
Communications in
Applied
Mathematics and

Computational
Science

msp

vol. 9 no. 1 2014

HIGH-ORDER METHODS FOR COMPUTING
DISTANCES

TO IMPLICITLY DEFINED SURFACES

ROBERT I. SAYE

COMM. APP. MATH. AND COMP. SCI.
Vol. 9, No. 1, 2014

dx.doi.org/10.2140/camcos.2014.9.107 msp

HIGH-ORDER METHODS FOR COMPUTING DISTANCES
TO IMPLICITLY DEFINED SURFACES

ROBERT I. SAYE

Implicitly embedding a surface as a level set of a scalar function φ : Rd
→ R

is a powerful technique for computing and manipulating surface geometry. A
variety of applications, e.g., level set methods for tracking evolving interfaces,
require accurate approximations of minimum distances to or closest points on
implicitly defined surfaces. In this paper, we present an efficient method for
calculating high-order approximations of closest points on implicit surfaces,
applicable to both structured and unstructured meshes in any number of spatial
dimensions. In combination with a high-order approximation of φ, the algorithm
uses a rapidly converging Newton’s method initialised with a guess of the closest
point determined by an automatically generated point cloud approximating the
surface. In general, the order of accuracy of the algorithm increases with the
approximation order of φ. We demonstrate orders of accuracy up to six for
smooth problems, while nonsmooth problems reliably reduce to their expected
order of accuracy. Accompanying this paper is C++ code that can be used to
implement the algorithms in a variety of settings.

1. Introduction

A powerful technique for representing curves in two dimensions and surfaces in
three dimensions is to define them implicitly, via a fixed level set of a continuous
function φ : Rd

→ R. Implicit representations of surfaces lead to mathematical
and computational advantages in a wide array of problems, such as in methods for
computing diffusion and advection processes on embedded surfaces [2; 5; 15], in
level set methods [20; 28; 19] for propagating interfaces coupled to computational
fluid dynamics [34; 30], and in mesh generation for implicitly defined geometry
[21; 24].

Given an implicitly defined surface embedded in Rd , a common task is to calculate
the closest point on the surface to a given query point x ∈ Rd . For example, level
set methods may require the construction of extension velocities [16; 3] or signed
distance functions corresponding to a moving interface. In this context, the query

MSC2010: primary 65D99, 68U05, 35R37; secondary 65D17, 65D18, 35R01.
Keywords: implicit surfaces, closest point, level set methods, reinitialisation, redistancing, high-order.

107

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2014.9-1
http://dx.doi.org/10.2140/camcos.2014.9.107
http://msp.org

108 ROBERT I. SAYE

points are the set of grid points of the computational domain, possibly in a narrow
band [1]. As another example, embedding techniques for solving partial differential
equations (PDEs) defined on curved surfaces work by: (i) embedding the (unknown)
solution u in a higher-dimensional function uext defined on Rn; and (ii) deriving a
PDE for uext in such a way that the restriction of uext to the surface is the solution
of the original surface PDE. Techniques using this idea generally use closest points
on the surface to define the extension function uext and its corresponding PDE [2;
29; 5; 15].

In many of these applications, a high-order approximation of the closest point
on the surface is required. This is because the resulting distance function or closest
point function is used to infer the geometry of the surface, such as when calculating
normal vector fields or curvature quantities like the mean curvature or Gaussian
curvature. It is often the case that the level set function φ is known only at the grid
points of a background grid/mesh. It follows that some form of interpolation must
be used to define the interface throughout the domain. Even though the values of
φ at those grid points may have an associated error (e.g., those arising from finite
difference approximations or temporal errors in an evolving simulation), it remains
necessary to accurately resolve the geometry of the interpolated interface.

In this paper, we develop a general purpose method for computing high-order
approximations of closest points on implicitly defined surfaces. The algorithm
is largely based on geometry alone and consists of two main stages. First, in
an initialisation stage, a level set function φ defined on a grid is piecewise ap-
proximated by high-order polynomials. Assuming it is the zero level set which
defines the surface/interface, these polynomials are then “sampled” by seeding
points on their zero level set with sufficient density to form a scattered cloud of
points approximating the interface of φ. In the second stage of the algorithm, given
a query point x , the closest point in the cloud to x is found. This closest point
forms an approximation of the actual closest point to x , and this approximation is
then improved by using the original polynomial from which it was created together
with Newton’s method for solving the minimum-distance optimisation problem.
As shown below, this combination of first finding the closest point in the cloud,
and then “polishing” it with Newton’s method, leads to highly accurate and robust
closest point calculations. By making use of a k-d tree optimised for surfaces, the
method is also inexpensive, as finding the closest point in the cloud is relatively
cheap, and not many iterations of Newton’s method are required for convergence.
Except for the initial stage of forming high-order approximations of φ, the method
does not rely on any computational grid and can be used to compute closest points
at arbitrary locations.

The outline of the paper is as follows. In Section 2, we briefly review previous
work on computing distance approximations. In Section 3, the high-order method

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 109

is presented, starting with a discussion of high-order polynomial approximations,
followed by the sampling procedure and Newton’s method. We then discuss some
implementation choices, before presenting convergence results and test cases in
Section 4. In Section 5 some final remarks are given, including a short description
of the C++ code that accompanies this paper. Lastly, in the Appendix, a k-d tree
optimised for codimension-one surfaces is presented.

2. Motivation and previous work

Our interest in the minimum-distance/closest-point problem stems from work on
level set methods for tracking the interface between two evolving regions, and on
Voronoi Implicit Interface Methods [25; 26] for tracking interconnected interfaces
with junctions in multiphase physics. Two common tasks in these applications
are: (i) calculating extensions of some quantity F defined on the interface, e.g.,
extension velocities, such that Fext(x)= F(cp(x)), where cp(x) is the closest point
on the interface to x , and (ii) replacing a function that implicitly defines the interface
by the distance function to the interface. In the level set method literature, the
latter procedure is a well-known task commonly referred to as reinitialisation or
redistancing and is often performed frequently over the course of a simulation. For
example, one reason for maintaining a distance function is related to the treatment
of jumps in density and viscosity of a multiphase fluid, or singular forces such as
surface tension on a liquid-gas interface, which may require smoothing of Heaviside
and Dirac delta functions [8; 34; 30].

Methods for computing distances to implicitly defined surfaces differ in how
the geometry of the surface is determined. Approaches include geometrically
approximating the surface by explicitly reconstructing it, using root-finding to
locate specific points on the surface, employing Eulerian grid-based techniques as
in the level set method, or a combination of these methods.

Explicit approaches often use piecewise linear interpolation to find a faceted
mesh representation of the interface, from which closest points can be computed
by simple geometry [9; 16]. Strain [31] extended this idea to a fast quadtree-based
reinitialisation algorithm which enables distances to be efficiently computed on
the entire domain based on a mesh that locally adapts to the shape of the interface.
Explicit representations also play an important role in the fields of computational
geometry and graphics, in which different approximations are applicable; see for
instance the review [14].

In the context of level set methods, a common technique for computing the
distance function to the interface is to solve a PDE, which is typically done through
one of two methods:
• Solve a static boundary-value problem: find ψ such that ‖∇ψ‖ = 1, with the

requirement that the zero level set of ψ coincides with the zero level set of φ.

110 ROBERT I. SAYE

The solution to this equation is a signed distance function to the interface,
i.e., ψ(x)=±miny, φ(y)=0 ‖x− y‖. A common method for solving this special
instance of an Eikonal equation is to apply the Fast Marching Method [27],
which solves the general Eikonal equation ‖∇ψ‖ = F where F = F(x) is a
general speed function, but apply it to the simpler equation with F ≡ 1.

• The second PDE-based method converts the static equation ‖∇ψ‖ = 1 into a
time-dependent auxiliary PDE whose steady-state solution returns the signed
distance function. Here it is generally assumed that φ is already close to a
distance function, making this an iterative type method. First used in [34], this
PDE takes the form

∂ψ

∂τ
+ sign(φ)(‖∇ψ‖− 1)= 0, ψ(τ = 0)= φ.

In theory, the zero level set of ψ remains fixed by the process of evolving ψ
as τ→∞; in practice, the sign(φ) function must be suitably smoothed for the
discretised version. These methods rely on high-order ENO and WENO meth-
ods to approximate spatial derivatives and high-order Runge–Kutta methods
in time. A variety of methods have been developed to a improve the accuracy
of this approach, see, e.g., [23; 32; 12; 17].

High-order approaches typically compute accurate distances nearby the interface
and then employ a PDE-based method to compute distances elsewhere. A notable
example is in Chopp’s method [10], which uses a piecewise bicubic (in 2D) or
piecewise tricubic (in 3D) interpolant of the level set function that is globally
C1 smooth. For grid points adjacent to the interface, a quasi-Newton method
is used to compute closest points on the zero level set of the bicubic/tricubic
polynomials, which are then input to a second or third order fast marching method
to build the distance function away from the interface. The resulting method is
approximately third order in the distance function for smooth interfaces [10]. A
similar approach can be used in gradient augmented level set methods [18], where
both φ and its gradient are defined at each grid point, in which case a type of
Hermite interpolation defines a high-order approximation of the interface. This
again requires a nonlinear minimisation method to find closest points for query
points adjacent to the interface — reinitialisation methods for gradient augmented
level set methods include that of [4], which is based in part on Chopp’s quasi-
Newton method, and the method of [7], which follows the principles of the fast
marching method by using Huygens’ principle and Newton’s method restricted
to individual tetrahedrons. Other high order methods include the discontinuous
spectral element method of [33], in which a root finding procedure is used to convert
the zero level set of a polynomial into a height function, followed by Newton’s
method to find closest points on this height function. In this last work, distance

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 111

functions were computed with up to sixth order accuracy. Rigorous analyses of
errors in reinitialisation methods for finite-element based level set methods have
also been performed [22; 13].

In comparison, the high-order method presented in this paper is essentially
entirely geometric. The approach extends the ideas of Chopp’s method to arbitrary-
order polynomials and replaces the quasi-Newton method with a full Newton’s
method that converges much more rapidly when the query point is far away from a
curved interface. The method does not rely on any PDE technique, and as such can
be used to calculate closest points from arbitrary query points making it suitable
for, for example, highly unstructured grids.

3. High-order calculation of closest points

Given a level set function φ defined on a computational grid, the high-order closest
point algorithm essentially consists of two parts: initialisation, and closest point
computation. In the initialisation, a high-order approximation of φ is defined on
each mesh element containing the interface, followed by a “sampling” procedure
which creates a cloud of points approximating the interface. Given a query point
xq ∈Rd , a closest point calculation proceeds by finding the closest point in the cloud
to xq , which is then improved by using Newton’s method on the minimum-distance
optimisation problem applied to the high-order approximation of the interface.

In order to present the essential ideas of the algorithm, motivated in part by
common finite difference-based implementations of the level set method, we mainly
consider the case that φ is defined on a regular Cartesian grid. The presented
techniques can be adapted in a natural way to other cases, such as gradient-
augmented level set methods, continuous and discontinuous finite element methods
on unstructured grids, etc.; guidelines for doing so are also discussed.

3.1. Piecewise polynomial approximation. Given a level set function defined on
a Cartesian grid, many possibilities exist for finding high-order approximations of φ
between grid points. A natural choice is to find a piecewise polynomial interpolant,
such as that used in Chopp [10], in which each grid cell is represented by a bicubic
(in 2D) or tricubic (in 3D) polynomial in such a way that the global interpolant
is C1. However, finding high-order interpolants that are continuous with continuous
derivatives can be expensive, since enforcing the continuity requirements requires
many degrees of freedom that do not necessarily contribute to the approximation
accuracy of the interpolant. For example, a C1 piecewise tricubic interpolant requires
64 polynomial coefficients per grid cell, but is only third-order accurate; many
of the degrees of freedom in the polynomial

∑3
i, j,k=0 ci jk x i y j zk are lost through

the enforcing of the C1 continuity requirement. Compare this to the polynomial
corresponding to a third-order accurate Taylor series in three dimensions, which

112 ROBERT I. SAYE

has only 10 coefficients. For even higher order interpolants that are required to be
continuous, possibly with continuous derivatives as well, the situation considerably
worsens. Since these polynomials need to be constructed and evaluated many times,
it is thus worthwhile to consider an alternative method of approximation.

In regards to the reinitialisation/closest point problem, it is not actually necessary
to find a continuous interpolant. All we need is a high-order approximation of the
zero level set of φ in each grid cell containing the interface. We can achieve this
by using polynomials on each grid cell with the minimum number of degrees of
freedom necessary for a certain accuracy (as determined by the canonical Taylor
series expansion). Note, however, that in doing so, continuity of the zero level set
between grid cells may be lost. When the interface is sufficiently smooth, the amount
of discontinuity is of the same order as the truncation error of the approximating
polynomial and thus will not affect the global approximation order. When the
interface is not smooth, such as at the corner of a square, the amount of discontinuity
is in general first order in the grid cell size; this cannot be avoided unless specific
knowledge of nonsmooth features is incorporated. In either case, provided the
polynomials on each grid cell are suitably defined, and the discontinuities of the
interface are robustly handled by associated algorithms, the location of the interface
defined by the set of polynomials carries the expected order of accuracy.

A straightforward technique for determining these polynomials is to employ
a simple least squares method: given a space of polynomials and a stencil of
grid points, find the best polynomial in that space which minimises the pointwise
interpolation errors in an L2 norm. Provided the stencil has enough points, this
polynomial is uniquely determined. To illustrate, consider a two-dimensional case
in which we seek a degree 2 polynomial of the form

p(x, y)= c0+ c1x + c2 y+ c3x2
+ c4xy+ c5 y2

for determining φ in the grid cell (xi , xi+1) × (yi , yi+1). We would like it to
interpolate the values φi j , φi+1, j , φi, j+1 and φi+1, j+1. However, these 4 conditions
are not enough to uniquely determine the 6 coefficients of p, so more grid points
are required. We could add exactly two more grid points and this would uniquely
determine p, but the resulting stencil would be asymmetric. This may not be a
problem when φ is smooth, but generally speaking, such asymmetries can lead to
stability problems in an evolving interface. Instead, we opt for a symmetric 12-point
stencil, as shown in Figure 1. Enumerating the points of the stencil as {(xk, yk)}

12
k=1,

the least squares problem amounts to finding

arg min
p

12∑
k=1
|p(xk, yk)−φ(xk, yk)|

2,

and this can be solved in the usual fashion: form the 12× 6 Vandermonde matrix

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 113

12 point 16 point 24 point

32 point 64 point 88 point

Figure 1. Stencils used to find the polynomials in Table 1. Top: two-dimensional stencils.
Bottom: three-dimensional stencils.

A with i-th row [1, xi , yi , x2
i , xi yi , y2

i] and calculate

[c0, . . . , c5]
T
= (AT A)−1 AT

[φ(x1, y1), . . . , φ(x12, y12)]
T .

Provided A has full rank, the pseudoinverse (AT A)−1 AT exists. In this particular
example involving a 12-point stencil, this is indeed the case.

This technique easily generalises to other spaces of polynomials and in different
dimensions. In each case, a stencil of grid points is designed to be as small as
possible such that the corresponding Vandermonde matrix A has full rank. Table 1
and Figure 1 summarise the stencils and polynomials used in this work. Note that
the 12-point stencil in the previous example can be used to find both degree 2
polynomials and degree 3 polynomials in 2D. Geometrically this states that the
12-point stencil contains enough information to determine a fourth-order accurate
Taylor series approximation. Another point of interest is that the Taylor polynomial
of degree 4 in two dimensions, having 15 coefficients, requires a wider stencil of
extent 6, despite there being 16 degrees of information in a square 4× 4 stencil.1

This is necessary because the 4× 4 stencil does not carry enough information to
uniquely determine all of the higher-order terms such as x4.

Note that by using a standard reference cell, e.g., [0, 1]d , the pseudoinverses
of the Vandermonde matrices can be precomputed. Thus, a polynomial with n

1The Vandermonde matrix corresponding to the Taylor polynomial of degree 4 in 2D and a square
4× 4 stencil has rank 13.

114 ROBERT I. SAYE

d Polynomial type nc stencil p

2 Bicubic,
∑3

i, j=0 ci j x i y j 16 16 3
2 Taylor degree 2, c0+ c1x + c2 y+ c3x2

+ c4xy+ c5 y2 6 12 3
2 Taylor degree 3,

∑
|α|≤3 cα(x, y)α 10 12 4

2 Taylor degree 4,
∑
|α|≤4 cα(x, y)α 15 24 5

2 Taylor degree 5,
∑
|α|≤5 cα(x, y)α 21 24 6

3 Tricubic,
∑3

i, j,k=0 ci jk x i y j zk 64 64 3
3 Taylor degree 2, c0+ c1x + c2 y+ c3z+ · · ·+ c9z2 10 32 3
3 Taylor degree 3,

∑
|α|≤3 cα(x, y, z)α 20 32 4

3 Taylor degree 4,
∑
|α|≤4 cα(x, y, z)α 35 88 5

3 Taylor degree 5,
∑
|α|≤5 cα(x, y, z)α 56 88 6

Table 1. d-dimensional polynomials used in this work, indicating the form of the poly-
nomial, number of coefficients nc, number of points in the stencil (see Figure 1), and the
expected order of accuracy p for sufficiently smooth problems.

coefficients can be determined by a stencil of m points by a single matrix-vector
multiplication of size n ×m. We also note that while the stencils often involve
more points than there are coefficients in the polynomials, ultimately it is only the
polynomial and its derivatives that need to be evaluated many times.

3.2. Sampling the interface. Using the above piecewise polynomial approxima-
tion, we can find a high-order approximation of φ in each grid cell. For those
grid cells containing the interface2, we would like to sample the cell’s polynomial
by placing points on its zero level set. It will not be necessary to do this with a
high degree of resolution, in fact only a few seed points per grid cell are required.3

Thus, a very simple strategy can be adopted: subdivide each grid cell containing
the interface into a 2× 2 subgrid (in 2D) or 2× 2× 2 subgrid (in 3D), and in
each subcell, place a point in the centre. Then, “project” these points onto the zero
level set of the polynomial p with a simple Newton-style procedure: given a point
x0 ∈ Rd , we iterate

xi+1 = xi −
p(xi)∇p(xi)

‖∇p(xi)‖2
,

until a suitable convergence criterion is met. This iterative procedure can be viewed4

as moving xi to its closest point on the zero level set of the linear approximation
of p at xi , given by p(xi + δ) ≈ p(xi)+ δ · ∇p(xi). Generally, as in Newton’s

2Methods to determine whether a grid cell contains the interface are discussed shortly.
3Generally speaking, the 2× 2 subcell division described here is sufficient for most level set

applications. If a grid cell contains a polynomial with very high curvature, more points may be
required, depending on the application; adaptive approaches are discussed shortly.

4It is also the “δ1” direction used in Chopp’s method [10], as discussed later.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 115

method, this iterative method exhibits second order convergence; in practice it is
very quick and reliable. Some remarks:
• A point starts in the centre of its subcell and is projected onto the zero level

set of p. As a result, it may move outside its subcell or indeed the parent cell.
If the gap between the point and the parent cell is small (i.e., a fraction of 1x),
we keep the point — this fits in with the strategy employed later for allowing
polynomials from adjacent grid cells to slightly “overlap.” If the point is far
away from its subcell, it is discarded.

• It is not necessary for the point to lie exactly on the zero level set of p, as these
points only form an initial guess to a full Newton’s method (see Section 3.3).
In practice, a simple convergence criterion suffices, which is to stop iterating
when ‖xi+1 − xi‖ is a small fraction of the subcell size, e.g., 1%; typically
only one or two iterations of the above scheme are then necessary.

By doing this for each cell containing the interface, a collection of points is gen-
erated. The points are in no particular order and form a cloud of scattered points
approximating the interface on the entire domain.

3.3. High-order closest point calculations via Newton’s method. The output of
the above sampling stage is a set of points C = {x1, . . . , xN } ⊂ Rd approximating
the interface of φ. To each point we associate the polynomial pi from which it was
generated, coming from the high-order approximation of φ in each grid cell. For
the general closest point problem, we are given an arbitrary query point xq ∈Rd and
need to approximate the closest point on the zero level set of φ. This is accomplished
in two steps:

(i) Find the closest point in C to xq . Denote it by x0, with associated polynomial p.

(ii) Return the closest point on the zero level set of p restricted to a small domain.

Step (i) is a well-known scattered-data closest-point query problem for which
various efficient methods exist, including the use of k-d trees, quadtrees, octrees,
etc. In this application, the points lie on a codimension-one surface, and this extra
information can be exploited to gain greater efficiency. The Appendix presents a
k-d tree optimised for surfaces that was developed as part of this work. Independent
of the implementation details, however, step (i) can be considered to be a black box.

To solve step (ii), a simple Newton’s method for the minimum distance optimi-
sation problem works well. Consider the functional f : Rd

×R→ R given by

f (x, λ)= 1
2‖x − xq‖

2
+ λp(x),

whose gradient and Hessian are

∇ f =
(
∇x f
∂λ f

)
=

(
x − xq + λ∇p(x)

p(x)

)
and D2 f =

(
I + λD2 p(x) ∇p(x)
∇p(x)T 0

)
.

116 ROBERT I. SAYE

Minimising f amounts to minimising the squared distance from xq to a point x ,
with the constraint that x be on the zero level set of p, implemented via a Lagrange
multiplier. Generally speaking, this optimisation problem is well-conditioned
provided that (a) the gradient of pi does not vanish near x , and (b) the closest point
is unique, i.e., xq is not located at a shock of the distance function

d(x)= min
y, p(y)=0

‖x − y‖.

Part (a) is a natural regularity assumption in the context of level set methods,
while (b) is guaranteed near smooth parts of the distance function d. Naturally,
either one of these conditions might fail in practice, but with appropriate safeguards
the optimisation problem can be made to be highly robust and efficient. Newton’s
method for minimising f is as follows: we start at the closest point in C (i.e., x0) and
initialise the Lagrange multiplier at step 0 to be5 λ0 := (xq−x0)·∇p(x0)/‖∇p(x0)‖

2.
Let y = (x, λ) ∈ Rd

×R, with initial value y0 := (x0, λ0). We thus iterate

yk+1 = yk −
(
D2 f (yk)

)−1
∇ f (yk) (1)

until convergence to within a suitable tolerance, or else halt the iterations if x travels
“too far” from the initial point x0. Several remarks are in order:
• To evaluate the Hessian and gradient of f , the Hessian and gradient of the poly-

nomial p are needed. These are straightforward to evaluate for any particular
class of polynomial.

• The polynomials were generated from high-order approximations to φ on each
grid cell. Thus, each polynomial is only valid in a small region surrounding
its cell. We therefore only allow the iterates to travel a maximum distance
(proportional to 1x) away from the initial starting point x0. In addition to
preventing iterates from travelling too far (which may occur when the interface
is not smooth, e.g., at the corner of a square, as discussed later), this “bounding
ball” also provides a straightforward mechanism to allow polynomials from
adjacent grid cells to slightly overlap. This is mainly relevant to the case when
the closest seed point (i.e., x0) is close to the boundary of a grid cell, but the
true closest point lies slightly in the neighbouring grid cell. It is important
to note, however, that the order of accuracy is unaffected by using slightly
overlapping polynomials (whether or not the interface is smooth).

• In (1), the Hessian of f , a small (d+1)×(d+1) square matrix, must be inverted.
We can use a simple Gaussian elimination method with partial pivoting, which
also indicates when the matrix is nearly singular.6 Singularity indicates that

5The initial value for the Lagrange multiplier comes from the approximation that ∇ f ≈ 0 at x0.
6In this work, the criterion for determining singularity is whether any pivot is less than 10−12 in

magnitude. This tolerance is based on double precision arithmetic and the property that the length

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 117

there are many solutions to the closest point problem for the given xq . In
theory this may certainly occur, such as when finding the closest point to the
centre of a circular or spherical interface. However, in practice, noninvertibility
of the Hessian almost never arises. Nevertheless, if the Hessian is detected
as singular, we employ a different method. This backup mechanism follows
that of Chopp’s method [10] — the update is replaced by xk+1 = xk + δ1+ δ2,
where δ1 moves xk to the zero level set of p, and δ2 moves xk tangentially to
the level set to enforce the orthogonality condition of the closest point. These
directions are given by

δ1 =−
p(xk)∇p(xk)

‖∇p(xk)‖2
and δ2 =

(
I −
∇p(xk)∇p(xk)

T

‖∇p(xk)‖2

)
(xq − xk).

In fact, Chopp’s method can be viewed as a type of gradient descent on f ,
i.e., yk+1= yk−α∇ f (yk), with a Lagrange multiplier that is suitably reevaluated
at the beginning of each iteration.

• As an additional safeguard, no update in the iterative procedure is allowed
to move xk by a large amount (i.e., 50% of the bounding ball radius). This
is effectively a simple type of line search common to many optimisation
methods, and is generally only relevant when xq is extremely close to a centre
of curvature of p. Once again, this safeguard is rarely invoked in practice.

• To decide when the iterations have converged, we test if ‖xk+1 − xk‖ < ε,
where ε is a small threshold relating to the accuracy of the polynomial. It is
not necessary to converge to machine precision when the polynomial itself
is only an approximation of φ. We take ε to be 1x p where p is the order of
accuracy of the class of polynomials being used — see Table 1.

Newton’s method for finding the closest point is summarised in Algorithm 1. Since
the initial guess x0 for the closest point is almost always near the actual closest point,
in practice the algorithm converges very quickly; in almost all cases it converges
within 2–4 iterations to a sufficient accuracy. Nonconvergence occurs when either
(a) the method failed to converge within a fixed number of iterations (20, say), or
(b) the iterate left the bounding ball. Although both situations are rare, (a) typically
occurs when xq is very near a shock of the distance function generated by the zero
level set of p, while (b) occurs when the closest point is near a nonsmooth part of the
interface, e.g., the corner of a square, where the polynomial approximations of the
level set functions lead to bumps in the interface (see, e.g., Figures 4 and 5). In the
rare case that Newton’s method does not successfully converge, but an approximate
closest point is nevertheless required as the output of a black-box type algorithm,

scales considered in the test problems are O(1). Experiments indicated that the overall algorithm is
not particularly sensitive to this choice.

118 ROBERT I. SAYE

1: λ0 := (xq − x0) · ∇p(x0)/‖∇p(x0)‖.
2: for k = 1 to maximum number of iterations do
3: g := (xk − xq + λk∇p(xk), p(xk)).

4: H :=
(

I + λk D2 p(xk) ∇p(xk)

∇p(xk)
T 0

)
.

5: Solve for δ=(δx , δλ) such that Hδ=g via Gaussian elimination with partial pivoting.
6: if succeeded then
7: if ‖δx‖>

1
2r then δ←

(1
2r/‖δx‖

)
δ.

8: (xk+1, λk+1) := (xk, λk)− δ.
9: else
10: δ1 := −

(
p(xk)/‖∇p(xk)‖

2
)
∇p(xk).

11: λk+1 := (xq − xk) · ∇p(xk)/‖∇p(xk)‖
2.

12: δ2 := xq − xk − λk+1∇p(xk).
13: if ‖δ2‖>

1
10r then δ2← (1

10r/‖δ2‖)δ2.
14: xk+1 := xk + δ1+ δ2.

15: if ‖xk − x0‖> r then
16: return did not converge within ball B(x0, r).
17: else if ‖xk+1− xk‖< ε then
18: return converged with solution xk+1.

19: return did not converge within maximum number of iterations.

Algorithm 1. Newton’s method for finding the closest point on the zero level set of p
given an initial guess x0 and a bounding ball of radius r .

an approach which suffices in most practical situations is to return the last iterate
inside the bounding ball. This approximation carries the same order of accuracy
that one many expect when either of the cases (a) or (b) occur, as demonstrated in
our convergence tests.

3.4. General algorithm. Combining the above steps, we arrive at the following
general approach for computing high-order approximations of closest points on
implicit surfaces:

• Initialisation.

(1) For each grid cell/element detected to contain the interface, define or construct
a high-order approximation of φ on that grid cell/element. For example, when
φ is defined on a Cartesian grid we can use the least-squares determined
polynomials outlined in Section 3.1. Other possibilities may naturally arise
given the specific application, for example in a gradient augmented level set
method, one can use the associated Hermite interpolants; in a discontinuous or
continuous finite element method, φ is already naturally defined as a polynomial
on the elements of an unstructured mesh.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 119

(2) For each of these constructed polynomials, sample the zero level set of the
polynomial on its domain. In the case that the domain is a rectangular element,
e.g., a cell of a Cartesian grid, Section 3.2 described a method based on using a
subcell decomposition together with a projection procedure. This approach can
naturally be extended to other cases, such as polynomials defined on triangular
or tetrahedral elements, by using a similar decomposition method to generate
and project points. Guidelines regarding the sampling resolution are provided
shortly.

(3) After sampling the interface on the whole domain, one obtains a cloud of points
C = {x1, . . . , xN } ⊂ Rd . In the final step of initialisation, a data structure for
efficient closest point queries is then created; an example of a k-d tree optimised
for surfaces is discussed in the Appendix.

• Closest point evaluation. Given an arbitrary point xq ∈ Rd , first find the closest
point in C to xq and use this as the initial guess to Newton’s method for determining
a high-order closest point, cp(xq); see Section 3.3.

Section 4.4 discusses the computational efficiency of the method. As an example
application, for the reinitialisation problem in level set methods, we simply re-
place φ with the new signed distance function given by x 7→ sign(φ(x))‖x−cp(x)‖
evaluated at each grid node. We now consider some practical details:

• Determining which cells contain the interface: One of the simplest strategies for
predicting when a grid cell contains the interface is to examine the sign of φ on the
vertices of the grid cell — a grid cell is then declared to contain the interface if and
only if the signs are not all the same. Clearly, this is not completely reliable. Two
typical possibilities include: (a) a closed interface completely contained within a
single cell; and (b) an interface which enters and exits the cell on one side/face
without crossing any other side/face. In the case that the interface is well-resolved,
(a) should not occur (unless subgrid details are to be expected as discussed shortly),
but (b) may still occur. Nonetheless, the simple check of examining the signs
on grid vertices can still be used to resolve situation (b), essentially because the
polynomials from adjacent grid cells are allowed to overlap (as in Section 3.2 and
Section 3.3). For example, a spherical interface defined on a high-resolution grid
may partially cross the face of a grid cell without crossing any of its edges. On such
a grid cell, the sign check of its vertices will not detect the interface, but the sign
check on the neighbouring grid cell will identify the presence of the interface; the
polynomial on this grid cell sufficiently approximates the interface in the original
cell, due to the overlap allowed in sampling and in Newton’s method.

Depending on the application, such as the subgrid capturing example in Section 4.5,
it may be necessary to employ a more sophisticated strategy than to simply check
signs of grid vertices. A simple approach is to suppose every grid cell contains the

120 ROBERT I. SAYE

interface; in this case the sampling procedure, while being forced to sample more
polynomials, would automatically avoid generating points for cells not containing
the interface. Another possibility is to use properties of the polynomial p itself to
evaluate bounds of the form

max
x∈B(xc,r)

|p(x)− p(xc)|< C,

where C provides a uniform bound on the values of p(x) for x in a ball centred
at xc with a certain grid-dependent radius. If |p(xc)| > C we can thus prove the
polynomial has no zero level set in the corresponding ball.

• Sampling resolution. Since the closest point in C to the query point xq forms an
initial approximation to the true closest point, it follows that the sampling resolution
of the seed points in C should locally depend on the amount of curvature exhibited
by the interface. In other words, on each individual grid cell/mesh element, the
length scale characterising the typical separation distance between seed points
should be on the same order as the smaller of 1x or the smallest radius of curvature
of the interface on that mesh element. In almost all practical applications of the
level set method, the interface (once approximated by polynomials) rarely exhibits
curvature higher than O(1/1x). Thus, in Section 3.2, the simple strategy of using a
m×m (×m) subgrid to generate points with m = 2 or m = 3 typically suffices. In
other cases, e.g., a triangular or tetrahedral mesh element, a similar decomposition
can be used to sample with similar resolution. For very high-order level set methods,
it is possible to capture subgrid effects, in which a single grid cell may contain, for
example, an isolated spherical droplet. In these applications, it may be necessary
to make m larger. On the other hand, for reasons of efficiency we do not want an
excessive number of points in the cloud C since this affects the performance of
closest point queries. Ideally, we would like a sampling algorithm that automatically
adapts to the curvature exhibited by each polynomial on each mesh element. One
possibility for achieving this is to analyse the polynomial and its coefficients to
calculate bounds on second derivative information across the entire cell — using
these bounds, m could be made automatically adaptive such that m = 1 or 2 in
smooth parts of the domain, with m larger in regions of high curvature. Though
feasible, we will not pursue this idea here or in the accompanying C++ code for the
sake of overall simplicity.

• Overlapping threshold. The approximate distance between points in the cloud
C is also a good measure of how much to allow adjacent grid cell polynomials to
overlap. Generally, the polynomials overlap by about 1

21x or less; this is also used
as the radius of the bounding ball in Newton’s method.

• Treatment of boundary conditions. In the case of a Cartesian grid, we assumed that
we could apply stencils at each relevant grid cell to obtain high-order polynomial

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 121

approximations. However, this cannot be immediately applied at the boundary of
the computational domain, since grid points outside the domain do not exist. Here
it is necessary to either (i) find polynomials based on interior data only, and/or (ii)
enforce a given boundary condition on φ or its interface, such as a zero Neumann
boundary condition. One could use, for instance, “ghost layers” in which grid
points are defined outside of the domain whose values are based on extrapolation.
Since accurate treatment of boundary conditions is highly application-dependent,
we will not consider this further here.

• Narrow banding. A common implementation of level set methods is to only
define φ in a small narrow band surrounding the zero level set of φ, given by those
grid points x for which ‖x − cp(x)‖< r , where r is a band radius equal to a fixed
number of grid cells [1]. It is straightforward to modify a k-d tree search to consider
only points for which the distance to the query point is less than r , returning null if
no such points exist; search queries can use this extra information to very efficiently
determine the location of the narrow band.

• Parallelisation. Parallelising closest point/distance algorithms such as this depends
crucially on the intended application. In a level set method, it is often the case
that the global domain is subdivided into subdomains, with individual subdomains
assigned to individual processors. In this case, and when narrow banding, it is
straightforward to parallelise the closest point algorithm: (i) each processor would
examine the grid cells in its subdomain and sample the interface; (ii) points that are
within a distance r from its subdomain boundary are communicated, together with
their associated polynomials, to adjacent processors; (iii) each processor can then
proceed completely independently from the rest by building a k-d tree for a slightly
larger-sized subdomain. If the application cannot narrow-band, or if a different type
of processor decomposition is used, another strategy is likely necessary, such as
communicating between processors coarse-grained information about the geometry
of the interface.

4. Results

4.1. Convergence tests. For a sufficiently smooth level set function φ, each of the
methods in Table 1 for approximating φ in each grid cell is p-th order accurate.
Combined with the closest point algorithm, this leads to an approximation of
the closest point function cph(x) and distance function dh(x) := ‖x − cph(x)‖.
In general, we can expect the distance function approximation to be p-th order
accurate, both near and far away from the interface. On the other hand, the closest
point approximation may lose up to two orders of accuracy if x is near a “curvature
singularity,” e.g., near the centre of a circle. One way to see this is to note that the
exact closest point and distance functions satisfy the relation cp(x)= x−d(x)∇d(x)

122 ROBERT I. SAYE

almost everywhere.7 Therefore, to recover cph from dh we need to differentiate dh ,
thereby incurring an error proportional to D2d(x)h p−1. The Hessian of a distance
function is related to the curvature of its level sets — D2d has a singularity behaving
like ‖x−xc‖

−1 near a centre of curvature xc. It follows that cph(x)may be (p−2)-th
order accurate near such a singularity, and some of our results confirm this.

To assess the approximation errors in dh and cph , we consider a variety of smooth
and nonsmooth test problems and measure the error locally and globally, in both
the ‖ · ‖1 and ‖ · ‖∞ norms. These tests are performed on a uniform grid such that
1x =1y =1z = h. More precisely:

• Let S be the set of points in the domain � for which the exact closest point
function is multivalued, e.g., the centre of a sphere or the inside diagonals of a
square. In a numerical setting, it would be overly complicated to request the
closest point algorithm to return all possible solutions when the query point is
in S. Hence, to simplify the convergence analysis, we will ignore grid points
that are in S or situated very close to S, as follows. Let Sh be the set of grid
points whose minimum distance to S is less than δ; in our results, the threshold
has been set to half a grid cell, δ = 1

2 h. Grid points in Sh are ignored only
when measuring errors in the closest point function; they are still considered
in the case of the distance function.

• Local errors are measured in a narrow band of radius 8 grid cells: let Nh be
the set of grid points x for which dh(x) < 8h. Define

‖d − dh‖1,Nh
=

1
|Nh|

∑
x∈Nh

|d(x)− dh(x)|,

‖cp− cph‖1,Nh\Sh
=

1
|Nh\Sh|

∑
x∈Nh\Sh

‖ cp(x)− cph(x)‖,

and

‖d − dh‖∞,Nh
= max

x∈Nh
|d(x)− dh(x)|,

‖cp− cph‖∞,Nh\Sh
= max

x∈Nh\Sh
‖cp(x)− cph(x)‖.

• Global errors are measured across the entire computational domain �, with
the same definitions of the norm, except that Nh is replaced with the set of all
grid points; grid points in Sh are ignored only when measuring errors in the
closest point function.

A variety of test problems have been analysed, including a circle, sphere, ellipse,
ellipsoid, square, cube, rectangle with rounded ends and a cylinder with rounded

7The relation is not defined at shocks where d is not differentiable — equivalently, where there is
more than one closest point to x .

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 123

− 3
4

− 1
2

− 1
4

0

1
4

1
2

3
4

− 3
4 − 1

2 − 1
4 0 1

4
1
2

3
4

y

x

− 3
4

− 1
2

− 1
4

0

1
4

1
2

3
4

− 3
4 − 1

2 − 1
4 0 1

4
1
2

3
4

y
x

Figure 2. Two-dimensional test case corresponding to an ellipse with semimajor axis 1
2

and semiminor axis 1
3 . Left: contours of the initial level set function φ given by (2), with

the zero level set indicated by a thick line. Right: reinitialised signed distance function.

Figure 3. Three-dimensional test case corresponding to an ellipsoid with semiprincipal
axes 1

2 , 1
3 and 1

2 . Left: contours of the initial level set function φ given by (3), with the
zero level set shown in dark grey. Right: reinitialised signed distance function. In both
figures, the contours have been sliced by a plane in order to reveal the inner structure.

ends. Here we show results for the most instructive case, that of an ellipse in 2D
and ellipsoid in 3D, followed by a summary of the results of the other tests. In all
cases, the domain is � =

[
−

3
4 ,

3
4

]d and the level set function φ is defined on a
uniform Cartesian n×n grid (in 2D) or n×n×n grid (in 3D). For the ellipse, φ is
evaluated at grid points via

φ(x, y)=
(
1− exp(−(x − 0.3)2− (y− 0.3)2)

)(√
4x2
+ 9y2

− 1
)
, (2)

and for the ellipsoid,

φ(x, y, z)=
(
1− exp

(
−(x − 0.3)2− (y− 0.3)2

))(√
4x2
+ 9y2

+ 4z2
− 1

)
. (3)

124 ROBERT I. SAYE

These functions were designed to exhibit large changes in the norm of the gradient
near the zero level set. Figures 2 and 3 show contours of φ as well as their
reinitialised counterparts. We can see that the resulting distance function is not
smooth: in the case of the ellipse, d(x) is not smooth on the segment{

(x, y) : |x | ≤ 1
2 −

2
9 , y = 0

}
,

and has curvature singularities at

(x, y)=
(
±
(1

2 −
2
9

)
, 0
)
.

A similar disc of nonsmoothness exists for the ellipsoid. Thus we expect to see
differing rates of convergence depending on the local and global metrics. Tables
2 and 3 presents the convergence results8 for all the polynomials of Table 1 in
both 2D and 3D. For each type of polynomial, the convergence rate is estimated
by taking ratios of errors between different grid sizes and are indicated by bold
numbers in the two tables. The results can be summarised as follows:

• The bicubic and tricubic polynomials (which recall are designed to find a C1

interpolant of the level set function) are locally third order accurate, for both
the distance function and closest point function. Globally, the distance function
is third order; however, the closest point function is approximately first order.

• For each of the Taylor polynomials of degree dT , letting p = dT + 1 (as in
Table 1), both the distance and closest point functions are locally p-th order
accurate. Globally, the distance function is also p-th order accurate. The
closest point function is globally (p−1)-th order accurate in the L1 norm, and
is between (p−2)-th and (p−1)-th order accurate in the maximum norm.

Thus, we obtain the optimal convergence rate in both the distance function and
closest point function, depending on proximity to the interface or curvature singular-
ities. To be more precise, for a sufficiently smooth interface there are three zones of
convergence: (i) if x is such that d(x)= O(h) (as in a narrow band), then the closest
point approximation is p-th order accurate; (ii) if x is a fixed distance away from
the interface (i.e., independent from h) and is not located at a curvature singularity,
then the closest point approximation is (p− 1)-th order accurate; and (iii) if x has
distance O(h) from a curvature singularity, then the closest point approximation
is (p−2)-th order accurate. The distance function approximation dh is p-th order
accurate in all three zones (for a sufficiently smooth interface).

8In order to measure the error, we need the exact closest point function for an ellipse and ellipsoid.
This was implemented by using Newton’s method, similar to that developed in Section 3.3, applied
to the polynomials 4x2

+ 9y2
− 1 in 2D and 4x2

+ 9y2
+ 4z2

− 1 in 3D, with enough iterations to
compute the closest point to machine precision accuracy.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 125

Distance error Closest point error
d n ‖·‖1 ‖·‖∞ ‖·‖1 ‖·‖∞

B
ic

ub
ic

2

64 3.66×10−5 1.14×10−3 6.21×10−4 2.81×10−2

128 6.90×10−6 2.4 8.95×10−4 0.3 2.07×10−4 1.6 2.10×10−2 0.4
256 5.75×10−7 3.6 1.23×10−4 2.9 5.47×10−5 1.9 1.04×10−2 1.0
512 6.95×10−8 3.0 2.25×10−5 2.5 1.50×10−5 1.9 4.04×10−3 1.4

Tr
ic

ub
ic

3

64 2.85×10−5 7.85×10−3 5.47×10−4 4.38×10−2

128 3.77×10−6 2.9 1.56×10−3 2.3 1.58×10−4 1.8 2.58×10−2 0.8
256 3.54×10−7 3.4 2.59×10−4 2.6 4.10×10−5 1.9 1.18×10−2 1.1
512 3.75×10−8 3.2 3.55×10−5 2.9 9.89×10−6 2.1 5.37×10−3 1.1

Ta
yl

or
de

gr
ee

2 2

64 5.03×10−4 1.20×10−2 2.11×10−3 6.88×10−2

128 5.05×10−5 3.3 1.32×10−3 3.2 3.65×10−4 2.5 2.09×10−2 1.7
256 5.95×10−6 3.1 2.14×10−4 2.6 8.86×10−5 2.0 6.74×10−3 1.6
512 6.74×10−7 3.1 3.11×10−5 2.8 2.19×10−5 2.0 2.64×10−3 1.3

3

64 2.20×10−4 1.23×10−2 1.32×10−3 6.77×10−2

128 2.25×10−5 3.3 1.55×10−3 3.0 2.84×10−4 2.2 2.25×10−2 1.6
256 2.56×10−6 3.1 2.24×10−4 2.8 7.14×10−5 2.0 7.10×10−3 1.7
512 2.91×10−7 3.1 2.99×10−5 2.9 1.80×10−5 2.0 3.05×10−3 1.2

Ta
yl

or
de

gr
ee

3 2

64 7.24×10−6 4.31×10−4 1.05×10−4 1.84×10−2

128 4.19×10−7 4.1 1.79×10−5 4.6 1.46×10−5 2.8 2.00×10−3 3.2
256 2.52×10−8 4.1 9.30×10−7 4.3 1.93×10−6 2.9 2.96×10−4 2.8
512 1.61×10−9 4.0 5.94×10−8 4.0 2.34×10−7 3.0 3.88×10−5 2.9

3

64 4.48×10−6 2.54×10−4 7.28×10−5 1.23×10−2

128 2.69×10−7 4.1 1.82×10−5 3.8 9.58×10−6 2.9 2.08×10−3 2.6
256 1.66×10−8 4.0 1.05×10−6 4.1 1.22×10−6 3.0 3.08×10−4 2.8
512 1.03×10−9 4.0 6.73×10−8 4.0 1.54×10−7 3.0 4.23×10−5 2.9

Ta
yl

or
de

gr
ee

4 2

64 1.93×10−6 8.14×10−5 1.75×10−5 1.12×10−3

128 5.68×10−8 5.1 2.53×10−6 5.0 1.03×10−6 4.1 9.43×10−5 3.6
256 1.80×10−9 5.0 8.64×10−8 4.9 6.32×10−8 4.0 6.57×10−6 3.8
512 5.65×10−11 5.0 2.89×10−9 4.9 3.94×10−9 4.0 4.92×10−7 3.7

3

64 9.97×10−7 1.23×10−4 1.10×10−5 1.32×10−3

128 3.14×10−8 5.0 2.79×10−6 5.5 6.69×10−7 4.0 1.00×10−4 3.7
256 9.88×10−10 5.0 1.01×10−7 4.8 4.15×10−8 4.0 6.34×10−6 4.0
512 3.09×10−11 5.0 3.32×10−9 4.9 2.59×10−9 4.0 4.72×10−7 3.7

Ta
yl

or
de

gr
ee

5 2

64 5.22×10−8 1.52×10−6 6.41×10−7 4.84×10−5

128 7.39×10−10 6.1 3.01×10−8 5.7 1.79×10−8 5.2 1.08×10−6 5.5
256 1.18×10−11 6.0 4.67×10−10 6.0 5.28×10−10 5.1 5.64×10−8 4.3
512 1.95×10−13 5.9 7.31×10−12 6.0 1.67×10−11 5.0 2.31×10−9 4.6

3

64 4.64×10−8 2.78×10−6 6.25×10−7 4.15×10−5

128 7.22×10−10 6.0 5.33×10−8 5.7 1.86×10−8 5.1 1.65×10−6 4.6
256 1.12×10−11 6.0 8.21×10−10 6.0 5.75×10−10 5.0 4.86×10−8 5.1
512 1.75×10−13 6.0 1.27×10−11 6.0 1.79×10−11 5.0 1.94×10−9 4.6

Table 2. Convergence results (global error) for the ellipse (dimension d = 2) and ellipsoid
(d = 3) for several polynomial classes: the bicubic (in 2D), tricubic (in 3D) and the Taylor
polynomials in Table 1. The left pair measures the error in the distance function and the
second pair the error in the closest point function. For each polynomial type, the error is
indicated for a grid of size n × n in 2D and n × n × n in 3D. Ratios between errors on
successive grids yield the convergence rates in bold.

126 ROBERT I. SAYE

Distance error Closest point error
d n ‖·‖1 ‖·‖∞ ‖·‖1 ‖·‖∞

B
ic

ub
ic

2

64 2.98×10−5 1.14×10−3 3.47×10−4 1.76×10−2

128 4.31×10−6 2.8 6.81×10−4 0.7 5.95×10−5 2.5 8.25×10−3 1.1
256 4.97×10−7 3.1 7.22×10−5 3.2 7.47×10−6 3.0 1.69×10−3 2.3
512 5.89×10−8 3.1 7.62×10−6 3.2 8.09×10−7 3.2 1.54×10−4 3.5

Tr
ic

ub
ic

3

64 2.25×10−5 7.85×10−3 2.67×10−4 3.88×10−2

128 2.26×10−6 3.3 1.50×10−3 2.4 3.62×10−5 2.9 1.30×10−2 1.6
256 2.42×10−7 3.2 1.35×10−4 3.5 4.29×10−6 3.1 4.27×10−3 1.6
512 2.97×10−8 3.0 1.37×10−5 3.3 5.27×10−7 3.0 2.73×10−4 4.0

Ta
yl

or
de

gr
ee

2 2

64 3.24×10−4 1.19×10−2 9.08×10−4 4.04×10−2

128 3.64×10−5 3.2 1.31×10−3 3.2 1.00×10−4 3.2 5.56×10−3 2.9
256 4.29×10−6 3.1 2.13×10−4 2.6 1.15×10−5 3.1 1.08×10−3 2.4
512 5.18×10−7 3.0 3.09×10−5 2.8 1.30×10−6 3.1 1.09×10−4 3.3

3

64 1.58×10−4 1.23×10−2 6.41×10−4 3.97×10−2

128 1.71×10−5 3.2 1.53×10−3 3.0 7.91×10−5 3.0 6.96×10−3 2.5
256 1.96×10−6 3.1 2.18×10−4 2.8 9.67×10−6 3.0 1.08×10−3 2.7
512 2.37×10−7 3.0 2.84×10−5 2.9 1.18×10−6 3.0 1.30×10−4 3.1

Ta
yl

or
de

gr
ee

3 2

64 5.84×10−6 2.04×10−4 5.56×10−5 9.14×10−3

128 3.48×10−7 4.1 1.42×10−5 3.8 3.68×10−6 3.9 3.62×10−4 4.7
256 2.20×10−8 4.0 9.00×10−7 4.0 2.24×10−7 4.0 2.58×10−5 3.8
512 1.40×10−9 4.0 5.94×10−8 3.9 1.34×10−8 4.1 1.34×10−6 4.3

3

64 3.83×10−6 2.25×10−4 3.55×10−5 9.04×10−3

128 2.36×10−7 4.0 1.54×10−5 3.9 2.28×10−6 4.0 3.62×10−4 4.6
256 1.48×10−8 4.0 9.59×10−7 4.0 1.44×10−7 4.0 2.57×10−5 3.8
512 9.25×10−10 4.0 6.33×10−8 3.9 8.99×10−9 4.0 1.48×10−6 4.1

Ta
yl

or
de

gr
ee

4 2

64 1.67×10−6 8.14×10−5 8.95×10−6 6.96×10−4

128 4.95×10−8 5.1 2.48×10−6 5.0 2.61×10−7 5.1 1.75×10−5 5.3
256 1.58×10−9 5.0 8.61×10−8 4.9 8.00×10−9 5.0 4.54×10−7 5.3
512 4.94×10−11 5.0 2.80×10−9 4.9 2.47×10−10 5.0 1.77×10−8 4.7

3

64 9.32×10−7 1.21×10−4 5.56×10−6 1.32×10−3

128 2.92×10−8 5.0 2.68×10−6 5.5 1.72×10−7 5.0 1.53×10−5 6.4
256 9.20×10−10 5.0 1.01×10−7 4.7 5.40×10−9 5.0 5.07×10−7 4.9
512 2.88×10−11 5.0 3.31×10−9 4.9 1.69×10−10 5.0 1.71×10−8 4.9

Ta
yl

or
de

gr
ee

5 2

64 4.50×10−8 1.35×10−6 3.24×10−7 2.71×10−5

128 6.57×10−10 6.1 3.01×10−8 5.5 4.84×10−9 6.1 2.11×10−7 7.0
256 1.03×10−11 6.0 4.61×10−10 6.0 7.06×10−11 6.1 3.39×10−9 6.0
512 1.73×10−13 5.9 7.15×10−12 6.0 1.13×10−12 6.0 5.65×10−11 5.9

3

64 4.08×10−8 2.48×10−6 2.87×10−7 2.27×10−5

128 6.44×10−10 6.0 5.05×10−8 5.6 4.50×10−9 6.0 2.65×10−7 6.4
256 1.00×10−11 6.0 7.70×10−10 6.0 7.04×10−11 6.0 4.27×10−9 6.0
512 1.57×10−13 6.0 1.21×10−11 6.0 1.10×10−12 6.0 7.22×10−11 5.9

Table 3. Convergence results (local error in a narrow band of radius 8 grid cells) for the
ellipse (dimension d = 2) and ellipsoid (d = 3) for several polynomial classes: the bicubic
(in 2D), tricubic (in 3D) and the Taylor polynomials in Table 1. The left pair measures the
error in the distance function and the second pair the error in the closest point function.
For each polynomial type, the error is indicated for a grid of size n×n in 2D and n×n×n
in 3D. Ratios between errors on successive grids yield the convergence rates in bold.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 127

Three more test problems were considered, each with a different degree of
smoothness. Here we summarise the convergence results9:

• Circle in 2D and sphere in 3D. In this case, the distance function is infinitely
smooth except for a single isolated point at the origin of the circle/sphere. The
results confirm that the distance and closest point functions are p-th order
accurate everywhere, except near the singularity where only the closest point
function loses two orders of accuracy.

• Square in 2D and cube in 3D. This test problem is more subtle. Locally, both
the distance and closest point function are second order accurate in the L1

norm, and first order accurate in the maximum norm, which is to be expected.
Globally, the distance function is first order accurate in both norms. However,
the closest point function is approximately half-order accurate globally in
the maximum norm. The reason for achieving only half-order accuracy is as
follows: the interpolation/approximation of the corner of a square inevitably
leads to small bumps (see, e.g., Figure 5 on page 129). These small bumps are
O(h) perturbations of the flat edge of the square, and are “seen” far away from
the interface. The locus of points for which the distance to the bump equals the
distance to the edge of the square approximately forms a parabola; see Figure 4.
For a fixed distance away from the edge, the parabola’s width is O(

√
h). All

grid points within the parabola see the bump, leading to a half-order error in
the maximum norm of the closest point function. This loss of accuracy applies
only to the outside of the square/cube. On the inside, the closest point function
is multivalued along the diagonals (either two values in 2D or up to three
in 3D). Along these shock lines of the distance function, the algorithm returns
the exact distance to the interface (since the flat sides of the square/cube are
exactly recovered).

• Rounded rectangle and cylinder with rounded ends. This example serves as a
somewhat smooth but not infinitely smooth surface. In two dimensions, the
interface is a square of width 1

2 with two semicircles on the left and right
sides; see Figure 4. In three dimensions, the interface is a cylinder with two
hemispheres on either side. In both cases, the interface has a continuous
normal vector field, but its curvature is discontinuous. Results show that
both the distance function and closest point function are locally second order
accurate, the distance function is globally second order accurate, and the closest
point function is approximately second order accurate except near curvature
singularities (all in the maximum norm).

9These convergence results may be reproduced by the reader with the C++ code accompanying
this paper.

128 ROBERT I. SAYE

Figure 4. Left: polynomial approximation of a square leads to bumps on the corners
which are O(h) in width and are seen far away from the interface by the closest point
function. The set of points for which the distance to the bump equals the distance to the
original square approximately forms a parabola (indicated by the dashed line). Right: a
rounded rectangle used in one of the convergence tests, consisting of a square of width 1

2
with two semicircles of diameter 1

2 on either end.

4.2. Convergence of Newton’s method. Recall that the threshold for deciding con-
vergence in Newton’s method was whether ‖xk+1− xk‖< ε. In our test cases, we
set10 ε = h p, where p is the expected order of accuracy of the class of polynomials
being used. Across all test problems it was found that in the vast majority of cases,
Newton’s method converged within 2–4 iterations. Table 4 illustrates the typical
convergence behaviour with a histogram counting the number of steps taken by
Newton’s method accumulated across the entire computational grid. Generally

Number of iterations in Newton’s method
Test case Polynomial

1 2 3 4 5 6 7–20 F E

2D ellipse Bicubic 0.02 33.6 64.6 1.2 0.2 0.1 0.01 0.2
2D ellipse Taylor degree 2 0.02 34.4 65.3 0.2
2D ellipse Taylor degree 4 0.3 78.9 20.8
2D square Bicubic 0.3 87.8 5.4 4.1 1.1 0.2 0.7 0.01 0.4
2D square Taylor degree 2 0.3 87.1 8.6 4.0 <0.01
2D square Taylor degree 4 0.3 87.2 0.4 7.5 4.6
3D ellipsoid Tricubic <0.01 9.7 89.4 0.6 0.2 0.04 <0.01 0.07 <0.01
3D ellipsoid Taylor degree 2 <0.01 9.3 90.7 0.05 <0.01 <0.01
3D ellipsoid Taylor degree 4 <0.01 62.2 37.8
3D cube Tricubic <0.01 72.4 10.9 10.3 3.7 0.5 1.5 0.1 0.6
3D cube Taylor degree 2 <0.01 71.2 19.1 9.7 <0.01
3D cube Taylor degree 4 <0.01 70.7 0.08 16.2 13.0 <0.01 <0.01

Table 4. Convergence of Newton’s method. In each case, executed on either a 256× 256
grid (in 2D) or 256× 256× 256 grid (in 3D), the percentage of grid points which needed
the indicated number of steps for convergence is shown; entries greater than 10% are in
boldface. A blank cell indicates exactly 0%, “F” means Newton’s method did not converge
within 20 iterations, and “E” means the iterate left the bounding ball that determines the
amount of overlap between adjacent grid cells.

10In fact, we set ε =max(10−14, h p) to ensure that convergence is declared when using a highly
resolved grid for which errors are limited to double precision arithmetic.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 129

deg = 3 bicubic deg = 2

deg = 3 deg = 4 deg = 5

k = 1
k = 10
k = 20

Figure 5. Effect of multiple reinitialisations on an interface, zooming in on a 6× 6 patch
of grid cells to observe cell-sized effects. Each patch shows the interface after one reinitial-
isation (solid line), after 10 reinitialisations (dashed-dot line), and after 20 reinitialisations
(dashed). Top left: reinitialisation applied to a circle of radius approximately 5.5 grid
cells, computed using a Taylor polynomial of degree 3. Remaining grids: reinitialisation
applied to the corner of a square where, except for the bicubic, a Taylor polynomial of the
indicated degree is used.

speaking, it is very rare that more than 6 iterations are needed. Note also that in the
case of the square and cube, the majority of grid points requires just two iterations:
when the closest point is on a flat face of the square/cube, only one iteration is
needed for convergence, but two iterations are necessary to detect this.

4.3. Repeated reinitialisation. In level set methods, it is often necessary to peri-
odically reinitialise the level set function as a distance function and a common
practice for doing this is to reinitialise φ every fixed number of steps. Reinitialising
as frequently as this may even be necessary to converge to the correct solution, such
as in the Voronoi Implicit Interface Method [25; 26] which evolves an unsigned
distance function. It follows that an important requirement of a reinitialisation
method is that any perturbation in the location of the interface should be made as
small as possible. As an example, if the time step for an evolving simulation is
1t = O(h2), then the level set function will be reinitialised approximately O(h−2)

many times over the course of the simulation. The accuracy of the reinitialisation
procedure must then necessarily be at least second order accurate — in fact, it often
needs to be much higher to ensure that accumulated errors from reinitialisation do
not dominate the overall error.

130 ROBERT I. SAYE

In addition to requirements on the order of accuracy, it should also be confirmed
that the reinitialisation method is stable when invoked on the same problem multiple
times [10]. Let R(φ) be the operator which takes a grid-defined level set function φ
and returns an approximation to the signed distance function evaluated on the same
grid. Of interest is the error in the interface of R ◦ · · · ◦ R(φ) = Rk(φ) after k
reinitialisations, compared to the original interface of φ. Figure 5 illustrates the
behaviour for a smooth interface (a circle) and nonsmooth interface (the corner of a
square), zooming in on a 6×6 patch of grid cells. In Figure 5, the interface, defined
by the zero level set of the relevant polynomial of each grid cell, is shown for
k = 1, 10, and 20. For smooth interfaces, and provided the reinitialisation method is
at least third-order accurate, the effect of reinitialisation is essentially unobservable,
except on extremely coarse grids. For nonsmooth interfaces, we expect to see O(h)
perturbations; however, we do not wish the amount of perturbation to rapidly grow
as k is increased.

To analyse this more carefully, a metric measuring the amount of perturbation
is required. Here we use a metric that measures the maximum deviation in the
interface, defined by the Hausdorff distance dH : given two interfaces 01 and 02

(each a surface of codimension-one), define

dH (01, 02)=max
(
supx∈01

d(x, 02), supx∈02
d(x, 01)

)
, (4)

where d(x, 0i) is the minimum distance from x to interface 0i . Figure 6 plots
the error11 for a circle in 2D, a sphere in 3D, a square in 2D, and a cube in 3D,
for k between 1 and 20 iterations, for all polynomial types considered in this
paper. We observe that in all cases, the error after multiple reinitialisation steps is
stable and remains on the same order as the original approximation error. Another
metric for measuring accuracy of reinitialisation methods is the ability to conserve
area/volume — since the Hausdorff metric bounds the error in area/volume con-
servation, it follows that the closest point algorithm also preserves volume (both
locally and globally) with at least the same order of accuracy.12

4.4. Computational efficiency. Let N be the number of grid cells containing the
interface. Then the basic computational complexity of the algorithm is: (i) O(N) to

11To actually compute the Hausdorff distance, we supersample each interface by using a subgrid of
10d subcells per grid cell, such that the exact solution has a cloud of points {xi,exact} ⊂ 0exact, and the
approximate interface has a cloud of points {x j,h} ⊂ 0h . With these source points, we compute dH ≈
max(maxi d(xi,exact, 0h),max j d(x j,h , 0exact)), where d(·, 0exact) is evaluated using knowledge of
the exact solution, while d(·, 0h) is evaluated using Newton’s method, similar to that described in
Section 3.3, but with convergence to machine precision. Altogether, this is a sufficiently accurate
approximation of the true Hausdorff distance.

12In the case of the square, which has first order approximation errors at the corners of the square,
the area of the reinitialised square is in fact second order accurate.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 131

10−9

10−8

10−7

10−6

10−5

10−4

1 4 8 12 16 20

d
H

k

2D circle

10−4

10−3

10−2

10−1

1 4 8 12 16 20

d
H

k

2D square

10−9

10−8

10−7

10−6

10−5

10−4

1 4 8 12 16 20

d
H

k

3D sphere

10−4

10−3

10−2

10−1

1 4 8 12 16 20

d
H

k

3D cube

bi/tricubic
Taylor degree 2
Taylor degree 3
Taylor degree 4
Taylor degree 5

Figure 6. Error in the position of the interface after k repeated reinitialisations, where
the error is measured by the Hausdorff distance (4) between the exact interface and the
interface defined by the relevant polynomials of each grid cell. The legend in the bottom-
right figure applies to all figures. In each case, a domain [−1, 1]d is subdivided into a grid
of 128× 128 cells (in 2D) or 128× 128× 128 cells (in 3D). Top left: error for a circle of
radius 1

2 . Top right: error for a square of width 1. Bottom left: error for a sphere of radius
1
2 . Bottom right: error for a cube of width 1.

construct grid cell polynomials and sample their zero level set; (ii) O(N log N), on
average, to construct the k-d tree; (iii) O(log N), on average, per closest point query
in searching the k-d tree for the closest point in C (in the best case it is O(1); in the
worst case it can be O(N), as for example when xq is at the centre of a sphere); and
(iv) O(1) cost per query point in applying Newton’s method in all cases. Roughly
speaking, timing of individual components of the algorithm shows that:

• When computing the closest point function in a narrow band with radius a fixed
number of grid cells (e.g., 5–15): constructing the polynomials takes 15–20% of
the time, sampling up to 5%, constructing the k-d tree up to 5%, searching the tree
between 40–70%, and running Newton’s method between 15–30%.

• When computing the closest point in the entire domain, the size of N relative to
the total number of grid points is more relevant. For medium to highly resolved
grids, the majority of the overall computation time is spent solely in searching the
k-d tree and running Newton’s method. Depending on the dimension of the problem

132 ROBERT I. SAYE

Test problem FMM High-order

2048× 2048 grid, narrow band 0.08 s 0.1 s
2048× 2048 grid, entire domain 1.6 s 1.9 s
256× 256× 256 grid, narrow band 1.6 s 1.8 s
256× 256× 256 grid, entire domain 20 s 36 s

Table 5. Timing tests for a circular/spherical interface, performed on an Intel i7 3.1 GHz
desktop machine (single core), comparing a second-order fast marching method [27] to the
high-order closest point algorithm.

and accuracy of the polynomials, this ranges from 20% of the time in Newton’s
method and 80% of the time in searching to an even split between the two.

It follows that no single component of the algorithm clearly dominates the
overall cost. To provide a general idea of the practical performance of the method,
Table 5 compares its speed to a fast marching method which has been optimised
for computing distances. (It is important to note that the two methods are intended
for different classes of problems, so the comparison in speed should only be used
as a guideline.) Further improvements in efficiency could be made by taking into
account specific computing architecture, e.g., using more advanced optimisation
techniques such as SSE instructions in k-d tree searches, but in the interest of
simplicity and code portability these were not considered here.

4.5. Subgrid features. As our final example, we demonstrate that the algorithm for
finding closest points on implicitly defined surfaces can accurately capture subgrid
features in the interface, such as “droplets” completely contained within one grid
cell. The problem setup is as follows. We begin with a level set function φ that
is defined only at grid points. In the context of subgrid resolution, we then make
the natural assumption that subgrid details are successfully captured by high-order
approximations of φ on each grid cell.

Given this assumption, the pertinent issue in the closest point algorithm is whether
the sampling procedure described in Section 3.2 can successfully detect and sample
these subgrid details. In Section 3.4 it was discussed how this could be achieved
by using polynomial bounds to automatically and adaptively determine where to
place points on the zero level set of each grid cell’s polynomial. Once sampled
sufficiently well, Newton’s method will successfully find the closest point on the
interface. Figure 7 illustrates a pair of two-dimensional examples in which the
values of φ were defined on the grid points via a scaled version of the function

f (x, y)= x2
−

1
27 y3
+

2
3 y−α.

Here α is a parameter determining which level set is considered the interface. Two
cases with different values of α are shown in Figure 7, resulting in two topologically

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 133

Figure 7. Capturing subgrid details of an interface defined by a high-order approximation
on a 5 × 5 patch of grid cells. Here the level set function values are defined only at
grid points. Shown are the contours of the computed signed distance function, evaluated
throughout the 5× 5 patch of grid cells. Left: a situation where three cells containing the
interface have the same sign of the level set function at all their vertices. Right: an interface
with two connected components with a droplet completely contained within one grid cell.

different interfaces. In either case, the cells in the middle cannot detect the presence
of the interface by examining only the signs of φ at their vertices. High-order
polynomial approximations can nevertheless recover these subgrid details, and
these are accounted for in the closest point algorithm13 throughout the 5× 5 patch.
An analogous problem in three dimensions is shown in Figure 8 using the same-
sized grid cells, where again isolated droplets and long thin interfaces are correctly
accounted for.

Figure 8. Analogy of Figure 7 in three dimensions corresponding to a 5× 5× 5 patch of
grid cells for which the interface (shown in dark grey) exhibits subgrid details. Though not
shown in the figure, the cell sizes are identical to those in Figure 7. Here contours of the
computed signed distance function have been cut by a plane in order to see inner details.
Left: a situation in which the interface passes through several grid cells that have the same
sign of the level set function on all their vertices. Right: a droplet completely contained
within one grid cell.

13While automatic sampling is possible, in this particular example we used a simple method that
used a subgrid of 10× 10 to sample with (see Section 3.2) based on a Taylor polynomial of degree 3.

134 ROBERT I. SAYE

5. Concluding remarks

The presented method for computing high-order approximations of closest points
on implicitly defined surfaces is straightforward — given a level set function defined
by a high-order polynomial on each element of the computational domain, the zero
level set is sampled to produce a sufficiently dense cloud of points approximating
the interface. A closest point calculation proceeds by first finding the closest point
in the cloud, and then improving this guess by using Newton’s method. The results
show that the algorithm is both robust and efficient — typically only 2–3 iterations of
Newton’s method are required to achieve convergence. In comparison to marching-
based or PDE-based methods, for which implementation on unstructured meshes
can be subtle, the presented approach can be used on highly unstructured meshes,
or indeed at arbitrary query points. In the case of level set functions that are
defined on a rectangular Cartesian grid, high-order polynomial approximations
based on least-squares interpolation were presented. In other applications, such as
gradient augmented level set methods or high-order discontinuous Galerkin finite
element methods, the polynomials defining the interface are naturally specified.
Convergence tests were performed and showed orders of accuracy of up to six
in both the computed distance function and closest point function. For smooth
problems, one obtains the optimal order of accuracy in both the computed distance
and closest point functions. Near curvature singularities, the distance function
remains high-order accurate, but the closest point function may lose up to two
orders of accuracy.

The algorithm can be used to accurately reinitialise level set functions in level set
methods. Though no time evolving simulations were presented in this paper, it has
been successfully applied to a variety of moving interface problems which require
very frequent reinitialisation, including in the Voronoi Implicit Interface Method
[25; 26] for tracking interconnected interfaces with junctions. Some additional
applications include:

• Nonconstant extensions. A common method for extending a function f defined
on the interface is to make it constant along characteristics of the distance
function, i.e., fext(x) = f (cp(x)). Some applications require this process
to be bootstrapped in such a way that the extension is a linear or quadratic
polynomial along characteristics; see, e.g., [29]. This can be achieved by a
one-pass algorithm that calculates

fext(x)= f0(cp(x))+‖x−cp(x)‖ f1(cp(x))+ 1
2‖x−cp(x)‖2 f2(cp(x))+· · · ,

where the fi are the coefficients of the polynomial restricted to a particular
characteristic.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 135

• High-order evaluation of curvature of the signed distance function. Many
applications of the level set method require accurate calculation of the mean
curvature κ of the interface or other level sets of the signed distance function.
Let n be the normal vector field of the signed distance function determined by
the interface of a given level set function φ (which is not necessarily itself a
distance function). Then it can be shown that derivatives of n at a point x are
related to the derivatives of n evaluated at the closest point cp(x) via

∇n(x)=
(
I +‖x − cp(x)‖∇n(cp(x))

)−1
∇n(cp(x)),

while derivatives of n at a point y on the interface can be evaluated with

∇n
(
y)=

1
‖∇φ‖

(I−nnT)D2φ(I−nnT)
∣∣

y, n(y)=
∇φ(y)
‖∇φ(y)‖

, y ∈ {φ= 0}.

These relations can be used to calculate curvature information of the signed
distance function, such as the mean curvature κ = tr(∇n), via derivatives of
φ evaluated only at the interface. This fits into the presented framework as
we can then use the high-order polynomials approximating the interface itself,
rather than relying on a finite difference scheme (say) applied to a precomputed
grid-defined signed distance function.

We conclude by briefly describing the C++ code that accompanies this article
(available on the author’s web site). The code implements all the methods presented
in this paper and can be used to verify the convergence results. In particular:

• Much of the code is templated on both the dimension d and the class of
polynomials being used. To assist with part of this functionality, the code
makes use of blitz++ [6], an open-source implementation of d-dimensional
arrays and fixed-length vectors in C++ with convenient expression template
techniques.

• Ten different types of polynomials are provided: bicubic, tricubic, and each of
the Taylor polynomials, with their corresponding pseudoinverses precomputed,
as well as routines to evaluate the polynomial, its gradient and Hessian, using
Horner’s method.

• A k-d tree optimised for codimension-one surfaces (as described in the Appen-
dix) is also supplied.

• A basic method for reinitialising a level set function as a signed distance
function is also provided — it can be used to adapt the methods to different
polynomial types and other applications.

136 ROBERT I. SAYE

Appendix: A k-d tree optimised for codimension-one manifolds

Given a fixed query point xq ∈ Rd , we would like to determine which point in
C = {x1, . . . , xN } ⊂Rd is closest to xq . One of the most efficient data structures for
closest point queries such as this is a k-d tree. A k-d tree organises the set of points
into a hierarchy based on geometric considerations and allows for closest point
queries in time approximately O(log N). Each nonleaf node of the tree has two
children: one child contains all the points on the “left” and the other child contains
all the points on the “right.” When searching a node in the tree for the closest point,
the child which is more likely to contain the closest point is searched first; the
other child is searched only if it could potentially contain a closer point than the
current candidate. In a conventional k-d tree, “left” and “right” are determined by a
hyperplane dividing the node’s set of points into two, with normal direction equal
to the x-axis, y-axis, z-axis, etc., cycled down the tree — the k in k-d tree refers to
there being k dimensions to cycle through.

In the case that the points come from smooth surfaces, we can use the geometry
of the surface itself to improve the efficiency of a k-d tree. The main idea for the
tree developed in this work is to apply coordinate transformations in order to create
“tight” bounding boxes. By using tighter bounding boxes, larger portions of the
tree can be avoided when searching the tree. The essential ideas are as follows; for
further details the reader is referred to the C++ code.

A node of the tree is either a leaf node, or else has exactly two children. A
leaf node contains leafsize many points together with a bounding box of those
points; typically leafsize is between 10–50 points, tunable according to computer
hardware characteristics.14 Each nonleaf node has four parameters: a pointer to the
“left” and “right” children, a bounding box, and a pointer to a rotation matrix. The
bounding box is of all the points represented by the node, i.e., the union of the bound-
ing boxes of all its leaf nodes. The rotation matrix pointer, if not null, determines the
coordinate transform which has been applied to all points represented by the node.

Delaying the description of constructing the tree for a moment, consider searching
the tree to find the closest point to xq . The basic routine for searching a node
recursively is shown in Algorithm 2 and is initiated by calling search on the root
node with x = xq . The output is the index i of the closest point in C , where d2 is
the squared distance15 from xq to point i . Except for line 6, the search procedure is
essentially identical to a normal k-d tree. The difference is that some nonleaf nodes
may have a rotation matrix R, whose purpose is to apply a coordinate transform to

14It is often much more efficient to perform a linear search on a handful of points in the leaf nodes,
compared to searching a tree whose leaf nodes contain a single point.

15It is much faster to compute and store squared distances, rather than the distance itself, as the
former avoids expensive sqrt calls.

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 137

1: if node is the root then initialise i := −1 and d2
:=∞.

2: if node is a leaf then
3: for each of the points x j in the leaf do
4: if ‖x j − x‖2 < d2 then update i := j and d2

:= ‖x j − x‖2.

5: else
6: if node has a rotation matrix R then set x← Rx .
7: Calculate the squared distances d2

L and d2
R from x to the bounding boxes of the left

8: and right child nodes. (If inside a bounding box, the distance is zero.)
9: if d2

L < d2
R and d2

L < d2 then
10: search(left child, x).
11: if d2

R < d2 then search(right child, x).
12: else if d2

R < d2
L and d2

R < d2 then
13: search(right child, x).
14: if d2

L < d2 then search(left child, x).

Algorithm 2. search(node, x).

the query point x (the points contained in the children of such a node have already
had their coordinates transformed). Ignoring the role of R for the moment, consider
what makes k-d trees efficient: the ability to avoid searching entire parts of the
tree. In particular, if the minimum distance from the query point to a child node’s
bounding box is larger than the distance to the current candidate closest point,
then there is no point in searching that child node. It follows that a k-d tree can
be made more efficient by attempting to make these bounding boxes as tight as
possible. This is where we can utilise the fact that the cloud of points originate
from a surface: after enough subdivision, groups of points are situated close to the
same tangent plane of the surface, and so a bounding box rotated to align with the
plane will be “thin.” One possibility therefore is to store at each node of the tree a
rotated bounding box. Instead, a more efficient approach is to transform the points
themselves (once only, upon construction of the tree) by applying rotation matrices.

To explain the calculation of these rotation matrices, we turn now to the construc-
tion of the tree. Like search, this is also done recursively, and the basic method
is shown in Algorithm 3. The tree construction is initiated by calling buildtree
on the root node with the entire range of points (j` = 1, ju = N). Except for
lines 5 to 13, the algorithm is essentially the same as constructing a normal k-d
tree. These lines are responsible for deciding whether to perform a coordinate
transformation and the specifics of that transform. Generally speaking, it is more
efficient to delay the transforms until the k-d tree has subdivided sufficiently many
times — on line 6, we can thus use metrics based on the current depth of the tree
and how many levels there are to a leaf node; in addition, once a set of points is

138 ROBERT I. SAYE

rotated, it is essentially unnecessary to consider them again for rotation. If the node
is being considered for coordinate transformations, we must estimate the normal
n of its set of points. One possibility for doing this is to use principal component
analysis to estimate the principal direction for which the points change position
the least, leading to an eigenvalue problem on the covariance matrix of the points’
positions. A simpler and more efficient method for estimating n is as follows:

Compute the mean µ := (ju − j`+ 1)−1∑ ju
j= j` x j .

Initialise n := (1, 0, . . . , 0) ∈ Rd .
for j = j` to ju do

n← n−
(x j −µ) · n
‖x j −µ‖2

(x j −µ)

if n 6= 0 then return n/‖n‖ else do not consider transform.

Geometrically, this procedure removes components from n that are estimated to
be in the tangent space. Although the calculation of n depends on the ordering of
the points, it is unnecessary to estimate n with a high amount of accuracy. Returning
to Algorithm 3, on line 10 the degree to which the new bounding box is “thin” is
measured by comparing the new coordinates (in the normal direction) with 10%
of the longest length of the untransformed bounding box. The factor of 10% was
determined empirically to lead to the best overall efficiency. The remaining details
of implementing this k-d tree are left to the C++ code.

In short, the above k-d tree, which has been optimised for point clouds arising
from smooth surfaces, is about 4 to 10 times faster than a conventional k-d tree.

The reader may wonder if other methods of characterising the bounding regions
may lead to even more efficient tree traversal. For example, if the points are known
to come from a sphere (say) or a surface that locally looks like a sphere, one might
construct a bounding “shell” which is curved to match the curvature of the sphere.
While such an approach is possible, it turns out that computing the distance to a
bounding shell is so computationally expensive that the overall cost of traversing
the tree is greater, despite there being fewer nodes to search.

One final possibility for very efficient closest point queries is to use a combination
of data structures. It is possible to construct a data structure with search operation
costing O(1) (instead of O(log N) on average as it is with k-d trees), specifically
for points arising from smooth surfaces, provided the surfaces are very finely
sampled. The idea is to use a k-d tree (or possibly a quadtree/octree/etc.) for the
initial hierarchical subdivision of points, but only use a fixed number of levels
so that the depth of the tree is bounded. The leaf nodes of the tree would then
represent many thousands of points, and supposing that they essentially form a
flat surface, these points could be binned into a conventional (d − 1)-dimensional
array, rotated to be tangent with the surface. Finding closest points in an array

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 139

1: Compute the bounding box of the node.
2: if ju − j`+ 1< leafsize then
3: Mark node as a leaf node and record range j`, ju .
4: return
5: Initialise node’s R matrix as null.
6: if node is being considered for coordinate transformation then
7: Estimate the normal n of the surface approximated by the points {x j` , . . . , x ju }.
8: Compute the coordinates of the points as though n was an axis:

αmin = min
j`≤ j≤ ju

x j · n, αmax = max
j`≤ j≤ ju

x j · n.

9: Determine the longest length L of the bounding box computed on line 1.
10: if αmax−αmin < 0.1L then
11: Calculate an orthonormal basis {r1, . . . , rd} using the normal n as the first axis.
12: Set the node’s R matrix as R = [r1, . . . , rd].
13: Transform all points: for j` ≤ j ≤ ju do x j ← Rx j .

14: Determine the axis k along which the (possibly new) bounding box of this node has
greatest extent.

15: Calculate the median m =
⌊ 1

2 (j`+ ju)
⌋

.
16: Rearrange the points {x j } such that x j,k ≤ xm,k for all j < m and x j,k ≥ xm,k for all

j > m.
17: Split the points into two halves and build the left and right child nodes:

node.left = new node; buildtree(node.left, j`, m)
node.right = new node; buildtree(node.right, m + 1, ju)

18: return

Algorithm 3. buildtree(node, j`, ju).

such as this can be made to have O(1) cost, provided the points are essentially
uniformly scattered throughout array. This idea was tested and compared with
the performance of the above k-d tree. Despite being a O(1) search algorithm,
the constant is sufficiently large that no benefits are obtained for standard-sized
reinitialisation problems in level set methods — in other words, the interface is
rarely “flat enough” compared to the resolution of the grid. The approach may be
beneficial for very large 3D problems (such as those arising from 256× 256× 256
grids or higher). For medium sized problems, the calculations required to search the
k-d tree, and then transform the problem into searching a rotated array of binned
particles, is too expensive compared to the above k-d tree with slightly larger depth.
(On a related note, different techniques are possible for adapting k-d trees and
other space partitioning algorithms to situations where the point data arises from
a possibly unknown low-dimensional manifold embedded in a high number of
dimensions; see, e.g., [11].)

140 ROBERT I. SAYE

Acknowledgements

The author thanks Ben Preskill and Ethan Van Andel at UC Berkeley for their
helpful feedback in testing the C++ code as part of their work on advanced level
set methods for inextensible and elastic surfaces. This research was supported in
part by a Luis W. Alvarez Postdoctoral Fellowship at Lawrence Berkeley National
Laboratory, the Laboratory Directed Research and Development Program of LBNL,
and by the Applied Mathematics Program of the U.S. DOE Office of Advanced
Scientific Computing Research under contract number DE-AC02-05CH11231.

References

[1] D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces, J. Comput.
Phys. 118 (1995), no. 2, 269–277.

[2] D. Adalsteinsson and J. A. Sethian, Transport and diffusion of material quantities on propagating
interfaces via level set methods, J. Comput. Phys. 185 (2003), no. 1, 271–288.

[3] D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set
methods, J. Comput. Phys. 148 (1999), no. 1, 2–22.

[4] L. Anumolu and M. F. Trujillo, Gradient augmented reinitialization scheme for the level set
method, Int. J. Numer. Methods Fluids 73 (2013), no. 12, 1011–1041.

[5] M. Bertalmio, L.-T. Cheng, S. Osher, and G. Sapiro, Variational problems and partial differential
equations on implicit surfaces, J. Comput. Phys. 174 (2001), no. 2, 759–780.

[6] Blitz++, 2013, http://sourceforge.net/projects/blitz/.

[7] A. Bøckmann and M. Vartdal, A gradient augmented level set method for unstructured grids, J.
Comput. Phys. 258 (2014), 47–72.

[8] J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension,
J. Comput. Phys. 100 (1992), no. 2, 335–354.

[9] D. L. Chopp, Computing minimal surfaces via level set curvature flow, J. Comput. Phys. 106
(1993), 77–91.

[10] , Some improvements of the fast marching method, SIAM J. Sci. Comput. 23 (2001),
no. 1, 230–244.

[11] S. Dasgupta and Y. Freund, Random projection trees and low dimensional manifolds, Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, 2008, pp. 537–546.

[12] A. du Chéné, C. Min, and F. Gibou, Second-order accurate computation of curvatures in a
level set framework using novel high-order reinitialization schemes, J. Sci. Comput. 35 (2008),
114–131.

[13] P. Esser and J. Grande, An accurate and robust finite element level set redistancing method, Tech.
Report 379, Institut für Geometrie und Praktische Mathematik, 2013.

[14] M. W. Jones, J. A. Baerentzen, and M. Sramek, 3d distance fields: A survey of techniques and
applications, IEEE Trans. Vis. Comput. Graphics 12 (2006), no. 4, 581–599.

[15] C. B. Macdonald and S. J. Ruuth, Level set equations on surfaces via the closest point method, J.
of Sci. Comput. 35 (2008), 219–240.

[16] R. Malladi, J. A. Sethian, and B. C. Vemuri, Shape modeling with front propagation: A level set
approach, IEEE Trans. Pattern Analysis and Machine Intelligence 17 (1995), no. 2, 158–175.

http://dx.doi.org/10.1006/jcph.1995.1098
http://dx.doi.org/10.1016/S0021-9991(02)00057-8
http://dx.doi.org/10.1016/S0021-9991(02)00057-8
http://dx.doi.org/10.1006/jcph.1998.6090
http://dx.doi.org/10.1006/jcph.1998.6090
http://dx.doi.org/10.1002/fld.3834
http://dx.doi.org/10.1002/fld.3834
http://dx.doi.org/10.1006/jcph.2001.6937
http://dx.doi.org/10.1006/jcph.2001.6937
http://sourceforge.net/projects/blitz/
http://dx.doi.org/10.1016/j.jcp.2013.10.024
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1006/jcph.1993.1092
http://dx.doi.org/10.1137/S106482750037617X
http://dx.doi.org/10.1145/1374376.1374452
http://dx.doi.org/10.1007/s10915-007-9177-1
http://dx.doi.org/10.1007/s10915-007-9177-1
http://dx.doi.org/10.1109/TVCG.2006.56
http://dx.doi.org/10.1109/TVCG.2006.56
http://dx.doi.org/10.1007/s10915-008-9196-6
http://dx.doi.org/10.1109/34.368173
http://dx.doi.org/10.1109/34.368173

HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO SURFACES 141

[17] C. Min, On reinitializing level set functions, J. Comput. Phys. 229 (2010), no. 8, 2764–2772.

[18] J.-C. Nave, R. R. Rosales, and B. Seibold, A gradient-augmented level set method with an
optimally local, coherent advection scheme, J. Comput. Phys. 229 (2010), no. 10, 3802–3827.

[19] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, Applied Mathematical
Sciences, Springer, 2003.

[20] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49.

[21] P.-O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Review 46 (2004), no. 2,
329–345.

[22] A. Reusken, A finite element level set redistancing method based on gradient recovery, SIAM J.
Numer. Anal. 51 (2013), no. 5, 2723–2745.

[23] G. Russo and P. Smereka, A remark on computing distance functions, J. Comput. Phys. 163
(2000), no. 1, 51–67.

[24] R. I. Saye, An algorithm to mesh interconnected surfaces via the Voronoi interface, Engin.
Comput. (2013), 1–17.

[25] R. I. Saye and J. A. Sethian, The Voronoi Implicit Interface Method for computing multiphase
physics, Proc. Nat. Acad. Sci. 108 (2011), no. 49, 19498–19503.

[26] , Analysis and applications of the Voronoi Implicit Interface Method, J. Comput. Phys.
231 (2012), no. 18, 6051–6085.

[27] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat.
Acad. Sci. 93 (1996), 1591–1595.

[28] , Level set methods and fast marching methods: Evolving interfaces in geometry, fluid
mechanics, computer vision, and materials sciences, Cambridge University Press, 1999.

[29] J. A. Sethian and Y. Shan, Solving partial differential equations on irregular domains with
moving interfaces, with applications to superconformal electrodeposition in semiconductor
manufacturing, J. Comput. Phys. 227 (2008), no. 13, 6411–6447.

[30] J. A. Sethian and P. Smereka, Level set methods for fluid interfaces, Annual Review of Fluid
Mechanics 35 (2003), 341–372.

[31] J. Strain, Fast tree-based redistancing for level set computations, J. Comput. Phys. 152 (1999),
no. 2, 664–686.

[32] M. Sussman and E. Fatemi, An efficient, interface-preserving level set redistancing algorithm
and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput. 20 (1999),
no. 4, 1165–1191.

[33] M. Sussman and M. Y. Hussaini, A discontinuous spectral element method for the level set
equation, J. Sci. Comput. 19 (2003), no. 1–3, 479–500.

[34] M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incom-
pressible two-phase flow, J. Comput. Phys. 114 (1994), no. 1, 146–159.

Received January 23, 2014. Revised April 30, 2014.

ROBERT I. SAYE: rsaye@lbl.gov
Lawrence Berkeley National Laboratory and Department of Mathematics, One Cyclotron Road,
MS: 50A-1148, Berkeley, CA 94720, United States
http://math.lbl.gov/~saye/

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.jcp.2009.12.032
http://dx.doi.org/10.1016/j.jcp.2010.01.029
http://dx.doi.org/10.1016/j.jcp.2010.01.029
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1137/120895433
http://dx.doi.org/10.1006/jcph.2000.6553
http://dx.doi.org/10.1007/s00366-013-0335-9
http://dx.doi.org/10.1073/pnas.1111557108
http://dx.doi.org/10.1073/pnas.1111557108
http://dx.doi.org/10.1016/j.jcp.2012.04.004
http://dx.doi.org/10.1073/pnas.93.4.1591
http://dx.doi.org/10.1016/j.jcp.2008.03.001
http://dx.doi.org/10.1016/j.jcp.2008.03.001
http://dx.doi.org/10.1016/j.jcp.2008.03.001
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161105
http://dx.doi.org/10.1006/jcph.1999.6259
http://dx.doi.org/10.1137/S1064827596298245
http://dx.doi.org/10.1137/S1064827596298245
http://dx.doi.org/10.1023/A:1025328714359
http://dx.doi.org/10.1023/A:1025328714359
http://dx.doi.org/10.1006/jcph.1994.1155
http://dx.doi.org/10.1006/jcph.1994.1155
mailto:rsaye@lbl.gov
http://math.lbl.gov/~saye/
http://msp.org

Communications in Applied Mathematics and Computational Science
msp.org/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/camcos for submission instructions.

The subscription price for 2014 is US $75/year for the electronic version, and $105/year (+$15, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Communications in Applied Mathematics and Computational Science (ISSN 2157-5452 electronic, 1559-3940 printed) at Mathematical
Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.
Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.berkeley.edu/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:production@msp.org
http://msp.berkeley.edu/camcos
http://msp.org/
http://msp.org/

Communications in Applied Mathematics
and Computational Science

vol. 9 no. 1 2014

1Discrete nonhomogeneous and nonstationary logistic and Markov regression
models for spatiotemporal data with unresolved external influences

Jana de Wiljes, Lars Putzig and Illia Horenko

47Low Mach number fluctuating hydrodynamics of diffusively mixing fluids
Aleksandar Donev, Andy Nonaka, Yifei Sun, Thomas G. Fai,
Alejandro L. Garcia and John B. Bell

107High-order methods for computing distances to implicitly defined surfaces
Robert I. Saye

143On inference of statistical regression models for extreme events based on
incomplete observation data

Olga Kaiser and Illia Horenko

1559-3940(2014)9:1;1-0

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.9,
no.1

2014

	1. Introduction
	2. Motivation and previous work
	3. High-order calculation of closest points
	3.1. Piecewise polynomial approximation
	3.2. Sampling the interface
	3.3. High-order closest point calculations via Newton's method
	3.4. General algorithm

	4. Results
	4.1. Convergence tests
	4.2. Convergence of Newton's method
	4.3. Repeated reinitialisation
	4.4. Computational efficiency
	4.5. Subgrid features

	5. Concluding remarks
	Appendix: A k-d tree optimised for codimension-one manifolds
	Acknowledgements
	References
	
	

