
by the length of the cell, that is, the cell average is updated by (λp1t/1x)Wp. To
express the total update to a cell, it is convenient to define matrices A+ and A− via

A± = R3±R−1, where 3± = diag(λ±p ), (38)

with λ+ =max(λ, 0) and λ− =min(λ, 0). Then the cell average is updated by

Qn+1
i = Qn

i −
1t
1x

(A+1Qi−1/2+ A−1Qi+1/2). (39)

Here 1Qi−1/2= Qi−Qi−1 is the jump across the interface at i−1/2, for example.
For a linear system this is a generalization of the upwind method and is first order
accurate.

Second order accuracy is achieved by adding in correction fluxes:

Qn+1
i = Qn

i −
1t
1x

(A+1Q+ A−1Q)− 1t
1x

(F̃i+1/2− F̃i−1/2), (40)

where

F̃i−1/2 =
1
2

(
1−

∣∣∣∣λp1t
1x

∣∣∣∣)|λp
|W

p
i−1/2. (41)

These terms convert the upwind method into a method of Lax–Wendroff type,
matching terms through 1t2 A2qxx in the Taylor series expansion of the solution
at the end of the time step. This method generates dispersive errors, however, that
can create large nonphysical oscillations near steep gradients or discontinuities in a
solution, such as shock waves. To turn this into a “high-resolution” method, we use
a wave limiter, replacing W

p
i−1/2 in (41) by W̃

p
i−1/2, a limited version of the wave.

The wave W
p
i−1/2 is compared to the corresponding wave from the neighboring

Riemann problem, either W
p
i−3/2 if λp > 0 or W

p
i+1/2 if λp < 0. If the waves are of

comparable magnitude the full correction term is used for accuracy, but if there is a
large discrepancy then the solution is not smooth at this point and a limited version
is applied. See [34] or [35, Chapter 6] for more complete details.

In two or three space dimensions the idea is the same, but now a one-dimensional
Riemann problem must be solved normal to each edge or face of the cell. The
resulting waves update the cell averages and correction fluxes analogous to (41) are
used along with limiters in each direction.

In addition, to achieve second-order accuracy and good stability properties,
it is also necessary to use “transverse Riemann solvers” that further modify the
correction fluxes F̃ at each cell edge. The method described above is based on
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propagating waves normal to each interface. In reality, the waves will propagate in
a multidimensional manner and affect cell averages in cells above and below those
that are directly adjacent to the interface.

In two dimensions, each “fluctuation” such as A−1Qi−1/2, j and A+1Qi−1/2, j

that results from solving a Riemann problem in the x direction is split into two
pieces using the eigenstructure of the coefficient matrix B in the y direction, for
example:

A+1Qi−1/2, j = B−A+1Qi−1/2, j + B+A+1Qi−1/2, j . (42)

These two pieces will modify the correction flux at the edges (i, j − 1/2) and
(i, j + 1/2) respectively to capture the transverse motion of the right-going wave.
Similarly, after solving a normal Riemann problem in the y direction using the B
matrix, transverse problems are solved based on the eigenstructure of A. The net
effect of all these corrections is to incorporate terms modeling the cross-derivative
terms BAqxy and ABqyx of the Taylor series expansion in a properly upwinded
manner. More details can be found in [34] or [35, Chapter 21]. The transverse
correction terms are needed for accuracy, but also have the effect of improving
the stability limit, allowing a Courant number near 1 to be used, relative to the
maximum wave speed in any direction.

In three space dimensions there are two transverse directions for each normal
Riemann solve, and terms modeling C Aqxz , etc. must also be included. Moreover,
“double transverse” terms must be included, splitting the result of a transverse solve
into eigenvectors of the remaining coefficient matrix, and modeling terms such as
BC Aqxzy . The details are presented in [31] and fully implemented in Clawpack.

4.2. The nonlinear fluid Riemann solver. The compressible fluid equations in
Lagrangian form discussed in Section 2.2 can be reduced to the quasilinear form
(18) in which the Jacobian matrices depend only on q (for a spatially uniform fluid).
To apply the wave-propagation algorithm we need to solve the Riemann problem
orthogonal to each cell interface. For nonlinear problems this is usually done using
an approximate Riemann solver, for example, by replacing f (q)x by Âqx , where
the matrix Â at each cell interface is chosen based on the data Ql and Qr to the left
and right. We use the f-wave formulation of the wave-propagation algorithm [4], in
which the jump in flux f (Qr )− f (Ql) is split into eigenvectors of an approximate
Jacobian matrix, rather than the jump in Q. This leads to an algorithm that is
conservative for any choice of approximate Jacobian and also extends naturally to
the case of spatially varying fluxes, as required near the fluid-solid boundary and
discussed further below.

Rather than choose an approximate Jacobian Â and then determining its eigen-
vectors and eigenvalues, we simply choose the set of eigenvectors and associated
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wave speeds based on the data and wave forms expected to result from this data.
These vectors form a matrix R̂ and we then solve R̂β = f (Qr )− f (Ql) for the
vector of wave strengths β. The choice of vectors in R̂ and associated wave speeds
λ̂ implicitly defines the Jacobian approximation Â = R̂3̂R̂−1, but this matrix is
never needed.

The eigenvectors are taken to be the vectors displayed in (25) and (26). Recall
that in the fluid case there are only two nonzero eigenvalues corresponding to
the first two eigenvectors. For the eigenvector corresponding to λ1 < 0 we use
λ1
=−σ 11

ε11 evaluated in the left state Ql , while the eigenvector corresponding to
λ2 > 0 is determined using λ2

= σ 11
ε11 evaluated in the right state Qr . These vectors

have nonzero components only in positions 1 and 7 and so the values of β1 and β2

can be determined by solving a 2× 2 system:[
1 1
ρlλ

1
l ρrλ

2
r

] [
β1

β2

]
=

[
1 f 1

1 f 7

]
. (43)

The solution is

β1
=
ρrλ

2
r1 f 1

−1 f 7

ρrλ2
r − ρlλ

1
l

,

β2
=
1 f 7
− ρlλ

1
l 1 f 1

ρrλ2
r − ρlλ

1
l

.

(44)

The remaining waves do not propagate and do not come into the wave-propagation
algorithm.

4.3. The linear elastic Riemann solver. In the linear elastic material modeling
bone, we take a similar approach and again use the f-wave formulation of the
algorithm. In this case there are six waves with nonzero wave speeds given by the
eigenvectors in (25). The eigenvectors are independent of q in the linear case, but
can be spatially varying to represent varying bone structure, so the coefficients Ci j in
(12) can vary from one grid cell to the next. Similar to the nonlinear case described
above, to compute the decomposition of the flux difference into propagating waves
we define the three left-going eigenvectors r1,3,5 (with the minus sign in (25)) based
on the coefficients in the left state, while the right-going eigenvectors r2,4,6 are
defined using the coefficients in the right state. Note that the flux vector f (q)
from (2), and hence any jump in flux, has zeros in three components which are
easily seen to lead to β7

= β8
= β9 when the flux difference is written as a linear

combination of the eigenvectors, and the six remaining components of the flux
difference uniquely define the coefficients β1 through β6 for the six propagating
waves. The weights β1 and β2 are the same as is (44), and the others are
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β3
=
ρrλ

4
r1 f 4

−1 f 8

ρrλ4
r − ρlλ

3
l

, β4
=
1 f 8
− ρlλ

3
l 1 f 4

ρrλ4
r − ρlλ

4
l

,

β5
=
ρrλ

6
r1 f 6

−1 f 9

ρrλ6
r − ρlλ

5
l

, β6
=
1 f 9
− ρlλ

5
l 1 f 6

ρrλ6
r − ρlλ

5
l

.

(45)

4.4. Interfaces and the Cartesian grid. In ESWT the pressure wave must propa-
gate through a variety of materials, and in general the interfaces between different
materials do not align with the grid. In our calculations we use a Cartesian grid.
To handle grid cells that contain two materials, we perform a weighted average of
the material properties. The stress-strain relationship in the averaged grid cells is
taken to be that from linear elasticity, even if one of the materials is fluid. This
approach is feasible because we use AMR to refine around the interfaces between
the two materials. By using a fine enough grid, we are able to reduce the error
introduced by the weighted average approximation. Figure 4, left, illustrates the
interface between the fluid and the brass reflector from an axisymmetric calculation.
Three grid resolutions are shown in this figure: a coarse grid on the right, a level 2
grid that is refined by a factor of 4 in each direction in the middle, and the finest
grid on the left, where the grid lines are not drawn.

Figure 4, right, shows a comparison between the pressure wave measured at F2
for an AMR calculation versus a single grid calculation. The single grid calculation
took 269 minutes to complete, just over 6 times as long as long as the run using
AMR which finished in 44 minutes. These calculations were performed serially on
a 2.8 GHz dual core AMD Opteron machine with 32 GB of memory. It’s clear that
the two calculations yield comparable pressure waves. The biggest difference is in
the direct wave arriving around t = 150, which is not being resolved in the AMR
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Figure 4. Left: resolution of the ellipsoid reflector with different levels of AMR. Right:
two-dimensional axisymmetric calculation. The second is a comparison of the waveform
obtained using AMR and a uniform grid. The finest grid resolution in the AMR calculation
is the same as the resolution on the uniform grid.
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calculation because we have refined only in the vicinity of the reflected wave of
primary interest.

4.5. Adaptive mesh refinement. The pressure waveform found in ESWT contains
a very thin region of high pressure that can not be resolved without a highly refined
mesh. In Figure 5 we investigated the effect of grid refinement on the shock wave
profile and found that with grid resolution greater than 0.25 mm, the wave form
at F2 was not a shock. Note that near the shock we only expect our method to be
first order, but the solution does converge to a shock as the grid is refined. Our
calculations are done with the adaptive mesh refinement (AMR) in the style of
Colella, Berger and Oliger [5; 8]. The AMR algorithms used in Clawpack are
more fully described in [7]. For the three-dimensional calculations, a similar AMR
algorithm is used, as implemented in Chombo. Here we only briefly review the
main ideas.

The computational domain is covered by a rectangular level-1 grid, typically at a
coarse resolution. Rectangular patches of the grid may be covered by level-2 grids,
refined by some specified refinement ratio in each direction. Since we use explicit
methods, the Courant–Friedrichs–Lewy condition generally requires that the time
step be refined by the same factor on the level-2 grids, so several time steps must
be taken on each level-2 grid for each time step on the level-1 grid. The level 1
grid is advanced first, and for each time step on the level-2 grid, ghost cell values
around the boundary are filled in either by copying from adjacent grids at the same
level, or using space-time interpolation from the level-1 grid for ghost cells that do
not lie in an adjacent grid. This entire procedure is repeated recursively to obtain
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Figure 5. Effect of grid size on shock wave profile. As the grid is refined for the same
initial condition, the shock wave profile steepens. The solution eventually converges to
a profile with the same magnitude, though the convergence rate is only first order near a
discontinuity.
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higher levels of refinement; e.g., some portion of the collection of level-2 grids may
be covered by level-3 grids and so on.

In order to adaptively refine the grid, it is important to specify appropriate
refinement criteria. The perturbations to the strain are small, so gradients in the
strain are too small to use as reliable refinement criteria. However, the small strains
result in large changes in the pressure, so we refine in the area near the pressure
wave. In order to handle the interfaces between two materials, we also use large
gradients in background density as a secondary refinement criterion. Cells that
are flagged as needing refinement are clustered into rectangular patches using the
algorithm of Berger and Rigoutsis [6]. Regridding is done every few steps on each
grid level in order to track propagating waves. Regions are automatically de-refined
once the wave passes by, since cells in these regions are no longer flagged as needing
refinement.

Figure 5 illustrates the behavior of the ESWT waveform as the grid is refined.
What is evident from these experiments is that a coarse grid will not effectively
capture the development of the shock, so around the propagating wave, we need at
least 1x = 0.25 mm resolution. As the wave steepens into a shock, we no longer
expect second order convergence, because in the region around a discontinuity, our
methods are first order. However, since the discontinuities occur in a small region
of the domain, the overall methodology is still second order.

In order to efficiently calculate a reasonable ESWT waveform in three dimensions,
we utilized ChomboClaw [10], which uses the adaptive mesh refinement routines
of CHOMBO with the wave propagation solvers of Clawpack. This code can be
run in parallel using MPI on an NSF TeraGrid computer at TACC.

5. Results

We have used the approach described above to model ESWT pressure waves
interacting with three-dimensional bone geometries comprised of idealized materials.
We have modeled both simple objects that have been used in laboratory experiments
as well as complex three-dimensional geometries extracted from CT scans of
patient data [18]. Here we present results that demonstrate the efficacy of the
Lagrangian formulation, as well as examples of calculations performed using real
three-dimensional geometries.

The calculations were initialized using pressure data obtained from a two-
dimensional axisymmetric calculation where we modeled the full geometry of
the ellipsoidal reflector. The reflector was modeled using linear elasticity with
material properties that can be found in [18]. We assumed the fluid was water with
the corresponding parameters for the Tait equation of state found in Section 2.1.
We saved the data at t = 116µs and used this to restart future calculations. For the
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three-dimensional initial condition, we rotated the two-dimensional data about the
x-axis. The material properties of averaged bone were obtained from [37] and used
in the heterotopic ossification, cylinder and sphere calculations.

We have found in our experiments that interfaces between materials with large
impedance differences have the most significant effect on maximum stress and
energy deposition.

5.1. Reflection and focusing. In Figure 6, we show an axisymmetric calculation
of the ESWT wave propagation and focusing in water alone, in a domain bounded
by the ellipsoidal reflector of the Dornier HM3. Figure 6, top left, shows the initial
spherical propagation of the pressure wave, as well as the grids where the calculation
is being refined. The grid must be refined around the pressure wave as well as the
reflector. Figure 6, top right and bottom left, shows the propagation of the wave and
evolution of the adaptive grid structures. At later times the grid is only being refined
near the pressure wave. The sharp results and absence of spurious oscillations in
the pressure measurement at F2 indicate that AMR together with our Cartesian grid
approach enables us to capture the reflection at the interface.
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Figure 6. Axisymmetric calculation of the pressure pulse generated by a spherical high-
pressure bubble centered z =−115 (the focus F1 of the ellipsoidal reflector). Three levels
of AMR are used and grid lines are shown only on levels 1 and 2. The level-3 grid has a
resolution of 1z = 1r = 0.25 mm. Top left: at t = 10 the pulse has nearly reached the
reflector. Top right: at t = 70 the incident, transmitted, and reflected pulses are visible.
Bottom left: at t = 180 the reflected pulse has focused near z = 115 (the focus F2). Bottom
right: the time history of the pressure at F2. The direct (unreflected) wave passes F2 at
t ≈ 150 and the focused pulse arrives at t ≈ 180.
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5.2. Axisymmetric sphere. We used an axisymmetric test problem in order to
compare the solutions obtained with the two-dimensional and three-dimensional
codes. The initial condition for this experiment was an analytic form for an ESWT
pressure wave used in [49]. In the two-dimensional case, we specified the pressure
as a function of the radial distance from F1(-115,0). In the three-dimensional case,
we rotated the same two-dimensional initial condition about the x-axis. The grid
resolution was 1x = 0.25 mm.

Results with contour lines are shown in Figure 7. The maximum values in each of
the three cases are nearly the same, but there are slight discrepancies in the contour

Figure 7. Results from calculation of a shockwave interacting with an acrylic sphere.
The left column shows two-dimensional axisymmetric results and the right column shows
a corresponding cross section of full three-dimensional calculation. Top: maximum
compression; middle: maximum tension; bottom: maximum shear.
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Figure 8. Comparison of maximum shear stress from two-dimensional and three-
dimensional calculations as a function of x along y = z = 0. The difference in the
results is likely caused by averaging of the initial condition onto the three-dimensional
domain and the boundary conditions on the axisymmetric calculation at r = 0, but the two
calculations predict comparable location and magnitude of maximal shear stress deposition.

lines. Figure 8 shows a one-dimensional slice of the maximum shear calculation in
the two-dimensional and three-dimensional codes, which makes it clear that the
peak of maximal shear stress is in the same location and has the same value. The
general shape of the maximum stress deposition pattern are similar in both cases.
The difference in the two solutions is likely caused by the solid wall boundary
condition that is used at r = 0. Only waves that are propagating normal to that
boundary are perfectly reflected, otherwise some error is generated.

5.3. Nonunions. ESWT has recently been used for the treatment of nonunions or
bone fractures that fail to heal [9]. One question that is of interest to clinicians
is whether or not the angle of treatment has an effect on healing. We assume
that healing is related to the magnitude of stress applied near the treatment area,
although the connection between the applied force and biological response is not
yet understood. In the fluid there is no shear stress. However, at the liquid-solid
interfaces, shear stresses are generated by the shockwave and stimulate motion both
at the surface and within the material. The motion of the biological materials (e.g.,
the periosteum, interstitial fluid, mechanotransduction) is likely to be important in
the healing process [25; 44; 56; 13; 27; 43; 53], and modeling the magnitude and
location of the stress deposition is a good first step toward understanding the shear
and tensile displacements caused by ESWT. We should stress, however, that the
healing mechanisms are not well understood and we are not claiming that magnitude
of the applied stress is the most important or only biological mechanism involved
in the healing process. As mentioned in Section 1, several studies have indicated
that cyclic application of mechanical loading leads to the generation of new bone.
The work of Isaksson et al. [27], indicates that the most accurate predictors for
bone healing are those based on shear strain and fluid flow, however, there is no
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Figure 9. Three-dimensional results for the direct treatment of a complete cylinder. This
figure shows two-dimensional slices of maximum compression, tension and shear along
y = 0 for treatment where the ESWT wave propagates along the x-axis, as indicated by
the arrow. The dot illustrates the location of F2.

single model that can predict all features of the healing process, so more work is
necessary [39].

In an actual treatment, the clinician generally sets up the device so that the focus
is aligned with the ailment. For example, in the case of a broken bone, the clinician
will set up the device so that F2 is in the center of the break. However, given
the heterogeneous media, it is not clear that the maximal stresses will actually be
observed at F2, as would be expected in pure water. We used our model to investigate
the location of maximal stress deposition relative to F2. In these calculations we
considered two different geometries, a complete cylinder, representing the long
shaft of a healthy bone, and a broken cylinder, representing a nonunion. The results
from calculations where the idealized bone was perpendicular to the direction of
the pressure wave front are shown in Figures 9 and 10. We found that the break has
a significant impact on the location of stress deposition.

We used these geometries to perform a variety of experiments. We rotated the
direction of treatment by 45 and 60 degrees relative to the x-axis and calculated
both the magnitude of the maximum compressive, tensile and shear stresses, as
well as the distance from the focus F2 of the device.

In the case of the broken cylinder, the maximum stress deposition in the direct
experiment is similar to that of the unbroken cylinder, except that the there are two
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Figure 10. Three-dimensional results for the direct treatment of a broken cylinder. This
figure shows two-dimensional slices of maximum compression along y = 0 for treatment
along the x-axis, 45-degree rotation and 60-degree rotation about the y-axis. The arrows
indicate the angle of treatment in each case and the dot illustrates the location of F2.

locations of maximal stress deposition on either side of the break. The pressures
in the bone are larger than in the fluid due to reflection at the fluid-solid interface,
so the contours of maximum stress are concentrated on either side of the gap. The
location along the x-axis is nearly the same as in the unbroken cylinder, and the
distances from the ideal focal point, F2, are also similar.

As the angle of treatment is varied, there is less of a shift in the z direction for the
shear and compressive stresses. This is caused by the impedance difference between
the fluid and solid material at the gap, which is located close to F2. If the gap were
shifted along the z-axis from the focal point, there would be a corresponding shift
in the location of maximum shear and compression. Geometrically, the shape of
the regions of compressive and shear stress are quite different from the direct case.
Instead of being an ellipsoidal shape, the regions are compressed into the corner of
the lower-half of the cylinder. Again, this is caused by the impedance jump at the
fluid-solid interface. The region of maximum tension deposition is similar to that
of the unbroken cylinder case, though it is also affected by the gap and the tension
is concentrated on the upper half of the cylinder.

It is clear from the literature [43; 44; 30; 13; 27; 11; 23], that mechanical loading
is important in bone healing. The implication of our computational experiments
is that the angle of treatment will affect stress deposition and therefore may be
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Figure 11. An additional interface calculation showing the more realistic treatment of a
cylinder with a fluid-filled cavity. Left: a slice along z = 0 showing the concentration of
stress in the front of the idealized bone, with additional smaller pockets of maximum stress
due to reflection in the back half of the bone. Right: a slice along y = 0 which further
demonstrates the stress concentration in the first half of the bone. The arrow in the figure at
right indicates the direction of ESWT wave propagation and the dot indicates the location

of F2.

important in treatment optimization. For example, in order to maximize shear
stress at the tissue-bone interface, our preliminary computations indicate that it
might be best to treat the patient at an oblique angle. However, if the goal is to
maximize shear stress in the gap of the broken bone, then treating the patient at a
90-degree angle may be better than treating at either the 45- or 60-degree angle. We
stress however that the biological mechanisms must be better understood and more
experiments must be done in conjunction with laboratory and clinical treatments
before these calculations could be used to make specific clinical recommendations.

In Figure 11 we show two-dimensional slices of a calculation with a more
realistic, but still idealized, long bone geometry. In a the shaft of a long bone, there
is a marrow-filled canal running through the center. Marrow is typically modeled
as a viscoelastic material [37], but for this first approximation we just used a fluid-
filled canal. The impedance difference in the two materials is similar and therefore
illustrates the behavior that we are interested in, the change in maximal stress
deposition. In contrast to the solid cylinder above, the contours of maximal stress
are concentrated in the front side of the hollow cylinder. Figure 11, right, shows
that there are also two regions of additional stress concentration in the backside
of the hollow cylinder. This example highlights the importance in understanding
where these impedance jumps occur in order to optimally treat the patient.
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5.4. Heterotopic ossification. A heterotopic ossification (HO) is a growth of bone-
like material in soft tissue. HOs often grow spontaneously in tissue that has been
traumatized due to injury or amputation. An example of an HO is shown in Figure 12,
left, which shows the pelvis and an HO, using data extracted from a patient’s CT
scan. In this case, the HO has grown around the right hip joint and is inhibiting
the patient’s range of motion. The goal of the HO treatment is not to pulverize the
ossification, but to break up the adhesion between the HO and the joint, in order to
restore the patient’s range of motion. There is no clear division between the HO
and bone in the CT scan because both are composed of materials that have similar
densities. However, the HO does not have the same woven structure that is present
in bone, so the two will likely have different material properties, even though the
densities are similar. This similarity means that we are uncertain as to how strong
the connection or adhesion is between the HO and the bone, which will directly
impact the number of shocks needed to restore the patient’s range of motion.

We are able to use our model to investigate the effect of the angle of treatment on
the observed stresses in the region near the HO. Since the composition and material
properties of the ossification are not well understood, we can also use the model
to vary the material properties of the ossification and investigate the sensitivity of
the results to these parameters. We found that both the strength of the connection
between the HO and bone, as well as the composition of the HO, had a significant
effect on the location of maximum stress in the object [18].

It is challenging to infer anything meaningful from the images in the full three-
dimensional calculation in Figure 12, left, so we have also included a two-dimen-
sional slice of the maximum shear in Figure 12, right. Here the gray regions

Figure 12. Left: the three-dimensional CT patient data illustrating the heterotopic os-
sification (blue) attached to the right hip joint (green). Right: a slice at x = 115 of the
two-dimensional calculation shows how the pockets of fluid lead to stress concentration in
the substructure of the ossification, the dot indicates the location of F2 and the direction of
treatment is into the page.
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represent the bone-like HO material and we assume any gaps are filled with fluid. It
is clear that the interior of the ossification is complex and contains many fluid-filled
pockets that affect, in this case, the location of the maximum shear stress.

Given the complex nature of the HO and subsequent difficulty interpreting the
three-dimensional results, we have also used an idealized ossification to investigate
some facets of the shockwave interaction with the varying material properties. One
example of this is shown in Figure 13, where we have simulated a case where the
ossification (the crescent in the two-dimensional images) is not strongly attached to
the bone (the cylinder) and calculated the maximal shear stress as a result of two
different treatment angles. Figure 13, left, illustrates the result when the ESWT
device is aimed orthogonal to the gap between the HO and the cylinder. Figure 13,
right, is the result when the device is aimed so the shockwaves propagate parallel to
the gap between the HO and bone. It has been indicated that maximum shear stress
is important in causing the HO to break, so it is desirable to deposit the maximum
amount of shear as close to the HO/bone interface as possible. In this case, it is
better to treat the HO in the direction indicated in Figure 13, right, since the shear
stress is concentrated along the gap.

According to our computational results, the pockets of fluid within an HO
and strength of adhesion to the bone surface will affect the stress deposition and
therefore the location of the eventual break in the ossification. Further investigation
is required to be conclusive, but our results indicate that if the fluid pockets are in
the propagation path of the shock wave, they may cause the maximum stresses to
occur away from the adhesion site, making the treatment less effective. In reality,
the composition of the HO is unknown and we do not have a good characterization
for the material properties of the ossifications. However, the strong impedance
mismatch between fluid and bone, as well as the inability of the fluid to support
shear stress, indicate that the presence of fluid-filled pockets will have an effect
on the stress deposition. We should note here that our modeling work does not
take into account the propagation of successive shocks or failure models within
the material, which should ultimately be incorporated in order to the determine the
optimal treatment. This is an area for future work.

6. Conclusion

In this paper we have proposed a new model for ESWT. We have demonstrated
that the Tait equation of state is sufficient for the pressures that arise in ESWT, that
enables us to drop the energy equation from our model. We have shown that the
fluid and solid can be modeled with the same set of Lagrangian equations since
the particle displacements are small. This approach allowed us to utilize existing
numerical methodology, consisting of high-resolution shock-capturing methods
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Figure 13. Calculations for an idealized ossification that demonstrates the difference in
shear stress deposition when treating the HO from different directions. Since the goal
is to disrupt the HO at the interface between the bone and the HO, the figure on the
right indicates that it would be optimal send shock waves parallel to the break, instead of
perpendicular to it. The arrows indicate the direction of ESWT propagation and the dots
indicate the location of F2.

together with adaptive mesh refinement, to efficiently calculate solutions to these
equations for a variety of idealized biological problems. We have also demonstrated
that we can effectively handle interfaces between different materials on Cartesian
grids. Using this methodology we were able to explore, even in geometrically
complicated structures, how the interfaces between the fluid and solid materials
affect the distribution of maximal stress in several problems of clinical interest.
We should note that the models for the biological materials are idealized, so it is
difficult to extrapolate from these experiments to reality without conducting further
experiments.

Maximizing stress in specific regions seems important in both the healing and
destruction of biological tissues. Shear stress is thought to be play a role in the
stimulation of biological tissues [54; 25; 20; 23; 13; 30; 43]. Mechanical loading is
thought to play a role in the formation of bone tissue, and as discussed in Section 1,
shear and compressive displacements generated by loading influence bone healing
[43; 44; 30; 13; 27; 11; 23]. Shear stress is also important in predicting the break
up of kidney stones [49].

The model we have developed has been used to investigate idealized nonunions
and heterotopic ossifications, and we have shown a few examples to illustrate this.
A broader range of calculations are available in [18].
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The focus of this paper has been the effect that material interfaces between tissue
and bone have on the transmission, reflection, and focusing of the shock wave.
Very simple models have been used for the material on each side of the interface:
compressible fluid with a Tait equation of state in the tissue and linear isotropic
elasticity in the bone. We believe that this level of macroscopic modeling can
already reveal interesting features of the stress that may be clinically important.
In particular, focusing may occur in regions displaced from where it would be
observed in pure water, and mode conversion at an interface can generate shear
waves in the bone that are not present in the focusing shock wave in fluid.

To consider the effect of stress on individual osteocytes, a much more detailed
model would be necessary that is beyond the scope of this work. In particular,
this would require modeling the microscale fluid-filled canaliculi within the bone
through which the osteocyte processes extend. Work is currently underway in
this direction, and also on intermediate levels of modeling in which the bone is
modeled as an orthotropic poroelastic material. These equations can be solved
with essentially the same high resolution finite volume methods used here, after
implementing a more complicated Riemann solver [32; 33], and with the same
software for adaptive mesh refinement. Another possible extension is to investigate
viscoelastic tissue models that may be superior to the Tait equation for water that is
currently used.
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