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DISCRETE NONHOMOGENEOUS AND NONSTATIONARY
LOGISTIC AND MARKOV REGRESSION MODELS

FOR SPATIOTEMPORAL DATA
WITH UNRESOLVED EXTERNAL INFLUENCES

JANA DE WILJES, LARS PUTZIG AND ILLIA HORENKO

Dynamical systems with different characteristic behavior at multiple scales can be
modeled with hybrid methods combining a discrete model (e.g., corresponding to
the microscale) triggered by a continuous mechanism and vice versa. A data-driven
black-box-type framework is proposed, where the discrete model is parametrized
with adaptive regression techniques and the output of the continuous counterpart
(e.g., output of partial differential equations) is coupled to the discrete system of
interest in the form of a fixed exogenous time series of external factors. Data avail-
ability represents a significant issue for this type of coupled discrete-continuous
model, and it is shown that missing information/observations can be incorporated
in the model via a nonstationary and nonhomogeneous formulation. An unbiased
estimator for the discrete model dynamics in presence of unobserved external
impacts is derived and used to construct a data-based nonstationary and nonhomo-
geneous parameter estimator based on an appropriately regularized spatiotemporal
clustering algorithm. One-step and long-term predictions are considered, and
a new Bayesian approach to discrete data assimilation of hidden information is
proposed. To illustrate our method, we apply it to synthetic data sets and compare
it with standard techniques of the machine-learning community (such as maximum-
likelihood estimation, artificial neural networks and support vector machines).

1. Introduction

Discrete/categorical dynamical processes with a finite state space represent a chal-
lenge for standard data-based analysis tools. Heterogeneity of model properties over
time and space as well as the discreteness of the data complicate the employment
of standard time-series analysis techniques. Moreover, parametrization of the
underlying process is often hampered by incompleteness of observational data.

Illia Horenko is the corresponding author.
MSC2010: primary 62-07, 62H30, 62M05, 62M10, 65C60; secondary 62M02, 62M20, 62M30,
62M45, 62H11.
Keywords: nonstationary, nonhomogeneous, discrete spatiotemporal time-series analysis, Markov

regression, logistic, data assimilation.
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In this paper, we want to address these problems by introducing a nonstationary,
nonhomogeneous regression framework that allows taking a lack of observed
information into account.

Adequate modeling and proper statistical handling of discrete processes (e.g.,
jump processes) is especially important for the proper description of multiscale
dynamical systems. A typical modeling approach to multiscale dynamical systems
is based on the employment of hybrid models, consisting of continuous and discrete
model components [19; 20; 21]. While the continuous dynamics can be described
with suitable PDEs, the discrete model can be estimated with appropriate data-based
analysis methods. Communication between the two models can be achieved via
incorporating the continuous data components (e.g., the output of PDEs or ODEs)
as external statistical impact factors (or covariates) in the discrete part of the model.

Regression analysis [11] or pattern-recognition techniques such as artificial neural
networks (ANN) [2; 24] or support vector machines (SVM) [8; 35] are popular
instruments to approach the parametrization of dynamical processes. A common
ansatz to model discrete-, categorical- and jump-processes is to deploy discrete
choice models (e.g., logit or probit regression), which belong to the family of
generalized linear models (GLM) [12; 10]. However, these classical techniques are
usually restricted to time-independent model parameters, i.e., stationary models.

In this manuscript, we propose a nonstationary logistic regression model and also
provide a direct approach to the discrete structure in the form of a nonstationary
Markov regression. The key advantage of the proposed framework is that it allows
us to parametrize the considered dynamical system corresponding to the data while
taking all external influences into account, even those not explicitly available in the
form of observation data. This is achieved by introducing an explicit dependency of
the model parameters on time and location, i.e., by including an explicit temporal
nonstationarity and spatial nonhomogeneity into the resulting model. Necessary
assumptions and details will be given in Proposition 2.1. A new numerical algorithm
for the solution of the obtained inverse problem is formulated, and its numerical
complexity is compared with the complexities of the standard algorithms of discrete
data analysis. An adapted version of Akaike’s information criterion is used to
determine the best model fit corresponding to the data [30]. The resulting optimal
parameters can then be employed to make predictions about future states of the
process. In this context, a Bayesian approach to assimilate new hidden information
(describing the impact of unresolved external factors) is proposed. Training and
testing of the techniques are done on several sets of synthetic data, and the quality
of one-step and long-term predictions is investigated.

The remainder of the paper is structured as follows. In Section 2, spatiotemporal
ensemble data is considered and the possibility to incorporate implicit external
factors via a nonstationary Markov model formulation is demonstrated. A short
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introduction to the nonstationary spatiotemporal Markov and logistic regression
is given in Section 3, where new aspects are emphasized and existing theory is
reviewed. In Section 4, a self-containing strategy to make predictions by means
of the determined model parameters and a new approach to assimilate additional
hidden data after obtaining new observations are introduced. Proposed methods of
discrete data modeling, prediction and assimilation are investigated numerically in
Section 5 for different synthetic model scenarios and systematically compared to
the standard methods of the machine learning community, i.e., ANN [2; 24; 18; 3]
and SVM [8; 35]. A comparison of the different numerical methods is given in
terms of the information content (i.e., Akaike information criterion) and the quality
of long- and short-term data-based online model predictions.

2. Ensemble data and exterior quantities

In the following, the discrete state si ∈ {s1, . . . , sNS } of a microscopic cell ω( j, l),
with l ∈ {1, . . . , Nens} being the index of cells of a lattice on a microscopic level and
j ∈ {1, . . . , NJ } the corresponding macroscopic cell, is considered. Put differently,
a macroscopic lattice, with each cell being further subdivided into smaller grid
cells of a microscopic scale, is regarded. It is assumed that it is possible to assign
each microscopic cell ω( j, l) its discrete state si via a stochastic process σ(t, j, l)
dependent on the time t ∈ {1, . . . , NT }. Discrete dynamical systems of such form
are common natural phenomena, e.g., representing the spatiotemporal dynamics of
changes in the aggregate states of water in climate/atmosphere/ocean sciences.
However, such systems represent a challenge for existing data-based analysis
tools as it is usually not possible to have access to the corresponding data on
a microscopic scale. Since observations of a single discrete realization σ(t, j, l)
in many realistic applications are not directly accessible, one resorts to the often
available information on relative frequencies (with respect to the states) of a finite
ensemble of microscopic locations on a macroscopic level. In detail, this means
considering all the cells ω( j, l) with l ∈ {1, . . . , Nens} for fixed j (corresponding
to the macroscopic scale) and measuring/observing the empirical probability

π̃i (t, j)=
Nsi (t, j)

Nens
, (1)

which is the ratio of Nsi (t, j), the number of cells ω( j, l) currently (i.e., for fixed
time t) in state si , to Nens, the total number of microscopic lattice cells contained
in each macroscopic grid location (i.e., for fixed j). Formally, the total number of
microscopic cells ω( j, l) currently in state si is defined as

Nsi (t, j)=
Nens∑
l=1

δsi (σ (t, j, l)), (2)
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whereas δsi ( · ) is the Kronecker delta for the value si , i.e., δsi (σ (t, j, l)) = 1 if
σ(t, j, l)= si , otherwise it is zero. Further, a vector of empirical probabilities

π̃(t, j)=

 π̃1(t, j)
...

π̃NS (t, j)

 ∈ [0, 1]NS×1 (3)

is a good estimate of the actual probability distribution as the number of microscopic
cells Nens in each macroscopic cell j is usually exceptionally large, i.e.,

πi (t, j) := P[σ(t, j, l)= si ] ≈ π̃i (t, j) (4)

with

π(t, j)=

 π1(t, j)
...

πNS (t, j)

 ∈ [0, 1]NS×1. (5)

Thus, for the remainder of this manuscript, we assume that the observed relative
frequencies are equal to the probabilities, i.e., that π(t, j) can be observed for
t ∈ {1, . . . , NT } and j ∈ {1, . . . , NJ }. Further, it is assumed that the process σ is
driven by time- and space-dependent external forces u(t, j)∈RNF×1, influencing the
underlying system. A graphical interpretation of the discrete dynamical process σ
by means of an example realization σ(t, j, l) for fixed time t with only two possible
states s1 and s2 (displayed in gray and white) is shown in Figure 1. The image
also displays the relation of the different lattice scales; i.e., each macroscopic cell
contains a microscopic lattice with Nens cells.

In the following, the aim is to approximate the dynamical system of interest
underlying the stochastic process σ with data-based analysis tools by means of obser-
vations π(t, j) and available measurements of exterior influencing quantities u(t, j).

Implicit external factors. In the following section, we will continue under the
assumption that the stochastic process σ(t, j, l) is a Markov process, i.e., the
probability of the process to be in state si depends on the time-wise previous state.1

A Markov process can be described via a transition matrix P(u(t, j))∈ [0, 1]NS×NS .
The transition probabilities π(t + 1, j) for the next time step can then be expressed
through the so-called master equation:

π(t + 1, j)> = π(t, j)>P(u(t, j)). (6)

Simultaneous measurement/modeling of all of the external factor components
may impose a serious problem for realistic applications as it is impossible to have

1Existing spatial correlations are going to be considered by including information on neighboring
cells in the external factors.



LOGISTIC AND MARKOV REGRESSION MODELS FOR SPATIOTEMPORAL DATA 5

π(t, j)

cell 1

cell NJ

ce

ce

. . .

. . .

ū(t, j)

cell j

ω(j, l)

l ∈ {1, . . . , Nens}

l

microscopic lattice

macroscopic lattice

Figure 1. The above figure displays a graphical interpretation of the relation between the
microscopic locations ω( j, l) and the macroscopic observation π(t, j). The time t is fixed,
and the considered system has two states, i.e., NS = 2, which are displayed in white and
gray. Thus, the process σ(t, j, l) takes values in the set {s1, s2}={white, gray}. The honey-
comb lattice on the left-hand side corresponds to the macroscopic cells j ∈ {1, . . . , NJ }
associated with the observations π(t, j). The microscopic lattice indexed l ∈ {1, . . . , Nens}
is illustrated using a fine grid only clearly visible with a magnifying glass (see the hexagonal
lattice on the right) and is contained in each cell of the coarse-grid. Additionally, the
dependence of the dynamics of σ on external factors u(t, j) is visualized.

access to all the quantities influencing a system of interest in general. Therefore, in
the following, we will distinguish between explicit and implicit external factors

u(t, j)=
[

u(t, j)
uunres(t, j)

]
∈ R(NE+NI )×1 (7)

and consider the known

u(t, j)=

 u1(t, j)
...

uNE (t, j)

 ∈U⊂ RNE×1 (8)

as well as the unresolved factors

uunres(t, j)=

uunres
1 (t, j)

...

uunres
NI

(t, j)

 ∈ RNI×1, (9)

according to their availability in the measurement/observation process.2 It is im-
portant to stress that a vector of external factors u(t, j) consists of any quantities
potentially playing a role in the dynamics of the regarded system including random,

2 NF = NE + NI .
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deterministic or artificially added elements. For instance, the vector can contain in-
fluences other than the currently regarded scales t ∈{1, . . . , NT } and j ∈{1, . . . , NJ }

(time-wise as well as location-wise). Specifically, this means that important external
forces coming from the microscopic scale as well as exterior factors having an
impact on the state of the microscopic grid cells are included in uunres(t, j). Note, in
particular, that the vector of implicit external factors is, as already mentioned above,
not limited to deterministic factors but can have stochastic random processes as en-
tries. Further, in order to consider existing spatial correlations, the mean of previous
neighboring cell states that are calculated from the observational data π(t − 1, j)
are added to the vector of explicit external factors representing another example
of the wide range of possible and allowed quantities contained in u(t, j). Along
the lines of [16], the abstract dependency of the transition matrix P(u(t, j)) on
unresolved external factors uunres(t, j) is approached by approximating the matrix
with an appropriate linear combination of explicitly time- and space-dependent
matrices. Specifically, such a nonstationary and nonhomogeneous formulation is
possible under the following conditions:

Proposition 2.1. (1) If the function P(u(t, j)) is continuously differentiable and
has bounded second derivatives, it can be decomposed in the form

P(u(t, j))= P0(t, j)+
NE∑
e=1

Pe(t, j)ue(t, j)+ ε(t, j) (10)

with E[ε(t, j)] = 0 and Pe(t, j) ∈ RNS×NS .

(2) If in addition to (1) the deviations of the entries of vector u(t, j) from their
respective means are statistically independent in j and t , also the different
realizations of ε(t, j) are independent of each other in j and t.3

(3) If the function P(u(t, j)) is three times continuously differentiable and has
bounded third derivatives, it can be decomposed in the form

P(u(t, j))= P0(t, j)+
NE∑
e=1

(Pe(t, j)+ ρe(t, j))ue(t, j)+ ε(t, j) (11)

with E[ε(t, j)] = 0 and E[ρe(t, j)] = 0. Realizations of the noise process
ρe(t, j) for different t , j and e are not necessarily independent of each other
or of ε(t, j) realizations.

Proof. (1) For this proof, without loss of generality, we will assume that the external
factors are ordered such that the explicit factors are the first NE entries of u(t, j).

3 This does not necessarily imply that ε(t, j) should also be identically distributed, i.e., i.i.d.
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By performing a Taylor expansion on the transition matrix P(u(t, j)) around the
means µ(t, j)= [E(u1(t, j)), . . . ,E(uNE+NI (t, j))] ∈ R(NE+NI )×1, we obtain

P(u(t, j))= P(µ(t, j))+
NE∑
e=1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α, (12)

where α is a multi-index and

Rα(u(t, j))=
2
α!

∫ 1

0
(1− x)DαP

(
µ(t, j)+ x(u(t, j)−µ(t, j))

)
dx . (13)

Note that Rα(u(t, j)) is bounded as the second derivatives of P are assumed to be
bounded. Resorting the terms and defining

Pe(t, j)=
∂P(µ(t, j))
∂ue(t, j)

, e = 1, . . . , NE , (14)

ε(t, j)=
NE+NI∑

e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α

−E

[ NE+NI∑
e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α
]
, (15)

P0(t, j)= P(µ(t, j))−
NE∑
e=1

∂P(µ(t, j))
∂ue(t, j)

µe(t, j)

+E

[ NE+NI∑
e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α
]

(16)

yields (10) and especially E[ε(t, j)] = 0.

(2) If the entries of the vector u(t, j) − µ(t, j) for fixed e ∈ {1, . . . , NF } are
independent for all j and t , the ε(t, j) (as defined above) are just functions of the
independent variables; thus, they are independent of each other again.
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(3) The proof of this statement is given in Appendix A. �

Remarks 2.2. • The noise processes ρe(t, j) and ε(t, j) are not pairwise indepen-
dent for fixed j and t . Further, there are no a priori assumptions concerning the
distribution of ρe(t, j) and ε(t, j).

• Although the error ε(t, j) is expected to be close to zero, it is important to
mentioned that the variance of ε(t, j) can take any value and therefore can lead to
an arbitrary error term. This problem occurs most likely when the main influencing
quantities are not available in the form of observational data.

• As the result of the proposition, the two expansions (10) and (11) deploy two
conceptually different models of the noise for the master equation (6). Whereas (10)
deploys a purely additive noise term, next-order expansion (11) contains a mixture
of additive and multiplicative noise processes. Because of its simplicity, expansion
(10) will be used for the construction of the nonhomogeneous and nonstationary
data-driven Markov estimators in Section 3.

Summarizing, an approach to address the predicament of missing data, specifi-
cally in the context of external influences, is proposed for dynamical system with
an underlying Markovian process. It is assumed that the transition matrix has a
linear structure so that the implicit dependency on unresolved external factors can
be reflected in the explicit dependency on time and location.

3. Method

In this section we introduce methods for the analysis of discrete spatiotemporal
data. As the details of nonstationary analysis of temporal data have already been
addressed in earlier papers [16; 17; 9; 30], we will restrict this introduction to a
short overview and will only emphasize new aspects concerning, e.g., the spatial
component of the data or the details concerning the logistic regression.

3A. Inverse problem formulation. For a general consideration of the observed
processes σ(t, j, l), we assume that the correlation between the dynamical sys-
tem and the measurements π(t, j) ∈ [0, 1]NS×1 can be expressed with a direct
mathematical model

π(t + 1, j)= f
(
π(t, j), . . . , π(t − NM , j), θ(u(t, j))

)
, (17)

defined by a model function f ( · ) dependent on current and previous observations
up to a memory depth NM and model parameters θ(u(t, j)) from some parameter
space � dependent on external factors u(t, j)∈RNF×1. Note that u(t, j) is a vector
of all influences driving the system of interest. In particular, it can include informa-
tion from the microscopic scale (e.g., from locations ω( j, l) with l ∈ {1, . . . , Nens})
and other spatial components (e.g., neighboring cells), thus allowing to model
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any existing spatial correlations. Further, the analytic expression of the model
function f can also include random processes, e.g.,

f (θ(t, j)) := θ(t, j)+ λ(t, j). (18)

In this basic example, the random process λ(t, j) has an expected value zero for
all t and j , is i.i.d. (independent identically distributed) and can be interpreted as
measurement errors or implicit quantities influencing the considered system. The
reader is referred to [30] for more model function examples. For a given model
function f and parameter function θ(u(t, j)), the problem of finding an appropriate
time series π(t, j) is called the direct mathematical problem. In this manuscript, we
consider the opposite inverse problem: given the observations π(t, j), which param-
eters θ(u(t, j)) with respect to the model function f describe the data “best”? In
order to find model parameters θ(u(t, j)) that minimize the “distance” between the
data and the model-based time series, we need to introduce a measuring functional

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
:

[0, 1]NS × · · ·× [0, 1]NS ×�→ R≥0, (19)

which we will refer to as a model distance function. The corresponding inverse
problem is defined as

L(θ(u(t, j)))

=

NT∑
t=1

NJ∑
j=1

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
→ min

θ(u(t, j))
(20)

and is referred to as an averaged clustering functional. A suitable function g can
be derived from any metric d( · , · ):

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
=
(
d
(
π(t + 1, j),E

[
f
(
π(t, j), . . . , π(t − NM , j), θ(u(t, j))

)]))2
. (21)

We will consider the Euclidean metric d2(x, y)= ‖x− y‖2 for the remainder of the
manuscript. We will introduce two different model functions, f logit and f Markov, on
which we will focus for the remainder of the paper. In particular, these two models
will be numerically investigated in Section 5.

3A1. Logistic regression. The model f logit, introduced in the following, is a non-
stationary and nonhomogeneous spatiotemporal extension of discrete choice models,
which are standard techniques in the context of discrete data regression. This model
class is a member in the generalized linear model (GLM) family [12; 10]. Discrete
choice models can be derived from utility theory where the state of the regarded
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process σ(t, j, l) is assumed to be associated with a benefit or utility measure. In
detail, this means that the process can be expressed as the function

σ(t, j, l)=


s1 if C1[u(t, j), B1(t, j)]> Ci [u(t, j), Bi (t, j)] ∀ i 6= 1,
...

sNS if CNS [u(t, j), B NS (t, j)]> Ci [u(t, j), Bi (t, j)] ∀ i 6= NS,

(22)

whereas

Ci [u(t, j), Bi (t, j)] := β i
0(t, j)+

NE∑
e=1

β i
e(t, j)ue(t, j)+ ξ i (t, j) (23)

is the utility measure dependent on unknown coefficients

Bi (t, j)=

 β i
0(t, j)
...

β i
NE
(t, j)

 ∈ R(NE+1)×1 (24)

on observable (explicit) factors u(t, j)∈U⊂RNE×1 and on errors ξ i (t, j) character-
izing the influences that could not be obtained through measurement (e.g., implicit
external factors) [28; 29]. This implies that the probability for the dynamical process
σ(t, j, l) to be in state si can be expressed as follows:4

P[σ(t, j, l)= si ] = P
[
Ci [u(t, j), Bi (t, j)]> Ch[u(t, j), Bh(t, j)] ∀ h 6= i

]
(25)

= P

[
β i

0(t, j)+
NE∑
e=1

β i
e(t, j)ue(t, j)+ ξ i (t, j)

> βh
0 (t, j)+

NE∑
e=1

βh
e (t, j)ue(t, j)+ ξ h(t, j) ∀ h 6= i

]

=P

[
β i

0(t, j)−βh
0 (t, j)+

NE∑
e=1

[β i
e(t, j)−βh

e (t, j)]ue(t, j)+ξ i (t, j)

> ξ h(t, j) ∀ h 6= i
]
.

Various discrete choice models arise assuming different parametric forms of distri-
butions for the random error terms ξ 1(t, j), . . . , ξ NS (t, j). The logistic regression
and the probit model are the most prominent examples of that model class; e.g., for
logit models, the random part of the utility is assumed to be i.i.d. extreme value
distributed (also know as Gumbel distribution), and for probit models, it is assumed
to be multivariate normal. Results gained with either approach are similar, and

4Note that the probability of Ci [u(t, j), Bi (t, j)] = Ch[u(t, j), Bh(t, j)] is assumed to be zero
(see [29]).
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significant differences are rare [26]. A multinomial logistic model, i.e., NS ≥ 2, is
considered in the following. Consequently, the errors ξ 1(t, j), . . . , ξ NS (t, j) are
assumed to be i.i.d. with the Gumbel distribution resulting in the state probabilities

P[σ(t, j, l)= si ] =

exp
(
β i

0(t, j)+
NE∑
e=1

β i
e(t, j)ue(t, j)

)
NS∑

h=1
exp

(
βh

0 (t, j)+
NE∑
e=1

βh
e (t, j)ue(t, j)

) ∀ i. (26)

The reader is referred to [29; 36] for a detailed probabilistic derivation. The
corresponding model function f logit with logistic regression parameter B(t, j)=
[B1(t, j), . . . , B NS (t, j)] ∈ R(NE+1)×NS is expressed as

π(t, j) := θ logit(B(t, j), u(t, j))+ ζ(t, j), (27)

where

θ logit(B(t, j), u(t, j))=

 P[σ(t, j, l)= s1]
...

P[σ(t, j, l)= sNS ]

 ∈ RNS×1 (28)

and ζ(t, j) is assumed to be an error process (e.g., please see the error of example
model function given in (18)) related to the unknown implicit external influences and
possible measurement errors. Note that there is no additional assumption concerning
the probability distribution of ζ(t, j). The inverse problem corresponding to (27)
with a model distance function g induced by the Euclidean metric has the form

L(B(t, j))=
NT∑
t=1

NJ∑
j=1

∥∥π(t, j)− θ logit(B(t, j), u(t, j))
∥∥2

2→ min
B(t, j)

. (29)

The standard logit model is one of the most used discrete choice models; neverthe-
less, it is important to check whether the problem setting of a certain considered
application fits the model properties and whether it would be more reasonable to
deploy a different discrete choice model. In this context, it is important to note that
the logit model exhibits the independence of irrelevant alternatives (IIA) property
[27], which states that for any two alternatives states si and sh the ratio of the
corresponding probabilities is

exp
(
β i

0(t, j)−βh
0 (t, j)+

NE∑
e=1

(
β i

e(t, j)−βh
e (t, j)

)
ue(t, j)

)
. (30)

In other words, the ratio does not depend on any state other than si and sh and the
relative odds remain the same [36]. Although this property might be realistic in
some choice situations, it might be inappropriate in others [7]. Specifically, for
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sets with similar states, i.e., states that are good substitutes of one another in the
regarded system/application, the IIA property becomes implausible. This issue is
often motivated with an example originating from a discussion McFadden offered
in [29] on the subject: an individual takes one of the choices in the alternative set
of states {auto, blue bus} with probability distribution [2/3 1/3], and then a red bus
is added to the set of states, which causes the “intuitive” probability distribution,
i.e., [2/3 1/6 1/6], to vary from the one implied by the IIA axiom [1/2 1/4 1/4].

The direct model function given in (27) can be extended in order to describe
processes with memory, e.g., by including the previous (in time) and/or neighbor-
ing (in location space) values of the probability density π(t, j) as the additional
components of the external factors vector u(t, j), e.g.,

uNE+1(t, j) := π1(t − 1, j). (31)

Such logit models with Markov effects incorporated in the above form of external
factors are known as dynamical logit models [32; 15]. One of the main drawbacks of
the logistic regression ansatz is the internally embedded mapping (from the closed
interval [0, 1] to the continuum of real numbers (−∞,∞)) used to approach the
discrete/categorical data with continuous regression techniques. This transformation
causes computational instability on the boundaries of the logistic cumulative density
function. Further, it is not possible to directly access the impact of the explicit
external factors, which complicates the interpretations of the exterior influences.

Nevertheless, logistic regression is a good option for systems with nonlinear
behavior. As a matter of fact, a nonlinear process can also be interpolated via a
sequence of piecewise linear but nonstationary and nonhomogeneous local models.
But in a case when the dynamics of the observed process are nonlinear as well as
nonstationary and nonhomogeneous, it is more sensible to describe the system with
an intrinsically nonlinear model (e.g., the nonstationary nonhomogeneous logistic
regression).

3A2. Markov regression. As a locally linear alternative to the logistic regression
model described above, we consider a nonstationary nonhomogeneous Markov
regression. In order to incorporate all external factors in the model, we assume that
the transition matrix P(u(t, j)) corresponding to an observed Markovian dynamical
process σ(t, j, l) is continuously differentiable and has bounded second derivatives.
Employing the results of Proposition 2.1, the following decomposition of the
transition matrix is considered:

P(t, j, u(t, j))= P0(t, j)+
NE∑
e=1

Pe(t, j)ue(t, j). (32)

The model function f Markov is defined on the basis of an adapted stochastic master
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equation (6):

π(t + 1, j)> := π(t, j)>
(
P(t, j, u(t, j))+ ε(t, j)

)
. (33)

Then it is possible to formulate the following inverse problem:

L(P(t, j, u(t, j)))

=

NT∑
t=1

NJ∑
j=1

∥∥π(t + 1, j)>−π(t, j)>P(t, j, u(t, j))
∥∥2

2→ min
P(t, j,u(t, j))

. (34)

3B. Interpolation. The optimization problem (20) exhibits several computational
drawbacks such as ill-posedness (in the sense of Hadamard [13]) and therefore
needs to undergo a series of changes in the form of regularizations. In the fol-
lowing, we make use of the fact that many real-life systems from various areas
of application exhibit a certain level of persistence. Subsequently, it is possible
to interpolate the model parameter function θ(u(t, j)) with a fixed number of
NK stationary and homogeneous model parameters θk(u(t, j)) and corresponding
affiliations γk(t, j) with k ∈ {1, . . . , NK }. This approach leads to a less ill-posed
description of the considered dynamical system. Thus, assuming the existence
of such local models 2(u(t, j)) = [θ1(u(t, j)), . . . , θNK (u(t, j))] and weights
0(t, j) = [γ1(t, j), . . . , γNK (t, j)] ∈ [0, 1]1×NK , the model distance functional
first introduced in (19) can be phrased in the following interpolated formulation:

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
=

NK∑
k=1

γk(t, j)g
(
π(t + 1, j), . . . , π(t − NM , j), θk(u(t, j))

)
. (35)

The affiliation process 0(t, j) characterizes the regime behavior and the nonstation-
ary and nonhomogeneous nature of the dynamical system. The weights γk(t, j)
have the specification to take positive values and sum up to one over all NK local
models, i.e.,

NK∑
k=1

γk(t, j)= 1 ∀ j ∈ {1, . . . , NJ }, t ∈ {1, . . . , NT }, (36)

γk(t, j)≥ 0 ∀ j ∈ {1, . . . , NJ }, t ∈ {1, . . . , NT }, k ∈ {1, . . . , NK }. (37)

Then the corresponding inverse problem can formally be expressed by

L(0(t, j),2(u(t, j)))=
NJ∑
j=1

L j (0( : , j),2(u(t, j)))→ min
0(t, j),2(u(t, j))

(38)
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with
L j (0( : , j),2(u(t, j)))

=

NT∑
t=1

NK∑
k=1

γk(t, j)g
(
π(t + 1, j), . . . , π(t − NM , j), θk(u(t, j))

)
. (39)

Note that the constraints are independent for each location j . This independence
in space and the structure of the functional L will be exploited in the numerical
optimization of (38) with respect to 0(t, j). The main idea is that every location j
can be regarded separately due to the fact that the overall functional L is a sum of
local (uncoupled in 0( : , j)) functionals L j with (uncoupled in 0( : , j)) constraints
(36) and (37). A corresponding numerical algorithm exploiting this structure of
the problem will be discussed in detail in Section 3D. The influence of the implicit
external factors uunres(t, j) is reflected in the explicit time- and space-dependence
of the affiliation process 0(t, j).

In case of the logistic regression, this regularization means that we need to find
a set of locally stationary and homogeneous (i.e., not dependent on time t and loca-
tion j) model parameters {B1, . . . , BNK } with Bk = [B1

k , . . . , B NS
k ] ∈ R(NE+1)×NS

∀ k ∈ {1, . . . NK }. For the Markov regression, the interpolated version of (34) is

L(0(t, j), P(u(t, j)))

=

NJ∑
j=1

NT∑
t=1

NK∑
k=1

γk(t, j)
∥∥π(t+1, j)>−π(t, j)>Pk(u(t, j))

∥∥2
2→ min

0(t, j),P(u(t, j))
, (40)

where the local Markovian transition operators P(u(t, j)) = [P1(u(t, j)), . . . ,
P NK (u(t, j))] ∈RNS×NS NK for fixed t and j are defined in a linear approximation:

Pk(u(t, j))= Pk
0 +

NE∑
e=1

Pk
e ue(t, j) ∀ k ∈ {1, . . . , NK }. (41)

To ensure that the stochasticity of the Markov transition operator remains preserved,
the optimization problem is subject to a number of constraints. Since the transition
matrices Pk(u(t, j)) are stochastic matrices, the matrices Pk

e are required to satisfy
the equalities

Pk
0 1= 1 ∀ k ∈ {1, . . . , NK }, (42)

Pk
e 1= 0 ∀ e ∈ {1, . . . , NE }, k ∈ {1, . . . , NK }, (43)

whereas 1 ∈RNS×1 is a column vector with all entries equal to one and analogously
0 ∈ RNS×1 refers to the corresponding vector with all entries equal to zero. Fur-
thermore, the entries of Pk(u(t, j)) need to be greater than or equal to zero. In the
case of a rectangular domain U, the feasible number of 2NE inequality constraints
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(consisting of all possible combinations of suprema and infima of the NE explicit
external factors ue(t, j))

{Pk
0 }n,m +

NE∑
e=1

{Pk
e }n,m

[
supt, j ue(t, j)
inft, j ue(t, j)

]
≥ 0 ∀ k, n,m (44)

is sufficient to satisfy this condition. See [30] for more details and a proof of (44)
for the purely temporal case; extension to the spatiotemporal case given in equations
(41)–(44) above is straightforward.

3C. Spatial and temporal persistence. The problem formulation is still ill-posed
since its solution may not be unique due to many possibilities to choose the switching
process 0. Therefore, we need to make further assumptions/restrictions on the
function space that contains the switching process and add another constraint to the
optimization problem. More precisely, to approach this issue, we limit the number
of transitions of γk( : , j), introducing a persistency constraint on the time interval

|γk( : , j)|BV(1,NT ) =

NT−1∑
t=1

|γk(t + 1, j)− γk(t, j)| ≤ NC (45)

that holds for every location j ∈ {1, . . . , NJ }. Without an additional spatial regular-
ization, the constraints for parameter 0(t, j) are still independent for every location.
This structural advantage allows us to compute each 0( : , j) separately if the value
of the parameter 2(u(t, j)) is kept fixed. In some situations, it might be reasonable
to limit the variation along the locations as well (e.g., a limitation concerning only
the neighboring cells of a location), but constraints on the switching process 0 would
result in a global coupling (in j) for different optimization problems L j from (39),
leading to immense numerical costs. Furthermore, an identification of the best
model in terms of parameter choice, discussed in the next paragraph, would have to
be pursued for all possible combinations of choices for NC( j), j ∈ {1, . . . NJ }, as
well, leading to a computationally expensive analysis. This additional regularization
over spatial locations is an aspect of further research.

3D. Numerical approach and computational complexity. The inverse problem
posed in (38) has no general analytic solution and is not convex (i.e., it is not possible
to obtain an unique global minimum with standard approaches, e.g., gradient descent
or Newton methods). But the global optimizers 0∗(t, j) and 2∗(u(t, j)) can be
approximated combining a subspace algorithm and simulated annealing [22]. The
main idea of the subspace algorithm is to exploit the above-mentioned structural
property of the optimization problem (38), i.e., that the simple convex optimization
problems can be stated for 0 and 2 separately, i.e., for (i) an optimization with
respect to 0( : , j) for a fixed 2 and (ii) an optimization with respect to 2 for
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a fixed 0. Dividing the optimization problem with two sets of unknowns into
two minimizations over just one set of parameters reduces the originally high-
dimensional and nonconvex problem to two manageable problems that can be
approached with standard optimization techniques, e.g., simplex method for the
above subspace step (i) and quadratic minimization with linear equality and inequal-
ity constraints for the above subspace step (ii). It is straightforward to demonstrate
that the subsequent repetition of steps (i) and (ii) leads to a strict minimization
of the original functional L, and since the average model distance functional is
bounded with zero from below, this procedure will converge to a local minimum
of L. Iterations over the subproblems only converge to local minima, and simulated
annealing approaches [22; 25] can be deployed in combination with the subspace-
iteration algorithm to avoid getting trapped in the local minimum. The details of
the algorithm are now given in the pseudocode in Algorithm 1.

In contrast to the time-dependent algorithm introduced in [30], the additional
spatial dimension j is involved in the above scheme. Since a spatial regularization
is not included, the affiliations 0( : , j) are determined for each location j separately
(see the for-loop on line 6), i.e., the problem of optimizing L with respect to 0
is equivalent to separate optimization of NJ suboptimization problems given by
functionals L j defined in (39). The local stationary and homogeneous model
parameters θi , on the other hand, are computed for all t and j simultaneously
(line 9). A separate computation for every spatial component is not possible here
since different L j are coupled through 2.

In order to obtain a global minimizer of (38), the subspace-iteration algorithm is
repeated N FEM

anneal times with different randomly sampled initial parameters 0[0] (see
lines 2 and 3). This form of simulated annealing helps to avoid local minima by
trying to consider the entire parameter space. Since the annealing steps can be run
independently, it is possible to reduce the corresponding computational complexity
via an “embarrassingly parallel” implementation. The necessary memory capacity as
well as the computing time can be further decreased by using a time-discretized (with
finite elements) version of the full process 0 [30]. This form of dimension reduction
is especially beneficial when modeling time-persistent dynamical systems with few
transitions between the local models (i.e., systems where a comparatively small num-
ber of finite element functions (N FEM

basis � NT ) is sufficient for qualitative results).
Computational cost of the proposed technique is dependent on the number of

locations NJ and the number N FEM
basis of finite elements for the time discretization.

The run time for the 0 calculation is proportional to O(NJ NK (2N FEM
basis −1)κ), where

κ ≥ 1 is the parameter dependent on the choice of the numerical scheme for the
0( : , j)-optimization (Step 1 of Algorithm 1). As already indicated above, the
computational complexity of the determination of 2 varies for different model
classes and the spatial component can be regarded as an additional dimension in the
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input :Set number of different regimes NK , value for time-wise transition
boundary NC , number of simulated annealing steps N FEM

anneal and optimization
tolerance value τol (optional: number of finite-element functions N FEM

basis ).
output :Global optimizers 0∗(t, j) and 2∗(u(t, j))

1 Lmin = 1000000
2 for r = 1 : Nanneal do
3 Generate random initial 0[0]r and compute 2[0]r .
4 while |L(0[s]r ,2

[s]
r )−L(0[s−1]

r ,2[s−1]
r )| ≥ τol do

5 Step 1:
6 for j = 1 : NJ do
7 Determine 0[s+1]

r ( : , j)= arg min L j (0( : , j),2[s]r ) subject to
constraints (36), (37) and (45), whereas 2[s−1]

r denotes the current fixed
approximation of the optimal 2∗. Apply standard methods of linear
minimization with linear equality and inequality constraints (e.g., simplex
method).

8 Step 2:
9 Compute 2[s+1]

r = arg min L(0[s+1]
r ,2) (additional constraints depend on the

model, e.g., constraints (42)–(44) in case of the Markovian process and no
constraints in the logistic regression case). Apply standard methods of
quadratic optimization with linear equality and inequality constraints.

10 s := s+ 1.

11 if Lmin ≥ L(0∗r (t, j),2∗r (u(t, j))) then
12 Lmin = L(0∗r (t, j),2∗r (u(t, j)))
13 0∗ = 0∗r

14 2∗ =2∗r

15 Return 0∗ and 2∗.

Algorithm 1: Subspace algorithm with annealing steps.

problem. In Step 2 of the algorithm, one needs to solve a quadratic minimization
problem subject to linear constraints (equalities and inequalities) to compute the
matrices Pk

e considering the nonstationary nonhomogeneous Markov regression
(see (40)). Such problems are know to be NP-complete [37]. For the logistic
model (see (27)), the computational complexity of the Step 2 can be expressed as
O(NK NT NJ ) [31]. The overall resulting numerical cost of the proposed method
is in the range of the average complexity of standard approaches such as artificial
neural networks (O((N ANN

weights)
3) where N ANN

weights is the number of ANN parameters,
i.e., neural biases and weights5) and support vector machines (O(N 2

T NE) with NE

5This number is directly proportional to the number of neurons and depends on the type of the
transfer functions and network architecture.
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referring to the number of explicit external factors). Details of the techniques and
their computational time complexity will be discussed in Section 5.

3E. Information criterion. A further issue originates from the selection of the
parameters NK and NC , which can lead to a variety of models differing in terms
of quality and complexity. This problem is addressed by applying a modified
formulation of Akaike’s information criterion (mAIC). The main idea of the
method is based on approximating the time series of the obtained model errors
g(π(t + 1, j), . . . , π(t − NM , j), θk(u(t, j))) through an optimal nonparametric
scalar-valued stochastic process, followed by the comparison of the mAIC values
for the obtained processes from different models. A detailed description of the
method can be found in [30]. The main advantage of this approach is that no a priori
parametric probabilistic assumptions about the analyzed data are necessary.6

The main idea of an information criterion is that the quality of the determined
model is weighted against the total number of parameters involved in the calculation
of the model [1]. In other words, the aim is to identify the model that fits best with
the fewest number of necessary model parameters, e.g.,

mAIC(NK , NC)=−2 log(L(NK , NC))+ 2|M(NK , NC)|. (46)

Here the likelihood L(NK , NC) corresponds to the underlying model characterized
by NK different regimes with a maximum of NC transitions between them and is
defined as
L(NK , NC)

=

NJ∏
j=1

NT∏
t=1

NK∑
k=1

γk(t, j)φk
(
g
(
π(t+1, j), . . . , π(t−NM , j), θk(u(t, j))

)
|Nφk

)
. (47)

A detailed derivation of the likelihood function for the nonstationary case can also
be found in [30]. The expression above is its straightforward extension to the
nonstationary and nonhomogeneous case. The functional M(NK , NC) describes
the total number of involved model parameters, which in the case of the logistic
regression consists of

|M logit(NK , NC)| = |0| + NK (NE + 1) (48)

and for the Markov regression is

|MMarkov(NK , NC)| = |0| + NK NS(NS − 1)(NE + 1). (49)

This modified version of Akaike’s information criterion coupled with the nonsta-
tionary and nonhomogeneous logistic and Markov regression (introduced above)

6Such parametric a priori assumptions are needed to compute the log-likelihood of the data in
context of standard information criteria like AIC.
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allows us to simultaneously identify the optimal model and the optimal values of
the parameters NK and NC .

In practice, mAIC values for different cluster values NK ∈ S1 and persistency
parameter values NC ∈ S2 might not vary substantially. By appointing only one
model, other suitable ones are discarded, resulting in an unnecessary information
loss [5]. In this case, the mAIC values of the possible models are ranked via the
deviation from the lowest mAIC value, i.e.,

1(NK , NC)

= exp
[min(N ′K ,N ′C )∈S1×S2(mAIC(N ′K , N ′C))−mAIC(NK , NC)

2

]
. (50)

If there is more than one probable model, then the overall model can be considered
as a multimodel, i.e., a weighted linear combination of individual models with the
model weights [5] given by

w(NK , NC) :=
1(NK , NC)∑

(N ′K ,N
′

C )∈S1×S2
1(N ′K , N ′C)

. (51)

Besides determining the optimal model with respect to the parameters NK and NC ,
the criterion can also be used to determine the better model in terms of the prior
assumptions. Since different models are compared with respect to the same observa-
tion data and the same form of the nonparametric likelihood-estimation procedure
described in [30] (based on fitting the optimal stochastic process to the time series of
the model residuals), resulting mAIC values can be used to identify the statistically
optimal model from a given class of models (e.g., Markov, logit, ANN and SVM).
Practical examples of this data-based model-discrimination procedure will be given
in the last sections of this manuscript.

4. Prediction and assimilation of additional information

Suppose the global optimal model parameters 0∗(t, j) and2∗(u(t, j)) with respect
to the average model distance functional L(0(t, j),2(u(t, j))) introduced in (38)
can be determined with the proposed numerical scheme (see Algorithm 1); then it
is possible to approximate the observed time series

π(t + 1, j)≈ f
(
π(t, j), . . . , π(t − NM , j),

NK∑
k=1

γ ∗k (t, j)θ∗k (u(t, j))
)

(52)

on the basis of the formal definition of the direct model function. This ansatz, used to
approximate the vector of state probabilities, is discussed in detail in [30] and allows
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us to directly concatenate the two model parameters 0∗(t, j) and 2∗(u(t, j)).7

In most of the practical applications, a further aspect of interest is a prediction
π̂(NT + Npred, j) of the probability distribution π(NT + Npred, j) outside of the
observed time sequence {1, . . . , NT }. The quantity Npred denotes the prediction
depth, i.e., the total number of prediction steps in time. The difficulty lies in the
nonstationarity and nonhomogeneity of the model formulation; i.e., any prediction
crucially depends on 0∗(t, j), which is only defined for the observed time sequence
{1, . . . , NT }. In order to predict future affiliations 0̂(NT + Npred, j), the process
0∗(t, j) can be regarded as an observed time series of probabilities to be in NK

different discrete states. Subsequently, the proposed Markov regression framework
(given in (40)) can be applied to determine the model parameters describing 0∗(t, j).
To avoid an infinite sequence of prediction problems caused by nonstationarity
and nonhomogeneity, the model of the affiliation process 0∗(t, j) is assumed to
have only one regime (i.e., NK = 1). Although this is a strong restriction, it is
important to note that stationarity as well as homogeneity are common assumptions
in time-series analysis. This self-contained strategy to determine

0̂(NT + Npred, j)= 0∗(NT , j)
Npred−1∏
τ=0

([
P00 +

NE∑
e=1

P0e ue(NT + τ, j)
])

(53)

has been introduced in [16] (in the context of purely time-dependent data) and
further discussed and deployed in [30]. The model transition matrix, characterizing
the dynamics of the affiliation 0∗(t, j), is denoted P0(u(t, j)) and is a linear
combination of explicit external factors u(t, j) and matrices P00 , . . . , P0NE

(see (41)
for NK = 1). In a case when the data π(NT + 1, j) for the next time step can
be obtained, the new information can be used to update the 0̂(t, j)-predictor. A
strategy for updating the prediction 0̂(NT + 1, j) conditioned on the additional
information π(NT + 1, j) has recently been introduced in [16; 30] and is based on
the maximum-likelihood principle, i.e.,

γ ∗k (NT + 1, j)

=

{
1 if k = arg minh g(π(t + 1, j), . . . , π(t − NM , j), θh(u(t, j))),
0 otherwise.

(54)

The update γ ∗k (NT + 1, j) is assumed to be optimal (hence the superscript ∗). In
detail, this means that it is possible to identify all local regimes θk describing the
dynamical process σ(t, j, l) on the basis of the available data measured in the time
sequence {1, . . . , NT }. Further, it is necessary to assume the affiliation process 0∗

7Note that the model function f needs to be linear in its parameters and the model distance
functional g has to be strictly convex to pursue the equation given in (52) (for a detailed derivation
see [30]). This is the case for the proposed Markov as well as for the logistic model.
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is deterministic (i.e., takes only values in the set {0, 1}). In the following, a new
update method is proposed on the basis of Bayes’ theorem that allows for a fuzzy
affiliation. We denote 0(NT + 1, j) to be the true but unknown cluster affiliation
of the dynamical system under observation and 0̂(NT + 1, j) the (prior) prediction,
calculated only with the information from the previous time steps t ∈ {1, . . . NT },
and as 0̇(NT +1, j), we denote the posterior estimate based on the new observation
π(NT + 1, j). The following proposition gives an analytical form of the posterior
estimate of the hidden model affiliation function and shows how the implicit impact
of the unresolved external factors can be assimilated into the model:

Proposition 4.1. Let the entries of γk(t, j) for all j , t and k only assume values
zero or one and the predictor 0̂(NT + 1, j) be a prior probability distribution for
0(NT + 1, j) in the sense that

P[γk(NT + 1, j)= 1] = γ̂k(NT + 1, j). (55)

Moreover, let the distribution of the observation π(NT +1, j) given the information
about the affiliation γk at time t be independent of the prediction 0̂(t, j). Then the
posterior distribution of the regime assigning process 0(NT + 1, j) is of the form

γ̇k(NT + 1, j)=
P
[
π(NT + 1, j)|γk(NT + 1, j)= 1

]
γ̂k(NT + 1, j)∑NK

h=1 P
[
π(NT + 1, j)|γh(NT + 1, j)= 1

]
γ̂h(NT + 1, j)

. (56)

Proof. Using the above assumptions and Bayes’ theorem, the following holds:

P
[
γk(NT + 1, j)= 1|π(NT + 1, j)

]
=

P
[
γk(NT + 1, j)= 1;π(NT + 1, j)

]
P[π(NT + 1, j)]

=
P
[
π(NT + 1, j)|γk(NT + 1, j)= 1

]
P[γk(NT + 1, j)= 1]

P[π(NT + 1, j)]

=
P
[
π(NT + 1, j)|γk(NT + 1, j)= 1

]
P[γk(NT + 1, j)= 1]∑NK

h=1 P
[
π(NT + 1, j)|γh(NT + 1, j)= 1

]
P[γh(NT + 1, j)= 1]

. �

As will be demonstrated by numerical examples in the next section, formula
(56) improves an estimation of the new affiliations in comparison to the maximum-
likelihood approach (54) deployed in [16; 30]. Although the affiliation is “fuzzy”
(i.e., resulting affiliations may take values between zero and one), it is (as demon-
strated by the numerical tests) less prone with respect to introducing unjustified
switches between the local models.
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5. Numerical investigation

To explore the characteristic properties of the introduced nonstationary and nonho-
mogeneous regression framework, we apply it to three different synthetic data sets.
Note that we actively chose to work with artificial rather than real-life examples due
to the specific settings necessary to analyze the proposed framework. In a real-life
observation, for example, there is no reliable information about the influencing
factors uunres(t, j) that are not available in form of measurements.

Different model functions (e.g., Markov and logit) for the framework proposed in
Section 3 as well as other standard techniques of time-series analysis (e.g., SVM and
ANN) are considered in the following. It is necessary to distinguish between the dif-
ferent resulting model parameters via additional superscript tags (e.g., 0Markov(t, j)
or 0logit(t, j)). The same labeling system is employed for approximations of
the actual observations π(t, j) determined with model parameters computed with
various methodologies (e.g., πMarkov(t, j) or π logit(t, j) or πANN(t, j)). Due to the
fact that the considered observations are artificial, all parameters and variables used
to generate the synthetic data are tagged with the superscript syn (e.g., 0logit(t, j)).
Some tags are specifying the settings used for a specific algorithm such as the number
of annealing steps (e.g., N ANN

anneal or N FEM
anneal) or the regularization factor (e.g., N FEM

C
or N SVM

C ). Note that the regularization factor NC can have superscripts FEM as well
as Markov or logit although all of those labels correspond to the technique proposed
in Section 3. This further distinction is necessary as the abbreviation FEM is a
general reference to the framework introduced in the current manuscript. Resulting
parameters derived with any technique, which are considered to be optimal in the
sense that the corresponding model has the lowest AIC, have a superscript ∗.

A few variables remain free of labels as they are independent of the parameter-
identification process and are assumed to be the same for all the employed techniques,
e.g., the number of explicit external factors NE , the number of discrete states NS

or the number of considered locations NJ .
One aspect of the numerical investigation includes testing of the various con-

sidered parameter-identification techniques with respect to predictions, i.e., ap-
proximate data that was not given for the computation of corresponding model
parameters. Thus, it is necessary to divide the time sequence {1, . . . , NT } describing
the time-wise length of the observations π(t, j) into two components {1, . . . , NTtrain}

and {NTtrain+1, . . . , NT }. The first sequence will be referred to as training sequence
and the second one will be known as test sequence.

The first data set is discussed in Section 5A and is employed to demonstrate
the general feasibility of the proposed nonstationary and nonhomogeneous Markov
regression as well as the logistic regression frameworks under “good conditions”
(all relevant data is given for the computations, i.e., no unresolved external factors
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uunres(t, j)). In Section 5B, the focus is on the key attribute of the Markov regression
technique presented in this paper, which allows us to take missing/unavailable exter-
nal factors into account. To numerically investigate this theoretical incorporation of
unobserved information, a synthetic data set is generated with NF = 101 external
factors u(t, j) and only one of these 101 factors is made available for the calculation
of the model parameters (i.e., NE = 1 and NI = 100).

The last example data set is chosen to numerically investigate (again considering
the nonstationary and nonhomogeneous Markov regression) the newly proposed
update of the prediction 0̂(NT + 1, j) (see Proposition 4.1). The quality of the
determined model is analyzed and compared to the results of two standard frame-
works from machine learning (namely artificial neural networks [2; 24; 18; 3] and
support vector machines [8; 35]).

5A. Nonstationary example. Under ideal conditions, the regarded dynamical pro-
cess σ(t, j, l) has the Markov property and all external influences are available in
the form of observation data. The toy example considered in this section allows us to
check the basic feasibility of the proposed technique and also serves as a reference
for an example under “bad conditions”, investigated in Section 5B. The data is
generated using the proposed Markov model structure (see (32)) and pseudorandom
numbers generated by the computer. In the following, two algorithms are outlined
in order to explain the synthetic data. At first, the affiliation process 0syn(t, j)
subject to constraints (45), (36) and (37) is generated.

The synthetic parameter 0syn is generated with pseudorandom numbers that, for
simplicity, are restricted to the set {0, 1}. Furthermore, a certain level of persistency
is forced on 0syn(t, j), meaning that the total number of transitions is limited
to N syn

C (see lines 3–12 of Algorithm 2). As the weights γ syn
k (t, j), generated with

Algorithm 2, only take values in {0, 1}, it is possible to directly assume8

Psyn(t, j, u(t, j))≈
N syn

K∑
k=1

γ
syn
k (t, j)Pk syn(u(t, j)), (57)

whereas the definition of Pk syn(u(t, j)) is given in (41). Then a synthetic time
series π syn(t, j) can be computed on the basis of the definition of the ensemble
data by generating an ensemble of Nens Markov chain realizations σ syn(t, j, l) ∈
{s1, . . . , sNS } given the transition matrix Psyn(t, j, u(t, j)) (see Algorithm 3). The
transition matrix Psyn(t, j, u(t, j)) is calculated using the assumed model structure
given in (41) and (57) (see line 5). Further, it is assumed that Psyn(t, j, u(t, j))
also depends linearly on the implicit external factors uunres(t, j), given for the

8For more information on this approximation of the transition matrix Psyn(t, j, u(t, j)), see
elucidations in Section 4, or for a more detailed discussion on the matter (for purely time-dependent
model parameters), the reader is referred to [30].
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input :Choose values for N syn
K , N syn

C , NT and NJ .
output :0syn(t, j)

1 for j = 1 : NJ do
2 γ

syn
k ( : , j)= [ ] ∀ k ∈ {1, . . . , NK }

3 for c = 1 : N syn
C do

4 Ndummy = round(2NT /(N
syn
C ∗ rand([0, 1])))

5 dummy0= (0, . . . , 0) ∈ R1×Ndummy

6 dummy1= (1, . . . , 1) ∈ R1×Ndummy

7 r = rand({1, . . . , N syn
K })

8 for k = 1 : N syn
K do

9 if r == k then
10 γ

syn
k ( : , j)= [γ syn

k ( : , j) dummy1]

11 else
12 γ

syn
k ( : , j)= [γ syn

k ( : , j) dummy0]

13 if length(γ syn
1 ( : , j))≥ NT then

14 γ
syn
k ( : , j)= γ syn

k (1 : NT , j) ∀ k ∈ {1, . . . , N syn
K }

15 else
16 Ndummy = NT − length(γ syn

1 ( : , j))
17 dummy0= (0, . . . , 0) ∈ R1×Ndummy

18 dummy1= (1, . . . , 1) ∈ R1×Ndummy

19 γ
syn
1 ( : , j)= [γ syn

1 ( : , j) dummy1]
20 γ

syn
k ( : , j)= [γ syn

k ( : , j) dummy0] ∀ k ∈ {2, . . . , N syn
K }

21 0syn( : , j)= [γ syn
1 ( : , j), . . . , γ syn

N syn
K
( : , j)]

Algorithm 2: Generate synthetic affiliation 0syn(t, j).

generation of artificial data. Hence, analogously to the synthetic model matrices
Pk syn

1 , . . . , Pk syn
NE

, corresponding to the explicit external factors u(t, j), a set of
matrices Pk syn

NE+1, . . . , Pk syn
NE+NI

, related to the unresolved factors uunres(t, j), is chosen
for k ∈ {1, . . . , N syn

K }.
In order to generate samples from a distribution, as necessary in lines 7–9

of Algorithm 3, one can employ standard techniques such as rejection sampling
(also known as the acceptance-rejection method) [6; 33; 38]. Finally, the artificial
data π syn(t, j) can be computed considering the quotients Nsi (t, j)/Nens first in-
troduced in (1), which are assumed to be a good approximation of the probability
π syn(t, j) for large Nens. The affiliation γ syn

k (t, j) is generated with the following
setting: N syn

C = 10, N syn
K = 2, NT = 400, NJ = 24, NS = 2, NE = 2 and NI = 0. The

first explicit external influence u1(t, j) is set to be a time- and location-dependent
sinus function. As the second factor, we use the average of the neighboring cell
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input :Choose values for N syn
K , 0syn(t, j) for all t and j (already generated), NT , NJ ,

NE , NI , NS and Nens. Define synthetic model matrices
Pk syn

0 , . . . , Pk syn
NE

, Pk syn
NE+1, . . . , Pk syn

NE+NI
with k ∈ {1, . . . , N syn

K }, a finite set of
discrete states {s1, . . . , sNS } and explicit as well as implicit external factors,
i.e., u(t, j) and uunres(t, j).

output :π syn(t, j)
1 Initialize σ syn(0, j, l)= rand{s1, . . . , sNS } ∀ j ∈ {1, . . . , NJ }, l ∈ {1, . . . , Nens}

2 for t = 1 : NT do
3 for j = 1 : NJ do
4 P syn(t, j, u(t, j))=∑NK

k=1 γk(t, j)
(
Pk syn

0 +
∑NE

e=1 Pk syn
e ue(t, j)+

∑NI
e=1 Pk syn

NE+euunres
e (t, j)

)
5 for l = 1 : Nens do
6 h = index(σ syn(t − 1, j, l))

7 σ syn(t, j, l)=


s1 with probability {P syn(t, j, u(t, j))}h1,

...

sNS with probability {P syn(t, j, u(t, j))}hNS

8 (see rejection sampling [6; 33; 38])

9 for i = 1 : NS do
10 π

syn
i (t, j)= counter(σ syn(t, j, l)= si )/Nens

Algorithm 3: Generate synthetic data π syn(t, j).

states at the previous time step, i.e.,

u2(t, j) := average
r∈neigh( j)

(π(t, r)). (58)

It allows us to model the spatial relations and to evaluate the statistical impact of
adjacent location states. To be able to speak of neighbors in the spatial sense, a
honeycomb lattice is assumed and each hexagon is assigned to one location. The
choice of this lattice allows us to work with six neighbors for every location, each
sharing an edge with the considered cell. To generate the data, we define matrices

P1 syn
0 =

[
0.7 0.3
0.7 0.3

]
, P1 syn

1 =

[
0.28 −0.28
0.28 −0.28

]
, P1 syn

2 =

[
−0.01 0.01
−0.01 0.01

]
(59)

and

P2 syn
0 =

[
0.3 0.7
0.3 0.7

]
, P2 syn

1 =

[
0.24 −0.24
0.24 −0.24

]
, P2 syn

2 =

[
0.05 −0.05
0.05 −0.05

]
. (60)

The primary focus of this example lies on checking the techniques’ attributes.
This includes the ability to infer good (i.e., unbiased) approximations of the model
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Figure 2. The four panels display the mAIC values for different parameters N FEM
K ∈

{1, 2, 3} and N FEM
C ∈ {3, 5, 7, 10, 15, 20} whereas each panel corresponds to a different

model ansatz: Markov model, independent process, logistic model and dynamical logistic
model. Additionally, the mAIC value calculated for the ANN results is shown.

parameters (i.e., 0syn(t, j), Pk syn(u(t, j)), N syn
K and N syn

C ) as well as to gener-
ate a qualitative estimate of the distribution π syn(t, j). The proposed framework
(four different direct model functions are considered, i.e., Markov and logit both
with and without memory) is applied to the training sequence {1, . . . , 360} (i.e.,
NTtrain = 360) of the synthetic data π syn(t, j) and the subspace algorithm is iterated
N FEM

anneal = 10 (for all four model assumptions) times in order to find a global mini-
mum.9 The calculation is done for different parameters values N FEM

K ∈ {1, 2, 3} and
N FEM

C ∈ {3, 5, 7, 10, 15, 20}. Further, the corresponding mAIC values are computed
with the proposed adapted information criterion. The resulting values are displayed
in Figure 2. As can be seen in the panels on the left side of Figure 2, the mAIC values
for the originally chosen maximal number of transitions N syn

C and number of regimes
N syn

K are the lowest for the Markov framework with and without memory (i.e., the
variables N ∗Markov

C =N syn
C and N ∗Markov

K =N syn
K are correctly identified). The results

for the runs with logistic model assumptions (again with and without memory) have
much bigger mAIC values (displayed in the panels on the right-hand side of Figure 2).
Moreover, the mAIC value corresponding to the results of a neural network run

9For the remainder of the paper, we denote the AIC-optimal parameters computed by the framework
with a superscripted ∗.
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Figure 3. Approximations of the synthetic data π syn
1 (t, j) retrieved with two differ-

ent techniques: ANN (settings: N ANN
neurons = 20, Levenberg–Marquardt backpropaga-

tion and N ANN
anneal = 10) and nonstationary Markov regression (settings: no memory,

N Markov
anneal = 10, N∗Markov

C = 10 and N∗Markov
K = 2) are presented. Each of the panels

corresponds to a location. The vertical black line at time NTtrain = 360 marks the last data
point of the training data and the beginning of prediction sequence. The ANN approxi-
mation πANN

1 (t, j) is shown as a thin dashed line, and the approximation πMarkov
1 (t, j)

obtained with the Markov model is displayed as a thin solid line.

(details below) is also presented in each of the four panels. The calculated model
parameters of the Markov process without memory applied to the synthetic data
for N ∗Markov

K = 2 and N ∗Markov
C = 10 are used to simulate πMarkov(t, j) employing

Algorithm 3 with parameters 0∗(t, j) and P∗(u(t, j)) (see Figure 3). It is compared
to results obtained with artificial neural networks (ANN) [2; 24; 18; 3] and support
vector machines (SVM) [8; 35]. These techniques are popular pattern-recognition
algorithms and can both be used to model spatiotemporal data. As a representative
ANN, we consider a feedforward network, more specifically a multilayer perceptron
(MLP) [3]. According to the theory, a network of this particular architecture with two
hidden layers can be used to approximate an arbitrary nonlinear function [23]. For
many cases, a single-layer network (with an arbitrary depth, i.e., number of neurons)
is enough and can already describe most of the practically relevant functions [18].
Typically used transfer function classes are linear-, step- or sigmoid-functions.
Multilayer feedforward networks with logistic sigmoid transfer functions are uni-
versal approximators [18], and therefore, we will deploy this type of ANN in the
numerical tests below. We train networks with different numbers of hidden neurons
and continue with the network that has the smallest residuals (N ANN

neurons = 20). This
means that a particular ANN with N ANN

neurons =w neurons is considered to be the best
fit when

∑
t, j‖π

syn(t, j)− πANN(w)(t, j)‖22 ≤
∑

t, j‖π
syn(t, j)− πANN(v)(t, j)‖22

for all of the regarded neuron numbers v,w ∈ [5, 10, 15, 20, 25, 30, 40, 50]. The
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Figure 4. The mean relative error in % (in Euclidean metric) is shown dependent on the
prediction depth τ ∈ {1, . . . , Npred} (note that Npred = 39). More specifically, the shown
prediction error is computed as follows: mean j ($( j, τ )/‖π syn(NTtrain + τ, j)‖22) ∗ 100
with j ∈ {1, . . . , NJ } (details can be found in Algorithm 4).

Levenberg–Marquardt backpropagation is employed to optimize the network, and
since it only converges to a local minimum, we also use annealing steps (N ANN

anneal=10)
to approach a global solution.

An attempt to reconstruct the synthetic data π syn
1 (t, j) for the entire time sequence,

i.e., t ∈ {1, . . . , 400}, with the two different techniques, namely ANN and the
Markov regression proposed in Section 3, is shown in Figure 3. Regarding the
test sequence {1, . . . , NTtrain}, the approximation πANN

1 (t, j) (see the thin dashed
line in the panels of Figure 3), corresponding to ANN, mostly follows the original
path π syn

1 (t, j). The performance of the ANN framework is also satisfactory when
confronted with the test data (i.e., external factors u(t, j) with t ∈ {361, . . . , 400},
starting from the thick black vertical line in both panels of Figure 3). The Markov
regression technique (see the thin solid line in panels of Figure 3) restores the original
series in the training sequence, i.e., in the first 360 time steps, more accurately then
the ANN. In pursuance of approximating 0syn(t, j) for t ∈ {NTtrain, . . . , NT }, the
self-contained strategy outlined in Section 4 is employed. Details of the procedure
to obtain π̂Markov(t, j), i.e., approximating the synthetic data for the test sequence,
can be found in the pseudocode of Algorithm 4.

As can be seen in Figure 3 (right from the vertical black line), the nonstation-
ary nonhomogeneous Markov regression provides a high quality approximation
π̂Markov(t, j) of the artificial time series π syn(t, j) in the test sequence. The
quality of the calculated model can also be accessed comparing the estimated
local Markov parameters matrices with the synthetic ones Pk syn

0 , . . . , Pk syn
NE

with
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input :0∗(t, j) for t ∈ {1, . . . , NTtrain}, set maximal prediction depth Npred and
u(t, j) for t ∈ {1, . . . , NT }

output :$( j, τ ) with τ ∈ {1, . . . , Npred} and π̂Markov(t, j) with
t ∈ {NTtrain + 1, . . . , NT }

1 for j = 1 : NJ do
2 Determine model parameter P0(u(t, j)) characterizing the underlying model of

0∗(t, j) via stationary Markov regression.
3 for τ = 1 : Npred do
4 0̂(NTtrain + τ, j)= 0∗(NTtrain , j)

∏τ−1
h=0 P0(u(NTtrain + h, j)) (see (53))

5 Generate π̂(NTtrain + τ, j) employing Algorithm 3 (lines 3 to 10) using
0̂(NTtrain + τ, j).

6 $( j, τ )= ‖π syn(NTtrain + τ, j)− π̂Markov(NTtrain + τ, j)‖2
2

Algorithm 4: Prediction.

k ∈ {1, . . . , N syn
K } (given in (59) and (60)) that have been used to generate the data

P1 Markov
0 =

[
0.6999 0.3001
0.3001 0.6999

]
, P1 Markov

1 =

[
0.2801 −0.2801
0.2801 −0.2801

]
,

P1 Markov
2 =

[
−0.0125 −0.0515
−0.0125 −0.0515

] (61)

and

P2 Markov
0 =

[
0.3003 0.69971
0.3003 0.69971

]
, P2 Markov

1 =

[
0.24 −0.24
0.24 −0.24

]
,

P2 Markov
2 =

[
0.0515 −0.0515
0.0515 −0.0515

]
.

(62)

Furthermore, the error plot of Figure 4 also indicates the superiority of the Markov
model in terms of relative prediction error

$rel(τ )=mean
j
($( j, τ )/‖π syn(NTtrain + τ, j)‖22) ∗ 100 (63)

up to a prediction depth of approximately 23 time steps ahead. The computation
of the error term $( j, τ ) is explained in Algorithm 4. An alternative possibility to
model the discrete/categorical processes is provided by the support vector machines.
SVMs are used for the classification of a given data set u(t, j) with t ∈ {1, . . . , NT }

and j ∈{1, . . . , NJ }with respect to a set of different classes (or states) {s1, . . . , sNS }.
This is achieved via geometrical separation, i.e., appropriate placing of hyperplanes
in U, dividing the values u(t, j) in NS different segments, thus associating u(t, j)
for each t and j with one class/state si . In the training phase, the assignment of the
data values u(t, j) to the classes is computed according to the values of the discrete
process σ syn(t, j, l). As the microscopic information about the discrete states of the
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process is unavailable, a threshold of 0.5 is set and π syn(t, j) is rounded accordingly
so that the data has two categories, i.e., two classes. The optimization problem
corresponding to the SVMs can be formulated as a quadratic minimization procedure
resulting in a unique robust solution. In contrast, the ANNs (that are fitted through a
nonconvex gradient-based optimization procedure) do not provide a unique solution
of the inverse problem and therefore are in general less robust than SVMs. Different
kernel functions are considered (specifically linear, quadratic, polynomial and radial
basis functions), and the best fit (again regarding the residuals) was obtained for the
radial basis function. The SVM run takes less computing time than the MLP run but
needs a lot of support vectors to characterize the process. This overfitting is reflected
in the very big mAIC=3.5193∗104 value. In general, the computational complexity
of SVMs with Gaussian radial basis function kernel (in the worst case) is O(N 2

T NE)

for the training of each location [4]. But in most of the cases, it is possible to consid-
erably reduce the computation time, e.g., by working with small values of the regu-
larization parameter N SVM

C for a faster convergence or, alternatively, increasing the
number of training samples [34]. Determination of an optimal feedforward network
with a nonlinear transfer function for a set of considered training data also requires
solving a sequence of quadratic optimization problems. For the ANN calculations
in this paper, we employed the Levenberg–Marquardt backpropagation algorithm,
which is known to be very efficient [14]. Note, however, that the technique scales
badly with the number of involved weights N ANN

weights = N ANN
neurons(NE + N 2

E + biases)
(it is necessary to compute the inverse of the N ANN

weights × N ANN
weights Hessian matrix

in each iteration step, which has a complexity O((N ANN
weights)

3)). It is advisable to
switch to a different gradient-descent algorithm for high-dimensional systems (i.e.,
systems that require more than a couple hundred weights) [39]. Further, the ANN
fitting requires a longer run time due to the necessary annealing steps.

The SVM results are visualized in Figure 5 along with the approximations deter-
mined with the nonstationary Markov regression and the neural network (settings
like in Figure 3). The assignment calculated with the SVM in general corresponds
to the original data. Wrong categorization in the form of single outliers is mostly
caused by data values too close to the threshold 0.5. Longer periods of wrong
association especially in the test time sequence suggest that support vector machines
are not feasible for prediction of spatiotemporal data of this particular nature.

Summing up, the proposed regression framework provides feasible and qualitative
results. Nevertheless, it is important to mention that the considered synthetic data in
this section is inherently designed to suit the model technique. The aim here was not
to prove the overall superiority of the proposed algorithm in comparison to standard
methods like ANN and SVM but to give the reader an idea of its capabilities under
“good” conditions and as a contrast to the ill-posed example with missing external
factors outlined in the next section.
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Figure 5. Dotted approximations of π syn
1 (t, j) (for one fixed location) determined with

a nonstationary Markov regression and a feedforward neural network and an output of
support vector machines are shown. The beginning of the predicted time series is marked
with a vertical black line.

5B. Example with missing (implicit) external factors. A key conceptual advan-
tage of the proposed Markov regression framework is that implicit external factors,
influencing the data, can be reflected in the nonstationary and nonhomogeneous
formulation of the model. In order to numerically investigate this property, the
framework is applied to a synthetic time series π syn(t, j) (NS = 2) generated
employing Algorithm 3 with the number of implicit external factors set to NI = 100
and the number of regimes fixed to be one (N syn

K = 1), i.e., the artificial system
is stationary and homogeneous and influenced by forces uunres(t, j) not available
as observations.10 For the construction, we choose one explicit external factor
(computed as a mean of neighboring states of the previous time step) and 100 implicit
influences in the form of sinus functions (randomly chosen between: uunres

e (t, j) :=
sin2((2π te)/360+ j/20) and uunres

e (t, j) := cos2((2π te)/360+ j/20)) depending
on time t (NT := 400), location j (NJ := 24) and the index of the particular external
factor e ∈ {1, . . . NI }. Further, the model matrices for the one considered regime
are defined:

P1 syn
0 =

[
0.5 0.5
0.5 0.5

]
, P1 syn

1 =

[
0.05 −0.05
0.05 −0.05

]
, P1 syn

2 =

[
0.42 −0.42
0.42 −0.42

]
(64)

and

P1 syn
e+2 =

[
0.0002 −0.0002
0.0002 −0.0002

]
∀ e ∈ {1, . . . , NI − 2}. (65)

10Note that it is not necessary to use Algorithm 2 since 0syn(t, j) := ones(1, NT , NJ ).
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Figure 6. The mAIC values for runs of the Markov regression and the dynamical logistic
regression applied to the second synthetic data series run for different values of N FEM

C and
N FEM

K are displayed in this graph. Moreover, the value for the ANN result is shown.

The first implicit external factor u2(t, j)= uunres
1 (t, j) thereby has the most signifi-

cant influence, and all the other external factors have a much smaller impact. The
proposed nonstationary nonhomogeneous Markov regression is applied to part of
the generated data (i.e., π syn(t, j) with t ∈ {1, . . . , 360} and j ∈ {1, . . . , 24}) for
N FEM

K ∈ {1, 2, 3, 4, 5} and N FEM
C ∈ {5, 10, 15, 20, 25} with N FEM

anneal = 10. Note that
the implicit external factors uunres(t, j) are not made available for the regression
procedure. The optimal model fit is determined via the modified information
criterion (46). The resulting graphs can be seen in the left panel of Figure 6.

The lowest mAIC value has a model with up to 15 transitions between four
regimes, i.e., N ∗Markov

C = 15 and N ∗Markov
K = 4. Thus, the synthetic stationary

homogeneous model is described with a nonstationary and nonhomogeneous model
capturing the original process and reflecting the implicit external factors uunres(t, j).
In contrast, the dynamical logistic regression, applied to the data set, has bigger
mAIC values and hence represents a worse description for the analyzed data. Two
approximations of the ensemble distribution π syn(t, j) for different locations are
shown in Figure 7. The plots illustrate that the nonstationary nonhomogeneous
Markov regression is feasible even for observations where the biggest part of
the relevant information is not provided in the form of measurements. The data
π syn(t, j) in the test sequence, i.e., t ∈ {361, . . . , 400} ∀ j , is approximated by
computing a one-step prediction 0̂(361, j) (see (53)) and using Algorithm 3 to
determine π̂Markov(361, j) ∀ j . Then the proposed Bayesian-update scheme is
employed to update 0̂Markov(361, j) (see (56) in Proposition 4.1) using new data
information π syn(361, j). These steps are iterated until π̂Markov(NT , j) can be
calculated (note that the updated 0̇(t, j) is used as the affiliation parameter 0∗(t, j)
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Figure 7. Each graph displays approximations of the data π syn
1 (t, j) generated by

means of different models, i.e., Markov regression (settings: no memory, N FEM
anneal = 10,

N∗Markov
C =15, N∗Markov

K =4) and an optimal ANN (settings: N ANN
neurons=10, Levenberg–

Marquardt backpropagation, N ANN
anneal = 10). The artificial time series π syn

1 (t, j) is shown
as a thick gray line. The start of the prediction is marked with a black vertical line at
NTtrain = 360.

for all previous time steps t in the prediction sequence {361, . . . , 400}). The
resulting prediction has a good quality as can be seen from the right-hand side of
the vertical black line in the two panels of Figure 7.

In order to give an impression on the feasibility of standard techniques under
“bad” conditions, such as artificially generated for this example, ANNs are applied
to π syn(t, j) (settings: N ANN

neurons = 10, Levenberg–Marquardt backpropagation and
N ANN

anneal = 10). The quality of the ANN results strongly depends on the location.
This is caused by the dependence of the implicit external factors on the location;
i.e., the implicit impact on the data is differing for each cell. In other words, the
ANN framework does not allow restoring the devolution of the data without the
additional information of the implicit external factors for location 19 and all other
locations that are strongly influenced by the unresolved quantities. This is due to the
fact that, in contrast to the nonstationary and nonhomogeneous Markov regression
model presented above, the parameters (such as neuron weights and biases) of the
standard ANN are time- and location-independent. In other words, ANN as well
as SVM represent intrinsically stationary and homogeneous models. Because of
this reason, both ANN and SVM as model classes have difficulties in capturing
the effects of unobserved external factors. Concluding, it is possible to obtain
qualitative results with ANN for the constructed dynamical system when enough
information is provided in the form of data (see Section 5A) but is not a reliable
option for realistic systems with data availability problems.

5C. Assimilation of additional information. The purpose of this example is to
demonstrate the application of the Bayesian-update scheme (see Proposition 2.1
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in Section 4) when compared to a simple maximum-likelihood allocation of new
data (see (54)) or machine-learning algorithms like SVMs or ANNs. To this end, a
transition path 0syn(t, j) (employing Algorithm 2) of length NT = 10000, switching
between N syn

K = 2 local models and N syn
C = 5 transitions, was generated for NJ = 10

different locations. This path was then used to generate a time series, switching
between NS = 2 discrete values s1 and s2 without external influences (i.e., NF = 0
and Nens = 1) according to the following rules:

(1) In the first model θ1, the process at time t is modeled by a Bernoulli-random
variable with a probability 0.6 to be in the state s1.

(2) For the second model θ2, a Markov chain is used to obtain the value of σ(t, j, l);
here the probability for the next value to be in different state than the previous
value is 0.3.

For the training of the model, the natural choice for this example is the nonsta-
tionary nonhomogeneous Markov regression model (as introduced in (34)); the
first 9000 time steps are chosen as a training set (i.e., NTtrain = 9000). To obtain
a statistically significant result, the analysis is done not only for one but for 200
different time series (as already mentioned, Nens= 1), all sharing the same transition
path 0syn(t, j). This allows us to draw first statistical conclusions and make the
comparison of different methods independent of a single stochastic realization of
the process. Since the focus is on the statistical significance rather than on the size
of the ensemble, it is necessary to interpret the outcome of a single observation as
the corresponding ensemble data, i.e.,

π
syn
i (t, j)= δsi (σ

syn(t, j, l)) for i ∈ {1, 2}, (66)

where δsi is the Kronecker delta for the value si (i.e, being one if si is observed, else
zero). To predict the incoming values of the time series (t > NTtrain = 9000), one
needs to predict the affiliation vector 0∗(t, j) first. To this end, a self-contained
strategy, proposed in Section 4, is employed. In other words, a transition matrix
P0 is fitted to the 9000 elements of the transition path. This Markov chain is then
used to propagate the current distribution of the affiliation to the next step and so
forth. Of course, this makes the prediction very sensitive to finding the correct
affiliation of data points [30] not included in the initial analysis of the time series.
To demonstrate this sensitivity, the updating procedure as in Section 4 is compared
to an SVM, an ANN and the maximum-likelihood affiliation (defined in (54)) of
the data points. The SVM and ANN are additionally provided with the previous
observation as this is used in the other two assimilation methods as well; thus,
all four methods can make use of the same input information. To this end, the
dimension of the data is doubled by creating the vectors [π syn(t, j) π syn(t − 1, j)].
Additionally, different kernel functions were tried for SVM and different transfer
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Figure 8. Average assimilation of 1000 untrained data points to the clusters for two
different transition paths (in two different locations). The sample consisted of 200 dif-
ferent realizations of the time series with 9000 training points. To improve visibility, the
allocations are shifted by up to 0.02. The beginning of the prediction is time step 9001.
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Figure 9. Left panel: Typical data set and the transition path used for the creation of the
data. Right panel: Result of the assimilation schemes; only the relevant points are shown.
The beginning of the assimilation is time step 9001. As can be seen, only the Bayesian
assimilation scheme (black dashed line) based on Proposition 2.1 completely recovers the
true persistent structure of the original hidden process (black solid line).

functions and numbers of neurons for the ANN; an optimal configuration in each
model class was obtained applying the standard AIC procedure. Out of the 10
locations, two are shown here, one with constant original allocation in the prediction
time frame (Figure 8, left panel) and one with a jump in the allocation (Figure 8,
right panel). Additionally, a typical data set is shown in Figure 9 (left panel) and the
affiliation functions resulting from the different assimilation methods are depicted
in the right panel of Figure 9.

All four updating procedures generate affiliations that are not free of errors. To
measure the quality of an allocation, the average distance
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1
(NT − NTtrain) ∗ NJ

NT∑
t=Npred+1

NJ∑
j=1

|γ̂1(t, j)− γ1(t, j)|

of the estimated affiliation and the original path is averaged over all 200 realizations.
Resulting error estimates are shown in Table 1.

Algorithm Error

maximum-likelihood affiliation 0.3142
Bayesian update (see Section 4) 0.0384
SVM-based affiliation 0.6188
ANN-based affiliation 0.4948

Table 1. Average distance of the affiliation of new data to the true path.

All estimators are then used to predict the next 10 time steps, i.e., Npred = 10,
according to the following algorithm:

input :data π syn(t, j), maximal prediction depth Npred and the affiliation 0∗(t, j) for
t ∈ {1, . . . , NTtrain}

output : π̂Markov(t, j) and $(t, j, τ ) for t ∈ {NTtrain + 1, . . . , NT }, j ∈ {1, . . . , NJ }

and τ ∈ {1, . . . , Npred}

1 Set start of test data NTtrain = 9000.
2 0̂(NTtrain , j) := 0∗(NTtrain , j) ∀ j
3 for j = 1 : NJ do
4 for t = NTtrain : NT − Npred do
5 for τ = 1 : Npred do
6 0̂(t + τ, j)= 0̂(t, j)

∏τ−1
h=0 P0(u(t + h, j)) (see (53))

7 Generate π̂(t + τ, j) employing Algorithm 3 (lines 3 to 10) using
0̂(t + τ, j).

8 $(t, j, τ )= ‖π syn
1 (t + τ, j)− π̂Markov

1 (t + τ, j)‖2
2

9 Incorporate the observation π syn(t + 1, j) into the data set, and estimate its
affiliation 0̇(t + 1, j) for all j .

Algorithm 5: Prediction.

The quality of the prediction is measured by $(t, j, τ ), the squared distance
of the synthetic data and the predicted probability for observing one (see line 8,
Algorithm 5). These errors are then averaged for every τ over the 200 different
realizations, the 10 locations and the prediction period.

As can be seen from Table 1 and Figure 10, the posterior estimators based on
Proposition 4.1 significantly outperforms other considered methods. Yet it should
be noted that the process is rapidly mixing and thus hard to predict in the first place.
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Figure 10. Mean of the sampled prediction errors for up to 10 time steps and four different
assimilation schemes. The sample consisted of 200 different realizations of sets of 10 time
series with length 1000.

This property increases the challenge all the assimilation methods have to face as
the two different model-states are hard to separate even visually (see, e.g., the gray
line in the left panel of Figure 9). Additionally, it should be noted that the average
errors of the predictions for all four assimilation methods are rather similar; this
is again a result of the low persistency of the rapidly mixing observed process.
Nevertheless, the better assimilation of the missing information in the form of the
affiliation function 0 (introduced in the current manuscript) leads to a reduction of
the prediction error even for this very tough case, raising hope for better predictive
models and better assimilation of the effects induced by the unresolved external
factors as captured by the affiliation functions 0.

6. Conclusion

The proposed nonstationary and nonhomogeneous regression framework represents
a very promising way for modeling of spatiotemporal discrete jump processes
under the presence of unobserved external impacts. As demonstrated in the current
manuscript, it can capture the most significant impacts of the unobserved external
factors described by Proposition 2.1.

This was demonstrated by means of an example with additionally incorporated
implicit external factors that were not made available for the calculation of the
model parameters. Since incomplete data sets represent one of the central challenges
in the field of time-series analysis, this property makes the presented methodology
potentially useful in many areas of multiscale modeling and simulation, where
discrete processes (e.g., associated with the phase transitions in physics) are subject
to unresolved subgrid-scale effects.
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Along the lines of traditional data assimilation, a new Bayesian algorithm to
assimilate the model affiliation function 0̂(t, j) (capturing an impact of the unre-
solved external factors) was introduced and shows promising results. The proposed
Bayesian algorithm for discrete data assimilation provides considerably better
results than the currently available standard methods (i.e., maximum-likelihood
assimilation, ANN and SVM) for the considered “tough” example of a rapidly
switching nonstationary and nonhomogeneous discrete process.

It should be stressed that the adequacy of the presented models is largely relying
on the validity of the underlying assumptions in Proposition 2.1 as well as on the
validity of the stationary homogeneous Markov assumption for the model-affiliation
process (capturing an impact of unresolved external factors).

Because of this reason, in some situations, it might be necessary to use a nonsta-
tionary model formulation for the affiliation process and to include the additional
necessary variables in the validation of the modified information criterion. In
other words, in such situations, the optimal fit given by the nonstationary discrete
regression model parameters and parametrization of the optimal spatiotemporal
model for the hidden process 0 (beyond the stationary approximation deployed
in this work) should be approached simultaneously. Although this new direction
will allow constructing more realistic models with less a priori assumptions, it
would also require many more computational resources than the proposed numerical
framework. Numerical complexity estimates presented in this paper demonstrate that
the deployment of concepts from high-performance computing and supercomputing
computational facilities will also be necessary to extend all of the considered
methods to realistic numbers of spatial locations and lengths of the time series. This
issue is also a matter of the ongoing research.

Appendix A: Proof of Proposition 2.1(3)

Proof. Without loss of generality, we can assume that the external factors are
ordered such that the explicit factors are the first NE entries of u(t, j). By per-
forming a Taylor expansion on the transition matrix P(u(t, j)) around the means
µ(t, j)= [E(u1(t, j)), . . . ,E(uNE+NI (t, j))] ∈ R(NE+NI )×1, we obtain

P(u(t, j))= P(µ(t, j))+
NE+NI∑

e=1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

NE+NI∑
e,h=1

∂2 P
∂ue(t, j)uh(t, j)

(ue(t, j)−µe(t, j))(uh(t, j)−µh(t, j))

+

∑
|α|=3

Rα(u(t, j))(u(t, j)−µ(t, j))α, (1)
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where α is a multi-index and

Rα(u(t, j))=
3
α!

∫ 1

0
(1− x)DαP

(
µ(t, j)+ x(u(t, j)−µ(t, j))

)
dx . (2)

Note that Rα(u(t, j)) is bounded as the third derivative of P is assumed to be
bounded. Resorting the terms and defining

ρh(t, j)= 2
NE+NI∑

e=NE+1

∂2 P
∂uh(t, j)ue(t, j)

(ue(t, j)−µe(t, j)), h = 1, . . . , NE , (3)

ε̌(t, j)=
NE+NI∑

e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=3

Rα(u(t, j))(u(t, j)−µ(t, j))α

+

NE∑
e,h=1

∂2 P
∂uh(t, j)ue(t, j)

(ue(t, j)−µe(t, j))(uh(t, j)−µh(t, j))

−

NE∑
e=1

µe(t, j)ρh(t, j)+
NE+NI∑

e,h=NE+1

∂2 P
∂uh(t, j)ue(t, j)

∗ (uh(t, j)−µh(t, j))(ue(t, j)−µe(t, j)), (4)

ε(t, j)= ε̌(t, j)−E[ε̌(t, j)] (5)

yields (11) whereas the definition of matrices Ph(t, j) is given in (14) for all t and j
and h ≥ 1 and P0(t, j) is defined as in (16), and replacing the expectation in the for-
mula by the expectation of ε̌(t, j). Moreover, E[ε(t, j)]=0 and E[ρh(t, j)]=0. �

Appendix B: Notation

The notation index is organized as follows. The numbers and sizes are listed
separately as their notation is very similar. The remaining notations are listed in
order of appearance in the manuscript. To improve readability, the titles of sections
and subsections are indicated. Moreover, the abbreviations used in the manuscript
are listed at the end of the notation index.

Numbers and sizes.

• NS total number of states si (associated index i , p. 3).
• Nens (associated index l, p. 3).
• NJ space dimension of observations π(t, j) for all time steps t (associated index j , p. 3).
• NT length of observed time series π(t, j) for fixed location j (associated index t , p. 3).
• Nsi (t, j) number of cells j currently (at time t) in state si (p. 3).
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• NE total number of explicit external factors (associated index e, p. 5).
• NI total number of implicit external factors (associated index e, p. 5).
• NF total number external factors (associated index e, p. 5).
• NM memory depth (p. 8).
• NK total number of local stationary homogeneous models θk (associated index k, p. 13).
• NC maximal number of allowed transitions of the affiliation processes γk(t, j) for fixed j .
• N FEM

anneal total number of annealing steps used for the FEM framework (p. 16).
• Nφk degree of a polynomial of parametric (conditional) probability density function φk

(p. 18).
• Npred prediction depth (p. 20).
• NTtrain time-wise length of training data (p. 22).
• N syn

C artificially chosen maximal number of transitions of the synthetic affiliation processes
γ

syn
k (t, j) (p. 24).
• N syn

K artificially chosen total number of local stationary homogeneous models θ syn
k (p. 24).

• N FEM
K number of local regimes considered for the general FEM framework (p. 26).

• N FEM
C number of maximal transitions considered for the general FEM framework (p. 26).

• Ndummy auxiliary quantity of Algorithm 2 (p. 24).
• N ∗Markov

C optimal in terms of the mAIC values (with respect to the data) maximal number
of transitions for the parameters computed with the Markov regression framework (p. 26).
• N ∗Markov

K optimal in terms of the mAIC values (with respect to the data) maximal number
of local stationary models computed with the Markov regression framework (p. 26).
• N ANN

neurons total number of employed neurons for an ANN run (p. 27).
• N ANN

anneal total number of annealing steps used for an ANN run (p. 28).
• N Markov

anneal total number of annealing steps used for the Markov regression (p. 27).
• N ANN

weights is the number of ANN parameters (p. 30).
• N FEM

basis number of finite elements used for the discretization (p. 16).
• N SVM

C regularization parameter of SVM (p. 30).

Ensemble data and exterior quantities.
• si discrete state (p. 3).
• ω( j, l) microscopic cell (p. 3).
• σ(t, j, l) with j ∈ {1, . . . , NJ } and l ∈ {1, . . . , Nens} dynamical process of a microscopic
cell ω( j, l) (p. 3).
• π̃i (t, j) empirical probability for process σ(t, j, l) to be in state si in location ω( j, l) at
time t (Definition (1), p. 3).
• Nsi (t, j) total number of microscopic cells ω( j, t) in state si for fixed t and j (Defini-
tion (2), p. 3).
• δsi ( · ) the Kronecker delta for the value si (p. 4).
• π̃(t, j) ∈ [0, 1]NS×1 vector of empirical probabilities (Definition (3), p. 4).
• πi (t, j) probability for process σ(t, j, l) to be in state si in location ω( j, l) at time t
(Definition (4), p. 4).
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• P[ · ] probability function.
• π(t, j) ∈ [0, 1]NS×1 vector of states probabilities (Definition (5), p. 4).

Implicit external factors.

• P(u(t, j)) ∈ [0, 1]NS×NS transition matrix dependent on all external factors (p. 4).
• u(t, j) ∈ R(NE+NI )×1 all influencing external factors (Definition (7), p. 5).
• R real numbers.
• ue(t, j) ∈ R explicit external factor.
• u(t, j) ∈ RNE×1 vector of explicit external factors (Definition (8), p. 5).
• U⊂ RNE×1 vector space of explicit external factors u(t, l).
• uunres

e (t, j) ∈ R implicit external factor.
• uunres(t, j) ∈ RNI×1 vector of implicit external factors (Definition (9), p. 5).
• ε(t, j) error term associated with decomposition of transition matrix P(u(t, j)) (Defini-
tion (15), p. 7).
• E( · ) expected value.
• ρe(t, j) second noise process for decomposition of P(u(t, j)) with second derivatives.
(Definition (3), Appendix A, p. 39).
• µ(t, j) ∈ RNF×1 vector of expected values for each of the entries of vector u(t, l) (p. 7).
• Rα(u(t, j)) Taylor-expansion error component (Definition (13), p. 7).
• α a multi-index (p. 7).
• Pe(t, j) matrix used in the linear combination equal to P(t, l, u(t, l)) corresponding to
ue(t, j) for e ∈ {1, . . . , NS} (Definition (14), p. 7).
• P0(t, j) matrix used in the linear combination equal to P(t, l, u(t, l)) (Definition (16),
p. 7).
• P(t, j, u(t, j)) ∈ [0, 1]NS×NS equal to P(u(t, j)) assuming the conditions of Proposition
2.1 are fulfilled.

Inverse problem formulation.

• f ( · ) a general direct mathematical model (Definition (17), p. 8).
• θ(u(t, j)) unknown model parameter dependent on all external factors (p. 8).
• � parameter space containing θ(u(t, j)) (p. 8).
• λ(t, j) error term of simple model example (p. 9).
• g( · ) model distance function (Definition (19), p. 9).
• L( · ) averaged clustering functional (Definition (20), p. 9).
• d( · , · ) metric (p. 9).
• d2( · , · ) Euclidean metric (p. 9).
• f logit logistic direct mathematical model function (p. 9).
• f Markov Markov direct mathematical model function (p. 9).

Logistic regression.

• Ci [u(t, j), Bi (t, j)] utility measure (Definition (23), p. 10).
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• Bi (t, j)∈R(NE+1)×1 logistic model parameter corresponding to state si for i ∈{1, . . . , NS}

(Definition (24), p. 10).
• β i

e(t, j) e-th entry of vector Bi (t, j).
• ξ i (t, j) error process of utility measure (p. 10).
• B(t, j) ∈ R(NE+1)×NS nonstationary nonhomogeneous logistic model parameter (p. 11).
• θ logit(B(t, j), u(t, j)) logistic model parameter (Definition (28), p. 11).
• ζ(t, j) error term of logistic model distance function (p. 11).

Interpolation.

• θk(u(t, j)) stationary homogeneous model parameter (p. 13).
• γk(t, j) weighting process corresponding to local model θk(u(t, j)) (p. 13).
• 2(u(t, j)) vector of stationary homogeneous model parameters (p. 13).
• 0(t, j) ∈ [0, 1]1×NK vector of affiliation processes (p. 13).
• L( · , · ) interpolated version of averaged clustering functional L( · ) (Definition (38),
p. 13).
• L j ( · , · ) one summand for a fixed location j of interpolated average clustering functional
(Definition (39), p. 14).
• Bk ∈ R(NE+1)×NS local logit model parameter (p. 14).
• Bi

k i-th entry of stationary and homogeneous logit model parameter vector Bk (p. 14).
• Pk(u(t, j)) local Markov model parameter matrix (Definition (41), p. 14).
• P(u(t, j)) ∈ RNS×NS NK vector of model matrices Pk(u(t, j)) (p. 14).
• Pk

0 , . . . , Pk
NE

for all k matrices used in the linear combination equal to Pk(u(t, l)) (p. 14).
• 1 auxiliary column vector containing only entries equal to one (p. 14).
• 0 auxiliary column vector containing only entries equal to zero (p. 14).
• {Pk

e }n,m entry of matrix Pk
e in n-th row and m-th column (p. 15).

Spatial and temporal persistence.

• | · |BV(1,NT ) bounded variation (BV) half-norm (Definition (45), p. 15).

Numerical approach and computational complexity.

• 0∗(t, j)=[γ ∗1 (t, j), . . . ,γ ∗NK
(t, j)]∈[0,1]1×NK global optimizer with respect to L(0(t, j),

2(u(t, j))) (p. 15).
• 2∗(u(t, j)) global optimizer with respect to L(0(t, j),2(u(t, j))) (p. 15).
• 0r computed 0 process dependent on annealing index (p. 17).
• 0[h]r determined 0 process dependent on annealing index and optimization iteration index
(p. 17).
• 2r computed model parameter 2 dependent on annealing index (p. 17).
• 2[h]r determined model parameter 2 dependent on annealing index and optimization
iteration index (p. 17).
• Lmin auxiliary variable of Algorithm 1 (p. 17).
• κ auxiliary variable used to describe the order of the computational costs (p. 16).
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Information criterion.
• mAIC( · , · ) modified version of Akaike information criterion for presented framework
(Definition (46), p. 18).
• L( · , · ) log-likelihood (Definition (47), p. 18).
• φk( · , . . . , · , · |Nφk ) parametric (conditional) probability density function (PDF) (p. 18).
• M( · , · ) function computing total number of involved parameters (p. 18).
• M logit( · , · ) function computing total number of involved parameters for a logistic model
(Definition (48), p. 18).
• MMarkov( · , · ) function computing total number of involved parameters for Markov model
(Definition (49), p. 18).
• S1 finite discrete set of different values for variable NK (p. 19).
• S2 finite discrete set of different values for variable NC (p. 19).
• 1( · , · ) mAIC model ranking (Definition (50), p. 19).
• w( · , · ) mAIC model weights (Definition (51), p. 19).

Prediction and assimilation of additional information.
• π̂(t, j) prediction of observation π(t, j) (p. 20).
• 0̂(t, j)= [γ̂1(t, j), . . . , γ̂NK (t, j)] ∈ [0, 1]1×NK prediction of future affiliations (p. 20).
• P0(t, j) transition matrix characterizing 0∗(t, j) (p. 20).
• P0

0 , . . . , P0
NE

matrices used in linear combination equal to P0(t, j) (p. 20).
• 0̇(NT + 1, j) posterior estimate based on the new observation π(NT + 1, j) (p. 21).
• ẏk(NT + 1, j) updated affiliation associated with local model θk (Definition (56), p. 21).

Numerical investigation.
• 0syn(t, j) synthetic affiliation process (p. 23).
• γ

syn
k (t, j) synthetic affiliation associated with θ syn

k (p. 24).
• dummy1 auxiliary vector of Algorithm 2 containing only ones (p. 24).
• dummy0 auxiliary vector of Algorithm 2 containing only zeros (p. 24).
• P syn(t, j, u(t, j)) synthetic transition matrix (Definition (57), p. 23).
• Pk syn(u(t, j)) synthetic model parameter matrix associated with affiliation γ syn

k (t, j)
(p. 23).
• σ syn(t, j, l) synthetic dynamical process (p. 23).
• π syn(t, j) synthetic data (p. 25).
• Pk syn

0 , . . . , Pk syn
NE

synthetic model matrices corresponding to explicit external factors
u(t, j) (p. 25).
• Pk syn

NE+1, . . . , Pk syn
NE+NI

synthetic model matrices corresponding to implicit external factors
uunres(t, j) (p. 25).
• π

syn
i (t, j) i-th vector entry of synthetic data π syn(t, j) (p. 25).

• πANN(w)(t, j) approximation of π syn(t, j) computed with an ANN based on a network
with w neurons (p. 27).
• πANN(t, j) approximation of π syn(t, j) computed with an ANN (p. 28).
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• πMarkov(t, j) approximation of π syn(t, j) computed with Markov regression framework
(p. 27).
• $( j, τ ) prediction error term dependent on location j and prediction depth τ (p. 29).
• $rel(τ ) relative mean prediction error (p. 29).
• $(t, j, τ ) prediction error term dependent on time t , location j and prediction depth τ
(p. 36).
• ε̌(t, j) auxiliary process used in the proof of Proposition 2.1 (p. 39).

Abbreviations.

• SVM support vector machines.
• ANN artificial neural networks.
• AIC Akaike information criterion.
• mAIC modified Akaike information criterion.
• GLM generalized linear models.
• PDEs partial differential equations.
• ODEs ordinary differential equations.
• FEM finite-element method.
• IIA independence of irrelevant alternatives.
• i.i.d. independent and identically distributed.
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LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS
OF DIFFUSIVELY MIXING FLUIDS

ALEKSANDAR DONEV, ANDY NONAKA, YIFEI SUN,
THOMAS G. FAI, ALEJANDRO L. GARCIA AND JOHN B. BELL

We formulate low Mach number fluctuating hydrodynamic equations appropriate
for modeling diffusive mixing in isothermal mixtures of fluids with different
density and transport coefficients. These equations represent a coarse-graining
of the microscopic dynamics of the fluid molecules in both space and time and
eliminate the fluctuations in pressure associated with the propagation of sound
waves by replacing the equation of state with a local thermodynamic constraint.
We demonstrate that the low Mach number model preserves the spatiotemporal
spectrum of the slower diffusive fluctuations. We develop a strictly conservative
finite-volume spatial discretization of the low Mach number fluctuating equations
in both two and three dimensions and construct several explicit Runge–Kutta
temporal integrators that strictly maintain the equation-of-state constraint. The
resulting spatiotemporal discretization is second-order accurate deterministically
and maintains fluctuation-dissipation balance in the linearized stochastic equa-
tions. We apply our algorithms to model the development of giant concentration
fluctuations in the presence of concentration gradients and investigate the validity
of common simplifications such as neglecting the spatial nonhomogeneity of
density and transport properties. We perform simulations of diffusive mixing
of two fluids of different densities in two dimensions and compare the results
of low Mach number continuum simulations to hard-disk molecular-dynamics
simulations. Excellent agreement is observed between the particle and continuum
simulations of giant fluctuations during time-dependent diffusive mixing.

I. Introduction

Stochastic fluctuations are intrinsic to fluid dynamics because fluids are composed
of molecules whose positions and velocities are random at thermodynamic scales.
Because they span the whole range of scales from the microscopic to the macroscopic
[23; 75], fluctuations need to be consistently included in all levels of description.
Stochastic effects are important for flows in new microfluidic, nanofluidic, and
microelectromechanical devices [7]; novel materials such as nanofluids [79]; and
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biological systems such as lipid membranes [57], Brownian molecular motors [64],
and nanopores [20]; as well as processes where the effect of fluctuations is amplified
by strong nonequilibrium effects such as ultraclean combustion, capillary dynamics
[16; 68], and hydrodynamic instabilities [55; 14; 44].

One can capture thermal fluctuations using direct particle-level calculations. But
even coarse-grained particle methods [59; 22; 23] are computationally expensive
because the dynamics of individual particles has time scales significantly shorter
than hydrodynamic time scales. Alternatively, thermal fluctuations can be included
in the Navier–Stokes equations through stochastic forcing terms as proposed by
Landau and Lifshitz [48] and later extended to fluid mixtures [61]. The basic
idea of fluctuating hydrodynamics is to add a stochastic flux corresponding to each
dissipative (irreversible, diffusive) flux [62]. This ensures that the microscopic
conservation laws and thermodynamic principles are obeyed while also maintaining
fluctuation-dissipation balance. Specifically, the equilibrium thermal fluctuations
have the Gibbs–Boltzmann distribution dictated by statistical mechanics. Fluctuating
hydrodynamics is a useful tool in understanding complex fluid flows far from
equilibrium [61], but theoretical calculations are often only feasible after ignoring
nonlinearities, inhomogeneities in density, temperature, and transport properties,
surface dynamics, gravity, unsteady flow patterns, and other important effects. In
the past decade, fluctuating hydrodynamics has been applied to study a number of
nontrivial practical problems [31; 68; 71; 3]; however, the numerical methods used
are far from the comparable state of the art for deterministic solvers.

Previous computational studies of the effect of thermal fluctuations in fluid mix-
tures [68; 6; 71] have been based on the compressible fluid equations and thus require
small time steps to resolve fast sound waves (pressure fluctuations). Recently, some
of us developed finite-volume methods for the incompressible equations of fluctuat-
ing hydrodynamics [73], which eliminate the stiffness arising from the separation of
scales between the acoustic and vortical modes [47; 52]. For inhomogeneous fluids
with nonconstant density, diffusive mass and heat fluxes create local expansion and
contraction of the fluid, and the incompressibility constraint should be replaced by a
“quasi-incompressibility” constraint [52; 50]. The resulting low Mach number equa-
tions have been used for some time to model deterministic flows with thermochem-
ical effects [66; 52], and several conservative finite-volume techniques have been
developed for solving equations of this type [63; 67; 15; 58; 56]. To our knowledge,
thermal fluctuations have not yet been incorporated in low Mach number models.

In this work, we extend the staggered-grid, finite-volume approach developed
in [73] to isothermal mixtures of fluids with unequal densities. The imposition of
the quasi-incompressibility constraint poses several nontrivial mathematical and
computational challenges. At the mathematical level, the traditional low Mach
number asymptotic expansions [47; 52] assume spatiotemporal smoothness of the
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flow and thus do not directly apply in the stochastic context. At the computational
level, enforcing the quasi-incompressibility or equation-of-state (EOS) constraint in
a conservative and stable manner requires specialized spatiotemporal discretizations.
By careful selection of the analytical form of the EOS constraint and the spatial
discretization of the advective fluxes, we are able to maintain strict local conservation
and enforce the EOS to within numerical tolerances. In the present work, we employ
an explicit projection-based temporal discretization because of the substantial
complexity of designing and implementing semi-implicit discretizations of the
momentum equation for spatially inhomogeneous fluids [10].

Thermal fluctuations exhibit unusual features in systems out of thermodynamic
equilibrium. Notably, external gradients can lead to enhancement of thermal fluctua-
tions and to long-range correlations between fluctuations [36; 53; 30; 60; 61]. Sharp
concentration gradients present during diffusive mixing lead to the development
of macroscopic or giant fluctuations [77; 72; 9] in concentration, which have been
observed using light-scattering and shadowgraphy techniques [76; 12; 75]. These
experimental studies have found good but imperfect agreement between the predic-
tions of a simplified fluctuating hydrodynamic theory and experiments. Computer
simulations are, in principle, an ideal tool for studying such complex time-dependent
processes in the presence of nontrivial boundary conditions without making the sort
of approximations necessary for analytical calculations such as assuming spatially
constant density and transport coefficients and spatially uniform gradients. On the
other hand, the multiscale (more precisely, many-scale) nature of the equations of
fluctuating hydrodynamics poses many mathematical and computational challenges
that are yet to be addressed. Notably, it is necessary to develop temporal integrators
that can accurately and robustly handle the large separation of time scales between
different physical processes such as mass and momentum diffusion. The computa-
tional techniques we develop here form the foundation for incorporating additional
physics such as heat transfer and internal energy fluctuations, phase separation and
interfacial dynamics, and chemical reactions.

We begin Section II by formulating the fluctuating low Mach number equations
for an isothermal binary fluid mixture. We present both a traditional pressure
(constrained) formulation and a gauge (unconstrained) formulation. We analyze
the spatiotemporal spectrum of the thermal fluctuations in the linearized equations
and demonstrate that the low Mach equations eliminate the fast (sonic) pressure
fluctuations but maintain the correct spectrum of the slow (diffusive) fluctuations.
In Section III, we develop projected Runge–Kutta schemes for solving the spatially
discretized equations, including a midpoint and a trapezoidal second-order predictor-
corrector scheme and a third-order three-stage scheme. In Section IV, we describe
a spatial discretization of the equations that strictly maintains the equation-of-
state constraint and also obeys a fluctuation-dissipation balance principle [29]. In
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Section V, we study the steady-state spectrum of giant concentration fluctuations in
the presence of an applied concentration gradient in a mixture of two dissimilar
fluids and test the applicability of common approximations that neglect spatial
inhomogeneities. In Section VI, we study the dynamical evolution of giant interface
fluctuations during diffusive mixing of two dissimilar fluids, using both hard-disk
molecular dynamics and low Mach number fluctuating hydrodynamics. We find
excellent agreement between the two, providing a strong support for the usefulness
of the fluctuating low Mach number equations as a coarse-grained model of complex
fluid mixtures. In Section VII, we offer some concluding remarks and point out
several outstanding challenges for the future. Several technical calculations and
procedures are detailed in the appendices.

II. Low Mach number equations

The compressible equations of fluctuating hydrodynamics were proposed some
time ago [48] and have since been studied and applied successfully to a variety of
situations [61]. The presence of rapid pressure fluctuations due to the propagation
of sound waves leads to stiffness that makes it computationally expensive to solve
the fully compressible equations numerically especially for typical liquids. It is
therefore important to develop fluctuating hydrodynamics equations that capture
the essential physics in cases where acoustics can be neglected.

It is important to note that the equations of fluctuating hydrodynamics are to be
interpreted as a mesoscopic coarse-grained representation of the mass, momentum,
and energy transport that occurs at microscopic scales through molecular interactions
(collisions). As such, these equations implicitly contain a mesoscopic coarse-
graining length and time scale that is larger than molecular scales [34]. While a
coarse-graining scale does not appear explicitly in the formal stochastic partial
differential equations (SPDEs) written in this section (but note that it can be if
desired [26]), it does explicitly enter in the spatiotemporal discretization described
in Section IV through the grid spacing (equivalently, the volume of the grid or,
more precisely, the number of molecules per grid cell) and time-step size. This
changes the appropriate interpretation of convergence of numerical methods to a
continuum limit in the presence of fluctuations and nonlinearities [18]. Only for
the linearized equations of fluctuating hydrodynamics [61] can the formal SPDEs
be given a precise continuum meaning [29].

Developing coarse-grained models that only resolve the relevant spatiotemporal
scales is a well-studied but still ad hoc procedure that requires substantial a priori
physical insight [62]. More precise mathematical mode-elimination procedures
[39; 40; 41; 45] are technically involved and often purely formal especially in
the context of SPDEs [26]. Here we follow a heuristic approach to constructing
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fluctuating low Mach number equations, starting from the well-known deterministic
low Mach equations (which can be obtained via asymptotic analysis [47; 52]) and
then adding fluctuations in a manner consistent with fluctuation-dissipation balance.
Alternatively, our low Mach number equations can be seen as a formal asymptotic
limit in which the noise terms are formally treated as smooth forcing terms; a more
rigorous derivation is nontrivial and is deferred for future work.

II-A. Compressible equations. The starting point of our investigations is the sys-
tem of isothermal compressible equations of fluctuating hydrodynamics for the
density ρ(r, t), velocity v(r, t), and mass concentration c(r, t) for a mixture of two
fluids in d dimensions. In terms of mass and momentum densities, the equations
can be written as conservation laws [62; 61; 6]

∂tρ+∇ · (ρv)= 0,

∂t(ρv)+∇ · (ρvvT )=−∇P + ρg

+∇ ·

[
η(∇v+∇

T v)+
(
κ −

2
d
η
)
(∇ · v)I +6

]
,

∂t(ρ1)+∇ · (ρ1v)=∇ · [ρχ(∇c+ K P∇P)+9], (1)

where ρ1 = ρc is the density of the first component, ρ2 = (1− c)ρ is the density
of the second component, P(ρ, c; T ) is the equation of state for the pressure at
the reference temperature T = T0 = const, and g is the gravitational acceleration.
Temperature fluctuations are neglected in this study but can be accounted for
using a similar approach. The shear viscosity η, bulk viscosity κ , mass diffusion
coefficient χ , and barodiffusion coefficient K P , in general, depend on the state. The
barodiffusion coefficient K P above (denoted by kP/P in [6]; see Equation (A.17)
there) is not a transport coefficient but rather determined from thermodynamics
[49] as

K P =
(∂µ/∂P)c
(∂µ/∂c)P

=−ρ−2 (∂ρ/∂c)P

(∂µ/∂c)P
=
(∂P/∂c)ρ
ρ2c2

Tµc
, (2)

where µ is the chemical potential of the mixture at the reference temperature,
µc = (∂µ/∂c)P , and c2

T = (∂P/∂ρ)c is the isothermal speed of sound. The capital
Greek letters denote stochastic momentum and mass fluxes that are formally modeled
as [73]

6 =
√
ηkB T

(
W +WT

−
2
d

TrW
)
+

√
2κkB T

d
TrW,

9 =

√
2χρµ−1

c kB T W̃,

(3)
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where kB is Boltzmann’s constant and W(r, t) and W̃(r, t) are standard zero-
mean, unit-variance random Gaussian tensor and vector fields with uncorrelated
components

〈Wi j (r, t)Wkl(r ′, t ′)〉 = δik δ jl δ(t − t ′) δ(r − r ′)

and similarly for W̃ .

II-B. Low Mach equations. At mesoscopic scales, in typical liquids, sound waves
are much faster than momentum diffusion and can usually be eliminated from the
fluid-dynamics description. Formally, this corresponds to taking the zero-Mach-
number singular limit cT →∞ of the system (1) by performing an asymptotic
analysis as the Mach number Ma=U/cT → 0, where U is a reference flow velocity.
The limiting dynamics can be obtained by performing an asymptotic expansion
in the Mach number [47]. In a deterministic setting, this analysis shows that the
pressure can be written in the form

P(r, t)= P0(t)+π(r, t),

where π = O(Ma2). The low Mach number equations can then be obtained by
making the ansatz that the thermodynamic behavior of the system is captured by the
reference pressure, P0, and π captures the mechanical behavior while not affecting
the thermodynamics. We note that, when the system is sufficiently large or the
gravitational forcing is sufficiently strong, assuming a spatial constant reference
pressure is not valid. In those cases, the reference pressure represents a global
hydrostatic balance ∇P0 = ρ0 g (see [32] for details of the construction of these
types of models). Here, however, we will restrict consideration to cases where
gravity causes negligible changes in the thermodynamic state across the domain.

In this case, the reference pressure constrains the system so that the evolution
of ρ and c remains consistent with the thermodynamic equation of state

P
(
ρ(r, t), c(r, t); T

)
= P0(t). (4)

This constraint means that any change in concentration (equivalently, ρ1) must be
accompanied by a corresponding change in density as would be observed in a system
at thermodynamic equilibrium held at the fixed reference pressure and temperature.
This implies that variations in density are coupled to variations in composition.
Note that we do not account for temperature variations in our isothermal model.

The equation for ρ1 can be written in primitive (nonconservation) form as the
concentration equation

ρ
Dc
Dt
= ρDt c = ρ(∂t c+ v ·∇c)=∇ · F, (5)
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where the nonadvective (diffusive and stochastic) fluxes are denoted with

F = ρχ∇c+9.

Note that there is no barodiffusion flux because barodiffusion is of thermodynamic
origin (as seen from (2) [61]) and involves the gradient of the thermodynamic
pressure ∇P0 = 0. By differentiating the EOS constraint along a Lagrangian
trajectory, we obtain

Dρ
Dt
= βρ

Dc
Dt
= β∇ · F = ∂tρ+ v ·∇ρ =−ρ∇ · v, (6)

where the solutal expansion coefficient

β(c)= 1
ρ

(∂ρ
∂c

)
P0

is determined by the specific form of the EOS.
Equation (6) shows that the EOS constraint can be rewritten as a constraint on

the divergence of velocity,

ρ∇ · v =−β∇ · F. (7)

Note that the usual incompressibility constraint is obtained when the density is not
affected by changes in concentration, β = 0. When β 6= 0, changes in composition
(concentration) due to diffusion cause local expansion and contraction of the fluid
and thus a nonzero ∇ · v. It is important at this point to consider the boundary
conditions. For a closed system, such as a periodic domain or a system with rigid
boundaries, we must ensure that the integral of ∇ · v over the domain is zero.
This is consistent with (7) if β/ρ is constant so that we can rewrite (7) in the form
∇ ·v=−∇ ·((β/ρ)F). In this case, P0 does not vary in time. If β/ρ is not constant,
then for a closed system the reference pressure P0 must vary in time to enforce that
the total fluid volume remains constant. Here we will assume that β/ρ = const,
and we will give a specific example of an EOS that obeys this condition.

The asymptotic low Mach analysis of (1) is standard and follows the procedure
outlined in [47], formally treating the stochastic forcing as smooth. This analysis
leads to the isothermal low Mach number equations for a binary mixture of fluids
in conservation form,

∂t(ρv)+∇π =−∇ ·(ρvvT )+∇ ·[η(∇v+∇
T v)+6]+ρg ≡ f (ρ, v, c, t), (8)

∂t(ρ1)=−∇ ·(ρ1v)+∇ ·F ≡ h(ρ, v, c, t), (9)

∂t(ρ2)=−∇ ·(ρ2v)−∇ ·F, (10)

such that ∇ ·v =−(ρ−1β)∇ ·F ≡ S(ρ, c, t). (11)
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The gradient of the nonthermodynamic component of the pressure π (Lagrange
multiplier) appears in the momentum equation as a driving force that ensures the
EOS constraint (11) is obeyed. We note that the bulk viscosity term gives a gradient
term that can be absorbed in π and therefore does not explicitly need to appear in
the equations. By adding the two density equations (9) and (10), we get the usual
continuity equation for the total density,

∂tρ =−∇ · (ρv). (12)

Our conservative numerical scheme is based on (8), (9), (11), and (12).
In Appendix A, we apply the standard linearized fluctuating hydrodynamics anal-

ysis to the low Mach number equations. This gives expressions for the equilibrium
and nonequilibrium static and dynamic covariances (spectra) of the fluctuations
in density and concentration as a function of wavenumber and wave frequency.
Specifically, the dynamic structure factor in the low Mach number approximation
has the form

Sρ,ρ(k, ω)=
〈
(δ̂ρ)(δ̂ρ)?

〉
= β2(ρµ−1

c kB T )
2χk2

ω2+χ2k4 .

The linearized analysis shows that the low Mach number equations reproduce the
slow fluctuations (small ω) in density and concentration (central Rayleigh peak
in the dynamic structure factor [61; 29]) as in the full compressible equations
(see Section A.1) while eliminating the fast isentropic pressure fluctuations (side
Brillouin peaks) from the dynamics.

The fluctuations in velocity, however, are different between the compressible and
low Mach number equations. In the compressible equations, the dynamic structure
factor for the longitudinal component of velocity decays to zero as ω→∞ because
it has two sound (Brillouin) peaks centered around ω ≈ ±cT k in addition to the
central diffusive (Rayleigh) peak. The low Mach number equations reproduce
the central peak (slow fluctuations) correctly, replacing the side peaks with a flat
spectrum for large ω, which is unphysical as it formally makes the velocity white in
time. The low Mach equations should therefore be used only for time scales larger
than the sound propagation time.

The fact that the velocity fluctuations are white in space and in time poses
a further challenge in interpreting the nonlinear low Mach number equations,
and in particular, numerical schemes may not converge to a sensible limit as
the time step goes to zero. In practice, just as the spatial discretization of the
equations imposes a spatial smoothing or regularization of the fluctuations, the
temporal discretization of the equations imposes a temporal smoothing and filters
the problematic large frequencies. In the types of problems we study in this
work, the problem concentration fluctuations can be neglected, 9̂ ≈ 0, because the
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concentration fluctuations are dominated by nonequilibrium effects. If 9̂ = 0, the
problematic white-in-time longitudinal component of velocity disappears.

Model equation of state. In general, the EOS constraint (4) is a nonlinear constraint.
In this work, we consider a specific linear EOS,

ρ1

ρ1
+
ρ2

ρ2
=

cρ
ρ1
+
(1− c)ρ
ρ2

= 1, (13)

where ρ1 and ρ2 are the densities of the pure component fluids (c = 1 and c = 0,
respectively), giving

β = ρ
( 1
ρ2
−

1
ρ1

)
=

ρ1− ρ2

cρ2+ (1− c)ρ1
. (14)

It is important that for this specific form of the EOS β/ρ is a material constant
independent of the concentration. The density dependence (14) on concentration
arises if one assumes that the two fluids do not change volume upon mixing. This
is a reasonable assumption for liquids that are not too dissimilar at the molecular
level. Surprisingly, the EOS (13) is also valid for a mixture of ideal gases since

P = P1+ P2 = P0 = nkB T = (n1+ n2)kB T =
( ρ1

m1
+
ρ2

m2

)
kB T,

where m is molecular mass and n = ρ/m is the number density. This is exactly of
the form (13) with ρ1 = m1 P0/(kB T )= nm1 and ρ2 = nm2.

Even if the specific EOS (13) is not a very good approximation over the entire
range of concentration 0≤ c ≤ 1, (13) may be a very good approximation over the
range of concentrations of interest if ρ1 and ρ2 are adjusted accordingly. In this
case, ρ1 and ρ2 are not the densities of the pure component fluids but rather fitting
parameters that approximate the true EOS in the range of concentrations of interest.
For small variations in concentration around some reference concentration c and
density ρ, one can approximate β ≈ ρ −1(∂ρ/∂c)c by a constant and determine
appropriate values of ρ1 and ρ2 from (14) and the EOS (13) evaluated at the
reference state. Our specific form choice of the EOS will aid significantly in the
construction of simple conservative spatial discretizations that strictly maintain the
EOS without requiring complicated nonlinear iterative corrections.

Boundary conditions. Several different types of boundary conditions can be im-
posed for the low Mach number equations just as for the more familiar incompress-
ible equations. The simplest case is when periodic boundary conditions are used
for all of the variables. We briefly describe the different types of conditions that
can be imposed at a physical boundary with normal direction n.

For the concentration (equivalently, ρ1), either Neumann (zero mass flux) or
Dirichlet (fixed concentration) boundary conditions can be imposed. Physically,
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a Neumann condition corresponds to a physical boundary that is impermeable to
mass while Dirichlet conditions correspond to a permeable membrane that connects
the system to a large reservoir held at a specified concentration. In the case of
Neumann conditions for concentration, both the normal component of the diffusive
flux Fn = 0 and the advective flux ρ1vn = 0 vanish at the boundary, implying that
the normal component of velocity must vanish, vn = 0. For Dirichlet conditions on
the concentration, however, there will, in general, be a nonzero normal diffusive
flux Fn through the boundary. This diffusive flux for concentration will induce
a corresponding mass flux as required to maintain the equation of state near the
boundary. From the condition (11), we infer the proper boundary condition for the
normal component of velocity to be

vn =−(ρ
−1β)Fn. (15)

This condition expresses the notion that there is no net volume change for the fluid
in the domain. Note that no additional boundary conditions can be specified for ρ
since its boundary conditions follow from those on c via the EOS constraint.

For the tangential component of velocity vτ , we either impose a no-slip condition
vτ = 0 or a free-slip boundary condition in which the tangential component of the
normal viscous stress vanishes,

η

(
∂vn

∂τ
+
∂vτ

∂n

)
= 0.

In the case of zero normal mass flux, vn = 0, the free-slip condition simplifies to a
Neumann condition for the tangential velocity, ∂vτ/∂n = 0.

II-C. Gauge formalism. The low Mach number system of equations (8), (9), (11),
and (12) is a constrained problem. For the purposes of analysis and in particular
for constructing higher-order temporal integrators, it is useful to rewrite the con-
strained low Mach number equations as an unconstrained initial-value problem. In
the incompressible case, ∇ · v = 0, we can write the constrained Navier–Stokes
equations as an unconstrained system by eliminating the pressure using a projection-
operator formalism. The constraint ∇ · v = 0 is a constant linear constraint and
independent of the state and of time. However, in the low Mach number equations,
the velocity-divergence constraint ∇ · v = −βDt c depends on concentration and
also on time when there are additional (stochastic or deterministic) forcing terms in
the concentration equation. Treating this type of system requires a more general
vector-field decomposition. This more general vector-field decomposition provides
the basis for a projection-based discretization of the constrained system. We
also introduce a gauge formulation of the system [33] that casts the evolution
as a nonlocal unconstrained system that is analytically equivalent to the original
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constrained evolution. The gauge formulation allows us to develop higher-order
method-of-lines temporal integration algorithms.

Vector-field decomposition. The velocity in the low Mach number equations can
be split into two components,

v = u+∇ζ,

where ∇ · u = 0 is a divergence-free (solenoidal or vortical) component, and
therefore,

∇ · v =∇
2ζ = S(ρ, c, t).

This is a Poisson problem for ζ that is well-posed for appropriate boundary condi-
tions on v. Specifically, periodic boundary conditions on v imply periodic boundary
conditions for u and ζ . At physical boundaries where a Dirichlet condition (15) is
specified for the normal component of the velocity, we set un = 0 and use Neumann
conditions for the Poisson solve, ∂ζ/∂n = vn .

We can now define a more general vector-field decomposition that plays the role
of the Hodge decomposition in incompressible flow. Given a vector field ṽ and a
density ρ, we can decompose ṽ into three components

ṽ = u+∇ζ + ρ−1
∇ψ.

This decomposition can be obtained by using the condition ∇ · u= 0 and ∇
2ζ = S,

which allows us to define a density-weighted Poisson equation for ψ ,

∇ · (ρ−1
∇ψ)=−∇ · (ṽ−∇ζ )=−∇ · ṽ+ S(ρ, c, t).

Let L−1
ρ denote the solution operator to the density-dependent Poisson problem,

formally,
L−1
ρ = [∇ · (ρ

−1
∇)]−1,

and also define a density-dependent projection operator Pρ defined through its
action on a vector field w,

Pρw = w− ρ−1
∇[L−1

ρ (∇ ·w)].

This is a well-known variable-density generalization [2] of the constant-density
projection operator Pw = w−∇[∇

−2(∇ ·w)]. We can now write

u =Pρ(ṽ−∇ζ )=Pρ ṽ+ ρ−1
∇[L−1

ρ S(ρ, c, t)] −∇ζ.

This gives
v = u+∇ζ =RS(ṽ),
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where we have introduced an affine transformation RS(ρ, c, t) that depends on ρ,
c, and t through S(ρ, c, t) and is defined via its action on a vector field w,

RS(w)= w− ρ
−1

∇[L−1
ρ (∇ ·w− S)]. (16)

Note that application of RS requires only one Poisson solve and does not actually
require computing ζ .

Gauge formulation. The low Mach number system (8), (9), (11), and (12) has the
form

∂tρ =−∇ · (ρv),

∂t m+∇π = f (c, v, t),

∂tρ1 = h(c, v, t),

∇ · v = S(ρ, c, t), (17)

where m = ρv is the momentum density and f , h, and S are as defined in (8), (9),
and (11). At present, we will assume that these functions are smooth functions
of time, which is only justified in the presence of stochastic forcing terms in a
linearized setting. We note that, for the constrained system, ρ is not an independent
variable because of the EOS constraint (13); however, we will retain the evolution
of ρ with the implicit understanding that the evolution must be constrained so that
ρ and c remain consistent with (13).

To define the gauge formulation, we introduce a new variable

m̃ = ρṽ = m+∇ψ,

where ψ is a gauge variable. We note that ψ is not uniquely determined; however,
the specific choice does not matter. If we choose the gauge so that ∂tψ = π , then
the momentum equation in (17) is equivalent to

∂t m̃ = f (ρ, v, c, t).

The appropriate boundary conditions for ψ are linked to the boundary conditions
on v; we set ψ to be periodic if v is periodic and employ a homogeneous Neumann
(natural) boundary condition ∂ψ/∂n = 0 if a Dirichlet condition (15) is specified
for the normal component of the velocity vn . Note that, in the spatially discrete
staggered formulation that we employ, the homogeneous Neumann condition fol-
lows automatically from the boundary conditions on velocity used to define the
appropriate divergence and gradient operators in the interior of the domain.

If we know m̃ and ρ, we can then define ṽ = m̃/ρ and compute v =RS(ṽ),
where RS is defined in (16). Thus, by using the gauge formulation, we can formally
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write the low Mach number equations in the form of an unconstrained initial value
problem

∂t m̃ = f (ρ(c),RS(ṽ), c, t), (18)

∂tρ1 = h(ρ(c),RS(ṽ), c, t). (19)

The utility of the gauge formulation is that, in fact, we do not need to know ψ in
order to determine v. Therefore, the time-evolution equation for ψ does not actually
need to be solved, and in particular, π does not need to be computed. Furthermore,
by adopting the gauge formulation, we can directly use a method-of-lines approach
for spatially discretizing the system (18)–(19) and then apply standard Runge–Kutta
temporal integrators to the resulting system of ordinary (stochastic) differential
equations.

It is important to emphasize that the actual independent physical variables in
the low Mach formulation (18)–(19) are the vortical (solenoidal) component of
velocity u and the concentration c. The density ρ = ρ(c) and the velocity v =
u+∇[∇

−2S(ρ, c, t)] are determined from u and c and the constraints; hence, they
can formally be eliminated from the system as can be seen in the linearized analysis
in Appendix A, which shows that fluctuations in the vortical velocity modes are
decoupled from the longitudinal fluctuations.

III. Temporal integration

Our spatiotemporal discretization follows a “method-of-lines” approach in which
we first discretize the equations (8), (9), (11), and (12) in space and then integrate
the resulting semicontinuum equations in time. Our uniform staggered-grid spatial
discretization of the low Mach number equations is relatively standard and is
described in Section IV. The main difficulty is the temporal integration of the
resulting equations in the presence of the EOS constraint. Our temporal integrators
are based on the gauge formulation (18)–(19) of the low Mach equations. The gauge
formulation is unconstrained and enables us to use standard temporal integrators
for initial-value problems. In the majority of this section, we assume that all of the
fields and differential operators have already been spatially discretized and focus
on the temporal integration of the resulting initial-value problem.

Because in the present schemes we handle both diffusive and advective fluxes
explicitly, the time-step size 1t is restricted by well-known CFL conditions. For
fluctuating hydrodynamics applications, the time step is typically limited by mo-
mentum diffusion,

αν =
ν1t
1x2 <

1
2d
,
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where d is the number of spatial dimensions and 1x is the grid spacing. The design
and implementation of numerical methods that handle momentum diffusion semi-
implicitly, as done in [73] for incompressible flow, is substantially more difficult for
the low Mach number equations because it requires a variable-coefficient implicit
fluid solver. We have recently developed an efficient Stokes solver for solving
variable-density and variable-viscosity time-dependent and steady Stokes problems
[10], and in future work, we will employ this solver to construct a semi-implicit
temporal integrator for the low Mach number equations.

Our temporal discretization will make use of the special form of the EOS and
the discretization of mass advection described in Section IV-C in order to strictly
maintain the EOS relation (13) between density and concentration in each cell at
all intermediate values. Therefore, no additional action is needed to enforce the
EOS constraint after an update of ρ1 and ρ. This is, however, only true to within
the accuracy of the Poisson solver and also roundoff, and it is possible for a slow
drifting off the EOS to occur over many time steps. In Section III-C, we describe a
correction that prevents such drifting and ensures that the EOS is obeyed at all times
to essentially roundoff tolerance. For simplicity, we will often omit the explicit
update for the density ρ and instead focus on updating ρ1 and the momentum
density m = ρv with the understanding that ρ is updated whenever ρ1 is.

III-A. Euler scheme. The foundation for our higher-order explicit temporal inte-
grators is the first-order Euler method applied to the gauge formulation (18)–(19).

Gauge-free Euler update. We use a superscript to denote the time step and the
point in time where a given term is evaluated, e.g., f n

≡ fD(ρ
n, vn, cn, tn), where

fD denotes the spatial discretization of f with analogous definitions for hn and Sn .
We also denote the time-step size with1t = tn+1

− tn . Assume that at the beginning
of time step n we know m̃n and we can then compute

vn
=Rn

S(ṽ
n)

by enforcing the constraint (17). Here Rn
S denotes the affine transformation (16)

with all terms evaluated at the beginning of the time step so that ∇ · vn
= Sn . An

Euler step for the low Mach equations then consists of the update

ρn+1
1 = ρn

1 +1t hn,

m̃n+1
= m̃n

+1t f n (20)

together with an update of the density ρn+1 consistent with ρn+1
1 .

At the beginning of the next time step, vn+1 will be calculated from m̃n+1 by
applying Rn+1

S , and it is only vn+1 that will actually be used during time step n+1.
We therefore do not need to explicitly store m̃n+1 and can instead replace it with



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 61

mn+1
= ρn+1vn+1 without changing any of the observable results. This is related

to the fact that the gauge is de facto arbitrary and, in the present setting, the gauge
formulation is simply a formalism to put the equations in an unconstrained form
suitable for method of lines discretization. The difference between m̃ and m is a
(discrete) gradient of a scalar. Since our temporal integrators only use linear combi-
nations of the intermediate values, the difference between the final result for m̃n+1

and mn is also a gradient of a scalar and replacing m̃n+1 with mn+1 simply amounts
to redefining the (arbitrary) gauge variable. For these reasons, the Euler advance,

ρn+1
1 = ρn

1 +1t hn,

mn+1
= ρn+1Rn+1

S [(ρ
n+1)−1(mn

+1t f n)], (21)

is analytically equivalent to (20). We will use this form as the foundation for
our temporal integrators. The equivalence to the gauge form implies that the
update specified by (21) can be viewed as an explicit update in spite of the formal
dependence of the update on the solution at both old and new time levels.

Stochastic forcing. Thermal fluctuations cannot be straightforwardly incorporated
in (21) because it is not clear how to define Rn+1

S . In the deterministic setting, S is
a function of concentration and density and can be evaluated pointwise at time level
n+1. When the white-in-time stochastic concentration flux 9 is included, however,
S cannot be evaluated at a particular point of time. Instead, one must think of 9 as
representing the average stochastic flux over a given time interval δt , which can be
expressed in terms of the increments

√
δtW̃ of the underlying Wiener processes,

9(δt, W̃)=

√
2χρµ−1

c kB T
δt 1V

W̃ ,

where W̃ is a collection of normal variates generated using a pseudorandom number
generator and 1V is the volume of the hydrodynamic cells. Similarly, the average
stochastic momentum flux over a time step is modeled as

6(δt,W)=

√
ηkB T
δt 1V

(W +W T ),

where W are normal random variates. As described in more detail in [73], stochastic
fluxes are spatially discretized by generating normal variates on the faces of the
grid on which the corresponding variable is discretized independently at each time
step. As mentioned earlier, the volume of the grid cell appears here because it
expresses the spatial coarse-graining length scale (i.e., the degree of coarse-graining
for which a fluid element with discrete molecules can be modeled by continuous
density fields) implicit in the equations of fluctuating hydrodynamics. Similarly,
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the time interval δt ∼1t expresses the typical time scale at which the mass and
momentum transfer can be modeled with low Mach number hydrodynamics.

With this in mind, we first evaluate the velocity divergence associated with the
constraint using the particular sample of 9,

S =−(ρ−1β)∇ · [ρχ∇c+9(δt, W̃)].

We then define a discrete affine operator RF (δt, W̃) in terms of its action on the
momentum m

[RF (δt, W̃)](m)= ρRS(ρ
−1m).

Using this shorthand notation, the momentum update in (21) in the presence of
thermal fluctuations can be written as

mn+1
=
[
Rn+1

F (1t, W̃n+1)
]
(mn
+1t f n).

Observe that this is a conservative momentum update since the application of RF

subtracts the (discrete) gradient of a scalar from the momentum. In actual imple-
mentation, it is preferable to apply Rn+1

F at the beginning of the time step n+ 1,
instead of at the end of time step n, once the value Sn+1 is computed from the
diffusive and stochastic fluxes for the concentration.

Euler–Maruyama update. Following the above discussion, we can write an Euler–
Maruyama temporal integrator for the low Mach number equations in the shorthand
notation,

mn
= [Rn

F (1t, W̃n)](m̃n),

ρn+1
1 = ρn

1 +1t hn
+ ȟn(1t, W̃n),

m̃n+1
= mn

+1t f n
+ f̌ n(1t,Wn), (22)

where Wn and W̃n are collections of standard normal variates generated using
a pseudorandom number generator independently at each time step. Here the
deterministic increments are written using the shorthand notation

f =∇ · [−ρvvT
+ η(∇v+∇

T v)] + ρg,

h =∇ · (−ρ1v+ ρχ∇c).

The stochastic increments are written in terms of

f̌ (δt,W)= [∇ ·6(δt,W)]δt =∇ ·

[√
η(kB T )δt
1V

(W +W T )

]
,

ȟ(δt, W̃)= [∇ ·9(δt, W̃)]δt =∇ ·

[√
2χρµ−1

c (kB T )δt
1V

W̃
]
,

where W̃ and W are vectors of standard Gaussian variables [18].
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III-B. Higher-order temporal integrators. A good strategy for composing higher-
order temporal integrators for the low Mach number equations is to use a linear
combination of several projected Euler steps of the form (22). In this way, the
higher-order integrators inherit the properties of the Euler step. In our case, this
will be very useful in constructing conservative discretizations that strictly maintain
the EOS constraint and only evaluate fluxes at states that strictly obey the EOS
constraint.

The incorporation of stochastic forcing in the Runge–Kutta temporal integrators
that we use is described in [29; 18]; here we only summarize the resulting schemes.
We note that the stochastic terms should be considered additive noise even though
we evaluate them using an instantaneous state like multiplicative noise [73].

Explicit trapezoidal rule. A weakly second-order temporal integrator for (18)–(19)
is provided by the explicit trapezoidal rule, in which we first take a predictor Euler
step

mn
= [Rn

F (1t, W̃n)](m̃n),

ρ
?,n+1
1 = ρn

1 +1t hn
+ ȟn(1t, W̃n), (23)

m̃?,n+1
= mn

+1t f n
+ f̌ n(1t,Wn). (24)

The corrector step is a linear combination of the predictor and another Euler update,

m?,n+1
=
[
R?,n+1

F (1t, W̃n)
]
(m̃?,n+1),

ρn+1
1 =

1
2ρ

n
1 +

1
2

[
ρ
?,n+1
1 +1t h?,n+1

+ ȟ?,n+1(1t, W̃n)
]
, (25)

m̃n+1
=

1
2 mn
+

1
2

[
m?,n+1

+1t f ?,n+1
+ f̌ ?,n+1(1t,Wn)

]
, (26)

and reuses the same random numbers Wn and W̃n as the predictor step.
Note that both the predicted and the corrected values for density and concentration

obey the EOS. We numerically observe that the trapezoidal rule does exhibit a slow
but systematic numerical drift in the EOS, and therefore, it is necessary to use the
correction procedure described in Section III-C at the end of each time step. The
analysis in [18] indicates that for the incompressible case the trapezoidal scheme
exhibits second-order weak accuracy in the nonlinear and linearized settings.

Explicit midpoint rule. An alternative second-order scheme is the explicit midpoint
rule, which can be summarized as follows. First we take a projected Euler step to
estimate midpoint values (denoted here with superscript ?, n+ 1/2),

mn
=
[
Rn

F
( 1

21t, W̃n
1
)]
(m̃n),

ρ
?,n+1/2
1 = ρn

1 +
1
21t hn

+ ȟn( 1
21t, W̃n

1
)
,

m̃?,n+1/2
= mn

+
1
21t f n

+ f̌ n( 1
21t,Wn

1
)
, (27)
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and then we complete the time step with another Euler-like update

m?,n+1/2
=
[
Rn+1/2

F (1t, W̃n)
](

m̃?,n+1/2),
ρn+1

1 = ρn
1 +1t h?,n+1/2

+ ȟ?,n+1/2(1t, W̃n),

m̃n+1
= mn

+1t f ?,n+1/2
+ f̌ ?,n+1/2(1t,Wn), (28)

where the standard Gaussian variates

W̃n
=

W̃n
1 + W̃n

2
√

2

and the vectors of standard normal variates W̃n
1 and W̃n

2 are independent and
similarly for Wn

1 and Wn
2 . Note that W̃n

1 and Wn
1 are used in both the predictor and

the corrector stages while W̃n
2 and Wn

2 are used in the corrector only. Physically,
the random numbers Wn

1 /
√

2 (and similarly for W̃n
1 ) correspond to the increments

of the underlying Wiener processes 1B1 =
√
1t/2 Wn

1 over the first half of the
time step, and the random numbers Wn

2 /
√

2 correspond to the Wiener increments
for the second half of the time step [18].

Note that both the midpoint and the endpoint values for density and concentration
obey the EOS. We numerically observe that the midpoint rule does not exhibit a
systematic numerical drift in the EOS and can therefore be used without the cor-
rection procedure described in Section III-C. The analysis in [18] indicates that for
the incompressible case the midpoint scheme exhibits second-order weak accuracy
in the nonlinear setting. Furthermore, in the linearized setting, it reproduces the
steady-state covariances of the fluctuating fields to third order in the time-step size.

Three-stage Runge–Kutta (RK3) rule. We have also tested and implemented the
three-stage Runge–Kutta scheme that was used in [29; 73]. This scheme can be
expressed as a linear combination of three Euler steps. The first stage is a predictor
Euler step,

mn
= [Rn

F (1t, W̃n)](m̃n),

ρ?1 = ρ
n
1 +1t hn

+ ȟn(1t, W̃n), (29)

m̃?
= mn

+1t f n
+ f̌ n(1t,Wn). (30)

The second stage is a midpoint predictor

m?
= [R?

F (1t, W̃ ?,n)](m̃?),

ρ??1 =
3
4ρ

n
1 +

1
4 [ρ

?
1 +1t h?+ ȟ?(1t, W̃ ?,n)], (31)

m̃??
=

3
4 mn
+

1
4 [m

?
+1t f ?+ f̌ ?(1t,W ?,n)], (32)



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 65

and a final corrector stage completes the time step

m??
= [R??

F (1t, W̃ ??,n)](m̃??),

ρn+1
1 =

1
3ρ

n
1 +

2
3 [ρ

??
1 +1t h??+ ȟ??(1t, W̃ ??,n)], (33)

m̃n+1
=

1
3 mn
+

2
3 [m

??
+1t f ??+ f̌ ??(1t,W ??,n)]. (34)

Here the stochastic fluxes between different stages are related to each other via

Wn
=Wn

1 +
2
√

2+
√

3
5

Wn
2 ,

W ?,n
=Wn

1 +
−4
√

2+ 3
√

3
5

Wn
2 ,

W ??,n
=Wn

1 +

√
2− 2
√

3
10

Wn
2 , (35)

where Wn
1 and Wn

2 are independent and generated independently at each RK3 step
(similarly for W̃ ). The weights of Wn

2 are chosen to maximize the weak order of
accuracy of the scheme while still using only two random samples of the stochastic
fluxes per time step [18].

The RK3 method is third-order accurate deterministically and stable even in
the absence of diffusion/viscosity (i.e., for advection-dominated flows). Note that
the predicted, the midpoint, and the endpoint values for density and concentration
all obey the EOS. We numerically observe that the RK3 scheme does exhibit a
systematic numerical drift in the EOS, and therefore, it is necessary to use the
correction procedure described in Section III-C at the end of each time step. The
analysis in [18] indicates that for the incompressible case the RK3 scheme exhibits
second-order weak accuracy in the nonlinear setting. In the linearized setting, it
reproduces the steady-state covariances of the fluctuating fields to third order in the
time-step size.

III-C. EOS drift. While in principle our temporal integrators should strictly main-
tain the EOS, roundoff errors and the finite tolerance employed in the iterative
Poisson solver lead to a small drift in the constraint that can, depending on the
specific scheme, lead to an exponentially increasing violation of the EOS over many
time steps. In order to maintain the EOS at all times to within roundoff tolerance,
we periodically apply a globally conservative L2 projection of ρ and ρ1 onto the
linear EOS constraint.

This projection step consists of correcting ρ1 in cell k using

(ρ1)k← A(ρ1)k − B(ρ2)k −
1
N

∑
k′
[A(ρ1)k′ − B(ρ2)k′] +

1
N

∑
k′
(ρ1)k′,
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where N is the number of hydrodynamic cells in the system and

A =
ρ2

1

ρ2
1+ ρ

2
2

and B =
ρ1ρ2

ρ2
1+ ρ

2
2
.

Note that the above update, while nonlocal in nature, conserves the total mass∑
k′(ρ1)k′ . A similar update applies to ρ2, or equivalently, ρ = ρ1+ ρ2.

IV. Spatial discretization

The spatial discretization we employ follows closely the spatial discretization of
the constant-coefficient incompressible equations described in [73]. Therefore,
we focus here on the differences, specifically, the use of conserved variables, the
handling of the variable-density projection and variable-coefficient diffusion, and
the imposition of the low Mach number constraint. Note that the handling of the
stochastic momentum and mass fluxes is identical to that described in [73].

For simplicity of notation, we focus on two-dimensional problems with straight-
forward generalization to three spatial dimensions. Our spatial discretization follows
the commonly used MAC approach [43], in which the scalar conserved quantities ρ
and ρ1 are defined on a regular Cartesian grid. The vector conserved variables
m= ρv are defined on a staggered grid such that the k-th component of momentum
is defined on the faces of the scalar-variable Cartesian grid in the k-th direction; see
Figure 1. For simplicity of notation, we often denote the different components of
velocity as v= (u, v) in two dimensions and v= (u, v, w) in three dimensions. The
terms “cell-centered”, “edge-centered”, and “face-centered” refer to spatial locations
relative to the underlying scalar grid. Our discretization is based on calculating
fluxes on the faces of a finite-volume grid and is thus locally conservative. It is
important to note, however, that for the MAC grid different control volumes are
used for the scalars and the components of the momentum; see Figure 1.

(i, j)

ρ, ρ1

(i, j+1/2)

(i+1/2, j)

(i, j−1/2)

(i−1/2, j) mx

my

Figure 1. Staggered (MAC) finite-volume discretization on a uniform Cartesian two-
dimensional grid. Left: control volume and flux discretization for cell-centered scalar fields
such as densities ρ and ρ1. Middle: control volume for the x-component of face-centered
vector fields such as mx . Right: control volume for the y-component of face-centered
vector fields such as m y .
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From the cell-centered ρ and ρ1, we can define other cell-centered scalar quanti-
ties, notably, the concentration ci, j = (ρ1)i, j/ρi, j and the transport quantities χi, j

and ηi, j , which typically depend on the local density ρi, j and concentration ci, j

(and temperature for nonisothermal models) and can, in general, also depend on the
spatial position of the cell (x, y)= (i1x, j1y). In order to define velocities, we
need to interpret the continuum relationship m = ρv on the staggered grid. This is
done by defining face-centered scalar quantities obtained as an arithmetic average of
the corresponding cell-centered quantities in the two neighboring cells. Specifically,
we define

ρi+1/2, j =
ρi, j + ρi+1, j

2
and ui+1/2, j =

(mx)i+1/2, j

ρi+1/2, j
, (36)

except at physical boundaries, where the value is obtained from the imposed
boundary conditions (see Section IV-E). Arithmetic averaging is only one possible
interpolation from cells to faces [2]. In general, other forms of averaging such as a
harmonic or geometric average or higher-order, wider stencils [1; 29] can be used.
Most components of the spatial discretization can easily be generalized to other
choices of interpolation. As we explain later, the use of linear averaging simplifies
the construction of conservative advection.

IV-A. Diffusion. In this section, we describe the spatial discretization of the dif-
fusive mass flux term ∇ · ρχ∇c in (9). The discretization is based on conservative
centered differencing [29; 18]

(∇ · ρχ∇c)i, j =1x−1
[(
ρχ

∂c
∂x

)
i+1/2, j

−

(
ρχ

∂c
∂x

)
i−1/2, j

]
+1y−1

[(
ρχ

∂c
∂y

)
i, j+1/2

−

(
ρχ

∂c
∂y

)
i, j−1/2

]
, (37)

where, for example,(
ρχ

∂c
∂x

)
i+1/2, j

= (ρi+1/2, j )(χi+1/2, j )
(ci+1, j − ci, j

1x

)
(38)

and χi+1/2, j is an interpolated face-centered diffusion coefficient, for example, as
done for ρ in (36),

χi+1/2, j =
χi, j +χi+1, j

2
,

except at physical boundaries, where the value is obtained from the imposed bound-
ary conditions.

Regardless of the specific form of the interpolation operator, the same face-
centered diffusion coefficient χi+1/2, j must be used when calculating the magnitude
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of the stochastic mass flux on face (i + 1/2, j),

(9x)i+1/2, j =

√
2χi+1/2, j (ρµ

−1
c )i+1/2, j kB T W̃i+1/2, j .

This matches the covariance of the discrete stochastic mass increments ∇ ·9 with
the discretization of the diffusive dissipation operator ∇ · ρχ∇ given in (37)–(38).
This matching ensures discrete fluctuation-dissipation balance in the linearized
setting [29]. Specifically, at thermodynamic equilibrium, the static covariance of the
concentration is determined from the equilibrium value of (ρµ−1

c ) (thermodynamics)
independently of the particular values of the transport coefficients (dynamics) as
seen in (A-1) and dictated by statistical mechanics principles.

IV-B. Viscous terms. In [73], a Laplacian form of the viscous term η∇2v is as-
sumed, which is not applicable when viscosity is spatially varying and ∇ ·v= S 6= 0.
In two dimensions, the divergence of the viscous stress tensor in the momentum
equation (8), neglecting bulk viscosity effects, is

∇ · [η(∇v+∇
T v)] =

[
2 ∂
∂x (η

∂u
∂x )+

∂
∂y (η

∂u
∂y + η

∂v
∂x )

2 ∂
∂y (η

∂v
∂y )+

∂
∂x (η

∂v
∂x + η

∂u
∂y )

]
. (39)

The discretization of the viscous terms requires η at cell centers and edges (note
that in two dimensions the edges are the same as the nodes (i + 1/2, j + 1/2) of
the grid). The value of η at a node is interpolated as the arithmetic average of the
four neighboring cell centers,

ηi+1/2, j+1/2 =
1
4(ηi, j + ηi+1, j+1+ ηi+1, j + ηi, j+1),

except at physical boundaries, where the values are obtained from the prescribed
boundary conditions. The different viscous friction terms are discretized by straight-
forward centered differences. Explicitly, for the x-component of momentum,[

∂

∂x

(
η
∂u
∂x

)]
i+1/2, j

=1x−1
[(
η
∂u
∂x

)
i+1, j
−

(
η
∂u
∂x

)
i, j

]
with (

η
∂u
∂x

)
i, j
= ηi, j

(
ui+1/2, j − ui−1/2, j

1x

)
.

Similarly, for the term involving a second derivative in y,[
∂

∂y

(
η
∂u
∂y

)]
i+1/2, j

=1y−1
[(
η
∂u
∂y

)
i+1/2, j+1/2

−

(
η
∂u
∂y

)
i+1/2, j−1/2

]
with (

η
∂u
∂y

)
i+1/2, j+1/2

= ηi+1/2, j+1/2

(
ui+1/2, j+1− ui+1/2, j

1y

)
.
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A similar construction is used for the mixed-derivative term[
∂

∂y

(
η
∂v

∂x

)]
i+1/2, j

=1y−1
[(
η
∂v

∂x

)
i+1/2, j+1/2

−

(
η
∂v

∂x

)
i+1/2, j−1/2

]
with (

η
∂v

∂x

)
i+1/2, j+1/2

= ηi+1/2, j+1/2

(
vi+1, j+1/2− vi, j+1/2

1x

)
.

The stochastic-stress-tensor discretization is described in more detail in [73] and
applies in the present context as well. For the low Mach number equations, just as
for the compressible equations, the symmetric form of the stochastic stress tensor
must be used in order to ensure discrete fluctuation-dissipation balance between
the viscous dissipation and stochastic forcing. Additionally, when η is not spatially
uniform, the same interpolated viscosity ηi+1/2, j+1/2 as used in the viscous terms
must be used when calculating the amplitude in the stochastic forcing

√
ηkB T at

the edges (nodes) of the grid.

IV-C. Advection. It is challenging to construct spatiotemporal discretizations that
conserve the total mass while remaining consistent with the equation of state [67;
65; 58] as ensured in the continuum context by the constraint (11). We demonstrate
here how the special linear form of the constraint (13) can be exploited in the
discrete context. Following [73], we spatially discretize the advective terms in (9)
using a centered (skew-adjoint [54]) discretization

[∇ · (ρ1v)]i, j =1x−1
[(ρ1)i+1/2, j ui+1/2, j − (ρ1)i−1/2, j ui−1/2, j ]

+1y−1
[(ρ1)i, j+1/2vi, j+1/2− (ρ1)i, j−1/2vi, j−1/2] (40)

and similarly for (12). We would like this discrete advection to maintain the equation
of state (13) at the discrete level, that is, maintain the constraint relating (ρ1)i, j

and (ρ2)i, j in every cell (i, j).
Because the different dimensions are decoupled and the divergence is simply the

sum of the one-dimensional difference operators, it is sufficient to consider (9) in
one spatial dimension. The method-of-lines discretization is given by the system of
ODEs, one differential equation per cell i ,

(∂tρ1)i =1x−1(Fi+1/2− Fi−1/2)−1x−1
[(ρ1)i+1/2ui+1/2− (ρ1)i−1/2ui−1/2]

and similarly for (∂tρ2)i . As a shorthand, denote the quantity that appears in (13)
with

δ =
ρ1

ρ1
+
ρ2

ρ2
= 1.

If we use the linear interpolation (36) to calculate face-centered densities, then
because of the linearity of the EOS the face-centered densities obey the EOS if the
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cell-centered ones do since δi+1/2 = (δi + δi+1)/2= 1. The rate of change of δ in
cell i is

1x(∂tδ)i = (ρ
−1β)(Fi+1/2− Fi−1/2)− [δi+1/2ui+1/2− δi−1/2ui−1/2]

= (ρ−1β)(Fi+1/2− Fi−1/2)− (ui+1/2− ui−1/2)= 0.

This simple calculation shows that the EOS constraint δ = 1 is obeyed discretely
in each cell at all times if it is initially satisfied and the velocities used to advect
mass obey the discrete version of the constraint (11),

Si, j =1x−1(ui+1/2, j − ui−1/2, j )+1y−1(vi, j+1/2− vi, j−1/2) (41)

=

( 1
ρ1
−

1
ρ2

)[
1x−1(Fi+1/2, j − Fi−1/2, j )+1y−1(Fi, j+1/2− Fi, j−1/2)

]
,

in two dimensions. Our algorithm ensures that advective terms are always evaluated
using a discrete velocity field that obeys this constraint. This is accomplished by
using a discrete projection operator as we describe in the next section.

The spatial discretization of the advection terms in the momentum equation (8) is
constructed using centered differences on the corresponding shifted (staggered) grid
as described in [73]. For example, for the x-component of momentum mx = ρu,

[∇ · (mxv)]i+1/2, j =1x−1
[(mx u)i+1, j − (mx u)i, j ]

+1y−1
[(mxv)i+1/2, j+1/2− (mxv)i+1/2, j−1/2], (42)

where simple averaging is used to interpolate momenta to the cell centers and edges
(nodes) of the grid, for example,

(mx u)i, j = (mx)i, j ui, j =
(mx)i−1/2, j + (mx)i+1/2, j

2
ui−1/2, j + ui+1/2, j

2
. (43)

Because of the linearity of the interpolation procedure, the interpolated discrete
velocity used to advect mx obeys the constraint (41) on the shifted grid with a
right-hand side Si+1/2, j interpolated using the same arithmetic average used to
interpolate the velocities. In particular, in the incompressible case, all variables,
including momentum, are advected using a discretely divergence-free velocity,
ensuring discrete fluctuation-dissipation balance [73; 18].

It is well-known that the centered discretization of advection we employ here is
not robust for advection-dominated flows, and higher-order limiters and upwinding
schemes are generally preferred in the deterministic setting [5]. However, these
more robust advection schemes add artificial dissipation, which leads to a violation
of discrete fluctuation-dissipation balance [18]. In Appendix B, we describe an
alternative filtering procedure that can be used to handle strong advection while
continuing to use centered differencing.
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IV-D. Discrete projection. We now briefly discuss the spatial discretization of the
affine operator RS defined by (16) as used in our explicit temporal integrators. The
discrete projection takes a face-centered (staggered) discrete velocity field ṽ= (ũ, ṽ)
and a velocity divergence S and projects v =RS(ṽ) onto the constraint (41) in a
conservative manner. Specifically, the projection consists of finding a cell-centered
discrete scalar field φ such that

ρv = ρṽ−∇φ and ∇ · v = S,

where the gradient is discretized using centered differences, e.g.,

vi+1/2, j = ṽi+1/2, j −

(
1

ρi+1/2, j

)(
φi+1, j −φi, j

1x

)
. (44)

The pressure correction φ is the solution to the variable-coefficient discrete Poisson
equation,

1
1x

[(
1

ρi+1/2, j

)(
φi+1, j −φi, j

1x

)
−

(
1

ρi−1/2, j

)(
φi, j −φi, j−1

1x

)]
+

1
1y

[(
1

ρi, j+1/2

)(
φi, j+1−φi, j

1y

)
−

(
1

ρi, j−1/2

)(
φi, j −φi, j−1

1y

)]
= Si, j −

[(
ũi+1/2, j − ũi−1/2, j

1x

)
+

(
ṽi, j+1/2− ṽi, j−1/2

1y

)]
, (45)

which can be solved efficiently using a standard multigrid approach [2].

IV-E. Boundary conditions. The handling of different types of boundary condi-
tions is relatively straightforward when a staggered grid is used and the physical
boundaries are aligned with the cell boundaries for the scalar grid. Interpolation is
not used to obtain values for faces, nodes, or edges of the grid that lie on a physical
boundary since this would require “ghost” values at cell centers lying outside of
the physical domain. Instead, whenever a value of a physical variable is required at
a face, node, or edge lying on a physical boundary, the boundary condition is used
to obtain that value. Similarly, centered differences for the diffusive and viscous
fluxes that require values outside of the physical domain are replaced by one-sided
differences that only use values from the interior cell bordering the boundary and
boundary values.

For example, if the concentration is specified at the face (i+1/2, j), the diffusive
flux discretization (38) is replaced with(

ρχ
∂c
∂x

)
i+1/2, j

= (ρi+1/2, j )(χi+1/2, j )

(
ci+1/2, j − ci, j

1x/2

)
,

where ci+1/2, j is the specified boundary value, the density ρi+1/2, j is obtained
from ci+1/2, j using the EOS constraint, and the diffusion coefficient χi+1/2, j is
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calculated at the specified values of concentration and density. Similar straightfor-
ward one-sided differencing is used for the viscous fluxes. As discussed in [73],
the use of second-order one-sided differencing is not required to achieve global
second-order accuracy and would make the handling of the stochastic fluxes more
complicated because it leads to a nonsymmetric discrete Laplacian. Note that for
the nonlinear low Mach number equations our approach is subtly different from
linearly extrapolating the value in the ghost cell ci+1, j = 2ci+1/2, j−ci . Namely, the
extrapolated value might be unphysical, and it might not be possible to evaluate the
EOS or transport coefficients at the extrapolated concentration. For Neumann-type
or zero-flux boundary conditions, the corresponding diffusive flux is set to zero for
any faces of the corresponding control volume that lie on physical boundaries, and
values in cells outside of the physical domain are never required. The corresponding
handling of the stochastic fluxes is discussed in detail in [73].

The evaluation of advective fluxes for the scalars requires normal components of
the velocity at the boundary. For faces of the grid that lie on a physical boundary,
the normal component of the velocity is determined from the value of the diffusive
mass flux at that face using (15). Therefore, these velocities are not independent
variables and are not solved for or modified by the projection RS . Specifically,
the discrete pressure φ is only defined at the cell centers in the interior of the
grid, and the discrete Poisson equation (45) is only imposed on the interior faces
of the grid. Therefore, no explicit boundary conditions for φ are required when
the staggered grid is used, and the natural homogeneous Neumann conditions are
implied. Advective momentum fluxes are only evaluated on the interior faces and
thus do not use any values outside of the physical domain.

IV-F. Summary of Euler–Maruyama method. By combining the spatial discre-
tization described above with one of the temporal integrators described in Section III,
we can obtain a finite-volume solver for the fluctuating low Mach equations. For the
benefit of the reader, here we summarize our implementation of a single Euler step
(22). This forms the core procedure that the higher-order Runge–Kutta schemes
employ several times during one time step.

(1) Generate the vectors of standard Gaussian variates Wn and W̃n .

(2) Calculate diffusive and stochastic fluxes for ρ1 using (38),

Fn
= (ρχ∇c)n +9n(1t, W̃n).

(3) Solve the Poisson problem (45) with

Sn
=−

( 1
ρ1
−

1
ρ2

)
∇ · Fn

to obtain the velocity vn from ṽn
= m̃n/ρn using (44), enforcing ∇ · vn

= Sn .
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(4) Calculate viscous and stochastic momentum fluxes using (39),

∇ · [η(∇v+∇
T v)]n +∇ · [6n(1t,Wn)].

(5) Calculate external forcing terms for the momentum equation such as the
contribution −ρn g due to gravity.

(6) Calculate advective fluxes for mass and momentum using (40) and (42).

(7) Update mass and momentum densities, including advective, diffusive, stochas-
tic, and external forcing terms, to obtain ρn+1, ρn+1

1 , and m̃n+1. Note that this
update preserves the EOS constraint as explained in Section IV-C.

We have tested and validated the accuracy of our methods and numerical imple-
mentation using a series of standard deterministic tests as well as by examining the
equilibrium spectrum of the concentration and velocity fluctuations [29; 73; 18].
The next two sections present further verification and validation in the context of
nonequilibrium systems.

V. Giant concentration fluctuations

Advection of concentration by thermal velocity fluctuations in the presence of large
concentration gradients leads to the appearance of giant fluctuations of concentration,
as has been studied theoretically and experimentally for more than a decade [77;
12; 75; 74]. These giant fluctuations were previously simulated in the absence
of gravity in three dimensions by some of us in [73], and good agreement was
found with experimental results [75]. In those previous studies, the incompressible
equations were used; that is, it was assumed that concentration was a passively
advected scalar. However, it is more physically realistic to account for the fact that
the properties of the fluid, notably the density and the transport coefficients, depend
on the concentration. In [12], a series of experiments were performed to study the
temporal evolution of giant concentration fluctuations during the diffusive mixing of
water and glycerol, starting with a glycerol mass fraction of c = 0.39 in the bottom
half of the experimental domain and c = 0 in the top half. Because it is essentially
impossible to analytically solve the full system of fluctuating equations in the
presence of spatial inhomogeneity and nontrivial boundary conditions, the existing
theoretical analysis of the diffusive mixing process [77] makes a quasiperiodic
constant-coefficient incompressible approximation.

For simplicity, in this section, we focus on a time-independent problem and
study the spectrum of steady-state concentration fluctuations in a mixture under
gravity in the presence of a constant concentration gradient. This extends the study
reported in [73] to account for the fact that the density, viscosity, and diffusion
coefficient depend on the concentration. For simplicity, we do two-dimensional
simulations since for this problem there is no difference between the spectra of
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concentration fluctuations in two and three dimensions [73] (note, however, that in
real space, unlike in Fourier space, the effect of the fluctuations on the transport is
very different in two and three dimensions). Furthermore, in these simulations, we
do not include a stochastic flux in the concentration equation; i.e., we set 9 = 0 so
that all fluctuations in the concentration arise from being out of thermodynamic
equilibrium. With this approximation, we do not need to model the chemical
potential of the mixture and obtain µc. This formulation is justified by the fact that
it is known experimentally that the nonequilibrium fluctuations are much larger
than the equilibrium ones for the conditions we consider [12].

In the simple linearized theory presented in Section A.2, several approximations
are made. The first one is that a quasiperiodic approximation is used even though
the actual system is not periodic in the y-direction. This source of error has already
been studied numerically in [73]. We also use a Boussinesq approximation where it
is assumed that ρ1 = ρ0+1ρ/2 and ρ2 = ρ0−1ρ/2, where 1ρ is a small density
difference between the two fluids, 1ρ/ρ0 � 1, so that density is approximately
constant and β � 1. More precisely, in the Boussinesq model, the gravity term
in the velocity equation only enters through the product βg, so the approximation
consists of taking the limit β→ 0 and g→∞ while keeping the product βg fixed.
The final approximation made in the simple theory is that the transport coefficients,
i.e., the viscosity and diffusion coefficients, are assumed to be constant. Here we
evaluate the validity of the constant-coefficient constant-density approximation
(ρ, η, and χ constant and β → 0), as well as the constant-density (Boussinesq)
approximation alone (ρ constant and β→ 0 but variable η and χ), by comparing
with the solution to the complete low Mach number equations (ρ, η, χ , and β
variable).

V-A. Simulation parameters. We base our parameters on the experimental studies
of diffusive mixing in a water-glycerol mixture as reported in [12]. The physical do-
main is 1 cm×0.25 cm discretized on a uniform 128×32 two-dimensional grid with a
thickness of 1 cm along the z-direction. Gravity is applied in the negative y- (vertical)
direction. Reservoir boundary conditions (15) are applied in the y-direction and
periodic boundary conditions in the x-direction. We set the concentration to c=0.39
on the bottom boundary and c = 0 on the top boundary and apply no-slip boundary
conditions for the velocity at both boundaries. The initial condition is c(t = 0)=
0.39(y/0.25− 1), which is close to the deterministic steady-state profile. A very
good fit to the experimental equation of state (dependence of density on concentra-
tion at standard temperature and pressure) over the whole range of concentrations of
interest is provided by the EOS (13) with the density of water set to ρ2=1 g/cm3 and
the density of glycerol set to ρ1=1.29 g/cm3. In these simulations, the magnitude of
the velocity fluctuations is very small, and we did not use filtering (see Appendix B).
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Experimentally, the dependence of viscosity on glycerol mass fraction has been
fit to an exponential function [12], which we approximate with a quadratic function
over the range of concentrations of interest

η(c)= ρ(c)ν(c)= ρ0ν0 exp(2.06c+ 2.32c2)≈ ρ0ν0(1.0+ 0.66c+ 12c2), (46)

where ρ0 = 1 g/cm3 and experimental measurements estimate ν0 ≈ 10−2 cm2/s.
The dependence of the diffusion coefficient on the concentration has been studied
experimentally [19], but it is strongly affected by thermal fluctuations and spatial
confinement [24; 21; 26]. We approximate the dependence assuming a Stokes–
Einstein relation [25], which is in reasonable agreement with the experimental
results in [19] over the range of concentrations of interest here; we can write it as

χ(c)=
χ0η0

η(c)
≈ χ0(1.0− 2.2c+ 1.2c2), (47)

where experimental estimates for water-glycerol mixtures give χ0 ≈ 10−5 cm2/s,
with a Schmidt number Sc = ν0/χ0 ≈ 103. This very large separation of scales
between mass and momentum diffusion is not feasible to simulate with our explicit
temporal integration methods. Referring back to the simplified theory (A-7), which
in this case can be simplified further to

Sc,c(kx , ky = 0)=
〈
(δ̂c)(δ̂c)?

〉
≈

ν

ν+χ

kB T(
χηk4

x + h‖ρgβ
) h2
‖
, (48)

we see that for ν� χ the shape of the spectrum of the steady-state concentration
fluctuations, and in particular the cutoff wavenumber due to gravity, is determined
from the product χν and not χ and ν individually. Therefore, as also done in [73], we
choose χ0 and ν0 so that χ(c)ν(c) is kept at the physical value of 10−7 g·cm/s2, but
the Schmidt number is reduced by two orders of magnitude, Sc = ρ

−1
0 η(c̄)/χ(c̄)=

10, where c = 0.39/2 is an estimate of the average concentration. The condition
η(c̄) ≈ 10−3 g/(cm · s) and χ(c̄) ≈ 10−4 cm2/s gives our simulation parameters
ν0 ≈ 6.1× 10−4 cm2/s and χ0 ≈ 1.6× 10−4 cm2/s.

The physical value for gravity is g ≈ 103 cm/s2, and the solutal expansion
coefficient β(c)≈ 0.234 follows from ρ1 and ρ2. When employing the Boussinesq
approximation, in which gravity only enters through the product βg, we set ρ1 =

1.054 and ρ2 = 1.044 so that β = 0.01 and increase gravity by the corresponding
factor to g = 2.34 · 104 cm/s2 in order to keep βg fixed at the physical value. We
also performed simulations with a weaker gravity, g ≈ 102 cm/s2, which enhances
the giant fluctuations.

V-B. Results. We employ the explicit midpoint temporal integrator (which we
recall is third-order accurate for static covariances) and set 1t = 0.005 s, which
results in a diffusive Courant number ν1t/1x2

≈ 0.1. We skip the first 50,000
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Figure 2. Comparison between the simple theory (A-7) (lines) and numerical results
(symbols). Results are shown for standard gravity g ≈ 103 cm/s2 (the cutoff wavenumber
kg ≈ 246 cm−1) for the complete variable-coefficient variable-density low Mach model
(green upward triangles) and the constant-coefficient constant-density approximation
(red squares). Also shown are results for a weaker gravity, g ≈ 102 cm/s2 (the cutoff
wavenumber kg ≈ 138 cm−1), for the complete low Mach model (magenta pluses) and the
constant-coefficient constant-density approximation (cyan stars). For comparison, results
for g≈ 102 cm/s2 with variable viscosity η(c) but constant diffusion coefficient χ(c)=χ0
are also shown, for variable density (orange downward triangles) and the constant-density
(Boussinesq) approximation (indigo right-facing triangles). Finally, results for no gravity
are shown in the constant-coefficient approximation (black circles).

time steps (about five diffusion crossing times) and then collect samples from the
subsequent 50,000 time steps. We repeat this eight times to increase the statistical
accuracy and estimate error bars. To compare to the theory (A-7), we set the
concentration gradient to h‖ = 0.39/0.25 cm−1 and evaluate ρ ≈ 1.05 g/cm3 at
c = 0.39/2 from the equation of state. When computing the theory, we account
for errors in the discrete approximation to the continuum Laplacian by using the
effective wavenumber

k⊥ = kx
sin(kx1x/2)
(kx1x/2)

(49)

instead of the actual discrete wavenumber kx [73].
The results for the static spectrum of concentration fluctuations Sc,c(kx , ky = 0)=
〈(δ̂c)(δ̂c)?〉 as a function of the modified wavenumber k⊥ (49) are shown in Figure 2.
When there is no gravity, we see the characteristic giant-fluctuation power-law
spectrum of the fluctuations, modulated at small wavenumbers due to the presence of
the physical boundaries [73]. When gravity is present, fluctuations at wavenumber
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below the cutoff kg = [h‖ρgβ/(ηχ)]1/4 are suppressed. If we use a constant-
coefficient approximation, in which we reduce β = 0.01 so that ρ ≈ ρ(c) and
also fix the transport coefficients at η(c) = η(c) and χ(c) = χ(c), we observe
good agreement with the quasiperiodic theory (A-7). When we make the transport
coefficients dependent on the concentration as in (46) and (47), we observe a rather
small change in the spectrum. This is perhaps not unexpected because the simplified
theory (48) shows that only the product χη, and not χ and η individually, matters.
Since we used the Stokes–Einstein relation χ(c)η(c)= ρ0χ0ν0 = constant to select
the concentration dependence of the diffusion coefficient, the value of χη is constant
throughout the physical domain. For comparison, in Figure 2 we show results from
a simulation where we keep the concentration dependence of the viscosity (46)
but set the diffusion coefficient to a constant value, χ(c) = χ0, and we observe
a more significant change in the spectrum. Further employing the Boussinesq
approximation makes little difference, showing that the primary effect here comes
from the dependence of the transport coefficients on concentration.

This shows that, under the sort of parameters present in the experiments on
diffusive mixing in water-glycerol mixture, it is reasonable to make the Boussinesq
incompressible approximation; however, the spatial dependence of the viscosity
and diffusion coefficient cannot in general be ignored if quantitative agreement is
desired. In particular, time-dependent quantities such as dynamic spectra [76; 11]
depend on the values of χ and η and not just their product, and are thus expected
to be more sensitive to the details of their concentration dependence. Even though
the constant-coefficient approximation gives qualitatively the correct shape and a
better choice of the constant transport coefficients may improve its accuracy, there
is no simple procedure to a priori estimate what parameters should be used (but
see [77] for a proposal to average the constant-coefficient theory over the domain).
A direct comparison with experimental results is not possible until multiscale
temporal integrators capable of handling the extreme separation of time scales
between mass and momentum diffusion are developed. At present, this has only
been accomplished in the constant-coefficient incompressible limit (β = 0) [26],
and it remains a significant challenge to accomplish the same for the complete low
Mach number system.

VI. Diffusive mixing in hard-disk and hard-sphere fluids

In this section, we study the appearance of giant fluctuations during time-dependent
diffusive mixing. As a validation of the low Mach number fluctuating equations and
our algorithm, we perform simulations of diffusive mixing of two fluids of different
densities in two dimensions. We find excellent agreement between the results of low
Mach number (continuum) simulations and hard-disk molecular dynamics (particle)
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Figure 3. Diffusive mixing between two fluids of unequal densities, R = ρ2/ρ1 = 4,
with coloring based on concentration: red for the pure first component, c = 1, and blue
for the pure second component, c = 0. A smoothed shading is used for the coloring to
eliminate visual discretization artifacts. The simulation domain is periodic and contains
1282 hydrodynamic (finite-volume) cells. The top left panel shows the initial configuration,
which is the same for all simulations reported here. The top right panel shows the final
configuration at time t = 5800 as obtained using molecular dynamics. The bottom left
panel shows the final configuration obtained using deterministic hydrodynamics while the
bottom right panel shows the final configuration obtained using fluctuating hydrodynamics.

simulations. This nontrivial test clearly demonstrates the usefulness of low Mach
number models as a coarse-grained mesoscopic model for problems where sound
waves can be neglected.

Our simulation setup is illustrated in Figure 3. We consider a periodic square
box of length L along both the x- (horizontal) and y- (vertical) directions and
initially place all of the fluid of species one (colored red) in the middle third of the
domain; i.e., we set c = 1 for L/3≤ y ≤ 2L/3, and c = 0 otherwise, as shown in
the top left panel of the figure. The two fluids mix diffusively, and at the end of the
simulation, the concentration field shows a rough diffusive interface as confirmed
by molecular dynamics simulations shown in the top right panel of the figure. The
deterministic equations of diffusive mixing reduce to a one-dimensional model
due to the translational symmetry along the x-axis and would yield a flat diffusive
interface as illustrated in the bottom left panel of the figure. However, fluctuating
hydrodynamics correctly reproduces the interface roughness as illustrated in the
bottom right panel of the figure and demonstrated quantitatively below.

We consider here a binary hard-disk mixture in two dimensions. We use arbitrary
(molecular) units of length, time, and mass for convenience. All hard disks had
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a diameter σ = 1 in arbitrary units, and we set the temperature at kB T = 1. The
molecular mass for the first fluid component was fixed at m1 = 1 and for the
second component at m2 = Rm1. For mass ratio R = 1, the two types of disks are
mechanically identical, and therefore, the species label is simply a red-blue coloring
of the particles. In this case, ρ2 = ρ1 and the low Mach number equations reduce
to the incompressible equations of fluctuating hydrodynamics with a passively
advected concentration field. For the case of unequal particle masses, mechanical
equilibrium is obtained if the pressures in the two fluid components are the same.
It is well-known from statistical mechanics that for hard disks or hard spheres the
pressure is

P = Y (φ) · n · kB T,

where n = N/V is the number density and Y (φ) is a prefactor that only depends on
the packing fraction φ = n(πσ 2/4) and not on the molecular mass. Therefore, for a
mixture of disks or spheres with equal diameters, at constant pressure, the number
density and the packing fraction φ are constant independent of the composition.
The equation of state at constant pressure and temperature is therefore

1=
n1

n
+

n2

n
=

ρ1

nm1
+

ρ2

nm2
,

which is exactly of the form (13) with ρ1 = nm1 and ρ2 = nm2. The chemical
potential of such a mixture has the same concentration dependence as a low-density
gas mixture [49],

µ−1
c kB T = c(1− c)[cm2+ (1− c)m1].

VI-A. Hard-disk molecular dynamics. In order to validate the predictions of our
low Mach number model, we performed hard-disk molecular dynamics (HDMD)
simulations of diffusive mixing using a modification of the public-domain code
developed by the authors of [70]. We used a packing fraction of φ = 0.6 for all
simulations reported here. This packing fraction is close to the freezing transition
point but is known to be safely in the (dense) gas phase (there is no liquid phase for a
hard-disk fluid). The initial particle positions were generated using a nonequilibrium
molecular-dynamics simulation as in the hard-particle packing algorithm described
in [27; 28]. After the initial configuration was generated, the disks were assigned a
species according to their y-coordinate, and the mixing simulation was performed
using event-driven molecular dynamics.

In order to convert the particle data to hydrodynamic data comparable to that
generated by the fluctuating hydrodynamics simulations, we employed a grid of N 2

c
hydrodynamic cells that were each a square of linear dimension Lc = 10σ . At the
chosen packing fraction φ = 0.6, this corresponds to about 76 disks per hydrody-
namic cell, which is deemed a reasonable level of coarse-graining for the equations
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of fluctuating hydrodynamics to be a reasonably accurate model while still keeping
the computational demands of the simulations manageable. We performed HDMD
simulations for systems of size Nc = 64 and Nc = 128 cells and simulated the
mixing process to a final simulation time of t = 5800 units. The largest system
simulated had about 1.25 million disks (each simulation took about five days of
CPU time), which is well into the “hydrodynamic” rather than “molecular” scale.

Every 58 units of time, particle data was converted to hydrodynamic data for the
purposes of analysis and comparison to hydrodynamic calculations. There is not a
unique way of coarse-graining particle data to hydrodynamic data [78; 35]; however,
we believe that the large-scale (giant) concentration fluctuations studied here are
not affected by the particular choice. We therefore used a simple method consistent
with the philosophy of finite-volume conservative discretizations. Specifically, we
coarse-grained the particle information by sorting the particles into hydrodynamic
cells based on the position of their centroid as if they were point particles. We then
calculated ρ1 and ρ2 in each cell based on the total mass of each species contained
inside the given cell. Since all particles have equal diameter, other definitions that
take into account the particle shape and size give similar results.

VI-B. Hard-disk hydrodynamics. We now turn to hydrodynamic simulations of
the diffusive mixing of hard disks. Our hydrodynamic calculations use the same
grid of cells used to convert particle to hydrodynamic data. The only input required
for the hydrodynamic calculations, in addition to those provided by equilibrium
statistical mechanics, are the transport coefficients of the fluid as a function of
concentration, specifically, the shear viscosity η and the diffusion coefficient χ .

The values for the transport coefficients used in the spatiotemporal discretization,
as explained in [24; 26] and detailed in Appendix C, are not material constants
independent of the discretization. Rather, they are bare transport values η0 and χ0

measured at the length scales of the grid size. We assumed that the bare transport
coefficients obey the same scaling with the mass ratio R as predicted by Enskog
kinetic theory (C-1)–(C-2). As explained in Appendix C, theoretical arguments
and molecular-dynamics results suggest that renormalization effects for viscosity
are small and can be safely neglected. We have therefore fixed the viscosity in the
hydrodynamic calculations based on the molecular-dynamics estimate η0 = 2.5 for
the pure fluid with molecular mass m = 1 (see Section C.1). However, the bare
diffusion coefficient is strongly dependent on the size of the hydrodynamic cells
(held fixed in our calculations at 1x = 1y = 10) and on whether filtering (see
Appendix B) is used. Therefore, the value of χ0 needs to be adjusted based on
the spatial discretization in such a way as to match the behavior of the molecular-
dynamics simulations at length scales much larger than the grid spacing. We
describe the exact procedure we used to accomplish this in Section C.2.
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The time step in our explicit algorithm is limited by the viscous CFL number
αν = ν1t/1x2 < 1/4. Since the hydrodynamic calculations are much faster
compared to the particle simulations, we used the more expensive RK3 temporal
integrator with a relatively small time step 1t = 1.45, corresponding to αν ≈ 0.05
for c = 1. For R = 1 and Nc = 64, we employed a larger time step, 1t = 3.625
(αν ≈ 0.125), with no measurable temporal discretization artifacts for the quantities
studied here. We are therefore confident that the discretization errors in this study
are dominated by spatial discretization artifacts. In future work, we will explore
semi-implicit discretizations and study the effect of taking larger time steps on
temporal accuracy. Note that at these parameters for c = 1 the isothermal speed of
sound is cT ≈ 5.1 so that a compressible scheme would require a time step on the
order of 1t ∼ 1 (corresponding to advective CFL of about 1/2). By contrast, the
explicit low Mach number algorithm is stable for 1t . 7.5. This modest gain is
due to the small hydrodynamic cell we use here in order to compare to molecular
dynamics. For mesoscopic hydrodynamic cells, the gain in time-step size afforded
by the low Mach formulation will be several orders of magnitude larger.

For mass ratio R = 1 and R = 2, the hydrodynamic calculations were initialized
using statistically identical configurations as would be obtained by coarse-graining
the initial particle configuration. This implies a sharp, step-like jump in concen-
tration at y = L/3 and y = 2L/3. Since our spatiotemporal discretization is not
strictly monotonicity-preserving, such sharp concentration gradients combined with
a small diffusion coefficient χ0 lead to a large cell Peclet number. This may in turn
lead to large deviations of concentration outside of the allowed interval 0≤ c ≤ 1
for larger mass ratios. Therefore, for R = 4, we smoothed the initial condition
slightly so that the sharp jump in concentration is spread over a few cells and also
employed a nine-point filter for the advection velocity (wF = 4; see Appendix B).
We verified that for R = 2 using filtering only affects the large wavenumbers and
does not appear to affect the small wavenumbers we study here, provided the bare
diffusion coefficient χ0 is adjusted based on the specific filtering width wF .

VI-C. Comparison between molecular-dynamics and fluctuating hydrodynam-
ics simulations. In order to compare the molecular-dynamics and the hydrodynamic
simulations, we calculated several statistical quantities:

(1) The averages of ρ1 along the directions perpendicular to the concentration
gradient,

ρ
(h)
1 (y)= L−1

∫ L

x=0
ρ1(x, y) dx, (50)

where the integral is discretized as a direct sum over the hydrodynamic cells. Note
that it is statistically better to use conserved quantities for such macroscopic averages
than to use nonconserved variables such as concentration [37].
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(2) The spectrum of the concentration averaged along the direction of the gradient
by computing the average

cv(x)= L−1
∫ L

y=0
c(x, y) dy

and then taking the discrete Fourier transform. Intuitively, cv is a measure of the
thickness of the red strip in Figure 3 and corresponds closely to what is measured
in light-scattering and shadowgraphy experiments [61; 12].

(3) The discrete Fourier spectrum of the y-coordinate of the “center of mass” of
concentration along the direction perpendicular to the gradient,

hc(x)= L−1
∫ L

y=0
y · c(x, y) dy.

Intuitively, hc is a measure of the height of the centerline of the red strip in Figure 3.

All quantities were sampled at certain prespecified time points in a number of
statistically independent simulations Ns and then means and standard deviations cal-
culated from the Ns data points. For systems of size Nc= 64 cells, we used Ns = 64
simulations, and for systems of size Nc = 128, we used Ns = 32 simulations. By far
the majority of the computational cost was in performing the HDMD simulations.

Average concentration profiles. Once χ0 and χeff were estimated based on simu-
lations of a constant-density (R = 1) fluid (see Section C.2), kinetic theory, i.e.,
Equations (C-1) and (C-2), can be used to estimate them for different density
ratios. In Figure 9 (page 99), we show ρ

(h)
1 (y) for mass ratio R = 2, showing

good agreement between HDMD and hydrodynamics especially when fluctuations
are accounted for. For R = 4, a direct comparison is difficult because the initial
condition was slightly different in the hydrodynamic simulations due to the need to
smooth the sharp concentration gradient for numerical reasons as explained earlier.
This difference strongly affects the shape of ρ(h)1 (y) at early times; however, it does
not significantly modify the roughness of the interface, which we study next.

Interface roughness. The most interesting contribution of fluctuations to the dif-
fusive mixing process is the appearance of giant concentration fluctuations in the
presence of large concentration gradients as evidenced in the roughness of the
interface between the two fluids during the early stages of the mixing in Figure 3.
In order to quantify this interface roughness, we used the one-dimensional power
spectra

Sc(kx)= 〈ĉv ĉ
?
v〉 and Sh(kx)= 〈ĥcĥ?c〉.

Note that here we do not correct the discrete wavenumber for the spatial discretiza-
tion artifacts and continue to use kx instead of k⊥.

The temporal evolution of the spectra Sc and Sh is shown in Figure 4 for mass
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ratio R = 1, and in Figure 5 for mass ratio R = 4, for both HDMD and low Mach
number fluctuating hydrodynamics (note that deterministic hydrodynamics would
give identically zero for any spectral quantity). We observe an excellent agreement
between the two, including the correct initial evolution of the interface fluctuations.
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Figure 4. Discrete spatial spectrum of the interface fluctuations for R = 1 and Nc = 128
(averaged over 32 simulations) at several points in time (drawn with different colors
as indicated in the legend) for fluctuating hydrodynamics (FH, squares with error bars)
and HDMD (circles, error bars comparable to those for squares). Note that the largest
wavenumber supported by the grid is kmax = π/1x ≈ 0.314. The larger wavenumbers are
however dominated by spatial truncation errors and the filter employed (if any), and we
do not show them here. Top: spectrum Sc(kx ) of the vertically averaged concentration.
Bottom: spectrum Sh(kx ) of the position of the vertical “center of mass” of concentration.
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Figure 5. Same as Figure 4 but for density ratio R = 4.

Note that, for a finite system, eventually complete mixing will take place and the
concentration fluctuations will have to revert to their equilibrium spectrum, which
is flat in Fourier space instead of the power-law behavior seen out of equilibrium.
In Figure 6, we show results for mixing up to a time t = 7.42 ·105 (this is 128 times
longer than those described above). These long simulations are only feasible for the
fluctuating hydrodynamics code and employ a somewhat larger time step1t=3.625.
The results clearly show that at late times the spectrum of the fluctuations reverts
to the equilibrium one; however, this takes some time even after the mixing is
essentially complete. Linearized incompressible fluctuating hydrodynamics [77;
73] predicts that at steady state the spectrum of nonequilibrium concentration
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Figure 6. Mixing to a time 128 times longer than previous results with results reported
at time intervals t = 7424 i2 for i = 1, . . . , 10. These long simulations are only feasible
for the fluctuating hydrodynamics code and employ a somewhat larger time step 1t =
3.625. Top: horizontally averaged ρ1 as shown for the shorter runs in the top panel of
Figure 9. Bottom: the spectrum of interface fluctuations Sc(kx ) as shown in the top
panels of Figures 4 and 5 for the shorter runs. The theoretical estimates for the spectrum
of equilibrium fluctuations, which is independent of wavenumber, is also shown. We
also indicate the theoretical prediction for the power law of the spectrum of steady-state
nonequilibrium fluctuations under an applied concentration gradient, Sc ∼ k−4.

fluctuations is a power law with exponent −4, Sc ∼ (∇c)2k−4. The dynamically
evolving spectra in the bottom panel of Figure 6 show approximately such power-law
behavior for intermediate times and wavenumbers.
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VI-D. Hard-sphere fluctuating hydrodynamics simulations. In order to illustrate
the appearance of giant fluctuations in three dimensions, we performed simulations
of mixing in a mixture of hard spheres with equal diameters, σ = 1, and mass ratio
R= 4. The packing density was chosen to be φ= 0.45, which corresponds to a very
dense gas but is still well below the freezing point φ f = 0.49. For the hydrodynamic
simulations, we used cubic cells of dimension 1x = 5, which corresponds to about
107 particles per hydrodynamic cell on average. In Figure 7, we show results from a
single simulation with a grid of size 128× 64× 128 cells, which would correspond
to about 108 particles. This makes molecular-dynamics simulations infeasible and
makes hydrodynamic calculations an invaluable tool in studying the mixing process
at these mesoscopic scales.

Figure 7. Diffusive mixing in three dimensions similar to that illustrated in Figure 3 for
two dimensions. Parameters are based on Enskog kinetic theory for a hard-sphere fluid at
packing fraction φ= 0.45, and there is no gravity. The mixing starts with the top half being
one species and the bottom half another species with density ratio R= 4, and concentration
is kept fixed at the top and bottom boundaries while the side boundaries are periodic. A
snapshot taken at time t = 5000 is shown. Top: the side panes show two-dimensional slices
for the concentration c. The approximated contour surface c = 0.2 is shown with color
based on surface height to illustrate the rough diffusive interface. Bottom left: similar to
top panel, but bottom pane shows vertically averaged concentration cv(x, z), illustrating
the giant concentration fluctuations. Bottom right: the Fourier spectrum Sc(kx , ky) of cv .
The color axis is logarithmic and clearly shows the appearance of large-scale (small-
wavenumber) fluctuations as also seen in Figure 5 in two dimensions.
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In the hydrodynamic simulations, we used bare transport coefficient values based
on Enskog kinetic theory for the hard-sphere fluid [69]. For the single-component
fluid with molecular mass m = 1, this theory gives η0≈ 2.32 and χ0≈ 0.053, which
corresponds to a bare Schmidt number Sc = ν0/χ0 ≈ 51. We used the same model
dependence of bare transport coefficients on concentration as for hard disks; see
Equations (C-1) and (C-2). The time step was set at 1t = 1 (corresponding to
viscous CFL number β = ν01t/1x2

≈ 0.1). In three dimensions, the cell Peclet
number is reduced with decreasing 1x , and we did not find it necessary to use any
filtering.

Instead of the fully periodic domain used in the two-dimensional hard-disk
simulations, here we employ the fixed-concentration boundary conditions (15) and
set c(y = 0; t) = 0 at the bottom and c(y = L y; t) = 1 at the top boundary. This
emulates the sort of “open” or “reservoir” boundaries [17] that mimic conditions
in experimental studies of diffusive mixing [12]. The initial condition is a fully
phase-separated mixture with c = 1 for y ≥ L/2 and c = 0 otherwise. As the
mixing process continues, the diffusive interface roughens and giant concentrations
appear as illustrated in Figure 7 and also observed experimentally in water-glycerol
mixtures in [12]. In three dimensions, however, the diffusive interface roughness
is much smaller than in two dimensions, being on the order of only 20 molecular
diameters for the snapshot shown in the figure. This illustrates the importance
of dimensionality when including thermal fluctuations. In particular, unlike in
deterministic fluid dynamics, in fluctuating hydrodynamics, one cannot simply
eliminate dimensions from consideration even in simple geometries.

Approximate theory based on the Boussinesq approximation and linearization of
the equations of fluctuating hydrodynamics has been developed in [77] and applied
in the analysis of experimental results on mixing in a water-glycerol mixture in
the presence of gravity [12]. The simulations reported here do not make the sort
of approximations necessary in analytical theories and can in principle be used to
study the mixing process quantitatively. However, it is important to emphasize that
in realistic liquids, such as a water-glycerol mixture, the Schmidt number is on the
order of 1000. This makes explicit time-stepping schemes that fully resolve the
dynamics of the velocity fluctuations infeasible. In future work, we will consider
semi-implicit type-stepping methods that relax the severe time-stepping restrictions
present in the explicit schemes considered here.

VII. Conclusions

The behavior of fluids is strongly affected by thermal fluctuations at scales from
the microscopic to the macroscopic. Fluctuating hydrodynamics is a powerful
coarse-grained model for fluid dynamics at mesoscopic and macroscopic scales at
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both a theoretical and a computational level. Theoretical calculations are rather
complicated in the presence of realistic spatial inhomogeneities and nontrivial
boundary conditions. In numerical simulations, those effects can readily be handled;
however, the large separation of time scales between different physical processes
poses a fundamental difficulty. Compressible fluctuating hydrodynamics bridges
the gap between molecular and hydrodynamic scales. At spatial scales not much
larger than molecular, sound and momentum and heat diffusion occur at comparable
time scales in both gases and liquids. At mesoscopic and larger length scales, fast
pressure fluctuations due to thermally actuated sound waves are much faster than
diffusive processes. It is therefore necessary to eliminate sound modes from the
compressible equations. In the deterministic context, this is accomplished using
low Mach number asymptotic expansion.

For homogeneous simple fluids or mixtures of dynamically identical fluids, the
zeroth-order low Mach equations are the well-known incompressible Navier–Stokes
equations, in which pressure is a Lagrange multiplier enforcing a divergence-free
velocity field. In mixtures of dissimilar fluids, local changes in composition and
temperature cause local expansion and contraction of the fluid and thus a nonzero
velocity divergence. In this paper, we proposed low Mach number fluctuating
equations for isothermal binary mixtures of incompressible fluids with different
density or a mixture of low-density gases with different molecular masses. These
equations are a straightforward generalization of the widely used incompressible
fluctuating Navier–Stokes equations. In the low Mach number equations, the incom-
pressibility constraint ∇ · v = 0 is replaced by ∇ · v =−β(Dc/Dt), which ensures
that compositional changes are accompanied by density changes in agreement
with the fluid equation of state (EOS) at constant pressure and temperature. This
seemingly simple generalization poses many nontrivial analytical and numerical
challenges, some of which we addressed in this paper.

At the analytical level, the low Mach number fluctuating equations are different
from the incompressible equations because the velocity divergence is directly
coupled to the time derivative of the concentration fluctuations. This means that at
thermodynamic equilibrium the velocity is not only white in space, a well-known
difficulty with the standard equations of fluctuating hydrodynamics, but is also white
in time, adding a novel type of difficulty that has not heretofore been recognized. The
unphysically fast fluctuations in velocity are caused by the unphysical assumption
of infinite separation of time scales between the sound and the diffusive modes. This
unphysical assumption also underlies the incompressible fluctuating Navier–Stokes
equations; however, in the incompressible limit β→ 0, the problem is not apparent
because the component of velocity that is white in time disappears. Here we analyzed
the low Mach equations at the linearized level and showed that they reproduce the
slow diffusive fluctuations in the full compressible equations while eliminating the
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fast pressure fluctuations. At the formal level, we suggest that a generalized Hodge
decomposition can be used to separate the vortical (solenoidal) modes of velocity
as the independently fluctuating variable, coupled with a gauge formulation used
to treat the divergence constraint. Such nonlinear analysis is deferred for future
research, and here we relied on the fact that the temporal discretization regularizes
the short-time dynamics at time scales faster than the time-step size 1t .

At the numerical level, the low Mach number equations pose several distinct
challenges. The first challenge is to construct conservative spatial discretizations in
which density is advected in a locally conservative manner while still maintaining
the equation-of-state constraint relating the local densities and composition. We
accomplish this here by using a specially chosen model EOS that is linear yet
still rather versatile in practice, and by advecting densities using a velocity that
obeys a discrete divergence constraint. We note that, for this simplified case, the
system can be modeled using only the concentration to describe the thermodynamic
state. However, for more general low Mach number models, maintaining a full
thermodynamic representation of the state independent of the constraint leads
to more robust numerics. As in incompressible hydrodynamics, enforcing this
constraint requires a Poisson pressure solver that dominates the computational cost
of the algorithm. A second challenge is to construct temporal integrators that are
at least second-order in time. We accomplish this here by formally introducing an
unconstrained gauge formulation of the equations while at the same time taking
advantage of the gauge degree of freedom to avoid ever explicitly dealing with the
gauge variable. The present temporal discretizations are purely explicit and are
similar in spirit to an explicit projection method. A third and remaining challenge
is to design efficient temporal integrators that handle momentum diffusion, the
second-fastest physical process, semi-implicitly. This poses well-known challenges
even in the incompressible setting. These challenges were bypassed in recently
developed temporal integrators for the incompressible fluctuating Navier–Stokes
equations [73] by avoiding the splitting inherent in projection methods. Extending
this type of Stokes-system approach to the low Mach equations will be the subject
of future research.

One of the principal motivations for developing the low Mach number equations
and our numerical implementation was to model recent experiments on the devel-
opment of giant concentration fluctuations in the presence of sharp concentration
gradients. We first studied giant fluctuations in a time-independent or static setting
as observed experimentally by inducing a constant concentration gradient via a
constant applied temperature gradient. Our simulations show that, under conditions
employed in experimental studies of the diffusive mixing of water and glycerol, it
is reasonable to employ the Boussinesq approximation. The results also indicate
that the constant-transport-coefficient approximation that is commonly used in
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theoretical calculations is appropriate if the diffusion coefficient follows a Stokes–
Einstein relation, but should be used with caution in general.

We continued our study of giant concentration fluctuations by simulating the
temporal evolution of a rough diffusive interface during the diffusive mixing of hard-
disk fluids. Comparison between computationally intensive event-driven molecular-
dynamics simulations and our hydrodynamic calculations demonstrated that the low
Mach number equations of fluctuating hydrodynamics provide an accurate coarse-
grained model of fluid mixing. Special care must be exercised, however, in choosing
the bare transport coefficients, especially the concentration-diffusion coefficient, as
these are renormalized by the fluctuations and can be strongly grid-dependent [23;
24; 26]. Some questions remain about how to define and measure the bare transport
coefficients from microscopic simulations, but we show that simply comparing
particle and hydrodynamic calculations at large scales is a robust technique.

The strong coupling between velocity fluctuations and diffusive transport means
that deterministic models have limited utility at mesoscopic scales and even macro-
scopic scales in two dimensions. This implies that standard fluorescent techniques
for measuring diffusion coefficients, such as fluorescence correlation spectroscopy
(FCS) and fluorescence recovery after photobleaching (FRAP) [8], may not in
fact be measuring material constants but rather geometry-dependent values [26].
Fluctuating hydrodynamic simulations of typical experimental simulations, however,
are still out of reach due to the very large separation of time scales between mass
and momentum diffusion. Surpassing this limitation requires the development of a
semi-implicit temporal discretization that is stable for large time steps. Furthermore,
it is also necessary to develop novel mathematical models and algorithms that are
not only stable but also accurate in the presence of such large separation of scales.
This is a nontrivial challenge if thermal fluctuations are to be included consistently
and will be the subject of future research.

Appendix A: Linearized analysis

As discussed in more depth in [73], there are fundamental mathematical difficulties
with the interpretation of the nonlinear equations of fluctuating hydrodynamics due
to the roughness of the fluctuating fields. It should be remembered, however, that
these equations are coarse-grained models with the coarse-graining length scale set
by the size of the hydrodynamic cells used in discretizing the equations [34]. The
spatial discretization removes the small length scales from the stochastic forcing
and regularizes the equations. It is important to point out, however, that imposing
such a small-scale regularization (smoothing) of the stochastic forcing also requires
a suitable renormalization of the transport coefficients [4; 23; 26] as we discuss in
more detail in Section VI.
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As long as there are sufficiently many molecules per hydrodynamic cell, the
fluctuations in the spatially discrete hydrodynamic variables will be small and
the behavior of the nonlinear equations will closely follow that of the linearized
equations of fluctuating hydrodynamics [73], which can be given a precise meaning
[13]. It is therefore crucial to understand the linearized equations from a theoretical
perspective and to analyze the behavior of the numerical schemes in the linearized
setting [29].

A1. Compressible equations. Some of the most important quantities predicted by
the fluctuating hydrodynamics equations are the equilibrium structure factors (static
covariances) of the fluctuating fields. These can be obtained by linearizing the
compressible equations (1) around a uniform reference state ρ=ρ0+δρ, c= c0+δc,
v = δv, P = P0+ δP , where

δP = c2
T [(δρ)−βρ(δc)],

and then applying a spatial Fourier transform [61; 29]. Owing to fluctuation-
dissipation balance, the static structure factors are independent of the wavevector k
at thermodynamic equilibrium,

Sρ,ρ(k)=
〈
(δ̂ρ)(δ̂ρ)?

〉
=
ρ0kB T0

c2
T
+β2ρ0kB T0

µc
,

Sv,v(k)=
〈
(δ̂v)(δ̂v)?

〉
= ρ−1

0 kB T0 I,

Sc,c(k)=
〈
(δ̂c)(δ̂c)?

〉
=

kB T0

ρ0µc
. (A-1)

Note that density fluctuations do not vanish even in the incompressible limit cT→∞

unless β = 0. While fluctuations in ρ1 and ρ2 are uncorrelated, the fluctuations in
concentration and density are correlated even at equilibrium,

Sc,ρ =
〈
(δ̂ρ)(δ̂c)?

〉
= β

kB T0

µc
= ρ0βSc,c.

We will see below that the low Mach equations correctly reproduce the static
covariances of density and concentration in the limit cT →∞.

The dynamics of the equilibrium fluctuations can also be studied by applying
a Fourier–Laplace transform in time in order to obtain the dynamic structure
factors (equilibrium correlation functions) as a function of wavenumber k and
wave frequency ω [61; 29]. It is well-known that the dynamic spectrum of density
fluctuations Sρ,ρ(k, ω) exhibits three peaks for a given k: one central Rayleigh peak
at small frequencies (slow concentration fluctuations) and two symmetric Brillouin
peaks centered around ω ≈±cT k. As the fluid becomes less compressible (i.e., the
speed of sound increases), there is an increasing separation of time scales between
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the side and central spectral peaks. As we will see below, the low Mach equations
reproduce the central peaks in the dynamic structure factors only, eliminating the
side peaks and the associated stiff dynamics.

A2. Low Mach equations. We now examine the spatiotemporal correlations of
the steady-state fluctuations in the low Mach number equations (8), (9), (11),
and (12). In order to model the nonequilibrium setting in which giant concentration
fluctuations are observed, we include a constant background concentration gradient
in the equations. Note that a density gradient will accompany a concentration
gradient, and this can introduce some additional terms in F depending on how ρχ

depends on concentration. For simplicity, we assume ρχ is a constant so that the
diffusive term ∇ · F in (9) is simply ρχ∇

2c. We also assume the viscosity η is
spatially constant to get the simplified coupled velocity-concentration equations

Dtv =− ρ
−1

∇π + ν∇2v+ ρ−1(∇ ·6)+ g,

Dt c =χ∇
2c+ ρ−1(∇ ·9),

∇ · v =−βDt c, (A-2)

where ν = η/ρ and ρ = ρ(c) is given by (13).
We linearize the equations (A-2) around a steady state, c= c+δc, v=v+δv= δv,

and π =π+δπ , where the reference state is in mechanical equilibrium, ρ −1∇π = g.
We denote the background concentration gradient with h =∇c. We additionally
assume that the reference state varies very weakly on length scales of order of the
wavelength and, in particular, that ρ and c are essentially constant. This allows us
to drop the bars from the notation and employ a quasiperiodic or weak-gradient
approximation [77; 24]. In the linear approximation, the EOS constraint relates
density and concentration fluctuations, δρ = ρβ(δc). The term v ·∇v is second-
order in the fluctuations and drops out, but the advective term v ·∇c leads to a
term (δv) ·h in the concentration equation. The forcing term due to gravity becomes
ρ−1(δρ)g = β(δc)g. After a spatial Fourier transform, the linearized form of
(A-2) becomes a collection of stochastic differential equations, one system of linear
additive-noise equations per wavenumber,

∂t(δ̂v)=−iρ−1k(δ̂π)− νk2(δ̂v)+ iρ−1k · 6̂+β g(δ̂c), (A-3)

∂t(δ̂c)=−h · (δ̂v)−χk2(δ̂c)+ iρ−1(k · 9̂), (A-4)

k̂ · (δ̂v)=−β
[
iχk(δ̂c)+ ρ−1(k̂ · 9̂)

]
. (A-5)

Replacing the right side of (A-5) with zero leads to the incompressible approximation
used in [77], corresponding to the Boussinesq approximation of taking the limit
β→ 0 while keeping the product βg constant.
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Equilibrium fluctuations. Let us first compare the dynamics of the equilibrium
fluctuations (h= 0) in the low Mach equations with those in the complete compress-
ible equations. For simplicity of notation, we will continue to use the hat symbol to
denote the space-time Fourier transform.

In the wavenumber-frequency (k, ω) Fourier domain, the concentration fluctua-
tions in the absence of a gradient are obtained from (A-4),

δ̂c(k, ω)=
iρ−1k

iω+χk2 (k̂ · 9̂),

which is the same as the compressible equations. The density fluctuations follow
the concentration fluctuations, δ̂ρ = ρβδ̂c, and the dynamic structure factor for
density shows the same central Rayleigh peak as obtained from the isothermal
compressible equations [61],

Sρ,ρ(k, ω)=
β2k2

ω2+χ2k4 〈9̂9̂
?
〉 = β2(ρµ−1

c kB T )
2χk2

ω2+χ2k4 ,

where we used (3) for the covariance of 9̂. This shows that the low Mach num-
ber equations correctly reproduce the slow fluctuations (small ω) in density and
concentration while eliminating the side Brillouin peaks associated with the fast
isentropic pressure fluctuations.

The fluctuations in velocity, however, are different between the compressible and
low Mach number equations. Let us first examine the transverse (solenoidal) compo-
nent of velocity δ̂vs = P̂ δ̂v, where P is the constant-density orthogonal projection
onto the space of divergence-free velocity fields (P̂ = I − k−2(kk?) in Fourier
space). Applying the projection operator to the velocity equation (A-3) shows that
the fluctuations of the solenoidal modes are the same as in the incompressible
approximation,

∂t(δ̂vs)=−νk2(δ̂vs)+ iρ−1k · P̂6̂+βP̂ g(δ̂c).

The fluctuations of the compressive velocity component δ̂vl = k̂ · (δ̂v), on the other
hand, are driven by the stochastic mass flux 9̂ as seen from (A-5) at thermodynamic
equilibrium,

δ̂vl =
iωβρ−1

iω+χk2 (k̂ · 9̂).

The dynamic structure factor (space-time Fourier spectrum) of the longitudinal
component

S(l)v,v =
〈
(δ̂vl)(δ̂vl)

?
〉
∼

β2ω2

(ω2+χ2k4)
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does not decay to zero as ω→∞. This indicates that the fluctuations of velocity are
not only white in space but also white in time. In the incompressible approximation,
β→ 0 so that the longitudinal velocity fluctuations vanish and the static spectrum
of the velocity fluctuations is equal to the projection operator, Sv,v = P̂ [73].
In the compressible equations, the dynamic structure factor for the longitudinal
component of velocity decays to zero as ω→∞ because it has two sound (Brillouin)
peaks centered around ω ≈ cT k in addition to the central diffusive (Rayleigh) peak.
The low Mach number equations reproduce the central peak (slow fluctuations)
correctly, replacing the side peaks with a flat spectrum for large ω. The origin of
this unphysical behavior is the unjustified assumption of infinite separation of time
scales between the propagation of sound and the diffusion of mass, momentum,
and energy. In reality, the same molecular motion underlies all of these processes
and the incompressible or the low Mach number equations cannot be expected to
reproduce the correct physical behavior at very short time scales (ω & cT k).

Nonequilibrium fluctuations. If we neglect the term involving 9̂ in (A-5) and
eliminate the Lagrange multiplier (nonthermodynamic pressure) π using (A-5), we
obtain the linearized velocity equation in Fourier space

∂t(δ̂v)=−νk2(δ̂v)+ iρ−1k · P̂6̂+β(δ̂c)P̂ g

− iβχ [h · (δ̂v)]k+ iβχ(ν−χ)k2(δ̂c)k. (A-6)

It is straightforward to obtain the steady-state covariances (static structure factors)
in the presence of a concentration gradient from the linearized system of velocity-
concentration equations (A-4) and (A-6) [29]. The procedure amounts to solving a
linear system for three covariances (velocity-velocity, concentration-concentration,
and velocity-concentration). These types of calculations are particularly well-suited
for modern computer algebra systems like Maple and can be carried out for arbitrary
wavenumber and background concentration gradient. We omit the full solution for
brevity.

Experiments measure the steady-state spectrum of concentration fluctuations
averaged along the gradient [12; 75], and we will therefore focus on wavenumbers
perpendicular to the gradient, k · h = 0. A straightforward calculation shows that
the concentration fluctuations are enhanced as the square of the applied gradient,

Sc,c(k)=
〈
(δ̂c)(δ̂c)?

〉
=

kB T0

ρ0µc
+

νkB T
ρ(ν+χ)

[
(νχk4

⊥
+ h‖gβ)+β2(χ3ν/(ν+χ)2)k2

⊥
h2
⊥

] h2
‖
, (A-7)

where ⊥ and ‖ denote the perpendicular and parallel components relative to gravity,
respectively. The term in the denominator involving h⊥ comes from the low Mach
number constraint (11) and is usually negligible since the concentration gradient is
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parallel to gravity or χ/ν�1. Without this term, the result (A-7) is the same result as
obtained in [77] and shows that fluctuations at wavenumbers below k4

⊥
=h‖gβ/(νχ)

are suppressed by gravity as we study numerically in Section V.

Appendix B: Spatial filtering

In our spatial discretization, we use centered differencing for the advective terms
because this leads to a skew-adjoint discretization of advection [54] that main-
tains discrete fluctuation-dissipation balance in the spatially discretized stochastic
equations [29; 18]. It is well-known that centered discretizations of advection do
not preserve monotonicity properties of the underlying PDEs in the deterministic
setting unlike one-sided (upwind) discretizations. Therefore, our spatiotemporal
discretization can lead to unphysical oscillations of the concentration and density
in cases where the cell Peclet number Pe=1x‖v‖/χ is large.

In the deterministic setting, Pe can always be decreased by reducing 1x and
resolving the fine-scale dissipative features of the flow. However, in the stochastic
setting, the magnitude of the fluctuating velocities at equilibrium is

〈(δv)2〉 ∼
kB T
ρ1V

,

where 1V is the volume of the hydrodynamic cell. Therefore, in two dimensions,
the characteristic advection velocity magnitude is ‖v‖ ∼1x−1. This means that
in two dimensions Pe is independent of the grid size and reducing 1x cannot
fix problems that may arise due to a large cell Peclet number. For some of the
simulations reported in Section VI, we have found it necessary to implement a
spatial filtering procedure to reduce the magnitude of the fluctuating velocities
while preserving their spectrum as well as possible at small wavenumbers.

The filtering procedure consists of applying a local averaging operation to the
spatially discretized random fields W and W̃ independently along each Cartesian
direction. This local averaging smooths the random forcing and thus reduces the
spectrum of the random forcing at larger wavenumbers. The specific filters we use
are taken from [46]. For stencil width wF = 2, filtering a discrete field W in one
dimension takes the form

Wi ←
5
8 Wi +

1
4(Wi−1+Wi+1)−

1
16(Wi−2+Wi+2).

In Fourier space, for discrete wavenumber1k=k1x , this local averaging multiplies
the spectrum of W by F(1k)= 1+ O(1k4) and therefore maintains the second-
order accuracy of the spatial discretization. At the same time, the filtering reduces
the variance of the fluctuating fields by about a factor of two in one dimension (a
larger factor in two dimensions). The spectrum of the fluctuations can be preserved
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even more accurately if a stencil of width wF = 4 is used for the local averaging,

Wi ←
93
128 Wi +

7
32(Wi−1+Wi+1)−

7
64(Wi−2+Wi+2)

+
1

32(Wi−3+Wi+3)−
1

256(Wi−4+Wi+4),

giving a sixth-order-accurate filter F(1k) = 1+ O(1k8) and a reduction of the
variance by about a third in one dimension. In two and three dimensions, the filtering
operators are simple tensor products of one-dimensional filtering operators. Note
that we only use these filters with periodic boundary conditions. One can, of course,
also use Fourier-transform techniques to filter out high-frequency components from
the stochastic mass and momentum fluxes.

Appendix C: Extracting transport properties from molecular dynamics

The hydrodynamic simulations described in Section VI require as input transport
coefficients, notably, the shear viscosity η and diffusion coefficient χ , which need
to be extracted from the underlying microscopic (molecular) dynamics. This is
a very delicate and important step that has not, to our knowledge, been carefully
performed in previous studies. In this appendix, we give details about the procedure
we developed for this purpose.

C1. Viscosity ν. As discussed in more detail in [24; 26], the transport coefficients in
fluctuating hydrodynamics are not universal material constants but rather depend on
the spatial scale (degree of coarse-graining) under question. We emphasize that this
scale-dependent renormalization is not a molecular scale effect but rather an effect
arising out of hydrodynamic fluctuations and persists even at the hydrodynamic
scales we are examining here. The best way to define and measure transport
coefficients is by examining the dynamics of equilibrium fluctuations, specifically,
by examining the dynamic structure factors of the hydrodynamic fields [61], i.e.,
the equilibrium averages of the spatiotemporal Fourier spectra of the fluctuating
hydrodynamic fields. For a hydrodynamic variable ξ that is transported by a purely
diffusive process, the spectrum of the fluctuations at a given wavenumber k and
wave frequency ω is expected to be a Lorentzian peak of the form

Sx(k, ω)= 〈x̂(k, ω) x̂?(k, ω)〉 ∼ [ω2
+ ζ 2k4

]
−1,

where in general the diffusion constant ζ(k) depends on the wavenumber k (wave-
length λ= 2π/k). We can therefore estimate the diffusion coefficient χ by fitting a
Lorentzian peak to Sc(k, ω) for different k’s (i.e., ξ ≡ c). Similarly, we can estimate
the kinematic viscosity ν = η/ρ by fitting a Lorentzian curve to dynamic structure
factors for the scaled vorticity, ξ ≡ k−1(∇× v)z .

We performed long equilibrium molecular-dynamics simulations of systems
corresponding to a grid of Nc = 32 hydrodynamic cells and then calculated the



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 97

25 50 75 100 125 150 175

Wavelength  2π / λ

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

K
in

em
at

ic
 v

is
co

si
ty

  
ν

c=1, R=2 or 4

c=0, R=2

c=0.5, R=2

c=0.5, R=4

Figure 8. Estimates of the momentum diffusion coefficient (viscosity) ν = η/ρ obtained
from the width of the central peak in the dynamic structure factor of vorticity. A collection
of 24 distinct discrete wavenumbers k were used and the width of the peaks estimated
using a nonlinear least-squares Lorentzian fit.

discrete spatiotemporal Fourier spectrum of the hydrodynamic fields at a collection
of discrete wavenumbers k. Since these simulations are at equilibrium, the systems
are well-mixed; specifically, the initial configurations were generated by randomly
assigning a species label to each particle. We then performed a nonlinear least-
squares Lorentzian fit in ω for each k and estimated the width of the Lorentzian
peak. The results for the dynamics of the equilibrium vorticity fluctuations are
shown in Figure 8. We see that kinematic viscosity is relatively constant for a broad
range of wavelengths, consistent with fluctuating hydrodynamics calculations [51]
and previous molecular-dynamics simulations [38]. For the pure component-one
fluid, c = 1, with density ρ ≈ 0.764, the figure shows ν ≈ 3.3. We therefore used
η1 ≈ 0.764 · 3.3≈ 2.5 in all of the hydrodynamic runs reported in Section VI. This
is about 20% higher than the prediction of the simple Enskog kinetic theory [42],
η≈ 2.06, and is consistent with the estimates reported in [38]. Because the diffusion
coefficient is small at the densities we study, more specifically because the Schmidt
number Sc = ν/χ is larger than 10, we were unable to obtain reliable estimates
for χ(k) from the dynamic structure factor for concentration.

Simple dimensional analysis or kinetic theory shows that η ∼
√

m. Since the
disks of the two species have equal diameters, the viscosity of the pure second fluid
component is

η2 = η1

√
m2

m1
= η1
√

R. (C-1)
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There is no simple theory that accurately predicts the concentration dependence
of the viscosity of a hard-disk mixture at higher densities [69]. To our knowledge,
there is no published Enskog kinetic-theory calculations for hard-disk mixtures in
two dimensions even for the simpler case of equal diameters. As an approximation
to the true dependence, we employed a simple linear interpolation of the kinematic
viscosity ν(c)= η(c)/ρ as a function of the mass concentration c between the two
known values ν1 = ν(c = 1) ≈ 3.3 and ν2 = ν(c = 0) = ν1/

√
R. The numerical

results for mixtures with mass ratios R = 2 and R = 4 in Figure 8 are consistent
with this approximation to within the large error bars. For example, for c = 1/2
and R = 4, the interpolation gives ν = 3 · 3.3/4 ≈ 2.5, which is in reasonable
agreement with the numerical estimate.

C2. Diffusion coefficient χ . For the interspecies diffusion coefficient χ , which
we emphasize is distinct from the self-diffusion coefficients for particles of either
species, Enskog kinetic theory predicts no concentration dependence and a simple
scaling with the mass ratio [69],

χ(R)= χ(R = 1)

√
1+ R

2R
. (C-2)

This particular dependence on mass ratio R comes from the fact that the aver-
age relative speed between particles of different species is ∼

√
kB T/m R , where

m R = 2m1m2/(m1 + m2) is the reduced molecular mass. We have assumed in
our hydrodynamic calculations that the diffusion coefficient is independent of
concentration and follows (C-2). The only input to the hydrodynamic calculation is
the bare self-diffusion coefficient for the pure-component fluid, χ0(R=1). Diffusion
is strongly renormalized by thermal fluctuations, and fluctuating hydrodynamics
theory and simulations predict a strong dependence of the diffusion coefficient χ
on the wavelength [24], consistent with molecular-dynamics results [38].

In order to estimate the appropriate value of the bare diffusion coefficient χ0,
we numerically solved an inverse problem. Using simple bisection, we looked
for the value of χ0 that leads to best agreement for the average or “macroscopic”
diffusion (mixing) between the particle and continuum simulations. Specifically,
we calculated the density of the first species ρ(h)1 (y) along the y-direction by
averaging ρ1 in each horizontal row of hydrodynamic cells; see (50). The results
for ρ(h)1 for mass ratios R = 1 and R = 4 are shown in Figure 9 at different points
in time for systems of size Nc = 64 cells. The figures show the expected sort of
diffusive-mixing profile, which is exactly what would be used in experiments to
measure diffusion coefficients using fluorescent techniques such as fluorescence
recovery after photobleaching (FRAP) [8]. This macroscopic measurement smooths
over the fluctuations (roughness) of the diffusive interface and only measures an
effective diffusion coefficient at the scale of the domain length L . If deterministic
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Figure 9. Top: diffusive evolution of the horizontally averaged density ρ(h)1 (y) for a
system of size Nc = 64 hydrodynamic cells and density ratio R = 1 as obtained from
HDMD simulations (circles, averaged over 64 runs), deterministic hydrodynamics with
χeff= 0.2 (dashed lines), and fluctuating hydrodynamics with χ0= 0.09 (squares, averaged
over 64 runs). Error bars are comparable to the symbol size and not shown for clarity.
Bottom: same as the top panel except the density ratio is R=2 and the transport coefficients
are adjusted according to (C-1)–(C-2).

hydrodynamics is employed, ρ(h)1 (y) is the solution of a one-dimensional system of
equations obtained by simply deleting the stochastic forcing and the x-dependence
in the low Mach equations. Instead of solving this system analytically, we employed
our spatiotemporal discretization with fluctuations turned off and with an effective
diffusion coefficient χ = χeff that accounts for the renormalization of the diffusion
coefficient by the thermal fluctuations.
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By matching the profile ρ(h)1 (y) between the HDMD and the fluctuating and
deterministic hydrodynamic simulations at mass ratio R=1 and system size Nc=64
cells, we obtained estimates for the bare χ0 and the renormalized χeff coefficients
(see Figure 9 on the previous page). The best estimate for the bare diffusion
coefficient based on this matching in the absence of filtering is χ0 = 0.09± 0.01.
This compares reasonably well to the prediction of Enskog theory [42] of χ ≈ 0.08
as well as to the measurement of the self-diffusion coefficient for a periodic system
with 169 disks reported in [38], χ ≈ 0.14 (recall that a single hydrodynamic cell
in our case contains about 76 particles). When a five-point filter is employed,
the estimate is χ0(wF = 2) ≈ 0.12, and when a nine-point filter is employed,
χ0(wF = 4) ≈ 0.11. The estimated renormalized diffusion coefficient is much
larger, χeff ≈ 0.20± 0.01, consistent with a rough estimate based on the simple
theory presented in [24],

χeff ≈ χ0+
kB T

4πρ(ν+χ0)
ln
(Nc

3

)
≈

{
0.18 for Nc = 64,
0.20 for Nc = 128.

To within statistical accuracy, we were not able to detect the increase in the estimated
diffusion coefficients when using the larger systems of size Nc= 128 cells; however,
for Nc = 32, it was clear that χeff is reduced.

It is important to emphasize that χeff is not a material constant but rather depends
on the details of the problem in question, in particular, the system geometry and
size and boundary conditions [26]. By contrast, χ0 is a constant for a given spatial
discretization, and one can use the same number for different scenarios so long
as the hydrodynamic cell size and the filter are kept fixed. Unlike deterministic
hydrodynamics, which presents an incomplete picture of diffusion, fluctuating
hydrodynamics correctly accounts for the important contribution of the thermal
velocity fluctuations and the roughness of the diffusive interface seen in Figure 3.
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HIGH-ORDER METHODS FOR COMPUTING DISTANCES
TO IMPLICITLY DEFINED SURFACES

ROBERT I. SAYE

Implicitly embedding a surface as a level set of a scalar function φ : Rd
→ R

is a powerful technique for computing and manipulating surface geometry. A
variety of applications, e.g., level set methods for tracking evolving interfaces,
require accurate approximations of minimum distances to or closest points on
implicitly defined surfaces. In this paper, we present an efficient method for
calculating high-order approximations of closest points on implicit surfaces,
applicable to both structured and unstructured meshes in any number of spatial
dimensions. In combination with a high-order approximation of φ, the algorithm
uses a rapidly converging Newton’s method initialised with a guess of the closest
point determined by an automatically generated point cloud approximating the
surface. In general, the order of accuracy of the algorithm increases with the
approximation order of φ. We demonstrate orders of accuracy up to six for
smooth problems, while nonsmooth problems reliably reduce to their expected
order of accuracy. Accompanying this paper is C++ code that can be used to
implement the algorithms in a variety of settings.

1. Introduction

A powerful technique for representing curves in two dimensions and surfaces in
three dimensions is to define them implicitly, via a fixed level set of a continuous
function φ : Rd

→ R. Implicit representations of surfaces lead to mathematical
and computational advantages in a wide array of problems, such as in methods for
computing diffusion and advection processes on embedded surfaces [2; 5; 15], in
level set methods [20; 28; 19] for propagating interfaces coupled to computational
fluid dynamics [34; 30], and in mesh generation for implicitly defined geometry
[21; 24].

Given an implicitly defined surface embedded in Rd , a common task is to calculate
the closest point on the surface to a given query point x ∈ Rd . For example, level
set methods may require the construction of extension velocities [16; 3] or signed
distance functions corresponding to a moving interface. In this context, the query
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points are the set of grid points of the computational domain, possibly in a narrow
band [1]. As another example, embedding techniques for solving partial differential
equations (PDEs) defined on curved surfaces work by: (i) embedding the (unknown)
solution u in a higher-dimensional function uext defined on Rn; and (ii) deriving a
PDE for uext in such a way that the restriction of uext to the surface is the solution
of the original surface PDE. Techniques using this idea generally use closest points
on the surface to define the extension function uext and its corresponding PDE [2;
29; 5; 15].

In many of these applications, a high-order approximation of the closest point
on the surface is required. This is because the resulting distance function or closest
point function is used to infer the geometry of the surface, such as when calculating
normal vector fields or curvature quantities like the mean curvature or Gaussian
curvature. It is often the case that the level set function φ is known only at the grid
points of a background grid/mesh. It follows that some form of interpolation must
be used to define the interface throughout the domain. Even though the values of
φ at those grid points may have an associated error (e.g., those arising from finite
difference approximations or temporal errors in an evolving simulation), it remains
necessary to accurately resolve the geometry of the interpolated interface.

In this paper, we develop a general purpose method for computing high-order
approximations of closest points on implicitly defined surfaces. The algorithm
is largely based on geometry alone and consists of two main stages. First, in
an initialisation stage, a level set function φ defined on a grid is piecewise ap-
proximated by high-order polynomials. Assuming it is the zero level set which
defines the surface/interface, these polynomials are then “sampled” by seeding
points on their zero level set with sufficient density to form a scattered cloud of
points approximating the interface of φ. In the second stage of the algorithm, given
a query point x , the closest point in the cloud to x is found. This closest point
forms an approximation of the actual closest point to x , and this approximation is
then improved by using the original polynomial from which it was created together
with Newton’s method for solving the minimum-distance optimisation problem.
As shown below, this combination of first finding the closest point in the cloud,
and then “polishing” it with Newton’s method, leads to highly accurate and robust
closest point calculations. By making use of a k-d tree optimised for surfaces, the
method is also inexpensive, as finding the closest point in the cloud is relatively
cheap, and not many iterations of Newton’s method are required for convergence.
Except for the initial stage of forming high-order approximations of φ, the method
does not rely on any computational grid and can be used to compute closest points
at arbitrary locations.

The outline of the paper is as follows. In Section 2, we briefly review previous
work on computing distance approximations. In Section 3, the high-order method
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is presented, starting with a discussion of high-order polynomial approximations,
followed by the sampling procedure and Newton’s method. We then discuss some
implementation choices, before presenting convergence results and test cases in
Section 4. In Section 5 some final remarks are given, including a short description
of the C++ code that accompanies this paper. Lastly, in the Appendix, a k-d tree
optimised for codimension-one surfaces is presented.

2. Motivation and previous work

Our interest in the minimum-distance/closest-point problem stems from work on
level set methods for tracking the interface between two evolving regions, and on
Voronoi Implicit Interface Methods [25; 26] for tracking interconnected interfaces
with junctions in multiphase physics. Two common tasks in these applications
are: (i) calculating extensions of some quantity F defined on the interface, e.g.,
extension velocities, such that Fext(x)= F(cp(x)), where cp(x) is the closest point
on the interface to x , and (ii) replacing a function that implicitly defines the interface
by the distance function to the interface. In the level set method literature, the
latter procedure is a well-known task commonly referred to as reinitialisation or
redistancing and is often performed frequently over the course of a simulation. For
example, one reason for maintaining a distance function is related to the treatment
of jumps in density and viscosity of a multiphase fluid, or singular forces such as
surface tension on a liquid-gas interface, which may require smoothing of Heaviside
and Dirac delta functions [8; 34; 30].

Methods for computing distances to implicitly defined surfaces differ in how
the geometry of the surface is determined. Approaches include geometrically
approximating the surface by explicitly reconstructing it, using root-finding to
locate specific points on the surface, employing Eulerian grid-based techniques as
in the level set method, or a combination of these methods.

Explicit approaches often use piecewise linear interpolation to find a faceted
mesh representation of the interface, from which closest points can be computed
by simple geometry [9; 16]. Strain [31] extended this idea to a fast quadtree-based
reinitialisation algorithm which enables distances to be efficiently computed on
the entire domain based on a mesh that locally adapts to the shape of the interface.
Explicit representations also play an important role in the fields of computational
geometry and graphics, in which different approximations are applicable; see for
instance the review [14].

In the context of level set methods, a common technique for computing the
distance function to the interface is to solve a PDE, which is typically done through
one of two methods:
• Solve a static boundary-value problem: find ψ such that ‖∇ψ‖ = 1, with the

requirement that the zero level set of ψ coincides with the zero level set of φ.
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The solution to this equation is a signed distance function to the interface,
i.e., ψ(x)=±miny, φ(y)=0 ‖x− y‖. A common method for solving this special
instance of an Eikonal equation is to apply the Fast Marching Method [27],
which solves the general Eikonal equation ‖∇ψ‖ = F where F = F(x) is a
general speed function, but apply it to the simpler equation with F ≡ 1.

• The second PDE-based method converts the static equation ‖∇ψ‖ = 1 into a
time-dependent auxiliary PDE whose steady-state solution returns the signed
distance function. Here it is generally assumed that φ is already close to a
distance function, making this an iterative type method. First used in [34], this
PDE takes the form

∂ψ

∂τ
+ sign(φ)(‖∇ψ‖− 1)= 0, ψ(τ = 0)= φ.

In theory, the zero level set of ψ remains fixed by the process of evolving ψ
as τ→∞; in practice, the sign(φ) function must be suitably smoothed for the
discretised version. These methods rely on high-order ENO and WENO meth-
ods to approximate spatial derivatives and high-order Runge–Kutta methods
in time. A variety of methods have been developed to a improve the accuracy
of this approach, see, e.g., [23; 32; 12; 17].

High-order approaches typically compute accurate distances nearby the interface
and then employ a PDE-based method to compute distances elsewhere. A notable
example is in Chopp’s method [10], which uses a piecewise bicubic (in 2D) or
piecewise tricubic (in 3D) interpolant of the level set function that is globally
C1 smooth. For grid points adjacent to the interface, a quasi-Newton method
is used to compute closest points on the zero level set of the bicubic/tricubic
polynomials, which are then input to a second or third order fast marching method
to build the distance function away from the interface. The resulting method is
approximately third order in the distance function for smooth interfaces [10]. A
similar approach can be used in gradient augmented level set methods [18], where
both φ and its gradient are defined at each grid point, in which case a type of
Hermite interpolation defines a high-order approximation of the interface. This
again requires a nonlinear minimisation method to find closest points for query
points adjacent to the interface — reinitialisation methods for gradient augmented
level set methods include that of [4], which is based in part on Chopp’s quasi-
Newton method, and the method of [7], which follows the principles of the fast
marching method by using Huygens’ principle and Newton’s method restricted
to individual tetrahedrons. Other high order methods include the discontinuous
spectral element method of [33], in which a root finding procedure is used to convert
the zero level set of a polynomial into a height function, followed by Newton’s
method to find closest points on this height function. In this last work, distance
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functions were computed with up to sixth order accuracy. Rigorous analyses of
errors in reinitialisation methods for finite-element based level set methods have
also been performed [22; 13].

In comparison, the high-order method presented in this paper is essentially
entirely geometric. The approach extends the ideas of Chopp’s method to arbitrary-
order polynomials and replaces the quasi-Newton method with a full Newton’s
method that converges much more rapidly when the query point is far away from a
curved interface. The method does not rely on any PDE technique, and as such can
be used to calculate closest points from arbitrary query points making it suitable
for, for example, highly unstructured grids.

3. High-order calculation of closest points

Given a level set function φ defined on a computational grid, the high-order closest
point algorithm essentially consists of two parts: initialisation, and closest point
computation. In the initialisation, a high-order approximation of φ is defined on
each mesh element containing the interface, followed by a “sampling” procedure
which creates a cloud of points approximating the interface. Given a query point
xq ∈Rd , a closest point calculation proceeds by finding the closest point in the cloud
to xq , which is then improved by using Newton’s method on the minimum-distance
optimisation problem applied to the high-order approximation of the interface.

In order to present the essential ideas of the algorithm, motivated in part by
common finite difference-based implementations of the level set method, we mainly
consider the case that φ is defined on a regular Cartesian grid. The presented
techniques can be adapted in a natural way to other cases, such as gradient-
augmented level set methods, continuous and discontinuous finite element methods
on unstructured grids, etc.; guidelines for doing so are also discussed.

3.1. Piecewise polynomial approximation. Given a level set function defined on
a Cartesian grid, many possibilities exist for finding high-order approximations of φ
between grid points. A natural choice is to find a piecewise polynomial interpolant,
such as that used in Chopp [10], in which each grid cell is represented by a bicubic
(in 2D) or tricubic (in 3D) polynomial in such a way that the global interpolant
is C1. However, finding high-order interpolants that are continuous with continuous
derivatives can be expensive, since enforcing the continuity requirements requires
many degrees of freedom that do not necessarily contribute to the approximation
accuracy of the interpolant. For example, a C1 piecewise tricubic interpolant requires
64 polynomial coefficients per grid cell, but is only third-order accurate; many
of the degrees of freedom in the polynomial

∑3
i, j,k=0 ci jk x i y j zk are lost through

the enforcing of the C1 continuity requirement. Compare this to the polynomial
corresponding to a third-order accurate Taylor series in three dimensions, which
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has only 10 coefficients. For even higher order interpolants that are required to be
continuous, possibly with continuous derivatives as well, the situation considerably
worsens. Since these polynomials need to be constructed and evaluated many times,
it is thus worthwhile to consider an alternative method of approximation.

In regards to the reinitialisation/closest point problem, it is not actually necessary
to find a continuous interpolant. All we need is a high-order approximation of the
zero level set of φ in each grid cell containing the interface. We can achieve this
by using polynomials on each grid cell with the minimum number of degrees of
freedom necessary for a certain accuracy (as determined by the canonical Taylor
series expansion). Note, however, that in doing so, continuity of the zero level set
between grid cells may be lost. When the interface is sufficiently smooth, the amount
of discontinuity is of the same order as the truncation error of the approximating
polynomial and thus will not affect the global approximation order. When the
interface is not smooth, such as at the corner of a square, the amount of discontinuity
is in general first order in the grid cell size; this cannot be avoided unless specific
knowledge of nonsmooth features is incorporated. In either case, provided the
polynomials on each grid cell are suitably defined, and the discontinuities of the
interface are robustly handled by associated algorithms, the location of the interface
defined by the set of polynomials carries the expected order of accuracy.

A straightforward technique for determining these polynomials is to employ
a simple least squares method: given a space of polynomials and a stencil of
grid points, find the best polynomial in that space which minimises the pointwise
interpolation errors in an L2 norm. Provided the stencil has enough points, this
polynomial is uniquely determined. To illustrate, consider a two-dimensional case
in which we seek a degree 2 polynomial of the form

p(x, y)= c0+ c1x + c2 y+ c3x2
+ c4xy+ c5 y2

for determining φ in the grid cell (xi , xi+1) × (yi , yi+1). We would like it to
interpolate the values φi j , φi+1, j , φi, j+1 and φi+1, j+1. However, these 4 conditions
are not enough to uniquely determine the 6 coefficients of p, so more grid points
are required. We could add exactly two more grid points and this would uniquely
determine p, but the resulting stencil would be asymmetric. This may not be a
problem when φ is smooth, but generally speaking, such asymmetries can lead to
stability problems in an evolving interface. Instead, we opt for a symmetric 12-point
stencil, as shown in Figure 1. Enumerating the points of the stencil as {(xk, yk)}

12
k=1,

the least squares problem amounts to finding

arg min
p

12∑
k=1
|p(xk, yk)−φ(xk, yk)|

2,

and this can be solved in the usual fashion: form the 12× 6 Vandermonde matrix
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12 point 16 point 24 point

32 point 64 point 88 point

Figure 1. Stencils used to find the polynomials in Table 1. Top: two-dimensional stencils.
Bottom: three-dimensional stencils.

A with i-th row [1, xi , yi , x2
i , xi yi , y2

i ] and calculate

[c0, . . . , c5]
T
= (AT A)−1 AT

[φ(x1, y1), . . . , φ(x12, y12)]
T .

Provided A has full rank, the pseudoinverse (AT A)−1 AT exists. In this particular
example involving a 12-point stencil, this is indeed the case.

This technique easily generalises to other spaces of polynomials and in different
dimensions. In each case, a stencil of grid points is designed to be as small as
possible such that the corresponding Vandermonde matrix A has full rank. Table 1
and Figure 1 summarise the stencils and polynomials used in this work. Note that
the 12-point stencil in the previous example can be used to find both degree 2
polynomials and degree 3 polynomials in 2D. Geometrically this states that the
12-point stencil contains enough information to determine a fourth-order accurate
Taylor series approximation. Another point of interest is that the Taylor polynomial
of degree 4 in two dimensions, having 15 coefficients, requires a wider stencil of
extent 6, despite there being 16 degrees of information in a square 4× 4 stencil.1

This is necessary because the 4× 4 stencil does not carry enough information to
uniquely determine all of the higher-order terms such as x4.

Note that by using a standard reference cell, e.g., [0, 1]d , the pseudoinverses
of the Vandermonde matrices can be precomputed. Thus, a polynomial with n

1The Vandermonde matrix corresponding to the Taylor polynomial of degree 4 in 2D and a square
4× 4 stencil has rank 13.



114 ROBERT I. SAYE

d Polynomial type nc stencil p

2 Bicubic,
∑3

i, j=0 ci j x i y j 16 16 3
2 Taylor degree 2, c0+ c1x + c2 y+ c3x2

+ c4xy+ c5 y2 6 12 3
2 Taylor degree 3,

∑
|α|≤3 cα(x, y)α 10 12 4

2 Taylor degree 4,
∑
|α|≤4 cα(x, y)α 15 24 5

2 Taylor degree 5,
∑
|α|≤5 cα(x, y)α 21 24 6

3 Tricubic,
∑3

i, j,k=0 ci jk x i y j zk 64 64 3
3 Taylor degree 2, c0+ c1x + c2 y+ c3z+ · · ·+ c9z2 10 32 3
3 Taylor degree 3,

∑
|α|≤3 cα(x, y, z)α 20 32 4

3 Taylor degree 4,
∑
|α|≤4 cα(x, y, z)α 35 88 5

3 Taylor degree 5,
∑
|α|≤5 cα(x, y, z)α 56 88 6

Table 1. d-dimensional polynomials used in this work, indicating the form of the poly-
nomial, number of coefficients nc, number of points in the stencil (see Figure 1), and the
expected order of accuracy p for sufficiently smooth problems.

coefficients can be determined by a stencil of m points by a single matrix-vector
multiplication of size n ×m. We also note that while the stencils often involve
more points than there are coefficients in the polynomials, ultimately it is only the
polynomial and its derivatives that need to be evaluated many times.

3.2. Sampling the interface. Using the above piecewise polynomial approxima-
tion, we can find a high-order approximation of φ in each grid cell. For those
grid cells containing the interface2, we would like to sample the cell’s polynomial
by placing points on its zero level set. It will not be necessary to do this with a
high degree of resolution, in fact only a few seed points per grid cell are required.3

Thus, a very simple strategy can be adopted: subdivide each grid cell containing
the interface into a 2× 2 subgrid (in 2D) or 2× 2× 2 subgrid (in 3D), and in
each subcell, place a point in the centre. Then, “project” these points onto the zero
level set of the polynomial p with a simple Newton-style procedure: given a point
x0 ∈ Rd , we iterate

xi+1 = xi −
p(xi )∇p(xi )

‖∇p(xi )‖2
,

until a suitable convergence criterion is met. This iterative procedure can be viewed4

as moving xi to its closest point on the zero level set of the linear approximation
of p at xi , given by p(xi + δ) ≈ p(xi )+ δ · ∇p(xi ). Generally, as in Newton’s

2Methods to determine whether a grid cell contains the interface are discussed shortly.
3Generally speaking, the 2× 2 subcell division described here is sufficient for most level set

applications. If a grid cell contains a polynomial with very high curvature, more points may be
required, depending on the application; adaptive approaches are discussed shortly.

4It is also the “δ1” direction used in Chopp’s method [10], as discussed later.
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method, this iterative method exhibits second order convergence; in practice it is
very quick and reliable. Some remarks:
• A point starts in the centre of its subcell and is projected onto the zero level

set of p. As a result, it may move outside its subcell or indeed the parent cell.
If the gap between the point and the parent cell is small (i.e., a fraction of 1x),
we keep the point — this fits in with the strategy employed later for allowing
polynomials from adjacent grid cells to slightly “overlap.” If the point is far
away from its subcell, it is discarded.

• It is not necessary for the point to lie exactly on the zero level set of p, as these
points only form an initial guess to a full Newton’s method (see Section 3.3).
In practice, a simple convergence criterion suffices, which is to stop iterating
when ‖xi+1 − xi‖ is a small fraction of the subcell size, e.g., 1%; typically
only one or two iterations of the above scheme are then necessary.

By doing this for each cell containing the interface, a collection of points is gen-
erated. The points are in no particular order and form a cloud of scattered points
approximating the interface on the entire domain.

3.3. High-order closest point calculations via Newton’s method. The output of
the above sampling stage is a set of points C = {x1, . . . , xN } ⊂ Rd approximating
the interface of φ. To each point we associate the polynomial pi from which it was
generated, coming from the high-order approximation of φ in each grid cell. For
the general closest point problem, we are given an arbitrary query point xq ∈Rd and
need to approximate the closest point on the zero level set of φ. This is accomplished
in two steps:

(i) Find the closest point in C to xq . Denote it by x0, with associated polynomial p.

(ii) Return the closest point on the zero level set of p restricted to a small domain.

Step (i) is a well-known scattered-data closest-point query problem for which
various efficient methods exist, including the use of k-d trees, quadtrees, octrees,
etc. In this application, the points lie on a codimension-one surface, and this extra
information can be exploited to gain greater efficiency. The Appendix presents a
k-d tree optimised for surfaces that was developed as part of this work. Independent
of the implementation details, however, step (i) can be considered to be a black box.

To solve step (ii), a simple Newton’s method for the minimum distance optimi-
sation problem works well. Consider the functional f : Rd

×R→ R given by

f (x, λ)= 1
2‖x − xq‖

2
+ λp(x),

whose gradient and Hessian are

∇ f =
(
∇x f
∂λ f

)
=

(
x − xq + λ∇p(x)

p(x)

)
and D2 f =

(
I + λD2 p(x) ∇p(x)
∇p(x)T 0

)
.
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Minimising f amounts to minimising the squared distance from xq to a point x ,
with the constraint that x be on the zero level set of p, implemented via a Lagrange
multiplier. Generally speaking, this optimisation problem is well-conditioned
provided that (a) the gradient of pi does not vanish near x , and (b) the closest point
is unique, i.e., xq is not located at a shock of the distance function

d(x)= min
y, p(y)=0

‖x − y‖.

Part (a) is a natural regularity assumption in the context of level set methods,
while (b) is guaranteed near smooth parts of the distance function d. Naturally,
either one of these conditions might fail in practice, but with appropriate safeguards
the optimisation problem can be made to be highly robust and efficient. Newton’s
method for minimising f is as follows: we start at the closest point in C (i.e., x0) and
initialise the Lagrange multiplier at step 0 to be5 λ0 := (xq−x0)·∇p(x0)/‖∇p(x0)‖

2.
Let y = (x, λ) ∈ Rd

×R, with initial value y0 := (x0, λ0). We thus iterate

yk+1 = yk −
(
D2 f (yk)

)−1
∇ f (yk) (1)

until convergence to within a suitable tolerance, or else halt the iterations if x travels
“too far” from the initial point x0. Several remarks are in order:
• To evaluate the Hessian and gradient of f , the Hessian and gradient of the poly-

nomial p are needed. These are straightforward to evaluate for any particular
class of polynomial.

• The polynomials were generated from high-order approximations to φ on each
grid cell. Thus, each polynomial is only valid in a small region surrounding
its cell. We therefore only allow the iterates to travel a maximum distance
(proportional to 1x) away from the initial starting point x0. In addition to
preventing iterates from travelling too far (which may occur when the interface
is not smooth, e.g., at the corner of a square, as discussed later), this “bounding
ball” also provides a straightforward mechanism to allow polynomials from
adjacent grid cells to slightly overlap. This is mainly relevant to the case when
the closest seed point (i.e., x0) is close to the boundary of a grid cell, but the
true closest point lies slightly in the neighbouring grid cell. It is important
to note, however, that the order of accuracy is unaffected by using slightly
overlapping polynomials (whether or not the interface is smooth).

• In (1), the Hessian of f , a small (d+1)×(d+1) square matrix, must be inverted.
We can use a simple Gaussian elimination method with partial pivoting, which
also indicates when the matrix is nearly singular.6 Singularity indicates that

5The initial value for the Lagrange multiplier comes from the approximation that ∇ f ≈ 0 at x0.
6In this work, the criterion for determining singularity is whether any pivot is less than 10−12 in

magnitude. This tolerance is based on double precision arithmetic and the property that the length
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there are many solutions to the closest point problem for the given xq . In
theory this may certainly occur, such as when finding the closest point to the
centre of a circular or spherical interface. However, in practice, noninvertibility
of the Hessian almost never arises. Nevertheless, if the Hessian is detected
as singular, we employ a different method. This backup mechanism follows
that of Chopp’s method [10] — the update is replaced by xk+1 = xk + δ1+ δ2,
where δ1 moves xk to the zero level set of p, and δ2 moves xk tangentially to
the level set to enforce the orthogonality condition of the closest point. These
directions are given by

δ1 =−
p(xk)∇p(xk)

‖∇p(xk)‖2
and δ2 =

(
I −
∇p(xk)∇p(xk)

T

‖∇p(xk)‖2

)
(xq − xk).

In fact, Chopp’s method can be viewed as a type of gradient descent on f ,
i.e., yk+1= yk−α∇ f (yk), with a Lagrange multiplier that is suitably reevaluated
at the beginning of each iteration.

• As an additional safeguard, no update in the iterative procedure is allowed
to move xk by a large amount (i.e., 50% of the bounding ball radius). This
is effectively a simple type of line search common to many optimisation
methods, and is generally only relevant when xq is extremely close to a centre
of curvature of p. Once again, this safeguard is rarely invoked in practice.

• To decide when the iterations have converged, we test if ‖xk+1 − xk‖ < ε,
where ε is a small threshold relating to the accuracy of the polynomial. It is
not necessary to converge to machine precision when the polynomial itself
is only an approximation of φ. We take ε to be 1x p where p is the order of
accuracy of the class of polynomials being used — see Table 1.

Newton’s method for finding the closest point is summarised in Algorithm 1. Since
the initial guess x0 for the closest point is almost always near the actual closest point,
in practice the algorithm converges very quickly; in almost all cases it converges
within 2–4 iterations to a sufficient accuracy. Nonconvergence occurs when either
(a) the method failed to converge within a fixed number of iterations (20, say), or
(b) the iterate left the bounding ball. Although both situations are rare, (a) typically
occurs when xq is very near a shock of the distance function generated by the zero
level set of p, while (b) occurs when the closest point is near a nonsmooth part of the
interface, e.g., the corner of a square, where the polynomial approximations of the
level set functions lead to bumps in the interface (see, e.g., Figures 4 and 5). In the
rare case that Newton’s method does not successfully converge, but an approximate
closest point is nevertheless required as the output of a black-box type algorithm,

scales considered in the test problems are O(1). Experiments indicated that the overall algorithm is
not particularly sensitive to this choice.
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1: λ0 := (xq − x0) · ∇p(x0)/‖∇p(x0)‖.
2: for k = 1 to maximum number of iterations do
3: g := (xk − xq + λk∇p(xk), p(xk)).

4: H :=
(

I + λk D2 p(xk) ∇p(xk)

∇p(xk)
T 0

)
.

5: Solve for δ=(δx , δλ) such that Hδ=g via Gaussian elimination with partial pivoting.
6: if succeeded then
7: if ‖δx‖>

1
2r then δ←

( 1
2r/‖δx‖

)
δ.

8: (xk+1, λk+1) := (xk, λk)− δ.
9: else
10: δ1 := −

(
p(xk)/‖∇p(xk)‖

2
)
∇p(xk).

11: λk+1 := (xq − xk) · ∇p(xk)/‖∇p(xk)‖
2.

12: δ2 := xq − xk − λk+1∇p(xk).
13: if ‖δ2‖>

1
10r then δ2← ( 1

10r/‖δ2‖)δ2.
14: xk+1 := xk + δ1+ δ2.

15: if ‖xk − x0‖> r then
16: return did not converge within ball B(x0, r).
17: else if ‖xk+1− xk‖< ε then
18: return converged with solution xk+1.

19: return did not converge within maximum number of iterations.

Algorithm 1. Newton’s method for finding the closest point on the zero level set of p
given an initial guess x0 and a bounding ball of radius r .

an approach which suffices in most practical situations is to return the last iterate
inside the bounding ball. This approximation carries the same order of accuracy
that one many expect when either of the cases (a) or (b) occur, as demonstrated in
our convergence tests.

3.4. General algorithm. Combining the above steps, we arrive at the following
general approach for computing high-order approximations of closest points on
implicit surfaces:

• Initialisation.

(1) For each grid cell/element detected to contain the interface, define or construct
a high-order approximation of φ on that grid cell/element. For example, when
φ is defined on a Cartesian grid we can use the least-squares determined
polynomials outlined in Section 3.1. Other possibilities may naturally arise
given the specific application, for example in a gradient augmented level set
method, one can use the associated Hermite interpolants; in a discontinuous or
continuous finite element method, φ is already naturally defined as a polynomial
on the elements of an unstructured mesh.
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(2) For each of these constructed polynomials, sample the zero level set of the
polynomial on its domain. In the case that the domain is a rectangular element,
e.g., a cell of a Cartesian grid, Section 3.2 described a method based on using a
subcell decomposition together with a projection procedure. This approach can
naturally be extended to other cases, such as polynomials defined on triangular
or tetrahedral elements, by using a similar decomposition method to generate
and project points. Guidelines regarding the sampling resolution are provided
shortly.

(3) After sampling the interface on the whole domain, one obtains a cloud of points
C = {x1, . . . , xN } ⊂ Rd . In the final step of initialisation, a data structure for
efficient closest point queries is then created; an example of a k-d tree optimised
for surfaces is discussed in the Appendix.

• Closest point evaluation. Given an arbitrary point xq ∈ Rd , first find the closest
point in C to xq and use this as the initial guess to Newton’s method for determining
a high-order closest point, cp(xq); see Section 3.3.

Section 4.4 discusses the computational efficiency of the method. As an example
application, for the reinitialisation problem in level set methods, we simply re-
place φ with the new signed distance function given by x 7→ sign(φ(x))‖x−cp(x)‖
evaluated at each grid node. We now consider some practical details:

• Determining which cells contain the interface: One of the simplest strategies for
predicting when a grid cell contains the interface is to examine the sign of φ on the
vertices of the grid cell — a grid cell is then declared to contain the interface if and
only if the signs are not all the same. Clearly, this is not completely reliable. Two
typical possibilities include: (a) a closed interface completely contained within a
single cell; and (b) an interface which enters and exits the cell on one side/face
without crossing any other side/face. In the case that the interface is well-resolved,
(a) should not occur (unless subgrid details are to be expected as discussed shortly),
but (b) may still occur. Nonetheless, the simple check of examining the signs
on grid vertices can still be used to resolve situation (b), essentially because the
polynomials from adjacent grid cells are allowed to overlap (as in Section 3.2 and
Section 3.3). For example, a spherical interface defined on a high-resolution grid
may partially cross the face of a grid cell without crossing any of its edges. On such
a grid cell, the sign check of its vertices will not detect the interface, but the sign
check on the neighbouring grid cell will identify the presence of the interface; the
polynomial on this grid cell sufficiently approximates the interface in the original
cell, due to the overlap allowed in sampling and in Newton’s method.

Depending on the application, such as the subgrid capturing example in Section 4.5,
it may be necessary to employ a more sophisticated strategy than to simply check
signs of grid vertices. A simple approach is to suppose every grid cell contains the
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interface; in this case the sampling procedure, while being forced to sample more
polynomials, would automatically avoid generating points for cells not containing
the interface. Another possibility is to use properties of the polynomial p itself to
evaluate bounds of the form

max
x∈B(xc,r)

|p(x)− p(xc)|< C,

where C provides a uniform bound on the values of p(x) for x in a ball centred
at xc with a certain grid-dependent radius. If |p(xc)| > C we can thus prove the
polynomial has no zero level set in the corresponding ball.

• Sampling resolution. Since the closest point in C to the query point xq forms an
initial approximation to the true closest point, it follows that the sampling resolution
of the seed points in C should locally depend on the amount of curvature exhibited
by the interface. In other words, on each individual grid cell/mesh element, the
length scale characterising the typical separation distance between seed points
should be on the same order as the smaller of 1x or the smallest radius of curvature
of the interface on that mesh element. In almost all practical applications of the
level set method, the interface (once approximated by polynomials) rarely exhibits
curvature higher than O(1/1x). Thus, in Section 3.2, the simple strategy of using a
m×m (×m) subgrid to generate points with m = 2 or m = 3 typically suffices. In
other cases, e.g., a triangular or tetrahedral mesh element, a similar decomposition
can be used to sample with similar resolution. For very high-order level set methods,
it is possible to capture subgrid effects, in which a single grid cell may contain, for
example, an isolated spherical droplet. In these applications, it may be necessary
to make m larger. On the other hand, for reasons of efficiency we do not want an
excessive number of points in the cloud C since this affects the performance of
closest point queries. Ideally, we would like a sampling algorithm that automatically
adapts to the curvature exhibited by each polynomial on each mesh element. One
possibility for achieving this is to analyse the polynomial and its coefficients to
calculate bounds on second derivative information across the entire cell — using
these bounds, m could be made automatically adaptive such that m = 1 or 2 in
smooth parts of the domain, with m larger in regions of high curvature. Though
feasible, we will not pursue this idea here or in the accompanying C++ code for the
sake of overall simplicity.

• Overlapping threshold. The approximate distance between points in the cloud
C is also a good measure of how much to allow adjacent grid cell polynomials to
overlap. Generally, the polynomials overlap by about 1

21x or less; this is also used
as the radius of the bounding ball in Newton’s method.

• Treatment of boundary conditions. In the case of a Cartesian grid, we assumed that
we could apply stencils at each relevant grid cell to obtain high-order polynomial
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approximations. However, this cannot be immediately applied at the boundary of
the computational domain, since grid points outside the domain do not exist. Here
it is necessary to either (i) find polynomials based on interior data only, and/or (ii)
enforce a given boundary condition on φ or its interface, such as a zero Neumann
boundary condition. One could use, for instance, “ghost layers” in which grid
points are defined outside of the domain whose values are based on extrapolation.
Since accurate treatment of boundary conditions is highly application-dependent,
we will not consider this further here.

• Narrow banding. A common implementation of level set methods is to only
define φ in a small narrow band surrounding the zero level set of φ, given by those
grid points x for which ‖x − cp(x)‖< r , where r is a band radius equal to a fixed
number of grid cells [1]. It is straightforward to modify a k-d tree search to consider
only points for which the distance to the query point is less than r , returning null if
no such points exist; search queries can use this extra information to very efficiently
determine the location of the narrow band.

• Parallelisation. Parallelising closest point/distance algorithms such as this depends
crucially on the intended application. In a level set method, it is often the case
that the global domain is subdivided into subdomains, with individual subdomains
assigned to individual processors. In this case, and when narrow banding, it is
straightforward to parallelise the closest point algorithm: (i) each processor would
examine the grid cells in its subdomain and sample the interface; (ii) points that are
within a distance r from its subdomain boundary are communicated, together with
their associated polynomials, to adjacent processors; (iii) each processor can then
proceed completely independently from the rest by building a k-d tree for a slightly
larger-sized subdomain. If the application cannot narrow-band, or if a different type
of processor decomposition is used, another strategy is likely necessary, such as
communicating between processors coarse-grained information about the geometry
of the interface.

4. Results

4.1. Convergence tests. For a sufficiently smooth level set function φ, each of the
methods in Table 1 for approximating φ in each grid cell is p-th order accurate.
Combined with the closest point algorithm, this leads to an approximation of
the closest point function cph(x) and distance function dh(x) := ‖x − cph(x)‖.
In general, we can expect the distance function approximation to be p-th order
accurate, both near and far away from the interface. On the other hand, the closest
point approximation may lose up to two orders of accuracy if x is near a “curvature
singularity,” e.g., near the centre of a circle. One way to see this is to note that the
exact closest point and distance functions satisfy the relation cp(x)= x−d(x)∇d(x)



122 ROBERT I. SAYE

almost everywhere.7 Therefore, to recover cph from dh we need to differentiate dh ,
thereby incurring an error proportional to D2d(x)h p−1. The Hessian of a distance
function is related to the curvature of its level sets — D2d has a singularity behaving
like ‖x−xc‖

−1 near a centre of curvature xc. It follows that cph(x)may be (p−2)-th
order accurate near such a singularity, and some of our results confirm this.

To assess the approximation errors in dh and cph , we consider a variety of smooth
and nonsmooth test problems and measure the error locally and globally, in both
the ‖ · ‖1 and ‖ · ‖∞ norms. These tests are performed on a uniform grid such that
1x =1y =1z = h. More precisely:

• Let S be the set of points in the domain � for which the exact closest point
function is multivalued, e.g., the centre of a sphere or the inside diagonals of a
square. In a numerical setting, it would be overly complicated to request the
closest point algorithm to return all possible solutions when the query point is
in S. Hence, to simplify the convergence analysis, we will ignore grid points
that are in S or situated very close to S, as follows. Let Sh be the set of grid
points whose minimum distance to S is less than δ; in our results, the threshold
has been set to half a grid cell, δ = 1

2 h. Grid points in Sh are ignored only
when measuring errors in the closest point function; they are still considered
in the case of the distance function.

• Local errors are measured in a narrow band of radius 8 grid cells: let Nh be
the set of grid points x for which dh(x) < 8h. Define

‖d − dh‖1,Nh
=

1
|Nh|

∑
x∈Nh

|d(x)− dh(x)|,

‖cp− cph‖1,Nh\Sh
=

1
|Nh\Sh|

∑
x∈Nh\Sh

‖ cp(x)− cph(x)‖,

and

‖d − dh‖∞,Nh
= max

x∈Nh
|d(x)− dh(x)|,

‖cp− cph‖∞,Nh\Sh
= max

x∈Nh\Sh
‖cp(x)− cph(x)‖.

• Global errors are measured across the entire computational domain �, with
the same definitions of the norm, except that Nh is replaced with the set of all
grid points; grid points in Sh are ignored only when measuring errors in the
closest point function.

A variety of test problems have been analysed, including a circle, sphere, ellipse,
ellipsoid, square, cube, rectangle with rounded ends and a cylinder with rounded

7The relation is not defined at shocks where d is not differentiable — equivalently, where there is
more than one closest point to x .



HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 123

− 3
4

− 1
2

− 1
4

0

1
4

1
2

3
4

− 3
4 − 1

2 − 1
4 0 1

4
1
2

3
4

y

x

− 3
4

− 1
2

− 1
4

0

1
4

1
2

3
4

− 3
4 − 1

2 − 1
4 0 1

4
1
2

3
4

y

x

Figure 2. Two-dimensional test case corresponding to an ellipse with semimajor axis 1
2

and semiminor axis 1
3 . Left: contours of the initial level set function φ given by (2), with

the zero level set indicated by a thick line. Right: reinitialised signed distance function.

Figure 3. Three-dimensional test case corresponding to an ellipsoid with semiprincipal
axes 1

2 , 1
3 and 1

2 . Left: contours of the initial level set function φ given by (3), with the
zero level set shown in dark grey. Right: reinitialised signed distance function. In both
figures, the contours have been sliced by a plane in order to reveal the inner structure.

ends. Here we show results for the most instructive case, that of an ellipse in 2D
and ellipsoid in 3D, followed by a summary of the results of the other tests. In all
cases, the domain is � =

[
−

3
4 ,

3
4

]d and the level set function φ is defined on a
uniform Cartesian n×n grid (in 2D) or n×n×n grid (in 3D). For the ellipse, φ is
evaluated at grid points via

φ(x, y)=
(
1− exp(−(x − 0.3)2− (y− 0.3)2)

)(√
4x2
+ 9y2

− 1
)
, (2)

and for the ellipsoid,

φ(x, y, z)=
(
1− exp

(
−(x − 0.3)2− (y− 0.3)2

))(√
4x2
+ 9y2

+ 4z2
− 1

)
. (3)
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These functions were designed to exhibit large changes in the norm of the gradient
near the zero level set. Figures 2 and 3 show contours of φ as well as their
reinitialised counterparts. We can see that the resulting distance function is not
smooth: in the case of the ellipse, d(x) is not smooth on the segment{

(x, y) : |x | ≤ 1
2 −

2
9 , y = 0

}
,

and has curvature singularities at

(x, y)=
(
±
( 1

2 −
2
9

)
, 0
)
.

A similar disc of nonsmoothness exists for the ellipsoid. Thus we expect to see
differing rates of convergence depending on the local and global metrics. Tables
2 and 3 presents the convergence results8 for all the polynomials of Table 1 in
both 2D and 3D. For each type of polynomial, the convergence rate is estimated
by taking ratios of errors between different grid sizes and are indicated by bold
numbers in the two tables. The results can be summarised as follows:

• The bicubic and tricubic polynomials (which recall are designed to find a C1

interpolant of the level set function) are locally third order accurate, for both
the distance function and closest point function. Globally, the distance function
is third order; however, the closest point function is approximately first order.

• For each of the Taylor polynomials of degree dT , letting p = dT + 1 (as in
Table 1), both the distance and closest point functions are locally p-th order
accurate. Globally, the distance function is also p-th order accurate. The
closest point function is globally (p−1)-th order accurate in the L1 norm, and
is between (p−2)-th and (p−1)-th order accurate in the maximum norm.

Thus, we obtain the optimal convergence rate in both the distance function and
closest point function, depending on proximity to the interface or curvature singular-
ities. To be more precise, for a sufficiently smooth interface there are three zones of
convergence: (i) if x is such that d(x)= O(h) (as in a narrow band), then the closest
point approximation is p-th order accurate; (ii) if x is a fixed distance away from
the interface (i.e., independent from h) and is not located at a curvature singularity,
then the closest point approximation is (p− 1)-th order accurate; and (iii) if x has
distance O(h) from a curvature singularity, then the closest point approximation
is (p−2)-th order accurate. The distance function approximation dh is p-th order
accurate in all three zones (for a sufficiently smooth interface).

8In order to measure the error, we need the exact closest point function for an ellipse and ellipsoid.
This was implemented by using Newton’s method, similar to that developed in Section 3.3, applied
to the polynomials 4x2

+ 9y2
− 1 in 2D and 4x2

+ 9y2
+ 4z2

− 1 in 3D, with enough iterations to
compute the closest point to machine precision accuracy.



HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 125

Distance error Closest point error
d n ‖·‖1 ‖·‖∞ ‖·‖1 ‖·‖∞

B
ic

ub
ic

2

64 3.66×10−5 1.14×10−3 6.21×10−4 2.81×10−2

128 6.90×10−6 2.4 8.95×10−4 0.3 2.07×10−4 1.6 2.10×10−2 0.4
256 5.75×10−7 3.6 1.23×10−4 2.9 5.47×10−5 1.9 1.04×10−2 1.0
512 6.95×10−8 3.0 2.25×10−5 2.5 1.50×10−5 1.9 4.04×10−3 1.4

Tr
ic

ub
ic

3

64 2.85×10−5 7.85×10−3 5.47×10−4 4.38×10−2

128 3.77×10−6 2.9 1.56×10−3 2.3 1.58×10−4 1.8 2.58×10−2 0.8
256 3.54×10−7 3.4 2.59×10−4 2.6 4.10×10−5 1.9 1.18×10−2 1.1
512 3.75×10−8 3.2 3.55×10−5 2.9 9.89×10−6 2.1 5.37×10−3 1.1

Ta
yl

or
de

gr
ee

2 2

64 5.03×10−4 1.20×10−2 2.11×10−3 6.88×10−2

128 5.05×10−5 3.3 1.32×10−3 3.2 3.65×10−4 2.5 2.09×10−2 1.7
256 5.95×10−6 3.1 2.14×10−4 2.6 8.86×10−5 2.0 6.74×10−3 1.6
512 6.74×10−7 3.1 3.11×10−5 2.8 2.19×10−5 2.0 2.64×10−3 1.3

3

64 2.20×10−4 1.23×10−2 1.32×10−3 6.77×10−2

128 2.25×10−5 3.3 1.55×10−3 3.0 2.84×10−4 2.2 2.25×10−2 1.6
256 2.56×10−6 3.1 2.24×10−4 2.8 7.14×10−5 2.0 7.10×10−3 1.7
512 2.91×10−7 3.1 2.99×10−5 2.9 1.80×10−5 2.0 3.05×10−3 1.2

Ta
yl

or
de

gr
ee

3 2

64 7.24×10−6 4.31×10−4 1.05×10−4 1.84×10−2

128 4.19×10−7 4.1 1.79×10−5 4.6 1.46×10−5 2.8 2.00×10−3 3.2
256 2.52×10−8 4.1 9.30×10−7 4.3 1.93×10−6 2.9 2.96×10−4 2.8
512 1.61×10−9 4.0 5.94×10−8 4.0 2.34×10−7 3.0 3.88×10−5 2.9

3

64 4.48×10−6 2.54×10−4 7.28×10−5 1.23×10−2

128 2.69×10−7 4.1 1.82×10−5 3.8 9.58×10−6 2.9 2.08×10−3 2.6
256 1.66×10−8 4.0 1.05×10−6 4.1 1.22×10−6 3.0 3.08×10−4 2.8
512 1.03×10−9 4.0 6.73×10−8 4.0 1.54×10−7 3.0 4.23×10−5 2.9

Ta
yl

or
de

gr
ee

4 2

64 1.93×10−6 8.14×10−5 1.75×10−5 1.12×10−3

128 5.68×10−8 5.1 2.53×10−6 5.0 1.03×10−6 4.1 9.43×10−5 3.6
256 1.80×10−9 5.0 8.64×10−8 4.9 6.32×10−8 4.0 6.57×10−6 3.8
512 5.65×10−11 5.0 2.89×10−9 4.9 3.94×10−9 4.0 4.92×10−7 3.7

3

64 9.97×10−7 1.23×10−4 1.10×10−5 1.32×10−3

128 3.14×10−8 5.0 2.79×10−6 5.5 6.69×10−7 4.0 1.00×10−4 3.7
256 9.88×10−10 5.0 1.01×10−7 4.8 4.15×10−8 4.0 6.34×10−6 4.0
512 3.09×10−11 5.0 3.32×10−9 4.9 2.59×10−9 4.0 4.72×10−7 3.7

Ta
yl

or
de

gr
ee

5 2

64 5.22×10−8 1.52×10−6 6.41×10−7 4.84×10−5

128 7.39×10−10 6.1 3.01×10−8 5.7 1.79×10−8 5.2 1.08×10−6 5.5
256 1.18×10−11 6.0 4.67×10−10 6.0 5.28×10−10 5.1 5.64×10−8 4.3
512 1.95×10−13 5.9 7.31×10−12 6.0 1.67×10−11 5.0 2.31×10−9 4.6

3

64 4.64×10−8 2.78×10−6 6.25×10−7 4.15×10−5

128 7.22×10−10 6.0 5.33×10−8 5.7 1.86×10−8 5.1 1.65×10−6 4.6
256 1.12×10−11 6.0 8.21×10−10 6.0 5.75×10−10 5.0 4.86×10−8 5.1
512 1.75×10−13 6.0 1.27×10−11 6.0 1.79×10−11 5.0 1.94×10−9 4.6

Table 2. Convergence results (global error) for the ellipse (dimension d = 2) and ellipsoid
(d = 3) for several polynomial classes: the bicubic (in 2D), tricubic (in 3D) and the Taylor
polynomials in Table 1. The left pair measures the error in the distance function and the
second pair the error in the closest point function. For each polynomial type, the error is
indicated for a grid of size n × n in 2D and n × n × n in 3D. Ratios between errors on
successive grids yield the convergence rates in bold.
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Distance error Closest point error
d n ‖·‖1 ‖·‖∞ ‖·‖1 ‖·‖∞

B
ic

ub
ic

2

64 2.98×10−5 1.14×10−3 3.47×10−4 1.76×10−2

128 4.31×10−6 2.8 6.81×10−4 0.7 5.95×10−5 2.5 8.25×10−3 1.1
256 4.97×10−7 3.1 7.22×10−5 3.2 7.47×10−6 3.0 1.69×10−3 2.3
512 5.89×10−8 3.1 7.62×10−6 3.2 8.09×10−7 3.2 1.54×10−4 3.5

Tr
ic

ub
ic

3

64 2.25×10−5 7.85×10−3 2.67×10−4 3.88×10−2

128 2.26×10−6 3.3 1.50×10−3 2.4 3.62×10−5 2.9 1.30×10−2 1.6
256 2.42×10−7 3.2 1.35×10−4 3.5 4.29×10−6 3.1 4.27×10−3 1.6
512 2.97×10−8 3.0 1.37×10−5 3.3 5.27×10−7 3.0 2.73×10−4 4.0

Ta
yl

or
de

gr
ee

2 2

64 3.24×10−4 1.19×10−2 9.08×10−4 4.04×10−2

128 3.64×10−5 3.2 1.31×10−3 3.2 1.00×10−4 3.2 5.56×10−3 2.9
256 4.29×10−6 3.1 2.13×10−4 2.6 1.15×10−5 3.1 1.08×10−3 2.4
512 5.18×10−7 3.0 3.09×10−5 2.8 1.30×10−6 3.1 1.09×10−4 3.3

3

64 1.58×10−4 1.23×10−2 6.41×10−4 3.97×10−2

128 1.71×10−5 3.2 1.53×10−3 3.0 7.91×10−5 3.0 6.96×10−3 2.5
256 1.96×10−6 3.1 2.18×10−4 2.8 9.67×10−6 3.0 1.08×10−3 2.7
512 2.37×10−7 3.0 2.84×10−5 2.9 1.18×10−6 3.0 1.30×10−4 3.1

Ta
yl

or
de

gr
ee

3 2

64 5.84×10−6 2.04×10−4 5.56×10−5 9.14×10−3

128 3.48×10−7 4.1 1.42×10−5 3.8 3.68×10−6 3.9 3.62×10−4 4.7
256 2.20×10−8 4.0 9.00×10−7 4.0 2.24×10−7 4.0 2.58×10−5 3.8
512 1.40×10−9 4.0 5.94×10−8 3.9 1.34×10−8 4.1 1.34×10−6 4.3

3

64 3.83×10−6 2.25×10−4 3.55×10−5 9.04×10−3

128 2.36×10−7 4.0 1.54×10−5 3.9 2.28×10−6 4.0 3.62×10−4 4.6
256 1.48×10−8 4.0 9.59×10−7 4.0 1.44×10−7 4.0 2.57×10−5 3.8
512 9.25×10−10 4.0 6.33×10−8 3.9 8.99×10−9 4.0 1.48×10−6 4.1

Ta
yl

or
de

gr
ee

4 2

64 1.67×10−6 8.14×10−5 8.95×10−6 6.96×10−4

128 4.95×10−8 5.1 2.48×10−6 5.0 2.61×10−7 5.1 1.75×10−5 5.3
256 1.58×10−9 5.0 8.61×10−8 4.9 8.00×10−9 5.0 4.54×10−7 5.3
512 4.94×10−11 5.0 2.80×10−9 4.9 2.47×10−10 5.0 1.77×10−8 4.7

3

64 9.32×10−7 1.21×10−4 5.56×10−6 1.32×10−3

128 2.92×10−8 5.0 2.68×10−6 5.5 1.72×10−7 5.0 1.53×10−5 6.4
256 9.20×10−10 5.0 1.01×10−7 4.7 5.40×10−9 5.0 5.07×10−7 4.9
512 2.88×10−11 5.0 3.31×10−9 4.9 1.69×10−10 5.0 1.71×10−8 4.9

Ta
yl

or
de

gr
ee

5 2

64 4.50×10−8 1.35×10−6 3.24×10−7 2.71×10−5

128 6.57×10−10 6.1 3.01×10−8 5.5 4.84×10−9 6.1 2.11×10−7 7.0
256 1.03×10−11 6.0 4.61×10−10 6.0 7.06×10−11 6.1 3.39×10−9 6.0
512 1.73×10−13 5.9 7.15×10−12 6.0 1.13×10−12 6.0 5.65×10−11 5.9

3

64 4.08×10−8 2.48×10−6 2.87×10−7 2.27×10−5

128 6.44×10−10 6.0 5.05×10−8 5.6 4.50×10−9 6.0 2.65×10−7 6.4
256 1.00×10−11 6.0 7.70×10−10 6.0 7.04×10−11 6.0 4.27×10−9 6.0
512 1.57×10−13 6.0 1.21×10−11 6.0 1.10×10−12 6.0 7.22×10−11 5.9

Table 3. Convergence results (local error in a narrow band of radius 8 grid cells) for the
ellipse (dimension d = 2) and ellipsoid (d = 3) for several polynomial classes: the bicubic
(in 2D), tricubic (in 3D) and the Taylor polynomials in Table 1. The left pair measures the
error in the distance function and the second pair the error in the closest point function.
For each polynomial type, the error is indicated for a grid of size n×n in 2D and n×n×n
in 3D. Ratios between errors on successive grids yield the convergence rates in bold.
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Three more test problems were considered, each with a different degree of
smoothness. Here we summarise the convergence results9:

• Circle in 2D and sphere in 3D. In this case, the distance function is infinitely
smooth except for a single isolated point at the origin of the circle/sphere. The
results confirm that the distance and closest point functions are p-th order
accurate everywhere, except near the singularity where only the closest point
function loses two orders of accuracy.

• Square in 2D and cube in 3D. This test problem is more subtle. Locally, both
the distance and closest point function are second order accurate in the L1

norm, and first order accurate in the maximum norm, which is to be expected.
Globally, the distance function is first order accurate in both norms. However,
the closest point function is approximately half-order accurate globally in
the maximum norm. The reason for achieving only half-order accuracy is as
follows: the interpolation/approximation of the corner of a square inevitably
leads to small bumps (see, e.g., Figure 5 on page 129). These small bumps are
O(h) perturbations of the flat edge of the square, and are “seen” far away from
the interface. The locus of points for which the distance to the bump equals the
distance to the edge of the square approximately forms a parabola; see Figure 4.
For a fixed distance away from the edge, the parabola’s width is O(

√
h). All

grid points within the parabola see the bump, leading to a half-order error in
the maximum norm of the closest point function. This loss of accuracy applies
only to the outside of the square/cube. On the inside, the closest point function
is multivalued along the diagonals (either two values in 2D or up to three
in 3D). Along these shock lines of the distance function, the algorithm returns
the exact distance to the interface (since the flat sides of the square/cube are
exactly recovered).

• Rounded rectangle and cylinder with rounded ends. This example serves as a
somewhat smooth but not infinitely smooth surface. In two dimensions, the
interface is a square of width 1

2 with two semicircles on the left and right
sides; see Figure 4. In three dimensions, the interface is a cylinder with two
hemispheres on either side. In both cases, the interface has a continuous
normal vector field, but its curvature is discontinuous. Results show that
both the distance function and closest point function are locally second order
accurate, the distance function is globally second order accurate, and the closest
point function is approximately second order accurate except near curvature
singularities (all in the maximum norm).

9These convergence results may be reproduced by the reader with the C++ code accompanying
this paper.
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Figure 4. Left: polynomial approximation of a square leads to bumps on the corners
which are O(h) in width and are seen far away from the interface by the closest point
function. The set of points for which the distance to the bump equals the distance to the
original square approximately forms a parabola (indicated by the dashed line). Right: a
rounded rectangle used in one of the convergence tests, consisting of a square of width 1

2
with two semicircles of diameter 1

2 on either end.

4.2. Convergence of Newton’s method. Recall that the threshold for deciding con-
vergence in Newton’s method was whether ‖xk+1− xk‖< ε. In our test cases, we
set10 ε = h p, where p is the expected order of accuracy of the class of polynomials
being used. Across all test problems it was found that in the vast majority of cases,
Newton’s method converged within 2–4 iterations. Table 4 illustrates the typical
convergence behaviour with a histogram counting the number of steps taken by
Newton’s method accumulated across the entire computational grid. Generally

Number of iterations in Newton’s method
Test case Polynomial

1 2 3 4 5 6 7–20 F E

2D ellipse Bicubic 0.02 33.6 64.6 1.2 0.2 0.1 0.01 0.2
2D ellipse Taylor degree 2 0.02 34.4 65.3 0.2
2D ellipse Taylor degree 4 0.3 78.9 20.8
2D square Bicubic 0.3 87.8 5.4 4.1 1.1 0.2 0.7 0.01 0.4
2D square Taylor degree 2 0.3 87.1 8.6 4.0 <0.01
2D square Taylor degree 4 0.3 87.2 0.4 7.5 4.6
3D ellipsoid Tricubic <0.01 9.7 89.4 0.6 0.2 0.04 <0.01 0.07 <0.01
3D ellipsoid Taylor degree 2 <0.01 9.3 90.7 0.05 <0.01 <0.01
3D ellipsoid Taylor degree 4 <0.01 62.2 37.8
3D cube Tricubic <0.01 72.4 10.9 10.3 3.7 0.5 1.5 0.1 0.6
3D cube Taylor degree 2 <0.01 71.2 19.1 9.7 <0.01
3D cube Taylor degree 4 <0.01 70.7 0.08 16.2 13.0 <0.01 <0.01

Table 4. Convergence of Newton’s method. In each case, executed on either a 256× 256
grid (in 2D) or 256× 256× 256 grid (in 3D), the percentage of grid points which needed
the indicated number of steps for convergence is shown; entries greater than 10% are in
boldface. A blank cell indicates exactly 0%, “F” means Newton’s method did not converge
within 20 iterations, and “E” means the iterate left the bounding ball that determines the
amount of overlap between adjacent grid cells.

10In fact, we set ε =max(10−14, h p) to ensure that convergence is declared when using a highly
resolved grid for which errors are limited to double precision arithmetic.
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deg = 3 bicubic deg = 2

deg = 3 deg = 4 deg = 5

k = 1
k = 10
k = 20

Figure 5. Effect of multiple reinitialisations on an interface, zooming in on a 6× 6 patch
of grid cells to observe cell-sized effects. Each patch shows the interface after one reinitial-
isation (solid line), after 10 reinitialisations (dashed-dot line), and after 20 reinitialisations
(dashed). Top left: reinitialisation applied to a circle of radius approximately 5.5 grid
cells, computed using a Taylor polynomial of degree 3. Remaining grids: reinitialisation
applied to the corner of a square where, except for the bicubic, a Taylor polynomial of the
indicated degree is used.

speaking, it is very rare that more than 6 iterations are needed. Note also that in the
case of the square and cube, the majority of grid points requires just two iterations:
when the closest point is on a flat face of the square/cube, only one iteration is
needed for convergence, but two iterations are necessary to detect this.

4.3. Repeated reinitialisation. In level set methods, it is often necessary to peri-
odically reinitialise the level set function as a distance function and a common
practice for doing this is to reinitialise φ every fixed number of steps. Reinitialising
as frequently as this may even be necessary to converge to the correct solution, such
as in the Voronoi Implicit Interface Method [25; 26] which evolves an unsigned
distance function. It follows that an important requirement of a reinitialisation
method is that any perturbation in the location of the interface should be made as
small as possible. As an example, if the time step for an evolving simulation is
1t = O(h2), then the level set function will be reinitialised approximately O(h−2)

many times over the course of the simulation. The accuracy of the reinitialisation
procedure must then necessarily be at least second order accurate — in fact, it often
needs to be much higher to ensure that accumulated errors from reinitialisation do
not dominate the overall error.
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In addition to requirements on the order of accuracy, it should also be confirmed
that the reinitialisation method is stable when invoked on the same problem multiple
times [10]. Let R(φ) be the operator which takes a grid-defined level set function φ
and returns an approximation to the signed distance function evaluated on the same
grid. Of interest is the error in the interface of R ◦ · · · ◦ R(φ) = Rk(φ) after k
reinitialisations, compared to the original interface of φ. Figure 5 illustrates the
behaviour for a smooth interface (a circle) and nonsmooth interface (the corner of a
square), zooming in on a 6×6 patch of grid cells. In Figure 5, the interface, defined
by the zero level set of the relevant polynomial of each grid cell, is shown for
k = 1, 10, and 20. For smooth interfaces, and provided the reinitialisation method is
at least third-order accurate, the effect of reinitialisation is essentially unobservable,
except on extremely coarse grids. For nonsmooth interfaces, we expect to see O(h)
perturbations; however, we do not wish the amount of perturbation to rapidly grow
as k is increased.

To analyse this more carefully, a metric measuring the amount of perturbation
is required. Here we use a metric that measures the maximum deviation in the
interface, defined by the Hausdorff distance dH : given two interfaces 01 and 02

(each a surface of codimension-one), define

dH (01, 02)=max
(
supx∈01

d(x, 02), supx∈02
d(x, 01)

)
, (4)

where d(x, 0i ) is the minimum distance from x to interface 0i . Figure 6 plots
the error11 for a circle in 2D, a sphere in 3D, a square in 2D, and a cube in 3D,
for k between 1 and 20 iterations, for all polynomial types considered in this
paper. We observe that in all cases, the error after multiple reinitialisation steps is
stable and remains on the same order as the original approximation error. Another
metric for measuring accuracy of reinitialisation methods is the ability to conserve
area/volume — since the Hausdorff metric bounds the error in area/volume con-
servation, it follows that the closest point algorithm also preserves volume (both
locally and globally) with at least the same order of accuracy.12

4.4. Computational efficiency. Let N be the number of grid cells containing the
interface. Then the basic computational complexity of the algorithm is: (i) O(N ) to

11To actually compute the Hausdorff distance, we supersample each interface by using a subgrid of
10d subcells per grid cell, such that the exact solution has a cloud of points {xi,exact} ⊂ 0exact, and the
approximate interface has a cloud of points {x j,h} ⊂ 0h . With these source points, we compute dH ≈
max(maxi d(xi,exact, 0h),max j d(x j,h , 0exact)), where d(·, 0exact) is evaluated using knowledge of
the exact solution, while d(·, 0h) is evaluated using Newton’s method, similar to that described in
Section 3.3, but with convergence to machine precision. Altogether, this is a sufficiently accurate
approximation of the true Hausdorff distance.

12In the case of the square, which has first order approximation errors at the corners of the square,
the area of the reinitialised square is in fact second order accurate.
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Figure 6. Error in the position of the interface after k repeated reinitialisations, where
the error is measured by the Hausdorff distance (4) between the exact interface and the
interface defined by the relevant polynomials of each grid cell. The legend in the bottom-
right figure applies to all figures. In each case, a domain [−1, 1]d is subdivided into a grid
of 128× 128 cells (in 2D) or 128× 128× 128 cells (in 3D). Top left: error for a circle of
radius 1

2 . Top right: error for a square of width 1. Bottom left: error for a sphere of radius
1
2 . Bottom right: error for a cube of width 1.

construct grid cell polynomials and sample their zero level set; (ii) O(N log N ), on
average, to construct the k-d tree; (iii) O(log N ), on average, per closest point query
in searching the k-d tree for the closest point in C (in the best case it is O(1); in the
worst case it can be O(N ), as for example when xq is at the centre of a sphere); and
(iv) O(1) cost per query point in applying Newton’s method in all cases. Roughly
speaking, timing of individual components of the algorithm shows that:

• When computing the closest point function in a narrow band with radius a fixed
number of grid cells (e.g., 5–15): constructing the polynomials takes 15–20% of
the time, sampling up to 5%, constructing the k-d tree up to 5%, searching the tree
between 40–70%, and running Newton’s method between 15–30%.

• When computing the closest point in the entire domain, the size of N relative to
the total number of grid points is more relevant. For medium to highly resolved
grids, the majority of the overall computation time is spent solely in searching the
k-d tree and running Newton’s method. Depending on the dimension of the problem
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Test problem FMM High-order

2048× 2048 grid, narrow band 0.08 s 0.1 s
2048× 2048 grid, entire domain 1.6 s 1.9 s
256× 256× 256 grid, narrow band 1.6 s 1.8 s
256× 256× 256 grid, entire domain 20 s 36 s

Table 5. Timing tests for a circular/spherical interface, performed on an Intel i7 3.1 GHz
desktop machine (single core), comparing a second-order fast marching method [27] to the
high-order closest point algorithm.

and accuracy of the polynomials, this ranges from 20% of the time in Newton’s
method and 80% of the time in searching to an even split between the two.

It follows that no single component of the algorithm clearly dominates the
overall cost. To provide a general idea of the practical performance of the method,
Table 5 compares its speed to a fast marching method which has been optimised
for computing distances. (It is important to note that the two methods are intended
for different classes of problems, so the comparison in speed should only be used
as a guideline.) Further improvements in efficiency could be made by taking into
account specific computing architecture, e.g., using more advanced optimisation
techniques such as SSE instructions in k-d tree searches, but in the interest of
simplicity and code portability these were not considered here.

4.5. Subgrid features. As our final example, we demonstrate that the algorithm for
finding closest points on implicitly defined surfaces can accurately capture subgrid
features in the interface, such as “droplets” completely contained within one grid
cell. The problem setup is as follows. We begin with a level set function φ that
is defined only at grid points. In the context of subgrid resolution, we then make
the natural assumption that subgrid details are successfully captured by high-order
approximations of φ on each grid cell.

Given this assumption, the pertinent issue in the closest point algorithm is whether
the sampling procedure described in Section 3.2 can successfully detect and sample
these subgrid details. In Section 3.4 it was discussed how this could be achieved
by using polynomial bounds to automatically and adaptively determine where to
place points on the zero level set of each grid cell’s polynomial. Once sampled
sufficiently well, Newton’s method will successfully find the closest point on the
interface. Figure 7 illustrates a pair of two-dimensional examples in which the
values of φ were defined on the grid points via a scaled version of the function

f (x, y)= x2
−

1
27 y3
+

2
3 y−α.

Here α is a parameter determining which level set is considered the interface. Two
cases with different values of α are shown in Figure 7, resulting in two topologically
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Figure 7. Capturing subgrid details of an interface defined by a high-order approximation
on a 5 × 5 patch of grid cells. Here the level set function values are defined only at
grid points. Shown are the contours of the computed signed distance function, evaluated
throughout the 5× 5 patch of grid cells. Left: a situation where three cells containing the
interface have the same sign of the level set function at all their vertices. Right: an interface
with two connected components with a droplet completely contained within one grid cell.

different interfaces. In either case, the cells in the middle cannot detect the presence
of the interface by examining only the signs of φ at their vertices. High-order
polynomial approximations can nevertheless recover these subgrid details, and
these are accounted for in the closest point algorithm13 throughout the 5× 5 patch.
An analogous problem in three dimensions is shown in Figure 8 using the same-
sized grid cells, where again isolated droplets and long thin interfaces are correctly
accounted for.

Figure 8. Analogy of Figure 7 in three dimensions corresponding to a 5× 5× 5 patch of
grid cells for which the interface (shown in dark grey) exhibits subgrid details. Though not
shown in the figure, the cell sizes are identical to those in Figure 7. Here contours of the
computed signed distance function have been cut by a plane in order to see inner details.
Left: a situation in which the interface passes through several grid cells that have the same
sign of the level set function on all their vertices. Right: a droplet completely contained
within one grid cell.

13While automatic sampling is possible, in this particular example we used a simple method that
used a subgrid of 10× 10 to sample with (see Section 3.2) based on a Taylor polynomial of degree 3.
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5. Concluding remarks

The presented method for computing high-order approximations of closest points
on implicitly defined surfaces is straightforward — given a level set function defined
by a high-order polynomial on each element of the computational domain, the zero
level set is sampled to produce a sufficiently dense cloud of points approximating
the interface. A closest point calculation proceeds by first finding the closest point
in the cloud, and then improving this guess by using Newton’s method. The results
show that the algorithm is both robust and efficient — typically only 2–3 iterations of
Newton’s method are required to achieve convergence. In comparison to marching-
based or PDE-based methods, for which implementation on unstructured meshes
can be subtle, the presented approach can be used on highly unstructured meshes,
or indeed at arbitrary query points. In the case of level set functions that are
defined on a rectangular Cartesian grid, high-order polynomial approximations
based on least-squares interpolation were presented. In other applications, such as
gradient augmented level set methods or high-order discontinuous Galerkin finite
element methods, the polynomials defining the interface are naturally specified.
Convergence tests were performed and showed orders of accuracy of up to six
in both the computed distance function and closest point function. For smooth
problems, one obtains the optimal order of accuracy in both the computed distance
and closest point functions. Near curvature singularities, the distance function
remains high-order accurate, but the closest point function may lose up to two
orders of accuracy.

The algorithm can be used to accurately reinitialise level set functions in level set
methods. Though no time evolving simulations were presented in this paper, it has
been successfully applied to a variety of moving interface problems which require
very frequent reinitialisation, including in the Voronoi Implicit Interface Method
[25; 26] for tracking interconnected interfaces with junctions. Some additional
applications include:

• Nonconstant extensions. A common method for extending a function f defined
on the interface is to make it constant along characteristics of the distance
function, i.e., fext(x) = f (cp(x)). Some applications require this process
to be bootstrapped in such a way that the extension is a linear or quadratic
polynomial along characteristics; see, e.g., [29]. This can be achieved by a
one-pass algorithm that calculates

fext(x)= f0(cp(x))+‖x−cp(x)‖ f1(cp(x))+ 1
2‖x−cp(x)‖2 f2(cp(x))+· · · ,

where the fi are the coefficients of the polynomial restricted to a particular
characteristic.
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• High-order evaluation of curvature of the signed distance function. Many
applications of the level set method require accurate calculation of the mean
curvature κ of the interface or other level sets of the signed distance function.
Let n be the normal vector field of the signed distance function determined by
the interface of a given level set function φ (which is not necessarily itself a
distance function). Then it can be shown that derivatives of n at a point x are
related to the derivatives of n evaluated at the closest point cp(x) via

∇n(x)=
(
I +‖x − cp(x)‖∇n(cp(x))

)−1
∇n(cp(x)),

while derivatives of n at a point y on the interface can be evaluated with

∇n
(
y)=

1
‖∇φ‖

(I−nnT )D2φ(I−nnT )
∣∣

y, n(y)=
∇φ(y)
‖∇φ(y)‖

, y ∈ {φ= 0}.

These relations can be used to calculate curvature information of the signed
distance function, such as the mean curvature κ = tr(∇n), via derivatives of
φ evaluated only at the interface. This fits into the presented framework as
we can then use the high-order polynomials approximating the interface itself,
rather than relying on a finite difference scheme (say) applied to a precomputed
grid-defined signed distance function.

We conclude by briefly describing the C++ code that accompanies this article
(available on the author’s web site). The code implements all the methods presented
in this paper and can be used to verify the convergence results. In particular:

• Much of the code is templated on both the dimension d and the class of
polynomials being used. To assist with part of this functionality, the code
makes use of blitz++ [6], an open-source implementation of d-dimensional
arrays and fixed-length vectors in C++ with convenient expression template
techniques.

• Ten different types of polynomials are provided: bicubic, tricubic, and each of
the Taylor polynomials, with their corresponding pseudoinverses precomputed,
as well as routines to evaluate the polynomial, its gradient and Hessian, using
Horner’s method.

• A k-d tree optimised for codimension-one surfaces (as described in the Appen-
dix) is also supplied.

• A basic method for reinitialising a level set function as a signed distance
function is also provided — it can be used to adapt the methods to different
polynomial types and other applications.
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Appendix: A k-d tree optimised for codimension-one manifolds

Given a fixed query point xq ∈ Rd , we would like to determine which point in
C = {x1, . . . , xN } ⊂Rd is closest to xq . One of the most efficient data structures for
closest point queries such as this is a k-d tree. A k-d tree organises the set of points
into a hierarchy based on geometric considerations and allows for closest point
queries in time approximately O(log N ). Each nonleaf node of the tree has two
children: one child contains all the points on the “left” and the other child contains
all the points on the “right.” When searching a node in the tree for the closest point,
the child which is more likely to contain the closest point is searched first; the
other child is searched only if it could potentially contain a closer point than the
current candidate. In a conventional k-d tree, “left” and “right” are determined by a
hyperplane dividing the node’s set of points into two, with normal direction equal
to the x-axis, y-axis, z-axis, etc., cycled down the tree — the k in k-d tree refers to
there being k dimensions to cycle through.

In the case that the points come from smooth surfaces, we can use the geometry
of the surface itself to improve the efficiency of a k-d tree. The main idea for the
tree developed in this work is to apply coordinate transformations in order to create
“tight” bounding boxes. By using tighter bounding boxes, larger portions of the
tree can be avoided when searching the tree. The essential ideas are as follows; for
further details the reader is referred to the C++ code.

A node of the tree is either a leaf node, or else has exactly two children. A
leaf node contains leafsize many points together with a bounding box of those
points; typically leafsize is between 10–50 points, tunable according to computer
hardware characteristics.14 Each nonleaf node has four parameters: a pointer to the
“left” and “right” children, a bounding box, and a pointer to a rotation matrix. The
bounding box is of all the points represented by the node, i.e., the union of the bound-
ing boxes of all its leaf nodes. The rotation matrix pointer, if not null, determines the
coordinate transform which has been applied to all points represented by the node.

Delaying the description of constructing the tree for a moment, consider searching
the tree to find the closest point to xq . The basic routine for searching a node
recursively is shown in Algorithm 2 and is initiated by calling search on the root
node with x = xq . The output is the index i of the closest point in C , where d2 is
the squared distance15 from xq to point i . Except for line 6, the search procedure is
essentially identical to a normal k-d tree. The difference is that some nonleaf nodes
may have a rotation matrix R, whose purpose is to apply a coordinate transform to

14It is often much more efficient to perform a linear search on a handful of points in the leaf nodes,
compared to searching a tree whose leaf nodes contain a single point.

15It is much faster to compute and store squared distances, rather than the distance itself, as the
former avoids expensive sqrt calls.
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1: if node is the root then initialise i := −1 and d2
:=∞.

2: if node is a leaf then
3: for each of the points x j in the leaf do
4: if ‖x j − x‖2 < d2 then update i := j and d2

:= ‖x j − x‖2.

5: else
6: if node has a rotation matrix R then set x← Rx .
7: Calculate the squared distances d2

L and d2
R from x to the bounding boxes of the left

8: and right child nodes. (If inside a bounding box, the distance is zero.)
9: if d2

L < d2
R and d2

L < d2 then
10: search(left child, x).
11: if d2

R < d2 then search(right child, x).
12: else if d2

R < d2
L and d2

R < d2 then
13: search(right child, x).
14: if d2

L < d2 then search(left child, x).

Algorithm 2. search(node, x).

the query point x (the points contained in the children of such a node have already
had their coordinates transformed). Ignoring the role of R for the moment, consider
what makes k-d trees efficient: the ability to avoid searching entire parts of the
tree. In particular, if the minimum distance from the query point to a child node’s
bounding box is larger than the distance to the current candidate closest point,
then there is no point in searching that child node. It follows that a k-d tree can
be made more efficient by attempting to make these bounding boxes as tight as
possible. This is where we can utilise the fact that the cloud of points originate
from a surface: after enough subdivision, groups of points are situated close to the
same tangent plane of the surface, and so a bounding box rotated to align with the
plane will be “thin.” One possibility therefore is to store at each node of the tree a
rotated bounding box. Instead, a more efficient approach is to transform the points
themselves (once only, upon construction of the tree) by applying rotation matrices.

To explain the calculation of these rotation matrices, we turn now to the construc-
tion of the tree. Like search, this is also done recursively, and the basic method
is shown in Algorithm 3. The tree construction is initiated by calling buildtree
on the root node with the entire range of points ( j` = 1, ju = N ). Except for
lines 5 to 13, the algorithm is essentially the same as constructing a normal k-d
tree. These lines are responsible for deciding whether to perform a coordinate
transformation and the specifics of that transform. Generally speaking, it is more
efficient to delay the transforms until the k-d tree has subdivided sufficiently many
times — on line 6, we can thus use metrics based on the current depth of the tree
and how many levels there are to a leaf node; in addition, once a set of points is
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rotated, it is essentially unnecessary to consider them again for rotation. If the node
is being considered for coordinate transformations, we must estimate the normal
n of its set of points. One possibility for doing this is to use principal component
analysis to estimate the principal direction for which the points change position
the least, leading to an eigenvalue problem on the covariance matrix of the points’
positions. A simpler and more efficient method for estimating n is as follows:

Compute the mean µ := ( ju − j`+ 1)−1∑ ju
j= j` x j .

Initialise n := (1, 0, . . . , 0) ∈ Rd .
for j = j` to ju do

n← n−
(x j −µ) · n
‖x j −µ‖2

(x j −µ)

if n 6= 0 then return n/‖n‖ else do not consider transform.

Geometrically, this procedure removes components from n that are estimated to
be in the tangent space. Although the calculation of n depends on the ordering of
the points, it is unnecessary to estimate n with a high amount of accuracy. Returning
to Algorithm 3, on line 10 the degree to which the new bounding box is “thin” is
measured by comparing the new coordinates (in the normal direction) with 10%
of the longest length of the untransformed bounding box. The factor of 10% was
determined empirically to lead to the best overall efficiency. The remaining details
of implementing this k-d tree are left to the C++ code.

In short, the above k-d tree, which has been optimised for point clouds arising
from smooth surfaces, is about 4 to 10 times faster than a conventional k-d tree.

The reader may wonder if other methods of characterising the bounding regions
may lead to even more efficient tree traversal. For example, if the points are known
to come from a sphere (say) or a surface that locally looks like a sphere, one might
construct a bounding “shell” which is curved to match the curvature of the sphere.
While such an approach is possible, it turns out that computing the distance to a
bounding shell is so computationally expensive that the overall cost of traversing
the tree is greater, despite there being fewer nodes to search.

One final possibility for very efficient closest point queries is to use a combination
of data structures. It is possible to construct a data structure with search operation
costing O(1) (instead of O(log N ) on average as it is with k-d trees), specifically
for points arising from smooth surfaces, provided the surfaces are very finely
sampled. The idea is to use a k-d tree (or possibly a quadtree/octree/etc.) for the
initial hierarchical subdivision of points, but only use a fixed number of levels
so that the depth of the tree is bounded. The leaf nodes of the tree would then
represent many thousands of points, and supposing that they essentially form a
flat surface, these points could be binned into a conventional (d − 1)-dimensional
array, rotated to be tangent with the surface. Finding closest points in an array
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1: Compute the bounding box of the node.
2: if ju − j`+ 1< leafsize then
3: Mark node as a leaf node and record range j`, ju .
4: return
5: Initialise node’s R matrix as null.
6: if node is being considered for coordinate transformation then
7: Estimate the normal n of the surface approximated by the points {x j` , . . . , x ju }.
8: Compute the coordinates of the points as though n was an axis:

αmin = min
j`≤ j≤ ju

x j · n, αmax = max
j`≤ j≤ ju

x j · n.

9: Determine the longest length L of the bounding box computed on line 1.
10: if αmax−αmin < 0.1L then
11: Calculate an orthonormal basis {r1, . . . , rd} using the normal n as the first axis.
12: Set the node’s R matrix as R = [r1, . . . , rd ].
13: Transform all points: for j` ≤ j ≤ ju do x j ← Rx j .

14: Determine the axis k along which the (possibly new) bounding box of this node has
greatest extent.

15: Calculate the median m =
⌊ 1

2 ( j`+ ju)
⌋

.
16: Rearrange the points {x j } such that x j,k ≤ xm,k for all j < m and x j,k ≥ xm,k for all

j > m.
17: Split the points into two halves and build the left and right child nodes:

node.left = new node; buildtree(node.left, j`, m)
node.right = new node; buildtree(node.right, m + 1, ju)

18: return

Algorithm 3. buildtree(node, j`, ju ).

such as this can be made to have O(1) cost, provided the points are essentially
uniformly scattered throughout array. This idea was tested and compared with
the performance of the above k-d tree. Despite being a O(1) search algorithm,
the constant is sufficiently large that no benefits are obtained for standard-sized
reinitialisation problems in level set methods — in other words, the interface is
rarely “flat enough” compared to the resolution of the grid. The approach may be
beneficial for very large 3D problems (such as those arising from 256× 256× 256
grids or higher). For medium sized problems, the calculations required to search the
k-d tree, and then transform the problem into searching a rotated array of binned
particles, is too expensive compared to the above k-d tree with slightly larger depth.
(On a related note, different techniques are possible for adapting k-d trees and
other space partitioning algorithms to situations where the point data arises from
a possibly unknown low-dimensional manifold embedded in a high number of
dimensions; see, e.g., [11].)
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ON INFERENCE OF STATISTICAL REGRESSION MODELS
FOR EXTREME EVENTS BASED ON
INCOMPLETE OBSERVATION DATA

OLGA KAISER AND ILLIA HORENKO

We present a computationally efficient, semiparametric, nonstationary framework
for statistical regression analysis of extremes with systematically missing covari-
ates based on the generalized extreme value (GEV) distribution. It is shown that
the involved regression model becomes nonstationary if some of the relevant
model covariates are systematically missing. The resulting nonstationarity and
the ill-posedness of the inverse problem are resolved by deploying the recently
introduced finite-element time-series analysis methodology with bounded vari-
ation of model parameters (FEM-BV). The proposed FEM-BV-GEV approach
allows a well-posed problem formulation and goes beyond probabilistic a priori
assumptions of methods for analysis of extremes based on, e.g., nonstationary
Bayesian mixture models, smoothing kernel methods or neural networks. FEM-
BV-GEV determines the significant resolved covariates, reveals directly their
influence on the trend behavior in probabilities of extremes and reflects the im-
plicit impact of missing covariates. We compare the FEM-BV-GEV approach to
the state-of-the-art GEV-CDN methodology (based on artificial neural networks)
on test cases and real data according to four criteria: (1) information content of
the models, (2) robustness with respect to the systematically missing information,
(3) computational complexity and (4) interpretability of the models.

1. Introduction

Modeling of extreme events plays a crucial role in different areas of science (e.g., in
weather/climate research, economics, biology/medicine) Simulation and prediction
of such events is challenging since by definition they are rare and occur irregularly.
To approach these challenges, statistical modeling of extreme events is widely
accepted (as an alternative to deterministic physical/mathematical modeling based
on “first principles”). Extreme value analysis (EVA) is a standard tool in statistics
for description of probability distributions of extremes; its foundations were laid by
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E. Gumbel, W. Weibull and M. Fréchet already in the first half of the 20th century;
for more details, see [13; 17; 19]. EVA distinguishes between two types of extremes:
(a) exceedances over a higher or lower threshold and (b) block maxima or minima,
e.g., annual extremes. In this work, we focus on block maxima. Consider a sample
of identical and independently distributed (i.i.d.) variables Y1, . . . , Yn with common
distribution F( · ). Analogously to the limit distribution of the partial sums of the
sample, described by the central limit theorem, there exists a limit distribution for
the sample extremes Xn =max{Y1, . . . , Yn} (or Xn =min{Y1, . . . , Yn}) as n→∞:
the limit distribution of P[Xn ≤ x] = Fn(x), as n→∞, is the generalized extreme
value (GEV) distribution introduced by Fisher and Tippet (1928) and Gnedenko
(1943), which has the form (see [17, Theorem 1.1.13])

G(x;µ, σ, ξ)= exp
(
−

[
1+ ξ

x −µ
σ

]−1/ξ)
(1)

with location, scale and shape parameters µ, σ, ξ ∈ R, respectively, and subject to
[1+ ξ(x −µ)/σ ]> 0 and σ > 0. By fitting model (1) to a series of block maxima,
we imply an unchanging behavior of the underlying dynamics (stationarity). This is
obviously not always the case; e.g., in the context of climatology/meteorology, the
monthly maxima of temperature or precipitation should be affected by the periodic
seasonal effects. The most general way to release the stationarity assumption is to
include external influence (denoted as covariates, modes or factors) by constructing
the GEV parameters as functions of covariates, i.e., as regression models. And
thus, the aim of data-based analysis of block maxima will be to infer the values
of the GEV regression parameters from observed data. Standard state-of-the-art
methods applicable to this task can be roughly divided into two groups: parametric
and nonparametric regression approaches. In parametric approaches, the GEV
parameters can be expressed as linear combinations of some explicitly known
and given functions (e.g., sine/cosine functions to model the seasonal trends in
meteorology). The nonlinearity of explicit covariate combinations is achieved
deploying the standard tools from machine learning, e.g., artificial neural networks
(ANNs) [8] and support vector machines (SVMs) [35]. Combination of GEV with
a special form of ANN called conditional density-estimation network (CDN) has
recently led to a creation of the GEV-CDN [8], a robust and flexible approach to
the nonstationary and nonlinear extension of (1). However, GEV-CDN as well as
all other parametric nonstationary extensions of (1) rely on the explicit availability
of all of the relevant covariates and some strong probabilistic assumptions about the
systematically missing/unresolved covariates, e.g., i.i.d. assumption for unresolved
covariates. As a result, these methods implicitly assume time independence of
regression coefficients (e.g., of the hidden neurons weights and biases in the case
of GEV-CDN). But due to the multiscale nature of most of the realistic applications
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(e.g., in climate research, economics or biology/medicine), one would never be
able to guarantee that the set of information collected about the analyzed system is
complete. One would also not be able to guarantee that all of the necessary proba-
bilistic assumptions are fulfilled a priori for the analyzed system. As demonstrated
in this paper, the violation of the i.i.d. condition for the systematically missing
covariates leads to the conceptual and practical problems of the standard parametric
approaches and may result in the wrong/biased analysis of the statistics of extremes.

Nonparametric approaches for regression analysis of block maxima exploit local
likelihood smoothing [16] or Bayesian techniques [15; 42]. The limitations of
these methods are their locality (e.g., a local stationarity assumption) and a priori
parametric assumptions about the distributions of the GEV parameters. Another
strategy is to involve mixture models and hidden Markov models (HMM) [38; 3; 2].
Such approaches require a priori knowledge about the probabilistic model for the
time-dependent GEV parameters, e.g., stationarity and Markov assumptions for
the hidden parameter switching process. Additionally, all of the above-mentioned
state-of-the-art methods may lead to the ill-posed parameter identification problems
(in sense of Hadamard [22]), resulting in the over-fitting of the available data. Most
of the above approaches are realized as optimization algorithms for some nonlinear,
nonconvex and often nondifferentiable quality functionals. That is, the obtained
results are not unique and depend strongly on the initial values and other tuning
parameters of the respective computational algorithms. One of the most frequently
used methods of transforming an ill-posed problem to a well-posed one is called
regularization. This approach is based on imposing some additional (reasonable)
assumptions on the original problem formulation, e.g., that the solution should
be “small” in an appropriately chosen norm [45]. In statistics and different areas
of applied data analysis, approaches like Tikhonov and LASSO regularization are
widely used in the context of, e.g., parametric regression and spline-interpolation
problems [48; 44; 24], support vector machines [47], compressed sensing and
matrix-completion methods [7].

Here we exploit a regularized and nonparametric strategy for general parameter
identification in nonstationary problems [26; 27; 41]. It is based on the finite-element
discretization (FEM) of the resulting inverse problem subject to bounded variation
(BV) of the nonstationary model parameters in time. The FEM-BV framework
allows computationally very efficient and highly scalable numerical implementation,
either based on the adaptive FEM solvers (usually deployed for the adaptive numeri-
cal solution of partial differential equations) [25] or based on adaptive Markov-chain
Monte Carlo (MCMC) schemes [18]. Resulting framework was demonstrated to be
appropriate for a wide range of nonstationary inverse problems and applications,
ranging from climate/weather research [26; 27], molecular dynamics [29] and DNA
sequence analysis [41] to sociology [28] and economics [41].
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In this paper, we present a unified approach for joint solving of all of the above
discussed difficulties (i.e., the problem of systematically missing covariates, numer-
ical complexity and the ill-posedness/over-fitting problem) in data-based analysis of
block maxima. To address the issue of missing covariates, we exploit the central limit
theorem for independent variables and express each GEV parameter by a fully non-
stationary regression model, based only on resolved covariates, with a nonstationary
additive noise. The resulting nonstationarity of (1) is interpolated by a linear convex
combination of K ≥ 1 local stationary models and a nonstationary switching process
between them. The corresponding inverse problem is regularized by employing
FEM-BV methodology [25; 41]. The resulting quality functional is optimized by
adjusting the adaptive MCMC methodology (originally proposed in [18]) to a numer-
ical solution of the resulting FEM-BV-GEV problem in optimization formulation.

The FEM-BV-GEV approach described in the current manuscript avoids a pri-
ori assumptions on stationarity and trend behavior of the GEV parameters. The
proposed method allows an explicit data-driven recovery of the implicit impacts of
unresolved modes in the situations when these unresolved modes are neither i.i.d. nor
available in the measurement. The local linearity of the GEV parameter functions
enables direct interpretation of the influence of covariates on the underlying dynam-
ics of block maxima but can lead to the biased results in cases when the dynamics is
locally highly nonlinear (i.e., in the scenarios where parametric GEV-CDN methodol-
ogy based on neural networks is supposed to produce better estimates). We show that
under appropriate assumptions FEM-BV-GEV includes/extends standard techniques
based on HMM or kernel smoothing and, therefore, consider the nonlinear GEV-
CDN approach as a main competitor for the FEM-BV-GEV in a series of numerical
studies. This work shows that the resulting numerical framework, despite the local
linearity, addresses the above-mentioned difficulties of the standard methods and
demonstrates high robustness with respect to systematically missing covariates and
is computationally highly efficient. These issues make the proposed methodology
an adequate tool for analysis of extremes in very large realistic applications.

This manuscript is organized as follows. In Section 2, we derive in detail the FEM-
BV-GEV approach. We compare FEM-BV-GEV to the state-of-the-art methods
from conceptual and applied viewpoints in Section 3. The iterative numerical
algorithm of FEM-BV-GEV is described in Section 4. In Section 5, we exemplify
the application of FEM-BV-GEV and compare its performance with GEV-CDN
[8] on test-cases and regression analysis of temperature extremes (30-day maxima
for the period between 1950 and 2011) for Lugano and Berlin. Comparison is
performed according to the four criteria: (1) information content of the models
(jointly measuring complexity and quality of the model fit), (2) robustness with
respect to the systematically missing information, (3) computational complexity
and (4) understandability/interpretability of the models.
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2. FEM-BV-GEV

In this work, we focus on the fully time-dependent GEV distribution defined by its
probability density function (pdf)

f (x;µ(t), σ (t), ξ(t))= c(t) exp
(
−

[
1+ ξ(t)

x −µ(t)
σ (t)

]−1/ξ(t))
, (2)

where t denotes the time variable and c(t) the normalization constant

c(t)=
1
σ(t)

[
1+ ξ(t)

x −µ(t)
σ (t)

]−1/ξ(t)−1
(3)

and the model parameters have to fulfill the constraints[
1+ ξ(t)

x −µ(t)
σ (t)

]
> 0 and σ(t) > 0 ∀t. (4)

In order to address the time-dependence, we intend to express each GEV parameter
as a function dependent on covariates as a linear regression model. However, in
real applications, one is usually confronted with the problem that some (or most)
potentially relevant covariates are missing in the measurements.

One possible source for the systematically missing covariates is the multiscale
dynamics of the underlying process; e.g., processes in climate or molecular dynamics
may involve multiple time and length scales [39; 40; 11]. That is, only observing
modes on a slow time scale (resolved modes), we neglect modes on the faster scale
(unresolved modes). An additional reason for the missing information/measurements
is that, even on just one single time scale, one cannot resolve all covariates because
one is interested in regression models with a finite number of degrees of freedom.
In particular, this is true for regression analysis of extremes because of the relatively
small statistics. Thus, we have to select a set of resolved covariates and to account
for the influence coming from the systematically unresolved/missing information.

Several disciplines cover the issue of missing information; e.g., in statistical
regression analysis, the issue of unresolved information is often addressed under
the theme “unobserved heterogeneity” [6]. Thereby, the unobserved covariates are
included via a stationary error term into the regression model and the posterior
model depends on the a priori assumption about the distribution of this error term.
However, there is often no closed expression of the posterior.

In this work, we reduce the involved linear regression model by splitting it into
two linear parts, corresponding to resolved and unresolved modes, and incorpo-
rate the influence of unresolved modes as a nonstationary additive noise. In the
following, we consider all possible modes dependent on time t and split them into
resolved U (t) ∈ RS and unresolved U un(t) ∈ RQ factors, further on denoted as
Ut = (u1(t), . . . , uS(t)) and U un

t = (u
un
1 (t), . . . , uun

Q (t)). Then we normalize the
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latter and obtain

µ(Ut ,U un
t )= µ0+

S∑
s=1

µsus(t)+
1
Q

Q∑
q=1

νquun
q (t), (5)

where µs ,s= 1, . . . , S, and νq , q = 1, . . . , Q, are the regression coefficients. Under
the assumption that the unresolved modes are i.i.d. for all t , application of the
central limit theorem reduces the unresolved modes to the additive noise

µ(Ut)= µ0+

S∑
s=1

µsus(t)+ ε with ε ∼ N(µ̂, σ̂ ). (6)

In real applications, the i.i.d. assumption may be too strong. Instead, we can
apply the central limit theorem for independent variables in a formulation that
requires a much weaker Lindeberg condition [36]. And in case the modes are not
independent, the Karhunen–Loève transformation can be used to decorrelate the
processes [37; 33]. Thus, under the assumption that the Lindeberg condition holds,
we rewrite (5):

µ(Ut ,U un
t )= µ0+

S∑
s=1

µsus(t)

+
1
Q

Q∑
q=1

νq
(
uun

q (t)− E[uun
q (t)]

)
︸ ︷︷ ︸

→ε(t)

+
1
Q

Q∑
q=1

νqE[uun
q (t)]. (7)

By inserting µ0(t)= µ0+ (1/Q)
∑Q

q=1 νqE[uun
q (t)] and ε(t)∼N(0, σ̂ (t)) into (7),

we obtain the reduced, nonstationary regression model:

µ(t,Ut)= µ0(t)+
S∑

s=1

µsus(t)+ ε(t). (8)

Note that in the regression formulation (8) parameter µ0(t) is a time-dependent
function and not a constant number as in the case of parametric statistics. That
is, application of parametric approaches would produce biased results, and thus,
nonparametric statistical methods would be required in such situations. More-
over, without loss of consistency, we generalize (8) by releasing the stationarity
assumption of the coefficients µs for s = 1, . . . , S:

µ(t,Ut)= µ0(t)+
S∑

s=1

µs(t)us(t)+ ε(t). (9)

Analogously to (9), we express the scale and the shape parameters:
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σ(t,Ut)= σ0(t)+
S∑

s=1

σs(t)us(t)+ ε̃(t), ε̃(t)∼ N(0, σ̃ (t)), (10)

ξ(t,Ut)= ξ0(t)+
S∑

s=1

ξs(t)us(t)+ ε(t), ε(t)∼ N(0, σ (t)). (11)

The regression models in (9)–(11), which are reduced to resolved covariates only,
become stochastic. Thereby, each GEV model parameter has, e.g., a normal dis-
tribution as a prior in Bayesian inference context [13]. Since there is no closed
formulation for the resulting posterior, MCMC-based algorithms can be used to
obtain the distribution of the posterior [13]. In the current manuscript, we focus on
the mean behavior of parameters and thus omit the normal distributed noise terms
in (9)–(11). Please note, by considering the mean behavior, we obtain deterministic
model parameters, which still account for the unresolved information through the
nonstationary bias/off-set terms µ0(t), σ0(t) and ξ0(t). The consideration of the
complete stochastic regression model with explicit error terms remains for future
study. Finally, the nonstationary GEV distribution (2) is parametrized by

2(t)=
(
µ0(t), . . . , µS(t), σ0(t), . . . , σS(t), ξ0(t), . . . , ξS(t)

)
. (12)

In this work, we aim to avoid a priori probabilistic or deterministic assumptions
on 2(t). Instead, we approximate the nonstationary distribution of block maxima
by K ≥ 1 local stationary GEV distributions and a hidden/latent switching process.
Thereby, we consider a nonparametric and nonstationary hidden switching process
in order to avoid a priori assumptions like stationarity or Gaussian or Markovian
behavior (necessary for mixture models and HMMs [38; 3; 2]). Elimination of a
priori assumptions implies ill-posedness of the optimization problem in the sense
of [22]: in each time step, there will be infinitely more unknown variables than
observations. To regularize the problem, we apply the FEM-BV methodology for
time-series analysis introduced in [25; 26; 27]. FEM-BV formulates the inverse
problem for nonstationary dynamical systems as a regularized variational problem
by discretizing the hidden switching process with finite elements and restricting its
bounded variation. In the following, we formulate the FEM-BV-GEV approach in
two steps: (a) interpolation and (b) regularization.

2.1. FEM-BV interpolation. The FEM-BV approach assumes that the model pa-
rameter2(t) changes slower than the observed series X (t) (in the following denoted
by X t with t = 1, . . . , T ). Then the underlying dynamics can be approximated
by a set of K ≥ 1 local stationary models and a nonstationary switching process
0(t)= (γ1(t), . . . , γK (t)). For that, FEM-BV interpolates the model distance func-
tion g(X t ,2(t)) (describing the error of the nonstationary model with parameters
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2(t) at time t in reproducing the observation X t ) by a linear convex combination
of K local stationary model distance functions.

The FEM-BV approach can be ranged into the class of clustering-based methods,
where the K local stationary models correspond to K clusters and the switching
process 0(t) is the affiliation of the data to one of the clusters. Most popular standard
methods of data clustering (such as K-means, Gaussian mixture model, hidden
Markov models, etc.) can be obtained as unregularized special cases of this more
general FEM-BV-framework. These standard methods can be obtained in FEM-
BV-framework for some specific choices of the model error function g(X t ,2(t));
e.g., the choice of the l2-distance between X t and 2(t) as g(X t ,2(t)) with no
further regularization of 0(t) results in the standard K -means clustering [41]. The
connection to classical mixture models and hidden Markov models is discussed in
Section 3. We apply the FEM-BV interpolation to our problem by considering for
each local GEV model the parametrization

µi (Ut)= µi0+

S∑
s=1

µisus(t), i = 1, . . . , K , (13)

and analogous expressions for σi (Ut) and ξi (Ut) and defining the local model dis-
tance function as the local negative log-likelihood function with θi = (µi0, . . . , µi S,

σi0, . . . , σi S, ξi0, . . . , ξi S), i = 1, . . . , K ,

gGEV(X t , θi )= log(σi (Ut))+
(

1+ ξi (Ut)
X t −µi (Ut)

σi (Ut)

)−1/ξi (Ut )

+

(
1+

1
ξi (Ut)

)
log
(

1+ ξi (Ut)
X t −µi (Ut)

σi (Ut)

)
. (14)

Then for 2= (θ1, . . . , θK ), the averaged (interpolated) model distance functional
is defined by

L(0(t),2)=
T∑

t=1

K∑
i=1

γi (t)gGEV(X t , θi ) (15)

with constraints on model parameters[
1+ ξi (Ut)

X t −µi (Ut)

σi (Ut)

]
> 0 and σi (Ut) > 0

for t = 1, . . . , T and i = 1, . . . , K (16)

and with convexity constraints on 0(t)= (γ1(t), . . . , γK (t))

K∑
i=1

γi (t)= 1, t = 1, . . . , T, (17)

γi (t)≥ 0, t = 1, . . . , T, i = 1, . . . , K . (18)
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2.2. FEM-BV regularization on 0(t). Minimization of (15) with constraints (16)–
(18) is ill-posed. FEM-BV regularization exploits the observation that many real
processes feature persistent behavior. Persistence can be imposed through the
bounded variation of the switching process 0(t) by

|γi |BV(0,T ) =

T−1∑
t=1

|γi (t + 1)− γi (t)| ≤ Ci , i = 1, . . . , K , (19)

where Ci denotes the maximal number of allowed transitions between the model i
and all the other models in the time interval [1, T ]; further on, we will refer to
C = max{C1, . . . ,CK }. Please notice that, since the natural boundary of C is
given by T (the number of observed time steps), involving constraint (19) into the
optimization problem does not confine the solution space. Now the minimization
of (15) with constraints (16)–(19) is well-posed according to 0(t). In the following,
we denote the minimization problem

(0∗(t),2∗)= argmin
0(t),2

L(0(t),2) with respect to constraints (16)–(19) (20)

as the FEM-BV-GEV approach and the optimal FEM-BV-GEV parameters as
(0∗(t),2∗).

2.3. Model selection. In this section, we discuss how to choose the optimal FEM-
BV-GEV parameters K and C . Moreover, we aim to detect the most significant
combination of resolved covariates Ut ∈RS (S is the number of resolved covariates);
in the following, we denote each combination by ucomb. Thus, for different K , C
and ucomb, we apply the FEM-BV-GEV approach and obtain a candidate model M .
Denoting the number of all possible K as NK and the number of all possible C
as NC , we obtain in total

NK NC

S∑
s=1

S!
(S− s)! s!

(21)

different models and choose the optimal one according to model selection criteria,
e.g., the second-order Akaike information criteria (AICc) [30]

AICc = 2L + 2|M | +
2|M |(|M | + 1)

T − |M | − 1
, (22)

where L is the negative log-likelihood function for the estimated model M, |M |
denotes the number of parameters in model M and T is the length of the data.
In FEM-BV-GEV formulation, the averaged model distance functional (15) cor-
responds to the averaged negative log-likelihood (NLL): −L = L(0(t),2). The
number of parameters depends on K , C and the dimension of ucomb so that
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|M | = |M(K ,C, ucomb)|. AICc is a valid estimate for information content of
data with finite length [5]. We compute AICc for each model M and choose
the best model, denoted by M∗, with respect to min(AICc). Thus, incorporating
the model selection criteria, the “complete FEM-BV-GEV formulation” is given
by (20) and (22). In case S is big, the number of models M in (21) increases very
fast and running over all possible combinations of Ut becomes computationally
expensive. Instead, we can incorporate the LASSO shrinkage technique [44] on
model parameter 2:

|θi |L1 ≤ CL , i = 1, . . . , K . (23)

This constraint provides not only the most significant ucomb by setting the coefficients
of insignificant covariates to zero but also improves the prediction accuracy of the
regression by shrinking the coefficients [48; 24]. Also here we have to find the
optimal CL . Thus, with NL as the number of all possible CL , the total number of
all models is NK NC NL . The “LASSO FEM-BV-GEV formulation” is described
by (20), (23) and (22), where now |M | = |M(K ,C, S)|.

3. Conceptual comparison with standard methods

The FEM-BV-GEV is a semiparametric approach as a combination of the parametric
GEV and the nonparametric FEM-BV description of the hidden switching process.
The influence of unresolved factors, expressed as the nonstationarity of model
parameters (9)–(11), is reflected by 0(t). The key issue that makes the FEM-BV-
GEV problem well-posed is the fact that decreasing the value of C in (19) results in
shrinking of the parameter space for 0(t), limiting the number of the local minima
for L(0(t),2) in (20). The current realization of the FEM-BV-GEV approach
assigns γi (t)∈ {0, 1}, i = 1, . . . , K , for all t . That is, according to the result in [41],
interpolation of the model distance function provides the direct interpolation of the
nonstationarity of the model parameter 2(t):

2(t)≈
K∑

i=1

γi (t)θi . (24)

Moreover, the FEM-BV-GEV approach includes some state-of-the-art approaches as
special cases: in case the whole information is provided for the regression analysis
of extremes, FEM-BV-GEV with C = 0 (no transitions between the models and
thus K = 1) corresponds to stationary parametric regression models and results
in a well-posed inverse problem. For K ≥ 2, FEM-BV-GEV provides a nonlocal
extension of the nonparametric kernel smoothing approach: equivalently to adaptive
multimodal optimization, the nonstationary switching process 0(t) enables us to
consider all observations that underlie similar dynamics as one ensemble (in contrast
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to, e.g., methods based on a moving window [16; 10] where the kernel is a priori
chosen as some fixed local parametric function, e.g., a Gaussian of a certain width).

Furthermore, under an additional a priori assumption that 0(t) is a homogenous
Markov process, FEM-BV-GEV is restrained to the family of hidden Markov models
(HMMs) as applied to GEV, e.g., becoming equivalent to the standard HMM-based
methods of extreme value analysis [2; 1]. However, the difference between the
FEM-BV-GEV and Bayesian techniques for analysis of block maxima, e.g., based
on mixture models or HMMs, is in the modeling of the hidden process or the
hidden variable, respectively. In more detail, the main conceptual advantage of
FEM-BV in its general form over the Bayesian mixture models, e.g., HMM, is
that FEM-BV is a nonparametric approach. HMM is a purely parametric approach
with strong a priori assumptions. In the HMM context, the hidden process is
parametrized by a probabilistic model, e.g., homogenous Markov, and requires an
initial hidden probability. In contrast, FEM-BV avoids a priori parametrization and
is also applicable beyond these assumptions. The only two assumptions involved
in FEM-BV are (1) 0(t) is considered as a function in some (very broad) function
space, e.g., BV-space and (2) the smoothness of0(t) is bounded in the corresponding
function space (compare also discussions in [41]). The estimation of 0(t) results in
a linear minimization problem [25] or can be carried out using MCMC techniques
[18]. Both approaches result in very efficient computational numerical schemes
scaling well for very large problems unlike the expectation maximization algorithm
(the most prominent and widely used algorithm for Bayesian mixture models).

Thus, exploiting the advantages of FEM-BV and involving stochastic mode
reduction for linear regression analysis, the proposed FEM-BV-GEV provides
an unbiased estimator for GEV parameters in context of systematically missing
information. However, the linearity assumption for the GEV parameters may impose
a disadvantage as soon as the influence of covariates on the dynamics of extremes
is nonlinear. Considering a set of numerical examples, we will compare the pro-
posed FEM-BV-GEV to the intrinsically nonlinear GEV-CDN methodology, which
exploits a conditional density network (CDN) for nonlinear regression analysis
based on time-dependent covariates with time-independent (i.e., stationary) neuron
weights and biases [8].

4. Implementation

In the following, we discuss the algorithmic implementation of the “FEM-BV-GEV
framework”. The FEM-BV-GEV approach was integrated in the existing FEM-BV
MATLAB toolbox and can be provided by the authors on email request. The main
steps of the general FEM-BV formulation are sketched in Algorithm 1: (1) for
different K , C and ucomb, a candidate model M is estimated (see Algorithm 1, line 4),
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input :Observed series X t , list of ucomb, list of K , list of C
output :Optimal model M∗ (u∗comb and (0∗(t),2∗))

1 for ucomb do

2 for K list do

3 for C list do

4 Step 1 (0∗(t),2∗)= getOptimalParameterSet(ucomb, K ,C). For fixed ucomb,
K and C estimate the global optimal parameter set (0∗(t),2∗) (compare
Algorithm 2).

5 Step 2 M∗ = updateOptimalModel(0∗(t),2∗, u∗comb). Estimate the IC value
according to (22) for every model M . If the current IC value is smaller than the
previous one, assign M∗ = M .

Algorithm 1: The general FEM-BV algorithm.

and (2) the optimal model M∗, i.e., optimal K ∗, C∗ and u∗comb, is chosen according
to AICc in (22) (see Algorithm 1, line 5). Thereby, for a fixed set {K ,C, ucomb},
a model M is obtained by solving (20). The minimization is implemented as a
subspace iteration (see Algorithm 2): starting with a randomly initialized 0(t), in an
alternating order, we estimate2 for a fixed 0(t) and then 0(t) for a fixed2, thereby
obviously reducing in each step the value of (15). The subspace iteration converges
to a local optimum. The convergence is achieved if the decrease of the averaged
model distance functional (15) is less then a predefined minimization threshold Tol.
To obtain the global optimum FEM-BV framework involves an annealing-like
strategy: in each annealing step, 0(t) is initialized randomly (for more details on
the general FEM-BV annealing-like algorithmic strategy sketched above, see [41]).

The two steps of the subspace iteration are carried out as follows. For a fixed
parameter 2, 0(t) is discretized by the finite element method and estimation
of 0opt(t) results in a linear constrained minimization problem that can be solved
using standard numerical tools, e.g., the simplex method [26; 41]. For a fixed 0(t),
2opt is obtained by minimizing the averaged negative log-likelihood functional (15)
with respect to the constraints (16). For minimization, we take advantage of the
fact that the averaged model distance functional (15) is uncoupled for different
i = 1, . . . , K . Thus, 2opt can be estimated by solving

min
θi

T∑
t=1

γi (t)gGEV(X t , θi ), (25)

with respect to constraints (16) for i = 1, . . . , K , K times with standard likelihood
maximization techniques [13; 19]. Note that the corresponding function in (25)
is strongly nonlinear and nonconvex. Additionally, in practical applications, it
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input :Observed series X t , fixed {K ,C, ucomb}, minimization threshold value Tol, number of
annealing steps annealing, maximal number of subspace iterations maxSubspace

output :Global optimal parameter set (0∗(t),2∗)

1 L(0∗(t),2∗)= inf

2 for a = 1 : annealing do

3 0old(t) generate randomly with respect to constraints (17)–(19)
4 2old = argmin2 L(0old(t),2)

5 while |L(0opt(t),2opt)−L(0old(t),2old)|> Tol or maxSubspace do

6 Step 1 0opt(t)= argmin L(0(t),2old). The constrained minimization with respect
to 0(t) results for BV-regularization in a linear problem; standard methods, e.g.,
simplex method, can be applied.

7 Step 2 2opt = argmin L(0opt(t),2). The required numerical optimization method
with respect to 2 depends on the model distance function g( · ). In FEM-BV-GEV,
g( · ) is the negative log-likelihood and the minimization is carried out by applying the
MCMC method (compare Algorithm 3).

8 if L(0∗(t),2∗) > L(0opt(t),2opt) then
9 2∗ =2opt

10 0∗(t)= 0opt(t)

Algorithm 2: getOptimalParameterSet: annealing and subspace iteration.

may be nondifferentiable (or may exhibit very large values of the first derivative).
Because of these reasons, minimization using standard gradient-based methods like
Newton’s method and gradient-descent approaches would strongly depend on the
initial value and on the boundedness of the first derivatives (e.g., as in the case of
the Levenberg–Marquardt optimization algorithm deployed in GEV-CDN [8]). To
avoid this difficulty, we consider a gradient-free optimization technique based on
the Metropolis algorithm, which is a Markov-chain Monte Carlo (MCMC) method.
In particular, we employ the adaptive MCMC methodology proposed in [18], where
the adaptive MCMC optimization method considers the Boltzmann distribution as
the target density:

π( · )=
1
z

exp(−βh( · )) (26)

with normalization constant z, inverse temperature parameter β and some energy
function h( · ). For β→∞, Boltzmann-distributed samples converge towards the
minimal energy of h( · ). The adaptivity of the MCMC in [18] comes from adjusting
the noise, used for proposing the next sample, and from increasing β (i.e., from
annealing). Thus, this approach can be used as an optimization method to get 2opt

for fixed 0(t). For that, we set h(2)= L(0(t),2) and modify the MCMC in [18]
by adjusting the initialization and the proposed next step (taking into account the
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constraints (16) and the dimensionality of 2). The main steps of the deployed
adaptive MCMC are sketched in Algorithm 3 in Appendix A.

We would like to emphasize that in each run of the MCMC algorithm it is
sufficient to sample a parameter2new that provides a smaller value of L(0(t),2new)

instead of sampling the whole distribution (refer to Algorithm 3, lines 3 and 9).
The subspace iteration deployed by FEM-BV improves in each step the parameters
in the sense of minimizing L(0(t),2) and provides the optimal parameter set
(2opt, 0opt) for each annealing step. Moreover, MCMC optimization techniques
do not depend on the initial start values: the MCMC algorithm also allows us to
accept parameters with higher value of the functional (15); thus, there is a chance to
obtain the global minima starting from a bad initial value. As will be demonstrated
on the numerical examples below in Section 5, the deployed MCMC optimization
technique is efficient in terms of computational time.

5. Numerical examples

In this section, we illustrate the proposed FEM-BV-GEV methodology on two test
cases and real data. The two test cases are used to investigate the robustness with
respect to the systematically missing covariates, the approximation of nonstationary
behavior and the computational performance of the framework (with respect to
accuracy and computational time). In the real-data example, we analyze a series of
block maxima surface temperatures for locations Lugano, Switzerland and Berlin,
Germany. In each application, the performance of the FEM-BV-GEV framework is
compared to the GEV-CDN approach. GEV-CDN exploits a conditional density
network (CDN) for nonlinear regression analysis based on time-dependent covariates
with constant weights and biases [8]. The GEV-CDN analysis is performed using
the package GEV-CDN provided in the statistical toolbox R [8; 9]. The main
tuning parameters of GEV-CDN are the number of hidden neurons (further on
denoted by NH ) in the network, the hidden layer transfer function (identity or
logistic function) and the number of trials (to avoid the local optima). In all of the
numerical examples considered below, an optimal configuration of GEV-CDN with
respect to these tuning parameters was determined according to the AICc criterion
in the way as described in [8].

5.1. Stationary test case. The first example aims to verify the regression analysis
of block maxima based only on resolved covariates. We would like to roughly mimic
the true underlying dynamics of block maxima in real meteorological applications.
Therefore, as covariates, we consider a linear trend, a periodic function with a
one-year period and daily averaged measurements of the total solar intensity (TSI)
[20; 21].1 In general, the TSI factor describes the total amount of the solar radiative

1Data were retrieved from http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.

http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant


INFERENCE OF STATISTICAL REGRESSION MODELS FOR EXTREME EVENTS 157

Optimal models for stationary test case
Settings NLL |M | AICc

FEM-BV-GEV K = 3, C = 4 1.7173× 103 38 3.5144× 103

GEV-CDN NH = 12 2.1116× 103 75 4.3703× 103

Table 1. Optimal results for FEM-BV-GEV and GEV-CDN for a stationary test case.
The exact negative log-likelihood for X t using the original parameters is NLLexact =
1.7042×103. As described below, smaller values of NLL indicate the models with a better
fit, whereas smaller values of AICc indicate more informative models.

energy that is hitting the earth’s upper atmosphere [21]. However, for this example,
we consider only a segment of the TSI measurements (staring from the year 1950) of
length T = 800, and thus, this factor is only responsible for more fluctuation in the
generated block maxima. Now, with covariates Ût = (u1(t), u2(t), u3(t)) defined by

u1(t)= 1
400 t, u2(t)= sin

(
π
2 +

1
365 2π t

)
, u3(t)= TSI, (27)

we generate an artificial series of block maxima using the following parametrization
of the GEV model (2):

µ(Ût)=+1− 5u1(t)+ 2u2(t)+ 1u3(t), (28)

σ(Ût)=+2.1018− 0.7132u1(t)− 0.8203u2(t)+ 0.1356u3(t), (29)

ξ(Ût)=−0.0627− 0.4051u1(t)+ 0.0022u2(t)− 0.0026u3(t). (30)

By assigning a relatively high coefficient to the factor u1(t) in (28), we stress the
linear-trend behavior in the dynamics of block maxima. The coefficients in (29)–(30)
were generated randomly. We use MATLAB function gevrnd for sampling:

X t ∼ GEV(µ(Ût), σ (Ût), ξ(Ût)) for t = 1, . . . , 800. (31)

In the next step, we split the covariates Ût into resolved and unresolved subsets
Ut = (u2(t), u3(t)) and U un

t = u1(t), respectively, and apply the FEM-BV-GEV
and GEV-CDN methods for solving the inverse problem. For given X t and Ut , we
fit the model parameters to describe the distribution of X t . We want to emphasize
that by deliberately missing the most relevant covariate, the linear trend, we would
expect both methods to react to this issue by exploiting the intrinsic nonlinearity
in the case of GEV-CDN and the nonstationarity in the case of FEM-BV-GEV.

FEM-BV-GEV is supplied with Klist={1, 2, 3}, Clist={2 :1 :6} and the following
configurations: the number of annealing steps is set to 100, the maximal number of
the subspace iterations to 150 and the minimization threshold to Tol= 5.0× 10−5.
The GEV-CDN approach is configured with NH = {1, 2 : 2 : 18}, the hidden transfer
function is the logistic function and the number of trials is 100. The results are
summarized in Table 1, featuring the minimal AICc values achieved by the respective
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Figure 1. Stationary test case: this figure shows the results for the application of FEM-BV-
GEV and GEV-CDN to (31). The upper left figure shows the artificially generated series
of extremes X t versus the optimal switching process 0∗(t), expressed by the affiliation
vector A(t). The remaining panels represent the evaluation of the shape, scale and location
parameters according to the original (black solid line), optimal FEM-BV-GEV (dashed
line) and GEV-CDN (gray solid line) parameters.

methods. Resulting optimal models are K = 3 and C = 4 for FEM-BV-GEV and
NH = 12 for CDN-GEV. The regression analysis of X t based on resolved covariates
was performed better by the FEM-BV-GEV than by the GEV-CDN approach (with
a smaller NLL and a lower total number of model parameters). As seen from
Figure 1, top left, the optimal switching process 0∗(t), expressed by the affiliation
A(t) ∈ R (with A(t) = {i : i = argmax γ ∗i (t) over i = 1, . . . , K }), assigns X t to
three different models. Thereby, it explicitly resolves the implicit linear trend in
the systematically missing covariate U un via a switching process that subsequently
goes through three local parameter regimes. We cannot compare the original and
the resulting coefficients for the regression models explicitly. Instead, we evaluate
the approximated µ∗(Ut), ξ∗(Ut) and σ ∗(Ut) according to the FEM-BV-GEV and
the GEV-CDN models and compare them with the original evaluations according
to (28)–(30). The comparison is shown in Figure 1. The top right, bottom left
and bottom right panels represent the shape, the scale and the location parameters,
respectively. The parameters obtained from FEM-BV-GEV resolve the underlying
trend very reliably. In contrast, due to the intrinsic assumption that the neuron
weights and biases are constant, GEV-CDN is not able to recover the impact of this
missing covariate.
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Optimal models for nonstationary test case
Settings NLL |M | AICc

FEM-BV-GEV K = 2, C = 12 1.2041× 103 37 2.4859× 103

GEV-CDN NH = 7 1.2545× 103 52 2.6203× 103

Table 2. Optimal results for FEM-BV-GEV (K = 2 and C = 12) and GEV-CDN (NH = 7)
for the nonstationary test case. The exact negative log-likelihood for X t using the original
parameters is NLLexact = 1.2289× 103.

5.2. Nonstationary test case. Now we consider a nonstationary test case and use
it to verify the accuracy and the performance of the FEM-BV-GEV. We generate X t

according to a mixture model with a nonstationary switching process

X t ∼ γ1(t)GEV1+γ2(t)GEV2, (32)

where GEV1 is parametrized according to (28)–(30) and GEV2 according to

µ2(Ût)=−0.5− 3u1(t)+ 0.5u2(t)+ 0.5u3(t), (33)

σ2(Ût)=+0.6729+ 0.0183u1(t)− 0.4131u2(t)+ 0.1378u3(t), (34)

ξ2(Ût)=−0.0780− 0.1398u1(t)− 0.1608u2(t)+ 0.0266u3(t). (35)

Here we consider the same covariates Ût as in the stationary case. The nonstationary
switching process 0(t)= (γ1(t), γ2(t)) is generated artificially with C = 6 switches.
Now for given X t and Ut = (u1(t), u2(t), u3(t)), we apply FEM-BV-GEV and
the GEV-CDN approach to capture the nonstationarity of (32). FEM-BV-GEV is
supplied with Klist = {1, 2, 3} and Clist = {2 : 1 : 14}; remaining configurations are
the same as for the stationary test case. Also the configurations of the GEV-CDN
approach do not change. Because we provide the full information, Ut = Ût , to both
methods, they both perform well; compare Table 2 and Figure 2. FEM-BV-GEV
approximates the dynamics of X t with less parameters and a smaller NLL. The
inconsistency of the number of switches in 0∗(t) with C = 12 (Figure 2 upper left
panel) and the original 0(t) with C = 6 can be neglected due to the relatively large
confidence intervals for 0∗(t) and 2∗ (compare Appendix B, Figure 4 and Table 5).

Also GEV-CDN captures the underlying trend in parameters; compare Figure 2.
The computational performance of FEM-BV-GEV and GEV-CDN is compared
by considering the CPU time for one annealing step dependent on the increasing
number of parameters (configurations do not change). The results are shown in
Figure 3. The plots contain the average CPU time over 100 runs. FEM-BV-GEV
obviously outperforms the GEV-CDN approach with respect to the computational
performance for the growing number of parameters (e.g., corresponding to the
larger number of involved covariates or hidden neurons).
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Figure 2. Nonstationary test case: this figure shows the results for the application of FEM-
BV-GEV and GEV-CDN to (32). The upper left figure shows the artificial generated series
of extremes X t versus the optimal switching process 0∗(t), expressed by the affiliation
vector A(t). The remaining panels represent the evaluation of the shape, scale and location
parameters according to original (black solid line), optimal FEM-BV-GEV (dashed line)
and GEV-CDN (gray solid line) parameters.
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Figure 3. Nonstationary test case: this figure compares the computational time perfor-
mance of FEM-BV-GEV (diamonds marker for K =2 and circles for K =3) and GEV-CDN
(square markers) using a logarithmic time scale (seconds). The number of covariates is
fixed; thus, the increase of the number of model parameters is due to increasing of C for
FEM-BV-GEV and the number of hidden neurons for GEV-CDN.
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5.3. Real-data application. In this section, we apply FEM-BV-GEV and GEV-
CDN to real data, where we do not a priori have the knowledge about the underlying
dynamics and we have to deal with unresolved modes. In the following, we consider
historical daily records of temperature from January 1, 1950 until January 1, 2011
for Lugano, Switzerland (46◦N, 8.9667◦ E) and Berlin, Germany (52.4649◦N,
13.3017◦ E)2 [32]. We restrict the data to this period because observations for some
of the involved factors are only available starting from 1950. Before extracting
30-day block maxima, we deseasonalize the data. The dedicated series of block
maxima for each location contains 742 maxima in the observed period. For the
regression analysis, we consider the following set of covariates:

(1) arctic oscillation (AO),2

(2) North Atlantic oscillation (NAO),3

(3) total solar irradiance (TSI), averaged over one day [20; 21],4

(4) ENSO, represented through mean sea surface temperature anomalies in the
Nino3.4 region [46],

(5) log(CO2), with logarithmic dependence according to [43],

(6) seasonal periodical phase PerI = sin
( 1

365 2π t
)
,

(7) seasonal periodical phase PerII = sin
( 3

2.1π +
1

365 2π t
)
, and

(8) Madden–Julian oscillation (MJO) containing the first two empirical orthogonal
functions.5

The covariates Ut ∈ R8 are scaled, with us(t) ∈ [−1, 1] for s = 1, . . . , 8, so we can
interpret their relative influences on trends in model parameters. For the following
GEV regression analysis, we consider the covariates at the same time steps when
the maxima in each block are observed. First of all, we want to extract the most
significant ucomb out of all possible, in total 255, combinations of Ut . For this
task, we use the FEM-BV-GEV framework with the following configurations:
Klist = {1, 2, 3}, Clist = {5 : 5 : 100}, the number of annealing steps is fixed to 100,
the number of the subspace iterations is set to 250 and the minimization threshold
is set to Tol = 5.0 × 10−5. Then, according to the minimal AICc, we obtain
for each location the optimal model including the most significant combination,
denoted by u∗comb. For Lugano, u∗comb is [NAO, log(CO2),PerI,PerII], and for
Berlin, u∗comb = [AO,NAO,PerI]. In the second step, we compare FEM-BV-GEV
and GEV-CDN applied to two different settings: (a) we provide the complete set

2Data were retrieved from the NOAA’s National Climatic Data Center web page.
3Data were retrieved from ftp://ftp.cpc.ncep.noaa.gov/cwlinks/.
4Data were retrieved from http://pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.
5Data were retrieved from http://cawcr.gov.au/staff/mwheeler/maproom/RMM/.

ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
http://cawcr.gov.au/staff/mwheeler/maproom/RMM/
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Location Lugano with Location Lugano with
u∗comb = [NAO, log(CO2),PerI,PerII] û∗comb = [NAO,PerI,PerII]

NLL |M | AICc NLL |M | AICc

FEM-BV-GEV 1.5739× 103 70 3.3026× 103 1.6089× 103 64 3.3580× 103

GEV-CDN 1.4940× 103 115 3.2606× 103 1.6729× 103 45 3.4416× 109

Table 3. Comparison of FEM-BV-GEV and GEV-CDN according to AICc model selection
criteria for Lugano according to the resolved and unresolved modes. The optimal models
for resolved modes are FEM-BV-GEV with K = 2 and C = 40 and GEV-CDN with
NH = 14. The optimal models for unresolved modes are FEM-BV-GEV with K = 2 and
C = 40 and GEV-CDN with NH = 6.

Location Berlin with Location Berlin with
u∗comb = [AO,NAO,PerI] û∗comb = [NAO,PerI]

NLL |M | AICc NLL |M | AICc

FEM-BV-GEV 1.6428× 103 109 3.5415× 103 1.6756× 103 89 3.5538× 103

GEV-CDN 1.7818× 103 45 3.6595× 103 1.7927× 103 39 3.6678× 103

Table 4. Comparison of FEM-BV-GEV and GEV-CDN according to AICc model selection
criteria for Berlin according to the resolved and unresolved modes. The optimal models for
resolved modes are FEM-BV-GEV with K = 2 and C = 85 and GEV-CDN with NH = 6.
The optimal models for unresolved modes are FEM-BV-GEV with K = 2 and C = 70 and
GEV-CDN with NH = 6.

of optimal covariates for the regression analysis u∗comb, and (b) we provide an
incomplete set û∗comb = [NAO,PerI,PerII] and keep back log(CO2) for Lugano
and provide û∗comb = [NAO,PerI] and keep back AO for Berlin. Note that u∗comb is
significant according to the FEM-BV-GEV approach and one could argue that for the
GEV-CDN approach another set of covariates could be more important.6 In return,
in real application, we will never know a priori which covariates may be important,
and in any case, we do not dispose of complete system measurements. Moreover, the
influence of u∗comb on the dynamics of block maxima can be interpreted physically;
refer to Appendix C. The results for settings (a) and (b) are shown in Table 3
for Lugano and in Table 4 for Berlin. Thereby, the optimal GEV-CDN model is
chosen from NH = {2 : 2 : 16}. Additionally, the more interested reader can find a
short postinference according to the optimal models in Appendix C: we compute
the expectation value of block maxima with the corresponding quantiles for both
locations and discuss its behavior.

6Application of GEV-CDN to identify the most significant combination of covariates is not feasible
because of prohibitively high computational cost to get through all 255 covariates combinations (see
Figure 3 for computational-cost comparisons of the two methods).
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Comparing the optimal FEM-BV-GEV and GEV-CDN models, we can conclude
that in the case when the set of covariates is “complete” the nonlinear GEV-CDN
provides a better description of the block maxima for Lugano in terms of information
theory (as measured by AICc), suggesting that the underlying dynamics is nonlinear
rather than nonstationary. In contrast, FEM-BV-GEV provides a better description
of block maxima for Berlin. Moreover, in case some information is “missing”,
the nonstationary FEM-BV-GEV approach approximates the underlying dynamics
better by reflecting the unresolved modes through the switching process for both
considered cases (Berlin and Lugano).

6. Conclusion and outlook

In this work, we presented an extension of the GEV methodology for statistical
regression analysis of block maxima with systematically missing covariates. We
applied the strategy of stochastic covariate reduction and expressed the GEV parame-
ters as fully nonstationary regression models based on resolved covariates only. The
involved nonstationarity is interpolated by K ≥ 1 local models and a nonstationary
hidden switching process. The corresponding inverse problem was regularized
using the nonparametric FEM-BV methodology by assuming persistence of the
switching process (the number of switches between the local models is limited
by a parameter C). The well-posed inverse problem is solved by deploying the
gradient-free optimization methodology based on the Metropolis algorithm. The
selection of optimal K and C and the significant subset of resolved covariates
is carried out using the AICc information criteria. The proposed FEM-BV-GEV
framework allows a computationally efficient, semiparametric and nonstationary
analysis and goes beyond strong a priori probabilistic and deterministic assumptions
typical for standard approaches deploying, e.g., mixture models, hidden Markov
models, spline interpolation or neural networks. FEM-BV-GEV includes methods
based on parametric regression, hidden Markov models and local kernel smoothing
as special cases. However, the linear regression, which is involved in FEM-BV-GEV
and provides an easily interpretable and understandable statistical model, becomes a
weakness as soon as the influence of covariates is strongly nonlinear. For that reason,
we considered the GEV-CDN approach as a main competitor. GEV-CDN is based on
GEV and neural networks: each model parameter is described as a nonlinear function
of covariates with constant coefficients exploiting the conditional density network.

We compared the two methods on test cases and real data according to the four
criteria: (1) information content of the models, (2) ability to handle unresolved
covariates, (3) computational complexity and (4) interpretability of the models.
The results in Section 5.1 show that if some relevant information is missing then
the nonstationary FEM-BV-GEV approach approximates the underlying dynamics
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better by reflecting the unresolved modes through the switching process. In contrast,
the GEV-CDN approach seems to average out the underlying trends and in these
situations performs worse. The second example (compare Section 5.2) investigates
the performance of the two methods applied to data, which is generated according
to a switching process and different models. The FEM-BV-GEV approach per-
forms better. GEV-CDN seems to capture the general dynamics but requires more
model parameters to describe the underlying switching process (implicitly resolving
the nonstationary switching process through the nonlinear stationary function).
The third example (compare Section 5.3) demonstrates the performance of FEM-
BV-GEV and GEV-CDN on real data analyzing 30-day block maxima surface
temperatures for locations Lugano, Switzerland and Berlin, Germany. The FEM-
BV-GEV approach allows a better description of block maxima for Berlin. Thereby,
FEM-BV-GEV indicates two different models (K = 2) pointing to systematically
missing covariates in the statistical regression analysis. GEV-CDN performs better
applied to block maxima for Lugano. The better performance of the nonlinear
GEV-CDN approach might lead to the suggestion that the dynamics of the block
maxima at Lugano can be better explained by the stationary nonlinear regression
than by the nonstationary linear one. Additionally, FEM-BV-GEV outperforms
GEV-CDN in the interpretability and understandability of the models and in the
far more favorable computational complexity and scalability. Consequently, we
conclude that the FEM-BV-GEV approach should be used in cases where not all
potentially significant covariates can be resolved explicitly and the observed data
(series of extremes and the number of resolved covariates) is big; correspondingly,
GEV-CDN should be applied in cases where the complete information is known
and the provided statistics are rather small.

Outlook. A point of interest in data-based analysis of block maxima in the context
of the FEM-BV-GEV approach is to understand the dynamics of the switching
process, implicitly reflecting the dynamics of the most relevant covariates that are
systematically missing in the analyzed data. One can either try to find a set of
covariates to resolve the observed dynamics or parametrize the switching process.
The latter can be done by considering the switching process as a discrete time series
and study the dynamics with time-series analysis methods, e.g., a FEM-BV-Markov
method [27]. Another extension of the presented FEM-BV-GEV methodology goes
toward space-time modeling of block maxima. The spatial extension of FEM-BV-
GEV requires appropriate regularization in space, e.g., based on distances between
the locations where the measurements are taken. Besides that, by replacing GEV by
the generalized Pareto distribution (GPD) methodology, we can straightforwardly
derive the FEM-BV-GPD framework to study threshold exceedances. All these
issues are matters of future research.
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input : X t series of extremes, ucomb, 0(t), L(0,2old)
output :2opt

1 2new = generateInitialValue(0(t), X t , ucomb)

2 if L(0(t),2new) < L(0(t),2old) then
3 2opt =2new
4 return 2opt

5 initialize δ, β,6, counterAccept= 0

6 for sampleStep= 1 : sampleSizeMCMC do
7 2next = proposeNext(2new, 0(t), X t , ucomb, 6, noise, β)

8 if L(0(t),2next) < L(0(t),2old) then
9 2opt =2next

10 return 2opt

11 else if checkAcceptance(β,2next,2new) then
12 2new =2next
13 counterAccept+= 1
14 updateCovMatrix(2new, 6)

15 if sampleStep>= 50 then
16 [δ, β] = adaptStep(δ, β, counterAccept, sampleStep)

17 2opt =2old

Algorithm 3: MCMC-based optimization algorithm for fixed 0(t).

Appendix A: Details of the adaptive MCMC algorithm

In the following, we point out the main steps of the deployed MCMC-based opti-
mization; see Algorithm 3. The algorithm is based on [18] and differs manly in two
steps: lines 3 and 6 (explained in more details in the next two sections). Please note
that the convergence condition for this algorithm is fulfilled if MCMC proposes
a new parameter set that provides a smaller L(0,2new) value for fixed 0(t). In
practical applications, in the beginning of the FEM-BV subspace-minimization
procedure, Algorithm 3 proposes a better parameter set already after few steps.
However, the number of samplings is limited by the parameter sampleSizeMCMC;
see Algorithm 3, line 5. In particular, it is recommended to limit the number of
samples because as soon as we get into the area of the local optima it becomes hard
to propose a better parameter set. And if the algorithm fails, meaning it does not
provide a better set of parameters, it returns with 2opt = 2old; see Algorithm 3,
line 16. For the applications presented in this work, this parameter was assigned to
sampleSizeMCMC= 1000.

A.1. Generate an initial value. MCMC sampling starts with generating an initial
value (we refer to Algorithm 3, line 3). The scale and the shape parameters have to
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fulfill the constraints

0< σi (Ut)= σ
(0)
i +

S∑
s=1

σ
(s)
i us(t) < const, i = 1, . . . , K , ∀t, (1)

−0.5< ξi (Ut)= ξ
(0)
i +

S∑
s=1

ξ
(s)
i us(t) < 0.5, i = 1, . . . , K , ∀t (2)

(constraint (2) ensures a regular likelihood estimator [14]). Applying a simple
uniform distribution would not necessarily provide an appropriate initial value.
To hold the constraints, we reformulate them: since ξi (Ut) and σi (Ut) attain their
unique maximum/minimum values in one of the corners of the convex hull defined
by Ut , t = 1, . . . , T [27], it is sufficient to fulfill the constraints (1)–(2) on all
corners of the convex hull of Ut . Using a matrix A ∈ R(S+1)×2S

that contains all
combinations of maximal/minimal values of U (t), t = 1, . . . , T , we can reformulate
the constraint for ξi = (ξ

(0)
i , . . . , ξ

(S)
i ):

−Aξi <−lbξ , lbξ =−0.5 · 1 ∈ R2S
,

Aξi <+ubξ , ubξ = 0.5 · 1 ∈ R2S
.

The same applies for σ . Finally, if we slightly strengthen the constraints

σi (Ut) ∈ [ε, const] and ξi (Ut) ∈ [−0.5+ ε, 0.5− ε]

with ε > 0 small and const ∈ R some high value, we can use some convex sampler
to get random, uniformly distributed values within this convex hull. The same
approach can be applied to sample µi = (µ

(0)
i , . . . , µ

(S)
i ) in a way such that the

constraint (16) in Section 2 is fulfilled. Another way is to estimate the initial
value for µi by applying ordinary least squares [14]. Note that this estimation is
not considered as the trend estimate for the GEV distribution but as a procedure
to generate an initial value that is adjusted within the MCMC and the subspace
(Algorithm 2 in Section 4) procedure. Both possibilities are implemented in the
FEM-BV-GEV framework. In this paper, the second one was deployed.

A.2. Propose next. The performance of the Metropolis algorithm can be improved
with an appropriate proposal distribution [4; 34]. However, it is not obvious which
proposal density should be chosen for the current target density. In this work,
we refer to the discussions in [4] and deploy the adaptive Metropolis algorithm
where the next proposal, denoted here by Yn+1, is sampled according to a mixture
distribution with respect to the information of all previous accepted samples, denoted
here by X0, . . . , Xn:

Yn+1 ∼ (1− δ)N
(

Xn,
2.382

d
6n

)
+ δN(Xn, 60), (3)
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Figure 4. Nonstationary test case: the figure compares the averaged optimal 0̂∗(t) (black
dashed line) with its confidence intervals (gray dashed lines) versus the original switching
process (gray solid line).

where d is the dimension of Xn and 6n ∈ Rd×d corresponds to the empirical
covariance matrix of X0, . . . , Xn . The parameter 0< δ < 1 controls the acceptance
rate of the Metropolis algorithm; the acceptance rate is increasing for δ→ 1 and
decreasing for δ→ 0. For more details on the adaption step, see [18].

Appendix B: Confidence intervals

In the following, we refer to the nonstationary test case in Section 5 and provide the
confidence intervals for the optimal estimation of (0∗(t),2∗) to verify the accuracy
of the proposed FEM-BV-GEV approach. We obtain the confidence intervals
via bootstrapping procedure [12]; i.e., we resample X t , t = 1, . . . , T , according
to (32) in Section 5 N times and apply FEM-BV-GEV (with Klist = {1, 2, 3}
and Clist = {2 : 1 : 14}) each time. Then each optimal result (0∗(t),2∗) is stored,
and we can estimate the averaged parameters as well as the confidence intervals.
For this example, we consider N = 150. Figure 4 shows the original 0(t) (gray
solid line), the averaged optimal 0̂∗(t) (black dashed line) and all other realizations
of 0∗(t) that can be considered as the confidence intervals (gray dashed lines).
Table 5 contains the corresponding confidence intervals for the averaged optimal
model parameters θ̂∗i for i = 1, 2.

Appendix C: Postinference

In this section, we discuss the postinference for Lugano and Berlin according
to the optimal FEM-BV-GEV and GEV-CDN models. The locally linear FEM-
BV-GEV model allows direct interpretation of the influence of covariates on the
dynamics of GEV parameters; see Table 6 for Lugano and Table 7 for Berlin. For
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Model Parameters
µ0 µ1 µ2 µ3 σ0 σ1 σ2 σ3

ξ0 ξ1 ξ2 ξ3

θ1 1.0000 −5.0000 2.0000 −1.0000 1.4983 −0.6987 0.1937 0.0353
−0.0627 −0.4051 0.0022 −0.0026

θ̂∗1 1.0502 −4.9507 1.9786 −1.0385 1.4821 −0.6654 0.1888 0.0297
−0.0719 −0.4490 0.0421 −0.0355

std± 0.1478 0.1690 0.2492 0.3418 0.1085 0.1652 0.0979 0.2109
0.0500 0.0550 0.0446 0.1051

θ2 −0.5000 −3.0000 0.5000 0.5000 0.6729 0.0183 −0.4131 0.1378
−0.0780 −0.1398 −0.1608 0.0266

θ̂∗2 −0.4938 −2.9626 0.5342 0.5300 0.7187 0.1113 −0.3720 0.1944
−0.0852 −0.1472 −0.1542 0.0122

std± 0.0715 0.1427 0.0897 0.1066 0.0573 0.1108 0.0645 0.0740
0.0684 0.1219 0.1175 0.1537

Table 5. The original parameters θ1 and θ2 according to (33)–(35) and (28)–(30) in
Section 5, averaged optimal parameters θ̂∗1 and θ̂∗2 and the corresponding standard devia-
tions (std±).

Model Parameters for Lugano with u∗comb = [NAO, log(CO2),PerI,PerII]

µ0 µ1 µ2 µ3 µ4 σ0 σ1 σ2 σ3 σ4

ξ0 ξ1 ξ2 ξ3 ξ4

θ∗1 3.92 0.78 −2.12 1.70 −0.34 1.71 0.60 −0.17 0.39 −0.42
−0.05 0.16 0.03 −0.19 −0.09

θ∗2 4.29 −0.19 1.97 0.74 −1.39 1.99 −0.10 0.05 0.21 −0.61
−0.37 0.39 0.40 −0.15 −0.09

Table 6. The table contains optimal parameters θ∗1 and θ∗2 (the values are rounded to two
decimal places).

Model Parameters for Berlin with u∗comb = [AO,NAO,PerI]

µ0 µ1 µ2 µ3 σ0 σ1 σ2 σ3

ξ0 ξ1 ξ2 ξ3

θ∗1 4.73 1.89 0.1 0.38 2.59 −0.52 −0.03 0.6873
−0.22 −0.27 −0.40 0.17

θ∗2 8.43 2.00 −1.13 0.59 2.15 −0.21 0.69 −0.12
−0.32 0.01 −0.10 0.00

Table 7. The table contains optimal parameters θ∗1 and θ∗2 (the values are rounded to two
decimal places).
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the neural-networks-based GEV-CDN approach, we obtain a matrix of weights
and have to evaluate the parameters according to the transfer function (a logistic
function in our particular case), making the fitted models not easy for interpretation
and understanding. The identification of these factors is physically meaningful.
Positive phase of AO causes dry and hot conditions in Mediterranean regions. AO
has a direct influence on atmospheric circulation blocking events: it induces a
ridge of high pressure in the mid-latitude jet streams that can cause persistently
high temperatures (as well as cold conditions) [23]. Positive phases of NAO cause
warm, wet winters in northern and dry winters in southern Europe. Due to the
anthropogenic influence of CO2 concentration, log(CO2) holds a positive trend
with oscillating dynamics (with maximum value in May and minimum in October)
[31]. The relevance of PerI and PerII points to strong seasonal dependence of block
maxima in both locations (this is obvious since we consider monthly maxima). In
order to study the long-term trend in distribution of block maxima, we evaluate the
nonstationary expectation value

EK=2[X t , t] =
2∑

i=1

γi (t)
(
µi (Ut)+ σi (Ut)

0̃(1− ξi (Ut))− 1
ξi (Ut)

)
, (1)

ECDN[X t , t] = µCDN(Ut)+ σCDN(Ut)
0̃(1− ξCDN(Ut))− 1

ξCDN(Ut)
(2)

with t = 1, . . . , 742, where K = 2 corresponds to FEM-BV-GEV (with parametriza-
tion according to (13) in Section 2) and CDN to GEV-CDN models and 0̃ denotes
the gamma function. Figures 5 and 7 show the results according to FEM-BV-GEV
and Figures 6 and 8 according to GEV-CDN. The 0.99- and 0.10-quantiles are the
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Figure 5. Location Lugano: the plot of the expectation value for the optimal FEM-BV-
GEV model, K = 2 and C = 40.
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Figure 6. Location Lugano: the plot of the expectation value for the optimal GEV-CDN
model with NH = 14.
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Figure 7. Location Berlin: the plot of the expectation value for the optimal FEM-BV-GEV
model, K = 2 and C = 85.

confidence intervals containing 89% of the distribution. In particular, the 0.99-
quantile corresponds to the 100-year return level. According to the FEM-BV-GEV
results, the mean for Lugano shows a slightly negative trend in the first model,
but after the 1980s, the second model dominates, where log(CO2) has a positive
influence and so the trend in block maxima becomes positive. In contrast, according
to the GEV-CDN model, there is no obvious trend; however, the confidence intervals
for the GEV distribution increase in the last ten years. For Berlin, the trend of
the expectation value is separated according to two FEM-BV-GEV models, one
model corresponds to higher block maxima. The GEV-CDN model averages these
dynamics and provides a unchanging behavior with some outliers.
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Figure 8. Location Berlin: the plots of the expectation value for the optimal GEV-CDN
model, NH = 6.
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