
Communications in
Applied
Mathematics and

Computational
Science

msp

vol. 9 no. 2 2014

A COMPARISON OF HIGH-ORDER EXPLICIT
RUNGE–KUTTA, EXTRAPOLATION, AND

DEFERRED CORRECTION METHODS IN SERIAL
AND PARALLEL

DAVID I. KETCHESON AND UMAIR BIN WAHEED

COMM. APP. MATH. AND COMP. SCI.
Vol. 9, No. 2, 2014

dx.doi.org/10.2140/camcos.2014.9.175 msp

A COMPARISON OF HIGH-ORDER EXPLICIT RUNGE–KUTTA,
EXTRAPOLATION, AND DEFERRED CORRECTION METHODS

IN SERIAL AND PARALLEL

DAVID I. KETCHESON AND UMAIR BIN WAHEED

We compare the three main types of high-order one-step initial value solvers:
extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs.
We consider orders four through twelve, including both serial and parallel imple-
mentations. We cast extrapolation and deferred correction methods as fixed-order
Runge–Kutta methods, providing a natural framework for the comparison. The
stability and accuracy properties of the methods are analyzed by theoretical
measures, and these are compared with the results of numerical tests. In serial,
the eighth-order pair of Prince and Dormand (DOP8) is most efficient. But
other high-order methods can be more efficient than DOP8 when implemented in
parallel. This is demonstrated by comparing a parallelized version of the well-
known ODEX code with the (serial) DOP853 code. For an N -body problem with
N = 400, the experimental extrapolation code is as fast as the tuned Runge–Kutta
pair at loose tolerances, and is up to two times as fast at tight tolerances.

1. Introduction

The construction of very high-order integrators for initial value ordinary differential
equations (ODEs) is challenging: very high-order Runge–Kutta (RK) methods are
subject to vast numbers of order conditions, while very high-order linear multistep
methods tend to have poor stability properties. Both extrapolation [9; 16] and
deferred correction [7; 10] can be used to construct initial value ODE integrators
of arbitrarily high order in a straightforward way. Both are usually viewed as
iterative methods, since they build up a high-order solution based on lower order
approximations. However, when the order is fixed, methods in both classes can be
viewed as Runge–Kutta methods with a number of stages that grows quadratically
with the desired order of accuracy.

It is natural to ask how these methods compare with standard Runge–Kutta

MSC2010: primary 65L06; secondary 65Y05.
Keywords: Runge–Kutta methods, extrapolation, deferred correction, ordinary differential equations,

high-order methods, parallel.

175

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2014.9-2
http://dx.doi.org/10.2140/camcos.2014.9.175
http://msp.org

176 DAVID I. KETCHESON AND UMAIR BIN WAHEED

methods. Previous studies have compared the relative (serial) efficiency of explicit
extrapolation and Runge–Kutta (RK) methods [18; 32; 17], finding that extrapolation
methods have no advantage over moderate to high-order Runge–Kutta methods,
and may well be inferior to them [32; 17]. Consequently, extrapolation has received
little attention in the last two decades. It has long been recognized that extrapolation
methods offer excellent opportunities for parallel implementation [9]. Nevertheless,
to our knowledge no parallel implementation has appeared, and comparisons of
extrapolation methods have not taken parallel computation into account, even
from a theoretical perspective. It seems that no work has thoroughly compared
the efficiency of explicit spectral deferred correction methods with that of their
extrapolation and RK counterparts. See [37] for a comparison of semi-implicit
deferred correction and additive RK methods).

In this paper we compare the efficiency of explicit Runge–Kutta, extrapolation,
and spectral deferred correction (DC) methods based on their accuracy and stability
properties. The methods we study are introduced in Section 2 and range in order
from four to twelve. In Section 4 we give a theoretical analysis based on metrics
that are independent of implementation details. This section is similar in spirit and
in methodology to the work of Hosea and Shampine [17]. In Section 5 we validate
the theoretical predictions using simple numerical tests. These tests indicate, in
agreement with our theoretical analysis and with previous studies, that extrapolation
methods do not have a significant advantage over high-order Runge–Kutta methods,
and may in fact be significantly less efficient. Spectral deferred correction methods
based on explicit Euler generally fare even worse than extrapolation.

In Section 3 we analyze the potential of parallel implementations of extrapolation
and deferred correction methods. We only consider parallelism “across the method”.
Other approaches to parallelism in time often use parallelism “across the steps”;
for instance, the parareal algorithm. Some hybrid approaches include PFASST [28;
11] and RIDC [5]; see also [14]. Our results should not be used to infer anything
about those methods, since we focus on a simpler approach that does not involve
parallelism across multiple steps.

For both extrapolation and (appropriately chosen) deferred correction methods,
the number of stages that must be computed sequentially grows only linearly with
the desired order of accuracy. Based on simple algorithmic analysis, we extend
our theoretical analysis to parallel implementations of extrapolation and deferred
correction. This analysis suggests that extrapolation should be more efficient
than traditional RK methods, at least for computationally intensive problems. We
investigate this further in Section 6 by performing a simple OpenMP parallelization
of the ODEX extrapolation code. The observed computational speedup is very near
the theoretical estimates, and the code outperforms the DOP853 (serial) code on
some test problems.

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 177

No study of numerical methods can claim to yield conclusions that are valid
for all possible problems. Our intent is to give some broadly useful comparisons
and draw general conclusions that can serve as a guide to further studies. The
analysis presented here was performed using the NodePy (Numerical ODEs in
Python) package, which is freely available from github.com/ketch/nodepy. Addi-
tional code for reproducing the experiments in this work can be found online at
github.com/ketch/high_order_RK_RR.

2. High-order one-step embedded pairs

. . . for high order RK formulas the construction of an embedding RK
formula may be beyond human possibilities. . .

P. Deuflhard, 1985

We are concerned with one-step methods for the solution of the initial value ODE

y′(t)= f (y), y(t0)= y0, (1)

where y ∈ Rm , f : Rm
→ Rm . For simplicity of notation, we assume the problem

has been written in autonomous form. An explicit Runge–Kutta pair computes
approximations yn, ŷn ≈ y(tn) as follows:

Yi = yn + h
i−1∑
j=1

ai j f (Y j), 1≤ j ≤ s, (2)

yn+1 = yn + h
s∑

j=1

b j f (Y j), (3)

ŷn+1 = yn + h
s∑

j=1

b̂ j f (Y j). (4)

Here h is the step size, s denotes number of stages, the stages Yi are intermediate
approximations, and one evaluation of f is required for each stage. The coefficients
A, b, b̂ determine the accuracy and stability of the method. The coefficients are
typically chosen so that yn+1 has local error τ = O(h p), and ŷn+1 has local error
τ̂ =O(h p̂) for some 1< p̂< p. Here p is referred to as the order of the method, and
sometimes such a method is referred to as a p(p̂) pair. The value ‖yn+1− ŷn+1‖ is
used to estimate the error and determine an appropriate size for the next step.

The theory of Runge–Kutta order conditions gives necessary and sufficient
conditions for a Runge–Kutta method to be consistent to a given order [16; 3]. For
order p, these conditions involve polynomials of degree up to p in the coefficients
A, b. The number of order conditions increases dramatically with p: only eight
conditions are required for order four, but order ten requires 1,205 conditions and

178 DAVID I. KETCHESON AND UMAIR BIN WAHEED

order fourteen requires 53,263 conditions. Although the order conditions possess a
great deal of structure and certain simplifying assumptions can be used to facilitate
their solution, the design of efficient Runge–Kutta pairs of higher than eighth order
by direct solution of the order conditions remains a challenging area. Some methods
of order as high as 14 have been constructed [12].

2.1. Extrapolation. Extrapolation methods provide a straightforward approach to
the construction of high-order one-step methods; they can be viewed as Runge–
Kutta methods, which is the approach taken here. For the mathematical foundations
of extrapolation methods we refer the reader to [16, Section II.9]. The algorithmic
structure of extrapolation methods has been considered in detail in previous works,
including [36; 31]; we review the main results here. Various sequences of step
numbers have been proposed, but we consider the harmonic sequence as it is usually
the most efficient [8; 17]. We do not consider the use of smoothing, as previous
studies have shown that it reduces efficiency [17].

2.1.1. Euler extrapolation (Ex-Euler). Extrapolation is most easily understood by
considering the explicit Euler method

yn+1 = yn + h f (yn) (5)

as a building block. The order p Ex-Euler algorithm computes p approximations
to y(tn+1) by using the explicit Euler method, first breaking the interval into one
step, then two steps, and so forth. The approximations to y(tn+1) computed in this
manner are all first order accurate and are labeled T11, T21, . . . , Tp1. These values
are combined using the Aitken–Neville interpolation algorithm to obtain a higher
order approximation to y(tn+1). The algorithm is depicted in Figure 1. For error
estimation, we use the approximation Tp−1,p−1 whose accuracy is one order less.

yn
1

T11

yn
1

Y21
2

T21

yn
1

Y31
3

Y32
4

T31

tn tn+1

yn
1

Y41
5

Y42
6

Y43
7

T41

Figure 1. Structure of an Euler extrapolation step using the harmonic sequence 1, 2, 3, 4.
Each numbered circle represents a function evaluation, and the numbers indicate the order
in which they are performed.

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 179

for k = 1→ p do F Compute first order approximations
Yk0 = yn

for j = 1→ k do
Yk j = Yk, j−1+

h
k

f (Yk, j−1)

end for
Tk1 = Ykk

end for
for k = 2→ p do F Extrapolate to get higher order

for j = k→ p do

T jk = T j,k−1+
T j,k−1− T j−1,k−1

j/(j − k+ 1)− 1
F Aitken–Neville formula for

extrapolation to order kend for
end for
yn+1 = Tpp F New solution value
ŷn+1 = Tp−1,p−1 F Embedded method solution value

Algorithm 1. Explicit Euler extrapolation (Ex-Euler).

Simply counting the number of evaluations of f in Algorithm 1 shows that this
is an s-stage Runge–Kutta method, where

s =
p2
− p+ 2

2
. (6)

The quadratic growth of s as the order p is increased leads to relative inefficiency
of very high-order extrapolation methods when compared to directly constructed
Runge–Kutta methods, as we will see in later sections.

2.1.2. Midpoint extrapolation (Ex-Midpoint). It is common to perform extrapola-
tion based on an integration method whose error function contains only even terms,
such as the midpoint method [16; 36]. In this case, each extrapolation step raises
the order of accuracy by two. We refer to this approach as Ex-Midpoint and give
the algorithm below. Using midpoint extrapolation to obtain order p requires about
half as many stages, compared to Ex-Euler:

s =
p2
+ 4
4

. (7)

Again, the number of stages grows quadratically with the order.

2.2. Deferred correction (DC-Euler). Like extrapolation, deferred correction has
a long history; its application to initial value problems goes back to [7]. Recently it
has been revived as an area of research; see [10; 15] and subsequent works. Here
we focus on the class of methods introduced in [10], with a modification introduced

180 DAVID I. KETCHESON AND UMAIR BIN WAHEED

r = p/2
for k = 1→ r do F Compute second-order approximations

Yk0 = yn

Yk1 = Yk,0+
h
2k

f (Yk,0) F Initial Euler step

for j = 2→ 2k do
Yk j = Yk, j−2+

h
k

f (Yk, j−1) FMidpoint steps

end for
Tk1 = Yk,2k

end for
for k = 2→ r do F Extrapolate to get higher order

for j = k→ r do

T jk = T j,k−1+
T j,k−1− T j−1,k−1

j2/(j − k+ 1)2− 1
F Aitken–Neville formula for

extrapolation to order 2kend for
end for
yn+1 = Trr F New solution value
ŷn+1 = Tr−1,r−1 F Embedded method solution value

Algorithm 2. Explicit midpoint extrapolation (Ex-Midpoint).

in [26]. These spectral DC methods are one-step methods and can be constructed
for any order of accuracy.

Spectral DC methods start like extrapolation methods, by using a low-order
method to step over subintervals of the time step; the subintervals can be equally
sized, or Chebyshev nodes can be used. We consider methods based on the explicit
Euler method and Chebyshev nodes. Subsequently, high-order polynomial interpo-
lation of the computed values is used to approximate the integral of the error, or
defect. Then the method steps over the same nodes again, applying a correction.
This procedure is repeated until the desired accuracy is achieved.

A modification of the spectral DC method appears in [26], in which a parameter
θ is used to adjust the dependence of the correction steps on previous iterations.
The original scheme corresponds to θ = 1; by taking θ ∈ [0, 1] the stability of the
method can be improved. Given a fixed order of accuracy and a predictor method,
the resulting spectral DC method can be written as a Runge–Kutta method [13].
The algorithm is defined below (the values c j denote the locations of the Chebyshev
nodes) and depicted in Figure 2. For error estimation, we use the solution from
the next-to-last correction iteration, whose order is one less than that of the overall
method.

In Algorithm 3, I
j
j−1(f (Yk−1,:)) represents the integral of the degree p − 1

polynomial that interpolates the points Yk−1, j for j = 1, . . . , p−1, over the interval

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 181

tn

yn
1

Y11
2

Y12
3

Y13
4

tn+1/3 tn+2/3 tn+1

Y21
5

Y22
6

Y23
7

Y31
8

Y32
9

Y33
10

yn+1
Y42
12

Y41
11

Figure 2. Structure of a fourth-order spectral DC step using 3 Euler substeps. Each
numbered circle represents a function evaluation, and the numbers indicate the order in
which they are performed. The black arrows represent dependencies; the gray arrows are
dependencies that vanish when θ = 0. Note that node 1 is connected to all other nodes;
some of those arrows have been omitted for clarity. Thus the solution at each node depends
on all solutions from the previous iteration and, unless θ = 0, on its predecessor in the
current iteration.

Y10 = yn

for k = 1→ p− 1 do F Compute initial prediction
Y1k = Y1,k−1+ (ck+1− ck)h f (Y1,k−1)

end for
for k = 2→ p do F Compute successive corrections

Yk0 = yn

for j = 1→ p− 1 do
Yk j = Yk, j−1+ hθ(f (Yk, j−1)− f (Yk−1, j−1))+I

j
j−1(f (Yk−1,:))

end for
end for
yn+1 = Yp,p−1 F New solution value
ŷn+1 = Yp−1,p−1 F New solution value

Algorithm 3. Explicit Euler-based deferred correction (DC-Euler).

[tn + c j h, tn + c j+1h]. Thus, for θ = 0, the algorithm becomes a discrete version
of Picard iteration.

The number of stages per step is

s = p(p− 1) (8)

unless θ = 0, in which case the stages Yp, j (for j < p− 1) need not be computed
at all since Yp,p−1 depends only on the Yp−1, j . Then the number of stages per step
reduces to (p− 1)2+ 1.

182 DAVID I. KETCHESON AND UMAIR BIN WAHEED

2.3. Reference Runge–Kutta methods. In this work we use the following exist-
ing Runge–Kutta pairs as benchmarks for evaluating extrapolation and deferred
correction methods:

• Fourth order: the embedded formula of Merson 4(3) [16, p. 167]

• Sixth order: the 6(5) pair of Calvo et al. [4], which was found to be the most
efficient out of those considered by Hosea and Shampine [17]

• Eighth order: the well-known Prince–Dormand 8(7) pair [30]

• Tenth order: the 10(8) pair of Curtis [6]

• Twelfth order: The 12(9) pair of Ono [29]

It should be stressed that finding pairs of order higher than eight is still very
challenging, and the tenth- and twelfth-order pairs here are not expected to be as
efficient as that of Prince–Dormand.

3. Concurrency

In view of an implementation on parallel computers, extrapolation meth-
ods (as opposed to RKp methods or multistep methods) have an important
distinguishing feature: the rows can be computed independently.

P. Deuflhard, 1985

If a Runge–Kutta method includes stages that are mutually independent, then
those stages may be computed concurrently [20]. In this section we investigate
theoretically achievable parallel speedup and efficiency of extrapolation and deferred
correction methods. Our goal is to determine hardware- and problem- independent
upper bounds based purely on algorithmic concerns. We do not attempt to account
for machine-specific overhead or communication, although the simple parallel tests
in Section 5.5 suggest that the bounds we give are realistically achievable for at least
some classes of moderate-sized problems. Previous works that have considered
concurrency in explicit extrapolation and deferred correction methods include [33;
36; 31; 2; 14; 11; 21; 27; 28].

3.1. Computational model and speedup. As in the serial case, our computational
model is based on the assumption that evaluation of f is sufficiently expensive
so that all other operations (e.g., arithmetic, step size selection) are negligible by
comparison.

Typically, stage y j of an explicit Runge–Kutta method depends on all the previous
stages y1, y2, . . . , y j−1. However, if y j does not depend on y j−1, then these two
stages may be computed simultaneously on a parallel computer. More generally, by
interpreting the incidence matrix of A as the adjacency matrix of a directed graph
G(A), one can determine precisely which stages may be computed concurrently and

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 183

yn
1

T11

yn
1

Y21
2

T21

yn
1

Y31
3

Y32
4

T31

tn tn+1

yn
1

Y41
2

Y42
3

Y43
4

T41

P1

P2

Figure 3. Exploiting concurrency in an Euler extrapolation step using 2 processes. The
blue circles with broken border are computed by process 1 and the red circles with
solid border are computed by process 2. Observe that only sseq = 4 sequential function
evaluations are required for each process, as opposed to the s = 7 sequential evaluations
required in serial.

how much speedup may be achieved. For extrapolation methods, the computation
of each Tk1 may be performed independently in parallel [9], as depicted in Figure 3.
Unlike some previous authors, we do not consider parallel implementation of the
extrapolation process (i.e., the second loop in Algorithm 1) since it does not include
any evaluations of f (so our computational model assumes its cost is negligible
anyway).

For the deferred correction methods we consider, parallel computation is ad-
vantageous only if θ = 0; the resulting parallel algorithm is depicted in Figure 4.
A different approach to parallelism in DC methods is taken by the RIDC method
[5]; see also [14]. Deferred correction has also been combined with the parareal
algorithm to achieve parallel speedup [28; 11; 34].

We define the minimum number of sequential stages sseq as the minimum number
of sequential function evaluations that must be made when parallelism is taken into
account. To make this more precise, let us label each node in the graph G(A) by the
index of the stage it corresponds to, with the node corresponding to yn+1 labeled
s+ 1. Then

sseq =max
j

{
path length from node 1 to node s+ 1

}
. (9)

The quantity sseq represents the minimum time required to take one step with a given
method on a parallel computer, in units of the cost of a single derivative evaluation.
For instance, the maximum path length for the method shown in Figure 3 is equal
to 4; for the method in Figure 4 it is 6. The maximum potential parallel speedup is

S = s/sseq. (10)

184 DAVID I. KETCHESON AND UMAIR BIN WAHEED

tn

yn
1

Y11
2

Y12
3

Y13
4

tn+1/3 tn+2/3 tn+1

Y21
5

Y22
5

Y23
5

Y31
6

Y32
6

Y33
6

yn+1

P1

P2

P3

Figure 4. Exploiting concurrency in a fourth-order spectral DC step (with θ = 0) using 3
Euler substeps and 3 processes. The color and border of each circle indicate which process
evaluates it. Observe that only sseq = 6 sequential function evaluations are required for
each process, as opposed to the s = 10 sequential evaluations required in serial (12 in serial
when θ 6= 0). Node 1 is connected to all other nodes; some of those arrows have been
omitted for clarity. More synchronization is required than for a similar extrapolation step.

The minimum number of processes required to achieve speedup S is denoted by P
(equivalently, P is the maximum number of processes that can usefully be employed
by the method). Finally, let E denote the theoretical parallel efficiency (here we
use the term in the sense that is common in the parallel computing literature) that
could be achieved by spreading the computation over P processes:

E =
s

Psseq
=

S
P
. (11)

Note that E is an upper bound on the achievable parallel efficiency; it accounts
only for inefficiencies due to load imbalancing. It does not, of course, account
for additional implementation-dependent losses in efficiency due to overhead or
communication.

Table 1 shows the parallel algorithmic properties of fixed-order extrapolation
and deferred correction methods. Note that for deferred correction methods with
θ 6= 0, we have sseq = s; that is, no parallel computation of stages is possible.

To our knowledge, no parallel implementation has been made of the deferred
correction methods we consider here. However, the parallel iterated RK methods of
[35] have a similar flavor. For parallel implementation of a revisionist DC method,
see [5].

4. Theoretical measures of efficiency

Here we describe the theoretical metrics we use to evaluate the methods. Our
metrics are fairly standard; a useful and thorough reference is [22]. The overarching

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 185

Method s sseq S P E

Ex-Euler p2
−p+2

2 p p2
−p+2
2p d

p
2 e

p2
−p+2

2pd p
2 e

Ex-Midpoint p2
+4
4 p p2

+4
4p d

p+2
4 e

p2
+4

4pd p+2
4 e

DC-Euler, θ = 0 (p− 1)2+ 1 2(p− 1) (p−1)2+1
2(p−1) p− 1 (p−1)2+1

2(p−1)

DC-Euler, θ 6= 0 p(p− 1) p(p− 1) 1 1 —

Table 1. Parallel implementation properties of extrapolation and deferred correction
methods. s: number of stages; sseq: number of sequentially dependent stages; S = s/sseq:
optimal speedup; P: number of processes required to achieve optimal speedup; E = S/P:
parallel efficiency. Note that DC-Euler with θ = 0 is discrete Picard iteration.

metric for comparing methods is efficiency: the number of function evaluations
required to integrate a given problem over a specified time interval to a specified
accuracy. We assume that function evaluations are relatively expensive so that
other arithmetic operations and overhead for things like step size selection are not
significant.

The number of function evaluations is the product of the number of stages of
the method and the number of steps that must be taken. The number of steps to be
taken depends on the step size h, which is usually determined adaptively to satisfy
accuracy and stability constraints:

h =min(hstab, hacc), (12)

where hstab, hacc are the maximum step sizes that ensure numerical stability and
prescribed accuracy, respectively. Since the cost of a step is proportional to the
number of stages of the method, s, then a fair measure of efficiency is h/s. A simple
observation that partially explains results in this section is as follows: extrapolation
and deferred correction are straightforward approaches to creating methods that
satisfy the huge numbers of order conditions for very high-order Runge–Kutta
methods. However, this straightforward approach comes with a cost: they use many
more than the minimum necessary number of stages to achieve a particular order,
leading to relatively low efficiency.

4.1. Absolute stability. The stable step size hstab is typically the limiting factor
when a very loose error tolerance is applied. A method’s region of absolute stability
(in conjunction with the spectrum of f ′) typically dictates hstab.

In order to make broad comparisons, we measure the size of the and real-axis
interval that is contained in the absolute stability region. Specifically, let S ⊂ C

186 DAVID I. KETCHESON AND UMAIR BIN WAHEED

4 6 8 10 12
Order (p)

0

5

10

15

20

R
e
a
l
st

a
b
ili

ty
 i
n
te

rv
a
l

Reference RK

Ex-Euler

Ex-Midpoint

IDC-Euler, θ=0

IDC-Euler, θ=1/2

IDC-Euler, θ=1

4 6 8 10 12
Order (p)

0.0

0.2

0.4

0.6

0.8

1.0

I R
/
s

Reference RK

Ex-Euler

Ex-Midpoint

IDC-Euler, θ=0

IDC-Euler, θ=1/2

IDC-Euler, θ=1

Figure 5. Comparison of stability regions for reference methods, Euler extrapolation,
midpoint extrapolation and deferred correction. Real stability interval (left) and scaled real
stability interval (right).

denote the region of absolute stability; then we measure

Ireal =max{r ≥ 0 : [−r, 0] ⊂ S}, (13)

Iimag =max{r ≥ 0 : [−ir, ir] ⊂ S}. (14)

Determination of the stability region for very high-order methods can be nu-
merically delicate; for instance, the stability function for the eighth-order deferred
correction method is a polynomial of degree 56! Because of this, all stability
calculations presented here have been performed using exact (rational) arithmetic,
not in floating point.

Figure 5 (left) and Table 2 show real and imaginary stability interval sizes for
Ex-Euler, Ex-Midpoint, and DC-Euler methods of orders 4–12. We show the real
stability intervals of the deferred correction methods with three different values of
θ , because this interval has a strong dependence on θ . For all classes of methods,

Order Reference RK Ex-Euler Ex-Midpoint DC-Euler, θ = 0

4 3.46 2.83 2.83 2.93
5 — 0 — 0
6 2.61 0 0 0
7 — 1.76 — 1.82
8 0 3.40 3.40 3.52
9 — 0 — 0

10 0 0 0 0
11 — 1.70 — 1.75

Table 2. Imaginary stability intervals.

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 187

the overall size of the stability region grows with increasing order. However, many
methods have Iimag=0. Note that the stability regions for Ex-Euler and Ex-Midpoint
are identical since both have stability polynomial

p∑
k=0

z p

p!
, (15)

the degree-p Taylor polynomial of the exponential function.
A fair metric for efficiency is obtained by dividing these interval sizes by the

number of stages in the method. The result is shown in Figure 5 (right). Higher-
order methods have smaller relative stability regions. For orders p ≤ 10, the
reference RK methods have better real stability properties. We caution that, for
high-order methods, the boundary of the stability region typically lies very close to
the imaginary axis, so values of the amplification factor may differ from unity by
less than roundoff over a large interval. For instance, the tenth-order extrapolation
method has Iimag = 0, but the magnitude of its stability polynomial differs from
unity by less than 1.4× 10−15 over the interval [−i/4, i/4]. It is not clear whether
precise measures of Iimag are relevant for such methods in practical situations. We
have omitted the values for DC methods with θ > 0 because they exhibited extreme
sensitivity to small perturbations in θ .

Here for simplicity we have considered only the stability region of the principal
method; in the design of embedded pairs, it is important that the embedded method
have a similar stability region. All the pairs considered here seem to have fairly
well matched stability regions.

4.2. Accuracy efficiency. Typically, the local error is controlled by requiring that
‖yn+1− ŷn+1‖< ε for some tolerance ε > 0. When the maximum stable step size
does not yield sufficient accuracy, the accuracy constraint determines the step size.
This is typically the case when the error tolerance is reasonably small. In theoretical
analyses, the principal error norm [22]

C p+1 =

(∑
k

(
τ
(p+1)
k

)2
)1

2

(16)

is often used as a way to compare accuracy between two methods of the same
order. Here the constants τ (p+1)

k are the coefficients appearing in the leading order
truncation error terms.

Assuming that the one-step error is proportional to C p+1h p+1 leads to a fair
comparison of accuracy efficiency given by the accuracy efficiency index, introduced
in [17]:

η =
1
s

(
1

C p+1

)1/p+1

. (17)

188 DAVID I. KETCHESON AND UMAIR BIN WAHEED

4 6 8 10 12
Order (p)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy
 e

ff
ic

ie
n
cy

 (
η)

Reference RK

Ex-Euler

Ex-Midpoint
IDC-Euler, θ=0

IDC-Euler, θ=1/2

IDC-Euler, θ=1

4 6 8 10 12
Order (p)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
a
ra

lle
l
a
cc

u
ra

cy
 e

ff
ic

ie
n
cy

 (
ηs
/s

se
q) Reference RK

Ex-Euler

Ex-Midpoint
IDC-Euler, θ=0

IDC-Euler, θ=1/2

IDC-Euler, θ=1

Figure 6. Accuracy efficiency: serial accuracy (left) and ideal parallel accuracy (right).

Figure 6 (left) plots the accuracy efficiency index for the methods under consid-
eration. Interestingly, a ranking of methods based on this metric gives the same
ordering as that based on Ireal/s.

4.3. Accuracy and stability metrics. In order to determine idealized accuracy and
stability efficiency measures, we take the speedup factor s/sseq into account. In
other words, we consider

s
sseq

η =
1

sseq

(
1

C p+1

)1/p+1

, (18)

as a measure of accuracy efficiency. A similar scaling could be used to study stability
efficiency of parallel implementations. We stress that in this context efficiency relates
to the number of function evaluations required to advance to a given time, and is
not related to the usual concept of parallel efficiency.

Figure 6 (right) shows the accuracy efficiency, rescaled by the speedup factor.
Comparing with Figure 6 (left), we see a very different picture for methods of
order 8 and above. Extrapolation methods are the most efficient, while the reference
RK methods give the weakest showing — since they do not benefit from parallelism.

4.4. Predictions. The theoretical measures above indicate that fixed-order extrap-
olation and deferred correction methods are less efficient than traditional Runge–
Kutta methods, at least up to order eight. At higher orders, the disadvantage of
extrapolation and spectral DC are less pronounced, but they still offer no theoretical
advantage. When parallelism is taken into account, extrapolation and deferred
correction offer a significant theoretical advantage.

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 189

5. Performance tests

In this section we perform numerical tests, solving some initial value problems with
the methods under consideration, to validate the theoretical predictions of the last
section.

In this and all remaining sections of the paper, all results shown for DC methods
are for the case θ = 0. We focus on this case due to its potential for parallelization.
In addition to the tests shown, we tested all methods on a collection of problems
known as the nonstiff DETEST suite [18]. The results (not shown here) are broadly
consistent with those seen in the test problems below.

5.1. Verification tests. For each of the pairs considered, we performed convergence
tests using a sequence of fixed step sizes with several nonlinear systems of ODEs,
in order to verify that the expected rate of convergence is achieved in practice.
We also checked that the coefficients of each method satisfy the order conditions
exactly (in rational arithmetic).

5.2. Step size control. For step size selection, we use a standard I-controller [22]:

h∗n+1 = κhn

(
ε

‖δn+1‖∞

)α
. (19)

Here ε is the chosen integration tolerance and δn+1 = yn+1− ŷn+1. We take κ = 0.9
and α = 0.7/p, where p is the order of the embedded method. The step size is not
allowed to increase or decrease too suddenly; we use [16]

hn+1 =min
(
κmaxhn,max(κminhn, h∗n+1)

)
(20)

with κmin = 0.2 and κmax = 5. A step is rejected if the error estimate exceeds the
tolerance, i.e., if ‖δn‖∞ > ε.

All tests in this work were also run with a PI-controller, and very similar results
were obtained.

5.3. Test problems and results.

5.3.1. Three-body problem. We consider the first three-body problem from [32]:

SB1 : y′1 = y3,

y′2 = y4,

y′3 = y1+ 2y4−µ
′

y1+µ(
(y1+µ)2+ y2

2

)3/2 −µ y1−µ
′(

(y1−µ′)2+ y2
2

)3/2 ,
y′4 = y2+ 2y3−µ

′
y2(

(y1+µ)2+ y2
2

)3/2 −µ y2(
(y1−µ′)2+ y2

2

)3/2 ,
(21)

190 DAVID I. KETCHESON AND UMAIR BIN WAHEED

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Calvo 6(5)

Ex-Euler 6(5)

Ex-Midpoint 6(4)

DC-Euler 6(5)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Prince-Dormand 8(7)

Ex-Euler 8(7)

Ex-Midpoint 8(6)

DC-Euler 8(7)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Curtis' 10(8) pair

Ex-Euler 10(9)

Ex-Midpoint 10(8)

DC-Euler 10(9)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Hiroshi's 12(9) pair

Ex-Euler 12(11)

Ex-Midpoint 12(10)

DC-Euler 12(11)

Figure 7. Efficiency tests on problem SB1 (Section 5.3.1). Top row: 6th order (left); 8th
order (right). Bottom row: 10th order (left); 12th order (right).

Here µ′ = 1−µ, the final time is T = 6.192169331319639, and the initial values
are

y1(0)= 1.2, y2(0)= 0, y3(0)= 0,

y4(0)=−1.049357509830319, µ= 0.0121285627653123. (22)

Figure 7 plots number of function evaluations (cost) against the absolute error for
this problem. The absolute error is

Error= |yN − y(T)|, (23)

where T is the final time and yN is the numerical solution at that time, while
y(T) is a reference solution computed using a fine grid and the method of Bogacki
and Shampine [1]. The initial step size is 0.01. In every case, the method efficiencies
follow the ordering predicted by the accuracy efficiency index, and are consistent
with previous studies.

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 191

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Calvo 6(5)

Ex-Euler 6(5)

Ex-Midpoint 6(4)

DC-Euler 6(5)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Prince-Dormand 8(7)

Ex-Euler 8(7)

Ex-Midpoint 8(6)

DC-Euler 8(7)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Curtis' 10(8) pair

Ex-Euler 10(9)

Ex-Midpoint 10(8)

DC-Euler 10(9)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

105

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Hiroshi's 12(9) pair

Ex-Euler 12(11)

Ex-Midpoint 12(10)

DC-Euler 12(11)

Figure 8. Efficiency tests on problem B1 (Section 5.3.2). Top row: 6th order (left); 8th
order (right). Bottom row: 10th order (left); 12th order (right).

5.3.2. A two-population growth model. Next we consider problem B1 of [18],
which models the growth of two conflicting populations:

y′1 = 2(y1− y1 y2), y1(0)= 1, (24a)

y′2 =−(y2− y1 y2), y2(0)3. (24b)

Results, shown in Figure 8, are consistent with those of the previous test. The
effect of internal instability (see Section 5.4) can be seen for the high-order Euler
extrapolation methods.

5.3.3. A nonlinear wave PDE. Finally, we consider the integration of a high-order
PDE semidiscretization from [23]. We solve the 1D elasticity equations

εt(x, t)− ux(x, t)= 0, (25a)

ρ(x)u(x, t)t − σ(ε(x, t), x)x = 0 (25b)

with nonlinear stress-strain relation

σ(ε, x)= exp(K (x)ε)− 1, (26)

192 DAVID I. KETCHESON AND UMAIR BIN WAHEED

200 210 220 230 240 250 260
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Stress at time t = 100.00000000

10-10 10-8 10-6 10-4

Error

104

105

106

D
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Prince-Dormand 8(7)

Ex-Euler 8(7)

Ex-Midpoint 8(6)

DC-Euler 8(7)

Figure 9. Solution (left) and efficiency (right) for methods applied to the stegoton problem
(Section 5.3.3).

and a simple periodic medium composed of alternating homogeneous layers:

ρ(x)= K (x)=
{

4 if j < x < j + 1
2 for some integer j,

1 otherwise.
(27)

We consider the domain 0≤ x ≤ 300, an initial Gaussian perturbation to the stress,
and final time T = 100. The solution consists of two trains of emerging solitary
waves; one of them is depicted in Figure 9 (left). The semidiscretization is based
on the WENO wave-propagation method implemented in SharpClaw [25].

Efficiency results for eighth-order methods are shown in Figure 9 (right). The
spatial grid is held fixed across all runs, and the time step is adjusted automatically
to satisfy the imposed tolerance. The error is computed with respect to a solution
computed with tolerance 10−13 using the 5(4) pair of Bogacki and Shampine. For
the most part, these are consistent with the results from the smaller problems above.
However, the Euler extrapolation method performs quite poorly on this problem.
The reason is not clear, but this underscores the fact that performance on particular
problems can be very different from the “average” performance of a method.

5.4. Failure of integrators. Some failure of the integrators was observed in testing.
These failures fall into two categories. First, at very tight tolerances, the high-order
Euler extrapolation methods were sometimes unable to finish because the time step
size was driven to zero. This is a known issue related to internal stability; for a full
explanation see [24].

Second, the deferred correction methods sometimes gave global errors much
larger than those obtained with the other methods. This indicates a failure of the
error estimator. Upon further investigation, we found that the natural embedded
error estimator method of order p− 1 satisfies nearly all (typically all but one) of

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 193

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Calvo 6(5)

Ex-Euler 6(5)

Ex-Midpoint 6(4)

DC-Euler 6(5)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Prince-Dormand 8(7)

Ex-Euler 8(7)

Ex-Midpoint 8(6)

DC-Euler 8(7)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Curtis' 10(8) pair

Ex-Euler 10(9)

Ex-Midpoint 10(8)

DC-Euler 10(9)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Hiroshi's 12(9) pair

Ex-Euler 12(11)

Ex-Midpoint 12(10)

DC-Euler 12(11)

Figure 10. Efficiency for the problem SB1 (Section 5.3.1) based on sequential derivative
evaluations. Top row: 6th-order methods (left); 8th-order methods (right). Bottom row:
10th-order methods (left); 12th-order methods (right).

the order conditions for order p. Hence these estimators may be said to be defective,
and it would be advisable to employ a more robust approach like that discussed in
[10]. Since our focus is purely on Runge–Kutta pairs, we do not pursue this issue
further here.

5.5. Ideal parallel performance. Figures 10–12 show efficiency for the same three
test problems but now based on the number of sequential evaluations. That is, the
vertical axis is Nsseq, where N denotes the number of steps taken. The same
measure of efficiency was used in [35]. We see that the parallelizable methods —
especially extrapolation — outperform traditional methods, especially at higher
orders. Similar results were obtained for parallel iterated RK methods in [35].
Remarkably, the deferred correction method performs the best by this measure for
the stegoton problem.

This measure of efficiency may be viewed with some skepticism since it ne-
glects the cost of communication. This concern is addressed with a true parallel
implementation in the next section.

194 DAVID I. KETCHESON AND UMAIR BIN WAHEED

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Calvo 6(5)

Ex-Euler 6(5)

Ex-Midpoint 6(4)

DC-Euler 6(5)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Prince-Dormand 8(7)

Ex-Euler 8(7)

Ex-Midpoint 8(6)

DC-Euler 8(7)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Curtis' 10(8) pair

Ex-Euler 10(9)

Ex-Midpoint 10(8)

DC-Euler 10(9)

10-12 10-10 10-8 10-6 10-4 10-2 100

Error

102

103

104

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s Hiroshi's 12(9) pair

Ex-Euler 12(11)

Ex-Midpoint 12(10)

DC-Euler 12(11)

Figure 11. Efficiency for the problem B1 (Section 5.3.2) based on sequential derivative
evaluations. Top row: 6th-order methods (left); 8th-order methods (right). Bottom row:
10th-order methods (left); 12th-order methods (right).

10-10 10-8 10-6 10-4

Error

104

105

106

S
e
q
u
e
n
ti

a
l
d
e
ri

v
a
ti

v
e
 e

v
a
lu

a
ti

o
n
s

Prince-Dormand 8(7)

Ex-Euler 8(7)

Ex-Midpoint 8(6)

DC-Euler 8(7)

Figure 12. Parallel efficiency for the stegoton problem (Section 5.3.3).

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 195

6. A shared-memory implementation of extrapolation

Development and testing of a tuned parallel extrapolation or deferred correction
code is beyond the scope of this paper, but in this section we run a simple example
to demonstrate that it is possible in practice to achieve speedups like those listed
in Table 1, and to outperform even the best highly tuned traditional RK methods,
at least on problems with an expensive right-hand-side. We focus on speedup
with an eye to providing efficient black-box parallel ODE integrators for multicore
machines, noting that the number of available cores is often more than can be
advantageously used by the methods considered.

Previous studies have implemented explicit extrapolation methods in parallel
and achieved parallel efficiencies of up to about 80% [19; 21; 27]. As those studies
were conducted about twenty years ago, it is not clear that their conclusions are
relevant to current hardware.

In order to test the achievable parallel speedup, we took the code ODEX [16],
downloaded from unige.ch/ hairer/software.html, and modified it as follows:

• Fixed the order of accuracy (disabling adaptive order selection)

• Inserted an OMP PARALLEL pragma around the extrapolation loop

• Removed the smoothing step

We refer to the modified code as ODEX-P.
Figure 13 (left) shows the achieved speedup based on dynamic scheduling

for p = 6, 10, 14, 18, applying the code to an N -body gravitational problem with
400 bodies. Results for other orders are similar. The dotted lines show the theoretical
maximum speedup S = (p2

+4)/(4p) based on our earlier analysis. The tests were
run on a workstation with two 2.66 GHz quad-core Intel Xeon processors, and the
code was compiled using GFortran. Using p/2 threads, the measured speedup is
very close to the theoretical maximum. However, the speedup is significantly below
the theoretical value when only P threads are used. We interpret this to mean that
the dynamic scheduler is not able to optimally allocate the work among threads
unless there are enough threads to give just one loop iteration to each.

Figure 13 (right) and Table 3 show the result of a more intelligent parallel
implementation, using static scheduling with the code modified so that both Tk1

and Tr−k,1 are computed in a single loop iteration. This load balancing scheme
is optimal when using on the optimal number of threads P , and the results agree
almost perfectly with theory.

6.1. Comparison with DOP853. We now compare actual runtimes of our experi-
mental ODEX-P with the DOP853 code (unige.ch/ hairer/prog/nonstiff/dop853.f).
These two codes have been compared in [16, Section II.10], but using the original

http//www.unige.ch/~hairer/software.html
http//www.unige.ch/~hairer/prog/nonstiff/dopeifith.f

196 DAVID I. KETCHESON AND UMAIR BIN WAHEED

1 2 3 4 5 6 7 8 9
of threads

1

2

3

4

5

S
p

e
e
d

u
p

p=6

p=10

p=14

p=18

1 2 3 4 5 6 7 8 9
of threads

1

2

3

4

5

S
p

e
e
d

u
p

p=6

p=10

p=14

p=18

Figure 13. Measured speedup of the midpoint extrapolation code ODEX-P on a 400-body
gravitation problem by insertion of a single OMP parallel pragma in the code. Dynamic
scheduling (left) and manual load-balancing (right). The ratio of runtime with multiple
threads to runtime using a single thread is plotted. The dotted lines show the theoretical
maximum speedup S = (p2

+ 4)/(4p) based on our earlier analysis.

Order Runtime (seconds) Max. speedup Parallel efficiency

(p) P 1 thread P threads Theory (S) Observed Theory (E) Observed

6 2 13.140 7.977 1.67 1.65 0.83 0.82
10 3 17.370 6.770 2.60 2.57 0.87 0.86
14 4 19.508 5.573 3.57 3.50 0.89 0.88
18 5 25.876 5.827 4.56 4.44 0.91 0.89

Table 3. Runtime, speedup and efficiency of manually load-balanced runs of the modified
ODEX-P code with P threads. The observed speedup (and efficiency) are close to the
theoretically optimal values (S and E).

ODEX code (with order-adaptivity and without parallelism). In that reference,
DOP853 was shown to be superior to ODEX at all but the most strict tolerances.

Table 4 shows runtimes versus prescribed tolerance for a 400-body problem for
the two codes, using fixed order 12 (with 4 threads) in the ODEX-P code. Figure 14
shows the achieved relative root-mean-square global error versus runtime. Perhaps

Tolerance
Code 10−3 10−5 10−7 10−9 10−11

DOP853 3.81 9.02 17.80 30.93 56.75
ODEX-P(12) 3.31 5.87 10.32 18.07 26.76

Table 4. Runtimes (in seconds) for Dormand–Prince and modified 12th-order ODEX-P
code. The tests were run on a workstation with two 2.66 GHz quad-core Intel Xeon
processors using four threads.

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 197

Figure 14. Runtime versus achieved relative error of the midpoint extrapolation code
ODEX-P on a 400-body gravitation problem. The tests were run on a workstation with
two 2.66 GHz quad-core Intel Xeon processors using four threads.

surprisingly, the parallel extrapolation code is no worse even at loose tolerances.
At moderate to strict tolerances, it substantially outperforms the RK code.

7. Discussion

This study is intended to provide a broadly useful characterization of the properties of
explicit extrapolation and spectral deferred correction methods. Of course, no study
like this can be exhaustive. Our approach handicaps extrapolation and deferred
correction methods by fixing the order throughout each computation; practical
implementations are order-adaptive and should achieve somewhat better efficiency.
We have investigated only the most generic versions of each class of methods; other
approaches (e.g., using higher order building blocks or exploiting concurrency in
different ways) may give significantly different results. Such approaches could
be evaluated using the same kind of analysis employed here. Finally, our parallel
computational model is valid only when evaluation of f is relatively expensive —
but that is when efficiency and concurrency are of most interest.

The most interesting new conclusions from the present study is that parallel
extrapolation methods of very high order outperform sophisticated implementations
of the best available RK methods for problems with an expensive right hand side.
This is true even for a relatively naive non-order-adaptive code. We have shown
that near-optimal speedup can be achieved in practice with simple modification of
an existing code. The resulting algorithm is faster (at least for some problems) than
the highly regarded DOP853 code.

Our serial results are in line with those of previous studies. New here is the
evidence that, in serial, spectral deferred correction based on explicit Euler seems

198 DAVID I. KETCHESON AND UMAIR BIN WAHEED

(like extrapolation) inferior to well-designed RK methods. However, we have tested
only one of the many possible variants of these methods.

High order Euler extrapolation methods suffer from dramatic amplification of
roundoff errors. This leads to the loss of several digits of accuracy (and failure
of the automatic error control) for very high-order methods, and is observed in
practice on most problems. Fortunately, midpoint extrapolation does not exhibit
this amplification.

The theoretical and preliminary experimental results we have presented suggest
that a carefully designed parallel code based on midpoint extrapolation could be
very efficient. Such a practical implementation is the subject of current efforts.

Acknowledgments

We thank one of the referees, who pointed out a discrepancy that revealed an
important bug in our implementation of some spectral deferred correction methods
when θ 6= 0.

Research reported in this publication was supported by the King Abdullah
University of Science and Technology (KAUST).

References

[1] P. Bogacki and L. F. Shampine, An efficient Runge–Kutta (4, 5) pair, Comput. Math. Appl. 32
(1996), no. 6, 15–28. MR 1409687 Zbl 0857.65077

[2] K. Burrage, Parallel and sequential methods for ordinary differential equations, The Clarendon
Press, New York, NY, 1995. MR 97f:65021 Zbl 0838.65073

[3] J. C. Butcher, Numerical methods for ordinary differential equations, 2nd ed., John Wiley &
Sons, Ltd., Chichester, 2008. MR 2009b:65002 Zbl 1167.65041

[4] M. Calvo, J. I. Montijano, and L. Rández, A new embedded pair of Runge–Kutta formulas of
orders 5 and 6, Comput. Math. Appl. 20 (1990), no. 1, 15–24. MR 1051749 Zbl 0712.65070

[5] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM J. Sci.
Comput. 32 (2010), no. 2, 818–835. MR 2011g:65105 Zbl 1211.65089

[6] A. R. Curtis, High-order explicit Runge–Kutta formulae, their uses, and limitations, J. Inst. Math.
Appl. 16 (1975), no. 1, 35–55. MR 52 #4630 Zbl 0317.65024

[7] J. W. Daniel, V. Pereyra, and L. L. Schumaker, Iterated deferred corrections for initial value
problems, Acta Ci. Venezolana 19 (1968), 128–135. MR 40 #8270

[8] P. Deuflhard, Order and stepsize control in extrapolation methods, Numer. Math. 41 (1983),
no. 3, 399–422. MR 85b:65062 Zbl 0543.65049

[9] , Recent progress in extrapolation methods for ordinary differential equations, SIAM
Rev. 27 (1985), no. 4, 505–535. MR 86m:65075 Zbl 0602.65047

[10] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
differential equations, BIT 40 (2000), no. 2, 241–266. MR 2001e:65104 Zbl 0959.65084

[11] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential
equations, Commun. Appl. Math. Comput. Sci. 7 (2012), no. 1, 105–132. MR 2979518
Zbl 1248.65106

http://dx.doi.org/10.1016/0898-1221(96)00141-1
http://msp.org/idx/mr/1409687
http://msp.org/idx/zbl/0857.65077
http://msp.org/idx/mr/97f:65021
http://msp.org/idx/zbl/0838.65073
http://dx.doi.org/10.1002/9780470753767
http://msp.org/idx/mr/2009b:65002
http://msp.org/idx/zbl/1167.65041
http://dx.doi.org/10.1016/0898-1221(90)90064-Q
http://dx.doi.org/10.1016/0898-1221(90)90064-Q
http://msp.org/idx/mr/1051749
http://msp.org/idx/zbl/0712.65070
http://dx.doi.org/10.1137/09075740X
http://msp.org/idx/mr/2011g:65105
http://msp.org/idx/zbl/1211.65089
http://dx.doi.org/10.1093/imamat/16.1.35
http://msp.org/idx/mr/52:4630
http://msp.org/idx/zbl/0317.65024
http://msp.org/idx/mr/40:8270
http://dx.doi.org/10.1007/BF01418332
http://msp.org/idx/mr/85b:65062
http://msp.org/idx/zbl/0543.65049
http://dx.doi.org/10.1137/1027140
http://msp.org/idx/mr/86m:65075
http://msp.org/idx/zbl/0602.65047
http://dx.doi.org/10.1023/A:1022338906936
http://dx.doi.org/10.1023/A:1022338906936
http://msp.org/idx/mr/2001e:65104
http://msp.org/idx/zbl/0959.65084
http://dx.doi.org/10.2140/camcos.2012.7.105
http://dx.doi.org/10.2140/camcos.2012.7.105
http://msp.org/idx/mr/2979518
http://msp.org/idx/zbl/1248.65106

RUNGE–KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS 199

[12] T. Feagin, High-order explicit Runge–Kutta methods using m-symmetry, Neural Parallel Sci.
Comput. 20 (2012), no. 3-4, 437–458. MR 3057741 Zbl 1278.65107

[13] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, High order strong stability preserving time dis-
cretizations, J. Sci. Comput. 38 (2009), no. 3, 251–289. MR 2010b:65161 Zbl 1203.65135

[14] D. Guibert and D. Tromeur-Dervout, Cyclic distribution of pipelined parallel deferred correction
method for ODE/DAE, Parallel Computational Fluid Dynamics 2007, Springer, 2009, pp. 171–
178.

[15] B. Gustafsson and W. Kress, Deferred correction methods for initial value problems, BIT 41
(2001), no. 5, suppl., 986–995. MR 2005c:65053

[16] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations, I: Nonstiff
problems, 2nd ed., Springer Series in Computational Mathematics, no. 8, Springer, Berlin, 1993.
MR 94c:65005

[17] M. E. Hosea and L. F. Shampine, Efficiency comparisons of methods for integrating ODEs,
Comput. Math. Appl. 28 (1994), no. 6, 45–55. MR 95d:65053 Zbl 0807.65083

[18] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, Comparing numerical methods for
ordinary differential equations, SIAM J. Numer. Anal. 9 (1972), 603–637; errata, ibid. 11, 681.
MR 50 #3577 Zbl 0221.65115

[19] T. Ito and T. Fukushima, Parallelized extrapolation method and its application to the orbital
dynamics, Astron. J. 114 (1997), 1260.

[20] K. R. Jackson and S. P. Nørsett, The potential for parallelism in Runge–Kutta methods, I: RK
formulas in standard form, SIAM J. Numer. Anal. 32 (1995), no. 1, 49–82. MR 95k:65066

[21] M. Kappeller, M. Kiehl, M. Perzl, and M. Lenke, Optimized extrapolation methods for parallel
solution of IVPs on different computer architectures, Appl. Math. Comput. 77 (1996), no. 2-3,
301–315. MR 97b:65157 Zbl 0859.65070

[22] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit Runge–Kutta schemes
for the compressible Navier–Stokes equations, Appl. Numer. Math. 35 (2000), no. 3, 177–219.
MR 2001k:65111 Zbl 0986.76060

[23] D. I. Ketcheson and R. J. LeVeque, Shock dynamics in layered periodic media, Commun. Math.
Sci. 10 (2012), no. 3, 859–874. MR 2911200 Zbl 1273.35186

[24] D. I. Ketcheson, L. Lóczi, and M. Parsani, Internal error propagation in explicit Runge–Kutta
discretization of PDEs, preprint, 2013. arXiv 1309.1317

[25] D. I. Ketcheson, M. Parsani, and R. J. LeVeque, High-order wave propagation algorithms
for hyperbolic systems, SIAM J. Sci. Comput. 35 (2013), no. 1, A351–A377. MR 3033052
Zbl 1264.65151

[26] Y. Liu, C. W. Shu, and M. Zhang, Strong stability preserving property of the deferred correction
time discretization, J. Comput. Math. 26 (2008), no. 5, 633–656. Zbl 1174.65036

[27] L. Lustman, B. Neta, and W. Gragg, Solution of ordinary differential initial value problems on
an intel hypercube, Comput. Math. Appl. 23 (1992), no. 10, 65–72. Zbl 0765.65070

[28] M. L. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl. Math.
Comput. Sci. 5 (2010), no. 2, 265–301. MR 2012e:65118 Zbl 1208.65101

[29] H. Ono, On the 25 stage 12th order explicit Runge–Kutta method, Trans. Japan Soc. Ind. Appl.
Math. 16 (2006), no. 3, 177, In Japanese.

[30] P. J. Prince and J. R. Dormand, High order embedded Runge–Kutta formulae, J. Comput. Appl.
Math. 7 (1981), no. 1, 67–75. MR 82f:65080 Zbl 0449.65048

http://msp.org/idx/mr/3057741
http://msp.org/idx/zbl/1278.65107
http://dx.doi.org/10.1007/s10915-008-9239-z
http://dx.doi.org/10.1007/s10915-008-9239-z
http://msp.org/idx/mr/2010b:65161
http://msp.org/idx/zbl/1203.65135
http://dx.doi.org/10.1007/978-3-540-92744-0_21
http://dx.doi.org/10.1007/978-3-540-92744-0_21
http://dx.doi.org/10.1023/A:1021937227950
http://msp.org/idx/mr/2005c:65053
http://msp.org/idx/mr/94c:65005
http://dx.doi.org/10.1016/0898-1221(94)00151-0
http://msp.org/idx/mr/95d:65053
http://msp.org/idx/zbl/0807.65083
http://dx.doi.org/10.1137/0709052
http://dx.doi.org/10.1137/0709052
http://msp.org/idx/mr/50:3577
http://msp.org/idx/zbl/0221.65115
http://dx.doi.org/10.1086/118559
http://dx.doi.org/10.1086/118559
http://dx.doi.org/10.1137/0732002
http://dx.doi.org/10.1137/0732002
http://msp.org/idx/mr/95k:65066
http://dx.doi.org/10.1016/S0096-3003(95)00219-7
http://dx.doi.org/10.1016/S0096-3003(95)00219-7
http://msp.org/idx/mr/97b:65157
http://msp.org/idx/zbl/0859.65070
http://dx.doi.org/10.1016/S0168-9274(99)00141-5
http://dx.doi.org/10.1016/S0168-9274(99)00141-5
http://msp.org/idx/mr/2001k:65111
http://msp.org/idx/zbl/0986.76060
http://dx.doi.org/10.4310/CMS.2012.v10.n3.a7
http://msp.org/idx/mr/2911200
http://msp.org/idx/zbl/1273.35186
http://arxiv.org/abs/1309.1317
http://dx.doi.org/10.1137/110830320
http://dx.doi.org/10.1137/110830320
http://msp.org/idx/mr/3033052
http://msp.org/idx/zbl/1264.65151
http://www.global-sci.org/jcm/volumes/v26n5/pdf/265-633.pdf
http://www.global-sci.org/jcm/volumes/v26n5/pdf/265-633.pdf
http://msp.org/idx/zbl/1174.65036
http://msp.org/idx/zbl/0765.65070
http://dx.doi.org/10.2140/camcos.2010.5.265
http://msp.org/idx/mr/2012e:65118
http://msp.org/idx/zbl/1208.65101
http://dx.doi.org/10.1016/0771-050X(81)90010-3
http://msp.org/idx/mr/82f:65080
http://msp.org/idx/zbl/0449.65048

200 DAVID I. KETCHESON AND UMAIR BIN WAHEED

[31] T. Rauber and G. Rünger, Load balancing schemes for extrapolation methods, Concurrency:
Practice and Experience 9 (1997), no. 3, 181–202.

[32] L. F. Shampine and L. S. Baca, Fixed versus variable order Runge–Kutta, ACM Trans. Math.
Software 12 (1986), no. 1, 1–23. Zbl 0594.65047

[33] H. H. Simonsen, Extrapolation methods for ODE’s: continuous approximations, a parallel
approach, Ph.D. thesis, University of Trondheim, Norway, 1990.

[34] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and P. Gibbon, A
massively space-time parallel N-body solver, Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (Los Alamitos, CA), IEEE
Computer Society Press, 2012, pp. 92:1–92:11.

[35] P. J. van der Houwen and B. P. Sommeijer, Parallel iteration of high-order Runge–Kutta methods
with stepsize control, J. Comput. Appl. Math. 29 (1990), no. 1, 111–127. MR 91a:65179
Zbl 0682.65039

[36] P. J. van der Houwen and B. P. Sommeijer, Parallel ODE solvers, ACM SIGARCH Computer
Architecture News 18 (1990), no. 3, 71–81.

[37] Y. Xia, Y. Xu, and C.-W. Shu, Efficient time discretization for local discontinuous Galerkin
methods, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, 677–693. MR 2008e:65307
Zbl 1141.65076

Received November 4, 2013. Revised May 4, 2014.

DAVID I. KETCHESON: david.ketcheson@kaust.edu.sa
Division of Computer, Electrical, and Mathematical Sciences and Engineering,
King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

UMAIR BIN WAHEED: umairbin.waheed@kaust.edu.sa
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology,
Thuwal 23955-6900, Saudi Arabia

mathematical sciences publishers msp

http://dx.doi.org/10.1002/(SICI)1096-9128(199703)9:3<181::AID-CPE245>3.0.CO;2-6
http://dx.doi.org/10.1145/5960.5964
http://msp.org/idx/zbl/0594.65047
http://dx.doi.org/10.1016/0377-0427(90)90200-J
http://dx.doi.org/10.1016/0377-0427(90)90200-J
http://msp.org/idx/mr/91a:65179
http://msp.org/idx/zbl/0682.65039
http://dx.doi.org/10.1145/255129.255141
http://dx.doi.org/10.3934/dcdsb.2007.8.677
http://dx.doi.org/10.3934/dcdsb.2007.8.677
http://msp.org/idx/mr/2008e:65307
http://msp.org/idx/zbl/1141.65076
mailto:david.ketcheson@kaust.edu.sa
mailto:umairbin.waheed@kaust.edu.sa
http://msp.org

Communications in Applied Mathematics and Computational Science
msp.org/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/camcos for submission instructions.

The subscription price for 2014 is US $75/year for the electronic version, and $105/year (+$15, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Communications in Applied Mathematics and Computational Science (ISSN 2157-5452 electronic, 1559-3940 printed) at Mathematical
Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.
Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:production@msp.org
http://msp.org/camcos
http://msp.org/
http://msp.org/

Communications in Applied Mathematics
and Computational Science

vol. 9 no. 2 2014

175A comparison of high-order explicit Runge–Kutta, extrapolation, and
deferred correction methods in serial and parallel

David I. Ketcheson and Umair bin Waheed

201A new class of secant-like methods for solving nonlinear systems of equations
José A. Ezquerro, Angela Grau, Miquel Grau-Sánchez and
Miguel A. Hernández-Verón

1559-3940(2014)9:2;1-#

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.9,
no.2

2014

	1. Introduction
	2. High-order one-step embedded pairs
	2.1. Extrapolation
	2.1.1. Euler extrapolation (Ex-Euler)
	2.1.2. Midpoint extrapolation (Ex-Midpoint)

	2.2. Deferred correction (DC-Euler)
	2.3. Reference Runge–Kutta methods

	3. Concurrency
	3.1. Computational model and speedup

	4. Theoretical measures of efficiency
	4.1. Absolute stability
	4.2. Accuracy efficiency
	4.3. Accuracy and stability metrics
	4.4. Predictions

	5. Performance tests
	5.1. Verification tests
	5.2. Step size control
	5.3. Test problems and results
	5.3.1. Three-body problem
	5.3.2. A two-population growth model
	5.3.3. A nonlinear wave PDE

	5.4. Failure of integrators
	5.5. Ideal parallel performance

	6. A shared-memory implementation of extrapolation
	6.1. Comparison with DOP853

	7. Discussion
	Acknowledgments
	References
	
	

