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REVISIONIST INTEGRAL DEFERRED CORRECTION
WITH ADAPTIVE STEP-SIZE CONTROL

ANDREW J. CHRISTLIEB, COLIN B. MACDONALD,
BENJAMIN W. ONG AND RAYMOND J. SPITERI

Adaptive step-size control is a critical feature for the robust and efficient numerical
solution of initial-value problems in ordinary differential equations. In this paper,
we show that adaptive step-size control can be incorporated within a family of
parallel time integrators known as revisionist integral deferred correction (RIDC)
methods. The RIDC framework allows for various strategies to implement step-
size control, and we report results from exploring a few of them.

1. Introduction

The purpose of this paper is to show that local error estimation and adaptive step-
size control can be incorporated in an effective manner within a family of parallel
time integrators based on revisionist integral deferred correction (RIDC). RIDC
methods, introduced in [10], are “parallel-across-the-step” integrators that can be
efficiently implemented with multicore [10; 6], multi-GPGPU [4], and multinode
[9] architectures. The “revisionist” terminology was adopted to highlight that (1)
RIDC is a revision of the standard integral defect correction (IDC) formulation [12],
and (2) successive corrections, running in parallel but (slightly) lagging in time,
revise and improve the approximation to the solution.

RIDC methods have been shown to be effective parallel time-integration methods.
They can typically produce a high-order solution in essentially the same amount
of wall-clock time as the constituent lower-order methods. In general, for a given
amount of wall-clock time, RIDC methods are able to produce a more accurate
solution than conventional methods. These results have thus far been demonstrated
with constant time steps. It has long been accepted that local error estimation
and adaptive step-size control form a critical part of a robust and efficient strategy
for solving initial-value problems in ordinary differential equations (ODEs), in
particular problems with multiple timescales; see [15], for example. Accordingly, in
order to assess the practical viability of RIDC methods, it is important to establish
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whether they can operate effectively with variable step sizes. It turns out that
there are subtleties associated with modifying the RIDC framework to incorporate
functionality for local error estimation and adaptive step-size control: there are a
number of different implementation options, and some of them are more effective
than others.

The remainder of this paper is organized as follows. In Section 2, we review
the ideas behind RIDC as well as strategies for local error estimation and step-size
control. We then combine these ideas to propose various strategies for RIDC meth-
ods with error and step-size control. In Section 3, we describe the implementation
of these strategies within the RIDC framework and suggest avenues that can be
explored for a production-level code. In Section 4, we demonstrate that the use of
local error estimation and adaptive step-size control inside RIDC is computationally
advantageous. Finally, in Section 5, we summarize the conclusions reached from
this investigation and comment on some potential directions for future research.

2. Review of relevant background

We are interested in numerical solutions to initial-value problems (IVPs) of the
form {

y′(t)= f (t, y(t)), t ∈ [a, b],
y(a)= ya.

(1)

where y(t) : R→ Rm , ya ∈ Rm , and f : R× Rm
→ Rm . We first review RIDC

methods, a family of parallel time integrators that can be applied to solve (1). Then,
we review strategies for local error estimation and adaptive step-size control for
IVP solvers.

2.1. RIDC. RIDC methods [10; 6; 4] are a class of time integrators based on
integral deferred correction [12] that can be implemented in parallel via pipelining.
RIDC methods first compute an initial (or provisional) solution, typically using a
standard low-order scheme, followed by one or more corrections. Each correction
revises the current solution and increases its formal order of accuracy. After initial
startup costs, the predictor and all the correctors can be executed in parallel. It has
been shown that parallel RIDC methods with uniform step-sizes give almost perfect
parallel speedups [10]. In this section, we review RIDC algorithms, generalizing
the overall framework slightly to allow for nonuniform step-sizes on the different
correction levels.

We denote the nodes for correction level ` by

a = t [`]0 < t [`]1 < · · ·< t [`]N [`] = b,

where N [`] denotes the number of time steps on level `. In practice, the nodes on
each level are obtained dynamically by the step-size controller.
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2.1.1. The predictor. To generate a provisional solution, a low-order integrator is
applied to solve the IVP (1). For example, a first-order forward Euler integrator
applied to (1) gives

η[0]n = η
[0]
n−1+

(
t [0]n − t [0]n−1

)
f (t [0]n−1, η

[0]
n−1), (2)

for n = 1, 2, . . . , N [0], with η[0]0 = ya , and where we have indexed the prediction
level as level 0. We denote η[`](t) as a continuous extension [15] of the numerical
solution at level `, i.e., a piecewise polynomial η[0](t) that satisfies

η[0](t [0]n )= η[0]n .

The continuous extension of a numerical solution is often of the same order of
accuracy as the underlying discrete solution [15]. Indeed, for the purposes of this
study, we assume η[`](t) is of the same order as η[`]n .

2.1.2. The correctors. Suppose an approximate solution η(t) to IVP (1) is com-
puted. Denote the exact solution by y(t). Then, the error of the approximate
solution is e(t)= y(t)− η(t). If we define the defect as δ(t)= f (t, η(t))− η′(t),
then

e′(t)= y′(t)− η′(t)= f (t, η(t)+ e(t))− f (t, η(t))+ δ(t).

The error equation can be written in the form[
e(t)−

∫ t

a
δ(τ ) dτ

]′
= f (t, η(t)+ e(t))− f (t, η(t)), (3)

subject to the initial condition e(a) = 0. In RIDC, the corrector at level ` solves
for the error e[`−1](t) of the solution η[`−1](t) at the previous level to generate the
corrected solution η[`](t),

η[`](t)= η[`−1](t)+ e[`−1](t).

For example, a corrector at level ` that corrects η[`−1](t) by applying a first-order
forward Euler integrator to the error equation (3) takes the form

e[`−1](t [`]n )− e[`−1](t [`]n−1)−

∫ t [`]n

t [`]n−1

δ[`−1](τ ) dτ =

1t [`]n
[

f
(
t [`]n−1, η

[`−1](t [`]n−1)+ e[`−1](t [`]n−1)
)
− f

(
t [`]n−1, η

[`−1](t [`]n−1)
)]
,

where 1t [`]n = t [`]n − t [`]n−1. After some algebraic manipulation, one obtains

η[`]n = η
[`]
n−1+1t [`]n

[
f
(
t [`]n−1, η

[`](t [`]n−1)
)
− f

(
t [`]n−1, η

[`−1](t [`]n−1)
)]

+

∫ t [`]n

t [`]n−1

f
(
τ, η[`−1](τ )

)
dτ . (4)
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The integral in (4) is approximated using quadrature,∫ t [`]n

t [`]n−1

f
(
τ, η[`−1](τ )

)
dτ ≈

| ET[`]n |∑
i=1

α
[`−1]
n,i f (τi , η

[`−1](τi )), τi ∈ ET
[`]
n , (5)

where the set of quadrature nodes, ET[`]n , for a first-order corrector satisfies

1. | ET[`]n | = `+ 1,

2. ET[`]n ⊆ {t
[`−1]
n }

N [`−1]

n=0 ,

3. min( ET[`]n )≤ t [`]n−1,

4. max( ET[`]n )≥ t [`]n .

The quadrature weights, α[`−1]
n,i , are found by integrating the interpolating Lagrange

polynomials exactly,

α
[`−1]
n,i =

| ET[`]n |∏
j=1, j 6=i

∫ t [`]n

t [`]n−1

(t − τ j )

(τi − τ j )
dt, τi ∈ ET

[`]
n . (6)

The term f
(
t [`]n−1, η

[`−1](t [`]n−1)
)

in (4) is approximated using Lagrange interpolation,

f
(
t [`]n−1, η

[`−1](t [`]n−1)
)
≈

| ET[`]n |∑
i=1

γ
[`−1]
n,i f

(
τi , η

[`−1](τi )
)
, τi ∈ ET

[`]
n , (7)

where the same set of nodes, ET[`]n , for the quadrature is used for the interpolation.
The interpolation weights are given by

γ
[`−1]
n,i =

| ET[`]n |∏
j=1, j 6=i

(t [`]n−1− τ j )

(τi − τ j )
, τi ∈ ET

[`]
n . (8)

2.2. Adaptive step-size control. Adaptive step-size control is typically used to
achieve a user-specified error tolerance with minimal computational effort by varying
the step-sizes used by an IVP integrator. This is commonly done based on a local
error estimate. It is also generally desirable that the step-size vary smoothly over
the course of the integration. We review common techniques for estimating the
local error, followed by algorithms for optimal step-size selection.

2.2.1. Error estimators. Two common approaches for estimating the local trunca-
tion error of a single-step IVP solver are through the use of Richardson extrapolation
(commonly used within a step-size selection framework known as step doubling)
and embedded Runge–Kutta pairs [15]. Step doubling is perhaps the more intuitive
technique. The solution after each step is estimated twice: once as a full step and
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once as two half steps. The difference between the two numerical estimates gives
an estimate of the truncation error. For example, denoting the exact solution to
IVP (1) at time tn+1t as y(tn+1t), the forward Euler step starting from the exact
solution at time tn and using a step-size of size 1t is

η1,n+1 = y(tn)+1t f (tn, yn),

and the forward Euler step using two steps of size 1t/2 is

η2,n+1 =

(
y(tn)+

1t
2

f (tn, yn)

)
+
1t
2

f
(

tn +
1t
2
, y(tn)+

1t
2

f (tn, yn)

)
.

Because forward Euler is a first-order method (and thus has a local truncation error
of O(1t2)), the two numerical approximations satisfy

y(tn +1t)= η1,n+1+ (1t)2φ+O(1t3)+ · · · ,

y(tn +1t)= η2,n+1+ 2
(
1t
2

)2

φ+O(1t3)+ · · · ,

where a Taylor series expansion gives that φ is a constant proportional to y′′(tn).
The difference between the two numerical approximations gives an estimate for the
local truncation error of η2,n+1,

en+1 = η2,n+1− η1,n+1 =
1t2

2
φ+O(1t3).

An alternative approach to estimating the local truncation error is to use embedded
RK pairs [11]. An s-stage Runge–Kutta method is a single-step method that takes
the form

ηn+1 = ηn +1t
s∑

i=1

bi ki ,

where

ki = f
(

ti + ci h, ηn +1t
s∑

j=1

ai j k j

)
, i = 1, 2, . . . , s.

The idea is to find two single-step RK methods, typically one with order p and the
other with order p− 1, that share most (if not all) of their stages but have different
quadrature weights. This is represented compactly in the extended Butcher tableau

c A
b
b̂
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Denoting the solution from the order-p method as

η∗n+1 = ηn +1t
s∑

i=1

b̂i ki , (9a)

and the solution from the order-(p− 1) method as

ηn+1 = ηn +1t
s∑

i=1

bi ki , (9b)

the error estimate is

en+1 = ηn+1− η
∗

n+1 =1t
s∑

i=1

(bi − b̂i )ki , (9c)

which is O(1t p).
A third approach for approximating the local truncation error is possible within

the deferred correction framework. We observe that in solving the error equation (3),
one is in fact obtaining an approximation to the error. As discussed in Section 3.3,
it can be shown that the approximate error after ` first-order corrections satisfies
o(1t p0+`+1). We shall see in Section 3.3 that this error estimate proves to be a
poor choice for optimal step-size selection because in our formulation the time step
selection for level ` does not allow for the refinement of time steps at earlier levels.

2.2.2. Optimal step-size selection. Given an error estimate from Section 2.2.1 for
a step 1t , one would like to either accept or reject the step based on the error
estimate and then estimate an optimal step-size for the next time step or retry the
current step. Following [16], Algorithm 1 outlines optimal step-size selection given
an estimate of the local truncation error. In lines 1–4, one computes a scaled error
estimate. In line 5, an optimal time step is computed by scaling the current time
step. In lines 6–10, a new time step is suggested; a more conservative step-size is
suggested if the previous step was rejected.

3. RIDC with adaptive step-size control

There are numerous adaptive step-size control strategies that can be implemented
within the RIDC framework. We consider three of them in this paper as well as
discuss other strategies that are possible.

3.1. Adaptive step-size control: prediction level only. One simple approach to
step-size control with RIDC is to perform adaptive step-size control on the prediction
level only, e.g., using step doubling or embedded RK pairs as error estimators for the
step-size control strategy. The subsequent correctors then use this grid unchanged
(i.e., without performing further step-size control). With this strategy, corrector ` is
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Input:
yn: approximate solution at time tn;
yn+1: approximate solution at time tn+1;
en+1: error estimate for yn+1;
p: order of integrator;
m: number of ODEs;
atol, rtol: user specified tolerances;
prev_rej: flag that indicates whether the previous step was rejected;
α < 1: safety factor;
β > 1: allowable change in step-size.

Output:
accept_flag: flag to accept or reject this step;
1tnew: optimal time step

1 Set a(i)=max{|yn(i)|, |yn+1(i)|}, i = 1, 2, . . . ,m.
2 Compute τ(i)= atol+ rtol ∗ a(i), i = 1, 2, . . . ,m.

3 Compute ε =

√∑m
i=1(e(i)/τ(i))

2

m
.

4 Compute 1topt =1t (1
ε
)1/(p+1).

5 if prev_rej then
6 1tnew = αmin{1t,max{1topt ,1t/β}}
7 else
8 1tnew = αmin{β1t,max{1topt ,1t/β}}
9 end

10 if ε > 1 then
11 accept_flag= 1
12 else
13 accept_flag= 0
14 end

Algorithm 1: Optimal step-size selection algorithm. The approximate solution,
the error estimate, and its order are provided as inputs. For the numerical
experiments in Section 4, we fix α = 0.9, β = 10.

lagged behind corrector `−1 so that each node simultaneously computes an update
on its level (after an initial startup period). This is illustrated graphically in Figure 1.
In principle, near optimal parallel speedup is maintained with this approach provided
the computational overhead for the RIDC method (i.e., the interpolation, quadrature,
and linear combination of solutions) is small compared to the advance of predictor



8 CHRISTLIEB, MACDONALD, ONG AND SPITERI

prediction (`= 0)

correction (`= 1)

correction (`= 2)

correction (`= 3)

t. . . t4 t5 t6 t7 t8 t9 t10 . . .

Figure 1. Schematic diagram of step-size control on the prediction level only. The filled
circles denote previously computed and stored solution values at particular times. The
corrections are run in parallel (but lagging in time) and the open circles indicate which
values are being simultaneously computed. The stencil of points required by each level
is shown by the “bubbles” surrounding certain grid points; the thick horizontal shading
indicates the integrals needed in (4).

from tn to tn+1; in this implementation, a small memory footprint similar to [10]
can be used. Additionally, an interpolation step is circumvented because the nodes
are the same on each level. There are however a few potential drawbacks to this
approach. First, it is not clear how to distribute the user-defined tolerance among the
levels. Clearly, satisfying the user-specified tolerance on the prediction level defeats
the purpose of the deferred correction approach. Estimating a reduced tolerance
criterion may be possible a priori, but such an estimate would at present be ad hoc.
Second, there is no reason to expect the corrector (4) should take the same steps to
satisfy an error tolerance when computing a numerical approximation to the error
equation (3).

3.2. Adaptive step-size control: all levels. A generalization of the above formula-
tion is to utilize adaptive step-size control to solve the error equations (3) as well.
The variant we consider is step doubling on all levels, where each predictor and
corrector performs Algorithm 1; embedded RK pairs can also be used to estimate
the error for step-size adaptivity on all levels. Intuitively, step-size control on every
level gives more opportunity to detect and adapt to error than simply adapting using
the (lowest-order) predictor. For example, this allows the corrector take a smaller
step if necessary to satisfy an error tolerance when solving the error equation. Some
drawbacks are: (i) an interpolation step is necessary because the nodes are generally
no longer in the same locations on each level, (ii) more memory registers are
required, and (iii) there is a potential loss of parallel efficiency because a corrector
may be stalled waiting for an adequate stencil to become available to compute a
quadrature approximation to the integral in (4). Another issue — both a potential
benefit and a potential drawback — is the number of parameters that can be tuned
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prediction (`= 0)

correction (`= 1)

correction (`= 2)

correction (`= 3)

t

Figure 2. Schematic diagram of a scenario when step-size control is applied on all levels.
Unlike in Figure 1, here each level has its own grid in time. Solid circles indicate particular
times and levels where the solution is known. In this particular diagram, levels `= 0, 1, 3
are all able to advance simultaneously to the open circles. However, correction level `= 2
is unable to advance to the time indicated by the triangle symbol because correction level
` = 1 has not yet computed far enough. The stencil of points required by each level
is shown by the “bubbles” surrounding certain grid points; the thick horizontal shading
indicates the integrals needed in (4). Note in particular that the dashed stencil includes a
open circle at level `= 1 that is not yet computed.

for each problem. A discussion on the effect of tolerance choices for each level is
provided in Section 4. One can in practice also tune step-size control parameters
α, β, atol, and rtol for Algorithm 1 separately on each level. Figure 2 highlights
that some nodes might not be able to compute an updated solution on their current
level if an adequate stencil is not available to approximate the integral in (4) using
quadrature. In this example, the level `= 2 correction is unable to proceed because
it would require interpolated solution values not yet available from level ` = 1,
whereas the prediction level `= 0 and corrections `= 1 and `= 3 are all able to
advance the solution by one step.

3.3. Adaptive step-size control: using the error equation. A third strategy one
might consider is adaptive step-size control for the error equation (3) using the
solution to the error equation itself as the error estimate. (One still uses step
doubling or embedded RK pairs to obtain an error estimate for step-size control
on the predictor equation (1).) At first glance, this looks promising provided the
order of the integrator can be established because it is used to determine an optimal
step-size. One would expect computational savings from utilizing available error
information, as opposed to estimating it via step doubling or an embedded RK pair.

If first-order predictor and first-order correctors are used to construct the RIDC
method, the analysis in [17] can be easily extended to the proposed RIDC methods
with adaptive step-size control. We note that the numerical quadrature approximation
given in (5) and the numerical interpolation given in (7) are accurate to the order
O(1t`+2

n ); this is sufficient for the inductive proof in [17] to hold. Hence, one
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can show that the method has a formal order of accuracy O(1t`+2), where 1t =
maxn,`(t [`]n − t [`]n−1).

Although the formal order of accuracy can be established, using the error estimate
from successive levels is a poor choice for optimal step-size selection. Consider
step-size selection for level `, time step t [`]n , using η[`]n − η

[`−1](t [`]n ) as the error
estimator in Algorithm 1. The optimal step-size is chosen to control the local
error estimate via the step-size 1t [`]n = t [`]n − t [`]n−1. However, the local error for the
correctors generally contains contributions from the solutions at all the previous
levels. The validity of the asymptotic local error expansion of the RIDC method in
terms of 1t [`]n requires that 1t =maxn,`(t [`]n − t [`]n−1) be sufficiently small, and it is
not normally possible to guarantee this in the context of an IVP solver. In other
words, the step-size controller for a corrector at a given level cannot control the
entire local error, and hence standard step-control strategies, which are predicated
on the validity of error expansions in terms of only the step-size to be taken, cannot
be expected to perform well. We present some numerical tests in Section 4.2.4
to illustrate the difficulties with using successive errors as the basis for step-size
control.

3.4. Further discussion. There are many other strategies/implementation choices
that affect the overall performance of the adaptive RIDC algorithm. Some have
already been discussed in the previous section. We summarize some of the imple-
mentation choices that must be made:

• The choice of how to estimate the error of the discretization must be made. Three
possibilities have already been mentioned: step doubling, embedded RK pairs,
and solutions to the error equation (3). A combination of all three is also possible.

• If an IVP method with adaptive step-size control is used to solve (3), choices
must be made as to how the tolerances and step-size control parameters, α and β,
are to be chosen for each correction level.

We also list a few implementation details that should be considered when de-
signing adaptive RIDC schemes.

• If adaptive step-size control is implemented on all levels, some correction levels
may sit idle because the information required to perform the quadrature and
interpolation in (4) is not available. This idle time adversely affects the parallel
efficiency of the algorithm. One possibility to decrease this idle time is instead
of taking an “optimal step” (as suggested by the step-size control routine), one
could take a smaller step for which the quadrature and interpolation stencil is
available. There is some flexibility in choosing exactly which points are used
in the quadrature stencil, and it might also be possible to choose a stencil to
minimize the time that correction levels are sitting idle.
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• Because values are needed from lower-order correction levels, the storage required
by a RIDC scheme depends on when values can be overwritten (see, e.g., the
stencils in Figures 1 and 2). Thus to avoid increasing the storage requirements,
the prediction level and each correction level should not be allowed to get too far
ahead of higher correction levels. Although this is also the case for the nonadaptive
RIDC schemes [10; 6], if adaptive step-size control is implemented on all levels
(Figure 2), the memory footprint is likely to increase. Some consideration should
thus be given to a potential trade-off between parallel efficiency and the overall
memory footprint of the scheme.

• It is important to reduce round-off error when computing the quadrature weights (6)
and the interpolation weights (8). This can be done by through careful scaling
and control of the order of the floating-point operations [3].

• If one wishes to use higher-order correctors and predictors to construct RIDC
integrators, we note that the convergence analysis in [7; 8; 5] only holds for
uniform steps. A nonuniform mesh introduces discrete “roughness” (see [8]);
hence, an increase of only one order per correction level is guaranteed even though
a high-order method is used to solve (3).

• RIDC methods necessarily incur computational overhead costs, for example, quad-
rature evaluation (5), interpolation evaluation (7), and the combination of these
components in (4). Parallel speedup can only be expected if the computational
overhead is small compared to the advance of predictor from tn to tn+1.

Additionally, the RIDC framework, by construction, solves a series of error
equations to generate a successively more accurate solution. This framework can
be potentially be exploited to generate order-adaptive RIDC methods. For example,
one might control the number of corrector levels adaptively based on an error
estimate.

4. Numerical examples

We focus on the solutions to three nonlinear IVPs. The first is presented in [1]; we
refer to it as the Auzinger IVP:


y′1 =−y2+ y1(1− y2

1 − y2
2),

y′2 = y1+ 3y2(1− y2
1 − y2

2),

y(0)= (1, 0)T , t ∈ [0, 10],

(AUZ)

that has the analytic solution y(t)= (cos t, sin t)T .
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The second is the IVP associated with the Lorenz attractor:
y′1 = σ(y2− y1),

y′2 = ρy1− y2− y1 y3,

y′3 = y1 y2−βy3,

y(0)= (1, 1, 1)T , t ∈ [0, 1].

(LORENZ)

For the parameter settings σ = 10, ρ = 28, β = 8/3, this system is highly sensitive
to perturbations, and an IVP integrator with adaptive step-size control may be
advantageous.

The third is the restricted three-body problem from [15]; we refer to it as the
Orbit IVP:

y′′1 = y1+ 2y′2−µ
′
y1+µ

D1
−µ

y1−µ
′

D2
,

y′′2 = y2− 2y′1−µ
′

y2

D1
−µ

y2

D2
,

D1 = ((y1+µ)
2
+ y2

2)
3/2, D2 = ((y1−µ

′)2+ y2
2)

3/2,

µ= 0.012277471, µ′ = 1−µ.

(ORBIT)

Choosing the initial conditions

y1(0)= 0.994, y′1(0)= 0, y2(0)= 0,

y′2(0)=−2.00158510637908252240537862224,

gives a periodic solution with period tend = 17.065216560159625588917206249.
We now present numerical evidence to demonstrate that:

1. RIDC integrators with nonuniform step-sizes converge and achieve their de-
signed orders of accuracy.

2. RIDC methods with adaptive step-size constructed using step doubling (on the
prediction level only) and embedded RK error estimators (on the prediction
level only) converge.

3. RIDC methods with adaptive step-size control based on step doubling to
estimate the local error on the prediction and correction levels converge;
however, the step-sizes selected are poor (many rejected steps), even for the
smooth Auzinger problem.

4. RIDC methods with adaptive step-size control based on step doubling to
estimate the local error on the prediction level but using the solution to the
error equation for step-size control results is problematic.

The numerical examples chosen are canonical problems designed to illustrate the
step-size adaptivity properties of the RIDC methods. Because the computational
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overhead is significant compared to the advance of an Euler solution from time
tn to tn+1, a runtime analysis does not reveal parallel speedup for any of these
examples. Whereas the number of function evaluations is an effective parameter for
comparing algorithms, we need a different metric to compare a parallel algorithm
to a sequential algorithm. Where appropriate, we tabulate the number of sets of
concurrent function evaluations as a proxy for measuring parallel speedup when
the function evaluation costs dominate. A set of concurrent function evaluations
consists of function evaluations that can be evaluated in parallel.

4.1. RIDC with nonuniform step-sizes. For our first numerical experiment, we
demonstrate that RIDC integrators with nonuniform step-sizes converge and achieve
their design orders of accuracy. Figure 3 shows the classical convergence study
(error as a function of mean step-size) for the RIDC integrator applied to (AUZ).
Figure 3(a) shows the convergence of RIDC integrators with uniform step-sizes;
Figure 3(b)–(d) shows the convergence of RIDC integrators when random step-sizes
are chosen. The random step-sizes are chosen so that

1t [`]n ∈

[
1
ω
1t [`]n−1, ω1t [`]n−1

]
, ω ∈ R,

where ω controls how rapidly a step-size is allowed to change. The figures show
that RIDC integrators with nonuniform step-sizes achieve their designed order of
accuracy (each additional correction improves the order of accuracy by one), at
least up to order 6. In Figure 3 (corresponding to RIDC with uniform step-sizes),
we observe that the error stagnates at a value significantly larger than machine
precision. This is likely due to numerical issues associated with quadrature on
equispaced nodes [14]. We note that ω = 1 gives the uniformly distributed case.
We also observe that as the ratio of the largest to the smallest cell increases, the
performance of higher-order RIDC methods degrades, likely due to round-off error
associated with calculating the quadrature and interpolation weights.

Figure 4 shows the convergence study (error as a function of mean step-size)
for (LORENZ). The reference solution is computed using an RK-45 integrator
with a fine time step. Similar observations can be made that RIDC methods with
nonuniform step-sizes converge with their designed orders of accuracy (at least up
to order 6).

4.2. Adaptive RIDC. We study four different variants of RIDC methods with adap-
tive step-size control: (i) step doubling is used for adaptive step-size control on
the prediction level only (Section 4.2.1); (ii) an embedded RK pair is used for
adaptive step-size control on the prediction level only (Section 4.2.2); (iii) step
doubling is used for adaptive step-size control on the prediction and correction
levels (Section 4.2.3); and (iv) step doubling is used for adaptive step-size control
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(a) Uniform steps. (b) Random steps, ω = 2.
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(c) Random steps, ω = 4. (d) Random steps, ω = 100.

Figure 3. Auzinger IVP: The design order is illustrated for the RIDC methods.

on the prediction level, and the computed errors from the error equation (3) are
used for adaptive step-size control on the correction levels.

4.2.1. Step doubling on the prediction level only. In this numerical experiment, we
solve the orbit problem (ORBIT) using a fourth-order RIDC method (constructed
using forward Euler integrators), and adaptive step-size control on the prediction
level only, where step doubling is used to provide the error estimate. As shown in
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Figure 4. Lorenz IVP: the design order is illustrated for the RIDC methods.

Figure 5, successive correction loops are able to reduce the error in the solution
and recover the desired orbit. The red circles in Figure 5(a) indicate rejected
steps. Figure 6(a) shows that RIDC with step doubling only on the prediction level
converges as the tolerance is reduced. In this experiment, the RIDC integrator is
reset after every 100 accepted steps. By “reset” [10], we mean that the highest-
order solution after every 100 steps is used as an initial condition to reinitialize the
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(c) Second correction. (d) Third correction.

Figure 5. Orbit problem: although the prediction level gives a highly inaccurate solution,
successive correction loops are able to reduce the error and produce the desired orbit. The
red circles on the prediction level (a) indicate rejected steps.

provisional solution; e.g., instead of solving (1), one solves a sequence of problems{
y′(t)= f (t, y), t ∈ [t100(i−1),min(b, t100i )],

y(t100(i−1))= η
[P−1]
100(i−1),

if (L−1) correctors are applied and η[L−1]
0 = ya . The time steps chosen by the RIDC

integrator with resets performed every 100 and 400 steps are shown in Figure 6(b)
and (c).

In Figure 6(b), 1tmin= 1.06×10−4. If a nonadaptive fourth-order RIDC method
was used with 1tmin, 160814 uniform time steps would have been required. By
adaptively selecting the time steps for this example and tolerance, the adaptive RIDC
method required approximately one one-hundredth of the functional evaluations,
corresponding to a one hundred-fold speedup. The effective parallel speedup can be
computed by taking the ratio of the total number of function evaluations required and
the number of sets of concurrent function evaluations required. For the computation
in Figure 6(b) where a reset is performed after every 100 steps, the parallel speedup
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(a) Convergence study.

0 5 10 15

10−4

10−3

10−2

t

1
t

(b) Adaptive step-sizes selected (reset every 100 steps).
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(c) Adaptive step-sizes selected (reset every 400 steps).

Figure 6. Orbit problem: (a) convergence of a fourth-order RIDC method constructed
with forward Euler integrators and adaptive step-size control on the prediction level (using
step doubling). Convergence is measured relative to the exact solution as the tolerance is
decreased. A reset is performed after every 100 accepted steps for this convergence study.
In (b), the step-sizes selected for rtol= 10−3.5 and atol= 10−6.5 are displayed as the
solid curve and rejected steps as ×s; a reset is performed after every 100 steps. In (c), the
reset is performed after every 400 steps. Observe that although the number of rejected
steps increases, the overall 1t chosen remains qualitatively similar.

(if four processors are available) can be computed using

(1456× 5)+ 99
(1456× 2)+ (14× 6)+ 99

= 2.38.
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The numerator consists of the total number of function evaluations arising from
the number of steps taken and the computation of the error estimate using step
doubling and the number of function evaluations arising from the rejected steps. The
denominator consists of the number of concurrent function evaluations (including
startup costs for the RIDC method). Note that three of the processors sit idle while
that step doubling computation is being processed. The parallel speedup can be
improved if more levels are chosen, or if the number of resets are reduced. If a
reset is performed after every 400 steps (Figure 6(c)), the parallel speedup is

(1591× 5)+ 88
(1591× 2)+ (4× 6)+ 88

= 2.44.

4.2.2. Embedded RK on the prediction level only. In this numerical experiment, we
repeat the orbit problem (ORBIT) using a fourth-order RIDC method constructed
again using forward Euler integrators, but the step-size adaptivity on the prediction
level uses a Heun–Euler embedded RK pair. This simple scheme combines Heun’s
method, which is second order, with the forward Euler method, which is first order.
Figure 7(a) shows the convergence of this adaptive RIDC method as the tolerance
is reduced. As the previous example, the RIDC integrator is reset after every 100
accepted steps for the convergence study. In Figure 7(b) and (c), we show the time
steps chosen by the RIDC integrator with resets performed after 100 or 400 steps,
respectively.

For the computation in Figure 7(b) where a reset is performed after every 100
steps, the parallel speedup (if four processors are available) is

(2441× 5)+ 60
(2441× 2)+ (24× 6)+ 60

= 2.41.

If a reset is performed after every 400 steps (Figure 7(c)), the parallel speedup is

(2276× 5)+ 80
(2276× 2)+ (5× 6)+ 80

= 2.46.

Not surprisingly, the time steps chosen by the RIDC method are dependent on
the specified tolerances and the error estimator (and consequently the integrators
used to obtain a provisional solution to (1)) used for the control strategy. One
can easily construct a RIDC integrator using higher-order embedded RK pairs to
solve for a provisional solution to (1), and then use the forward Euler method to
solve the error equation (3) on subsequent levels. For example, Figure 8 shows the
step-sizes chosen when the Bogacki–Shampine method [2] (a 3(2) embedded RK
pair) and the popular Runge–Kutta–Fehlberg 4(5) pair [13] are used to compute
the provisional solution (and error estimate) for the RIDC integrator. The same
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Figure 7. Orbit problem: (a) convergence of a fourth-order RIDC method constructed
with forward Euler integrators and adaptive step-size control on the prediction level (using
an embedded RK pair to estimate the error). Convergence is measured relative to the
exact solution as the tolerance is decreased. A reset is performed after every 100 accepted
steps for this convergence study. In (b), the step-sizes selected for rtol = 10−3.5 and
atol = 10−6.5 are displayed as the solid curve and rejected steps as ×s; a reset is
performed after every 100 steps. In (c), the reset is performed after every 400 steps.

tolerance of rtol = 10−3.5 is used to generate both graphs. As the order and
accuracy of the predictor increases, one can take larger time steps. For this example,
using higher-order embedded RK pairs as step-size control mechanisms for RIDC
methods result in less variations in time steps.
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Figure 8. Step-sizes selected by RIDC methods constructed using a Bogacki–Shampine
method, a 3(2) embedded pair (red) and the Runge–Kutta–Fehlberg 4(5) pair. Rejected
steps are indicated with ×s.

4.2.3. Step doubling on all levels. As mentioned in Section 3.2, it might be ad-
vantageous to use adaptive step-size control when solving the error equations.
This affords a myriad of parameters that can be used to tune the step-size control
mechanism. In this set of numerical experiments, we explore how the choice of
tolerances for the prediction/correction levels affect the step-size selection.

We first solve the Auzinger IVP using step doubling on all the levels, i.e., both
predictor and corrector levels. In Figure 9, we show the computed step-sizes when
we naively choose the same tolerances on each level. As expected, the predictor
has to take many steps (to satisfy the stringent user-supplied tolerance), whereas
life is easy for the correctors. The effective parallel speedup is

(5479+ 196+ 19+ 24)× 2+ 15
(5481× 2)+ 15

= 1.04.

0 0.5 110−8

10−5

10−2

t

1
t

pred
cor1
cor2
cor3

` rtol atol error naccept nreject

0 10−8 10−10 2.028·10−5 5479 0
1 10−8 10−10 8.793·10−7 196 0
2 10−8 10−10 2.618·10−8 19 6
3 10−8 10−10 1.486·10−6 24 9

Figure 9. Auzinger IVP: step-size control is implemented on all prediction and correction
levels. The same tolerances are used for each level. As expected, the predictor has a hard
time (forward Euler must satisfy a stringent tolerance); on the other hand, life is easy for
the correctors. Rejected steps are indicated with ×s. For this set of tolerances, 5481 sets of
concurrent function evaluations are needed.
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In principle, the correctors are not even needed. Equally important to note is that
the error increases after the last correction loop. This might seem surprising at first
glance but ultimately may not unreasonable because the steps selected to solve the
third correction are not based on the solution to the error equation but rather the
original IVP.

Instead of naively choosing the same tolerances on each level, we now change
the tolerance at each level, as described in Figure 10. By making this simple change,
the number of accepted steps on each level are now on the same order of magnitude.
Not surprisingly, the predictor still selects good steps. Interestingly in Figure 10(a),
the first correction is “noisy”, especially initially. For this set of tolerances, the
effective parallel speedup is

(58+ 7+ 30+ 61)× 2+ (52+ 7+ 24)
(135× 2)+ (52+ 7+ 24)

= 1.52.
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0 1 ·10−4 1·10−6 2.026·10−3 58 0
1 1 ·10−6 1·10−8 6.945·10−5 78 52
2 1 ·10−8 1·10−10 1.265·10−7 30 7
3 1 ·10−10 1·10−12 9.579·10−8 61 24

(a) Set 1 of tolerances.
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0 1 ·10−4 1·10−6 2.026·10−3 58 0
1 1 ·10−5 1·10−7 1.805·10−4 29 12
2 1 ·10−7 1·10−9 1.172·10−6 20 6
3 1 ·10−9 1·10−11 7.216·10−7 39 11

(b) Set 2 of tolerances.

Figure 10. Auzinger IVP: different tolerances at each level. With the first set of tolerances,
the step-size controller for the predictor is well behaved, as it is for the second and third
correctors. The step-size controller for the first corrector however is noisy. 135 sets
of concurrent function evaluations are needed to generate (b). With the second set of
tolerances, the step-size controller for all correctors is reasonably well behaved. Here, 64
sets of concurrent function evaluations are needed.
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By picking a different set of tolerances, we can eliminate the noise, as shown in
Figure 10(b). For this set of tolerances, the parallel speedup is

(58+ 24+ 20+ 39)× 2+ (12+ 6+ 11)
(64× 2)+ (12+ 6+ 11)

= 1.98.

4.2.4. Using solutions from the error equation. As mentioned in Section 3.3, using
the solution from the error equation (3) as the local error estimate for step-size
control on a given level is potentially problematic because the step-size controller
can only control the local error introduced on that level whereas the true local error
generally contains contributions from all previous levels. For completeness, we
present the results of this adaptive RIDC formulation applied to the Orbit problem
(Figure 12) and the Auzinger problem (Figure 11). Step doubling is used for step-
size adaptivity on the predictor level, solutions from the error equation are used to
control step-sizes for the corrector levels. For the Auzinger problem, we observe
in the top figure that if the tolerances are held fixed on each level, each correction
level improves the solution. If the tolerance is reduced slightly on each level, the
step-size controller gives a poor step-size selection (many rejected steps), even
for this smoothly varying problem. For the Orbit IVP, Figure 12 shows that the
corrector improves the solution if the tolerances are held fixed at all levels; however
the corrector requires many steps. A second correction loop was not attempted.
Reducing the tolerance for the first corrector resulted in inordinately many rejected
steps.

5. Conclusions

In this paper, we formulated RIDC methods that incorporate local error estimation
and adaptive step-size control. Several formulations were discussed in detail: (i)
step doubling on the prediction level, (ii) embedded RK pairs on the prediction level,
(iii) step doubling on the prediction and error levels, and (iv) step doubling for the
prediction level but using the solution from the error equation for step-size control;
other formulations are also alluded to. A convergence theorem from [17] can be
extended to RIDC methods that use adaptive step-size control on the prediction level.
Numerical experiments demonstrate that RIDC methods with nonuniform steps
converge as designed and illustrate the type of behavior that might be observed
when adaptive step-size control is used on the prediction and correction levels.
Based on our numerical study, we conclude that adaptive step-size control on the
prediction level is viable for RIDC methods. In a practical application where a
user gives a specified tolerance, this prescribed tolerance must be transformed to a
specific tolerance that is fed to the predictor.
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Figure 11. Auzinger problem: step doubling on prediction level, using successive levels
for error estimation for step control on the error equation. Step-size controller for the
corrector is noisy.
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AN ADAPTIVELY WEIGHTED GALERKIN FINITE ELEMENT
METHOD FOR BOUNDARY VALUE PROBLEMS

YIFEI SUN AND CHAD R. WESTPHAL

We introduce an adaptively weighted Galerkin approach for elliptic problems
where diffusion is dominated by strong convection or reaction terms. In such
problems, standard Galerkin approximations can have unacceptable oscillatory
behavior near boundaries unless the computational mesh is sufficiently fine. Here
we show how adaptively weighting the equations within the variational problem
can increase accuracy and stability of solutions on under-resolved meshes. Rather
than relying on specialized finite elements or meshes, the idea here sets a flexible
and robust framework where the metric of the variational formulation is adapted
by an approximate solution. We give a general overview of the formulation and
an algorithmic structure for choosing weight functions. Numerical examples are
presented to illustrate the method.

1. Introduction

In this paper, we consider numerically approximating solutions to the diffusion,
convection, reaction problem{

−ε1u+ b · ∇u+ cu = f in �,

u = 0 on ∂�.
(1-1)

Here, u is the solution, 1u and ∇u are the Laplacian and gradient of u, ∂� is
the boundary of domain �, and f is a known data function. We assume that
coefficients c and ε are positive constants, that b is a constant vector, and that
boundary conditions are homogenous Dirichlet although nonzero boundary data or
Neumann/mixed boundary conditions may easily be considered under appropriate
smoothness assumptions. When |b| � ε, we may consider this as a convection-
dominated diffusion problem, which may have solutions with boundary layers
downstream from b. When c� ε and the reaction term dominates, layer phenomena
are also possible. It is well known that standard finite element and finite difference
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approaches to such problems can yield solutions with undesirable overshoots and/or
oscillatory behavior near these boundary layers when the computational mesh is
not sufficiently resolved.

The difficulty associated with boundary layers is, of course, not limited to
(1-1) but is evident in many applications where diffusive terms are dominated by
convective or reactive terms. Throughout this paper, we assume sufficient regularity
of the data and domain to ensure solutions are sufficiently smooth, which is a
separate issue from boundary layer behavior.

There are many well studied numerical approaches to ameliorate layer effects.
Through the use of specialized graded meshes [24; 25; 11; 8] or adaptive mesh
refinement [9], it is possible to develop a mesh that has sufficient resolution near the
layers to resolve the solution and eliminate the effects of the high gradients on the
solution in areas where the solution is smooth, which are commonly referred to as
the “pollution effects”. It is also possible to augment the weak form of the problem
by adding mesh-dependent stabilization terms to the formulation [16; 17; 2]. These
terms may or may not be consistent with the original problem, but they generally
improve the solution on coarse meshes, and their influence diminishes as the mesh is
resolved. The variational problem can also be modified through a Petrov–Galerkin
formulation, where the test and trial spaces are different. This includes streamline
upwind Petrov–Galerkin (SUPG) formulations [5; 6; 18; 1] as well as methods
with spaces enhanced by bubble functions [4]. Such problems have also been
studied in the context of discontinuous Galerkin (DG) [11; 15] and discontinuous
Petrov–Galerkin (DPG) [10; 13] methods. Here continuity requirements in the
trial and test spaces are relaxed, and additional degrees of freedom on the element
boundaries lead to additional jump conditions in the variational problem. Further
comparisons on earlier work for such problems can be found in [22; 12; 14]. Broadly
speaking, there are many ingredients in designing a finite element formulation (i.e.,
reformulating the equations, choosing/adapting the mesh, choosing test/trial spaces,
etc.), and improvements on the standard Galerkin approach have been realized by
many modifications and combinations of choices in the basic ingredients.

In this work, we introduce an adaptively weighted Galerkin finite element ap-
proach to (1-1) for cases exhibiting boundary layers. By generalizing the standard
Galerkin weak form with weighted inner products, we may essentially redistribute
the strength by which the variational problem is enforced across the domain. The
use of weighted norms and weighted inner products is, of course, not a new idea.
In [21], a weighted Galerkin formulation is used for a parabolic problem where the
diffusion coefficient changes sign within the interior of the domain. A weighted
Galerkin approach is coupled with a mapping technique in [23] to solve elliptic
problems on unbounded domains. And in the least-squares finite element paradigm,
using weighted norms to generalize L2 residual minimization problems allows
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for robust treatment of problems with boundary singularities in weighted H 1(�)

or H(div) norms [19; 20; 7].
For problem (1-1), when the computational mesh is relatively coarse, weakening

the problem near boundary layers in the right way can reduce or eliminate the
pollution effects, stabilizing the numerical approximation. When the mesh is
sufficiently fine to resolve the solution with no ill effects, the approach defaults to
the standard Galerkin approach. Here, we explore this idea via an adaptive approach,
whereby an approximate solution is used to generate a weight function to define
a subsequent problem. While there are many successful methods in the literature,
we are particularly motivated by practicality. In many cases, solutions tend to
be smooth except for small regions representing a layer, and adopting an exotic
approximation space to represent the global solution seems excessive. Generally,
if it were computable, the interpolant of even simple finite element spaces would
provide a sufficient approximation. Our approach is designed to generalize the
standard Galerkin approach, where the mesh and trial space can be chosen based on
resolving the features of the solution, and an initial approximation helps redefine
the metric of an improved variational formulation. For simplicity, we describe our
approach separately from adaptive mesh refinement though mesh adaptation can be
used alongside our weighting approach. The weighted Galerkin approach here can
also be viewed as a Petrov–Galerkin formulation, where the basis functions of the
test space are generated adaptively, based on an approximate solution.

The organization of this paper is as follows. In the following section, we introduce
the idea of an adaptively weighted variational problem and describe the construction
of an appropriate weight function. Numerical results are given in Section 3, and a
brief look at the how the coercivity of the weighted bilinear form is enhanced from
the standard approach is given in Section 4.

2. Weighted Galerkin formulation

Throughout this paper, we use standard notation for the L2(�)d norm, ‖ · ‖, and inner
product, ( · , · ), and use ‖ · ‖H k to denote the norm corresponding to the Sobolev
space H k(�)d . The space of continuous functions on � is denoted by C0(�)d ,
and we recall that for φ ∈ H 1(�)d and ψ ∈ C0(�)d we have φψ ∈ H 1(�)d

for d = 1, 2, 3. When the dimension of the problem is understood in context, we
drop the d superscript. Since the relative balance between diffusion, convection, and
reaction terms in (1-1) determines the behavior of the solution, for the remainder
of this paper, we take ε = 1 without loss of generality.

Defining the space V = {v ∈ H 1(�) : v = 0 on ∂�} and the bilinear form

a(u, v) := (∇u,∇v)+ (b · ∇u, v)+ (cu, v), (2-1)
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the standard variational formulation of (1-1) for a given f ∈ L2(�) is to find u ∈ V
such that a(u, v) = ( f, v) for all v ∈ V . The discrete Galerkin formulation is
analogous: define a finite element space, V h

⊂ V , and find uh
∈ V h such that

a(uh, vh)= ( f, vh) for all vh
∈ V h . (2-2)

Since the main idea in this paper is in modifying the variational framework to
achieve better global approximations on relatively coarse resolutions, the choice
of the finite element space can be made according to its approximation properties
in the interior of the domain or according to simplicity or availability of code. In
Section 3, we give numerical results using simple conforming piecewise polynomial
spaces. In many cases, solutions tend to be relatively smooth up to boundary layers,
and finding accurate approximations up to boundary layers is desirable.

Now let w ∈ C0(�) be a weight function such that 0 < wmin ≤ w(x) ≤ 1. We
define a weighted bilinear form by multiplying each side of the PDE in (1-1) by wv
and integrating by parts:

( f, wv)= (−∇ ·∇u, wv)+ (b · ∇u, wv)+ (cu, wv)

= (∇u,∇(wv))+ (b · ∇u, wv)+ (cu, wv)

= (∇u, w∇v+ v∇w)+ (∇u, wvb)+ (cu, wv)

= (∇u, w∇v)+ (∇u, (∇w+wb)v)+ (cu, wv)=:W (u, v).

The discrete weighted variational formulation of (1-1) is thus to find uh
∈ V h such

that
W (uh, vh)= (w f, vh) for all vh

∈ V h . (2-3)

At this point, the weight function need only be sufficiently smooth and positive.
Within these requirements, the construction of the weight function is motivated by
producing a more robust numerical approximation. Notice that

W (v, v)= ‖w1/2
∇v‖2+ (∇v, (∇w+wb)v)+ c‖w1/2v‖2, (2-4)

which indicates in general that choosing (∇w+wb) small will make the cross term
small and W (v, v) will more resemble a weighted H 1(�) measure. In Section 4,
we explore the connection between w and the coercivity of W ( · , · ). In a practical
sense, we may view the role of w in (2-3) as being able to dampen the effect of
large values of |∇uh

|. Formally, we know that asymptotic solutions of (1-1) near
boundaries may have terms of the form

e−kx and e±
√

cx ,

where k = |b|, and thus, boundary layer solutions may change on the order of
max{ekh, e

√
ch
} across individual elements of mesh size h. This dramatic growth
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of the solution is often problematic, and we are motivated to choose w small in
these regions to decouple the effects from the rest of the problem. In other words,
in regions where |∇uh

| is relatively large, w should be chosen to make (∇w+wb)
small. When the mesh size is small enough to reasonably represent the solution, the
standard Galerkin approach yields acceptable results. We now describe an adaptive
approach to generate an appropriate weight function, based on the coefficients from
the original PDE, an initial approximation to the solution, and the mesh size.

If uh
old represents an initial approximation to the solution to (1-1), we simply

want to choose w large/small where the magnitude of ∇uh
old is small/large. While

there are many empirical approaches to constructing w from this guiding principle,
we describe one here that is simple to implement and tends to give robust results.
Let �h be a triangulation of the domain with elements denoted by τi , for i ranging
from 1 to the number of elements, and choose the approximation space V h . Our
approach is given by the following algorithm:

(1) Start: Initially set w = 1 uniformly.

(2) Solve: Obtain an initial solution uh
old by solving (2-2).

(3) Construct weight:
• For each element, τi , compute di := ‖∇uh

old‖τi .
• Denote the minimum/maximum values of this set by dmin = minτi∈�h di and

dmax =maxτi∈�h di .
• Set ŵi = 1− (1−wmin)(di − dmin)/(dmax− dmin).
• Construct w(x) ∈ C0(�) as a piecewise linear function from elementwise values
ŵi . See Section 3 for details.

(4) Re-solve: Using w, find uh by solving problem (2-3).

Algorithm 1. Adaptively weighted Galerkin approximation.

This basic approach can be modified to accommodate other features. As described,
this requires two PDE solves on the same mesh. However, it is straightforward
to refine the mesh, either locally or globally, between steps (2) and (4) and use
the weight from the coarse solve to enhance the fine solve. Similarly, nonlinear or
time-dependent problems that rely on an iterative approach based on an approximate
solution can incorporate steps (3) and (4) to the iterative method.

In the next section, we show numerical test problems and give details on con-
structing w ∈ C0(�) from the elementwise values ŵi .

3. Numerical results

In this section, we consider two test problems in 1D where the features of the
weighted Galerkin approach can clearly be seen. We then provide an example in
2D that shows how the approach can be incorporated into a more realistic setting.
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Figure 1. Standard Galerkin (squares) and weighted Galerkin (circles) approximations
to (3-1) compared with exact solutions (dashed), for n = 10 and k = 10, 20, 50, 100.

3.1. 1D convection-dominated. For this first example, we consider the interplay
between diffusion and convection in the ODE model problem

−u′′+ ku′ = 0 in (0, 1),

u(0)= 1,

u(1)= 0,

(3-1)

which has exact solution u(x)= (ekx
− ek)/(1− ek).

We discretize �= (0, 1) into n evenly spaced subintervals of mesh size h = 1/n,
with nodes 0= x0, x1, . . . , xn = 1, and define V h as the set of continuous piecewise
linear functions satisfying the boundary conditions in (3-1). We follow the basic
approach in Algorithm 1, using wmin = e−hk , and we construct w(x) as a piecewise
linear function on the existing mesh by setting nodal values according to

w(xi )=


ŵ1 for i = 0,
min{ŵi , ŵi+1} for i = 1, 2, . . . , n− 1,
ŵn for i = n.

For k ≤ 2n, the standard Galerkin approach does not give overshoots or oscillatory
behavior, but as k increases beyond this, such undesirable behavior occurs. This
range also corresponds to the spectrum of the system matrix, which is all real
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Figure 2. Basis functions ψi = wφi : on the entire domain (left) and detail near the
boundary layer (right).

for k ≤ 2n and complex for k > 2n. We are thus free to fix the value of n and vary k
to explore the possible numerical behavior of the boundary layer near x = 1. In
Figure 1, results are shown for n= 10 and k= 10, 20, 50, 100. Improved results can
clearly be seen in all cases, where for small k the weighted approach is essentially
the same as the standard approach, and as k increases, the weighted approach
appropriately isolates the behavior of the solution near the boundary layer.

One way to view the role of the weight functions is as a Petrov–Galerkin for-
mulation, where the basis functions on the test space are created by weighting the
basis of the trial space. For example, here {φi }

n
i=0 represents the standard piecewise

linear basis and uh
∈ V h

= span{φi }. Given a weight function, w, the weighted
Galerkin method is to find uh

∈ V h such that

a(uh, zh)= ( f, zh) for all zh
∈W h,

where vh
∈ W h

= span{ψi }, where ψi = wφi for each i = 0, 1, . . . , n. Figure 2
shows this basis for the 1D convection-dominated problem with n = 10 and k = 50.
Near the boundary layer, there is a clear upwinding effect, and in places where the
solution is smooth, the basis functions for W h and V h are essentially the same. Our
adaptive approach tends to resemble the SUPG approach in areas where |∇uh

| is
large and the standard Galerkin approach otherwise.

3.2. 1D reaction-dominated. Consider the reaction-dominated diffusion ODE
−u′′+ cu = c in (0, 1),

u(0)= 0,

u(1)= 0,

(3-2)

which yields a solution, u(x) = 1− (e
√

c(1−x)
+ e
√

cx)/(1+ e
√

c), that develops
boundary layers at x = 0 and x = 1 for c � 1. It’s easy to see that as c→∞
the solution approaches u = 1 for x ∈ (0, 1), yet the boundary conditions require
u(0)= u(1)= 0. We use the weighted Galerkin approach as described above but
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Figure 3. Standard Galerkin (squares) and weighted Galerkin (circles) approximations
to (3-2) for c = 100, 500, 2500, 12500 with exact solutions (dashed).

with wmin = e−
√

c/n , a choice motivated by the change of the asymptotic solution
in the elements nearest each boundary.

Figure 3 shows results qualitatively similar to those in Figure 1. As c increases,
boundary layers form near x = 0 and x = 1. For n small relative to

√
c, both the

standard and weighted Galerkin approaches give accurate approximations, but for
large values of

√
c, the weighted approach yields better solutions.

3.3. 2D convection-dominated. As an example in 2D, we consider

−1u+ b · ∇u = 0 in � with b=
200√

x2+ y2

[
−y

x

]
.

We use �= (0, 1)2 with zero Dirichlet boundary conditions on the north, east, and
west boundaries and u(x, 0)= 16x2(1− x)2 on the south boundary. Here, b repre-
sents a convection term of magnitude k = |b| = 200, which is in a counterclockwise
circular rotation. The solution forms a boundary layer on the west boundary (see
Figure 4).

We discretize � using a uniform mesh of triangles of size h and use standard
P1 elements for the approximation uh . As in the previous examples, we follow the
structure of Algorithm 1. To construct w(x) as a P1 finite element function on the
existing mesh, we choose wmin = e−kh and the nodal values of w as the minimum
of di on all adjacent triangles. We then find uh as the solution of (2-3). Figure 4
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Figure 4. Numerical approximations and adaptively generated weight functions for 2D
convection-dominated diffusion problem. Values in [0, 1] are shown in color (green
corresponds to 0 and pink corresponds to 1) while values greater than 1 are in white.
Overshoot values are given in Table 1.

shows plots of the approximations, comparing the standard Galerkin solution and
the weighted Galerkin solution for three mesh resolutions. Note that the boundary
conditions dictate that u≤ 1, and we take values exceeding u= 1 to be considered an
overshoot. Weighted Galerkin solutions show significantly less oscillatory behavior
than the standard approach. Table 1 shows overshoot values for both approaches.

In Figure 5, we compare the weighted and standard Galerkin approaches by
plotting the L2 error, ‖uh

− u∗‖, and the H 1 seminorm error, ‖∇(uh
− u∗)‖, for

increasing mesh resolution (n = 10, 20, 40, 80). We use the numerical solution on
a very fine mesh, u∗ (n = 600), as a proxy for the exact solution. Both methods ap-
proach the asymptotic optimal rates of O(h2) and O(h), but the weighted approach
gives better approximations on under-resolved meshes.

h Standard scheme Weighted scheme
0.05 1.70 1.15
0.025 1.44 1.04
0.0125 1.10 1.00

Table 1. Overshoot values for numerical approximations, maxx∈�|uh
|.
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Figure 5. L2 norm and H1 seminorm errors for 2D convection-dominated diffusion problem.

4. On coercivity

We briefly explore the connection between the behavior of convection-dominated
problems and the coercivity of the variational problem. Understanding when
coercivity is lost and the effects on the linear systems leads to a better understanding
of how to construct an improved variational problem using weighted inner products.

Definition 4.1. A bilinear form a( · , · ) on a normed linear space H is said to be
coercive on V ⊆ H if there exists α > 0 such that

a(v, v)≥ α‖v‖2H for all v ∈ V .

Coercivity is of great interest since, if (H, ( · , · )) is a Hilbert space, V is a
subspace of H , and a( · , · ) is an inner product on V , then (V, a( · , · )) need not
be complete if a( · , · ) is not coercive [3]. When many standard approaches are
employed for (1-1), solutions exhibit the well known numerical instability of
oscillatory behavior near boundary layers for h not sufficiently fine (e.g., see [17;
12; 22; 14]).

The Galerkin variational formulation of (1-1) for a given f ∈ L2(�) is to find
a u ∈ V such that

a(u, v)= ( f, v) for all v ∈ V ,

where a(u, v) := (∇u,∇v)+ (b · ∇u, v)+ (cu, v).
In the following, we assume constant b and examine coercivity of a( · , · ) in the

absence of boundary conditions:

Proposition 4.2. If we choose H = V = H 1(�), then coercivity holds for a( · , · )
if and only if k < 2

√
c, where k = |b|.

Proof. We first prove the “if” part. Since k < 2
√

c, we can find 0< c0 <min{1, c}
such that

k ≤ 2
√
(1− c0)(c− c0).
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By the Cauchy–Schwarz inequality, we have that

|(b · ∇v, v)| ≤ ‖b · ∇v‖‖v‖ ≤ k · ‖∇v‖‖v‖

≤ 2
√
(1− c0)(c− c0) · ‖∇v‖‖v‖

≤ (1− c0)‖∇v‖
2
+ (c− c0)‖v‖

2. (4-1)

Thus,

(1− c0)‖∇v‖
2
+ (b · ∇v, v)+ (c− c0)‖v‖

2
≥ 0,

which gives us

‖∇v‖2+ (b · ∇v, v)+ c‖v‖2 ≥ c0(‖∇v‖
2
+‖v‖2)= c0‖v‖

2
H1 .

To prove the “only if” part, we need to show that, for every c0 > 0, we can always
find v ∈ H 2(�)∩ V such that

a(v, v) < c0‖v‖
2
H1 .

Since k ≥ 2
√

c, for all c0 > 0 satisfying c0 <min{1, c}, we have

2
√
(c− c0)(1− c0) < k.

We let x ∈ Rd , where d is the dimension of b, and

a =−
1
k

√
c− c0

1− c0
b.

Then if we choose v = ea·x , we will get

∇v = va (4-2)

and

b · ∇v = (a · b)v = k2
·

(
−

1
k

√
c− c0

1− c0
v

)
=−k

√
c− c0

1− c0
v. (4-3)

We notice (4-2) and (4-3) give us the following relation:

|∇v| =

√
c− c0

1− c0
|v|.

Thus,

‖∇v‖ =

(∫
�

(∇v · ∇v)

)1/2

=

(∫
�

|∇v|2
)1/2

=

√
c− c0

1− c0

(∫
�

v2
)1/2

=

√
c− c0

1− c0
‖v‖, (4-4)
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and

(b · ∇v, v)=−k
√

c− c0

1− c0
‖v‖2

<−2
√
(c− c0)(1− c0)

√
c− c0

1− c0
‖v‖2

=−2(c− c0)‖v‖
2. (4-5)

By plugging (4-4) into (4-5), we have

(b · ∇v, v) <−2(1− c0)‖∇v‖
2. (4-6)

After adding up (4-5) and (4-6), we get

(b · ∇v, v) <−(c− c0)‖v‖
2
− (1− c0)‖∇v‖

2,

which leads to

a(v, v)= ‖∇v‖2+ (b · ∇v, v)+ c‖v‖2 < c0(‖∇v‖
2
+‖v‖2)= c0‖v‖

2
H1 . �

This shows, in part, why convection-dominated problems using the standard
Galerkin approach may perform poorly in practice. To address how the weighted
variational approach improves the outlook, we recall (2-4),

W (v, v)= ‖w1/2
∇v‖2+ (∇v, (∇w+wb)v)+ c‖w1/2v‖2.

When |b| is large and w = 1, it is clear that the cross term can dominate the
expression. To illustrate the impact of this term, let k = |b| and assume that w is
such that

|∇w+wb| ≤ θ |wb| = θk|w|

for the smallest θ ≥ 0 possible. The unweighted case (w = 1) corresponds to θ = 1,
and we can expect θ → 0 as ∇w+wb→ 0 whenever w is uniformly bounded
away from zero (i.e., w ≥wmin > 0). The construction of w described in this paper
leads to ∇w · b< 0 (i.e., boundary layers form downstream of b, where w increases
in the opposite direction to b), and thus, typically θ ∈ [0, 1]. Experimental evidence
with the construction of w in the test problem in Section 3.1 shows that in regions
of � near boundary layers elementwise values of θ are in [0, 1) while throughout
the interior of � values of θ are near 1.
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Recalling the general inequality xy ≤ (ε/2)x2
+ (1/2ε)y2 for any ε > 0 and the

Cauchy–Schwarz inequality, the coercivity of W ( · , · ) then follows from

W (v, v)= ‖w1/2
∇v‖2+ (∇v, (∇w+wb)v)+ c‖w1/2v‖2

≥ ‖w1/2
∇v‖2− θk‖w1/2

∇v‖‖w1/2v‖+ c‖w1/2v‖2

≥ ‖w1/2
∇v‖2− θk

(ε
2
‖w1/2

∇v‖2+
1
2ε
‖w1/2v‖2

)
+ c‖w1/2v‖2

=

(
1−

θkε
2

)
‖w1/2

∇v‖2+
(

c−
θk
2ε

)
‖w1/2v‖2

≥ c0(‖w
1/2
∇v‖2+‖w1/2v‖2),

where 0< c0=min{1−θkε/2, c−θk/2ε} when ε ∈ [θk/2c, 2/θk] and k ≤ 2
√

c/θ .
This somewhat formal view shows that the weighted variational problem induces
a weighted H 1 norm that may be more desirable than the standard H 1 measure
since when θ < 1 the coercivity of W ( · , · ) will hold for a larger range of k than
the standard Galerkin approach, which requires k ≤ 2

√
c.

When coercivity holds, both the standard Galerkin and weighted Galerkin ap-
proaches can easily be shown to have optimal-order error bounds. That is, when (1-1)
has full regularity, we have

‖u− uh
‖ = Ch2

‖u‖H2 and ‖∇u−∇uh
‖ = Ch‖u‖H2,

where u is the exact solution, uh is the numerical approximation with mesh size h
(see, e.g., Figure 5). When the coercivity bound holds for a wider range of parame-
ters, it is reasonable to expect more robust numerical results.

5. Conclusion

The weighted scheme we present in this paper seeks to provide a natural refor-
mulation of the variational approach that has an underlying metric adapted to the
specific problem. The approach tends to induce an upwinding effect and is flexible
in that it does not require specialized meshing or the use of exotic elements. It is
possible also to extend the idea to problems with boundary singularities, where
overall convergence rates are affected by the loss of smoothness. This study is the
subject of a forthcoming investigation.
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AN ADAPTIVE FINITE VOLUME METHOD
FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

IN COMPLEX GEOMETRIES

DAVID TREBOTICH AND DANIEL T. GRAVES

We present an adaptive, finite volume algorithm to solve the incompressible
Navier–Stokes equations in complex geometries. The algorithm is based on the
embedded boundary method, in which finite volume approximations are used to
discretize the solution in cut cells that result from intersecting the irregular bound-
ary with a structured Cartesian grid. This approach is conservative and reduces
to a standard finite difference method in grid cells away from the boundary. We
solve the incompressible flow equations using a predictor-corrector formulation.
Hyperbolic advection terms are obtained by higher-order upwinding without
the use of extrapolated data in covered cells. The small-cell stability problem
associated with explicit embedded boundary methods for hyperbolic systems is
avoided by the use of a volume-weighted scheme in the advection step and is
consistent with construction of the right-hand side of the elliptic solvers. The
Helmholtz equations resulting from viscous source terms are advanced in time
by the Crank–Nicolson method, which reduces solver runtime compared to other
second-order time integrators by a half. Incompressibility is enforced by a second-
order approximate projection method that makes use of a new conservative cell-
centered gradient in cut cells that is consistent with the volume-weighted scheme.
The algorithm is also capable of block structured adaptive mesh refinement to
increase spatial resolution dynamically in regions of interest. The resulting overall
method is second-order accurate for sufficiently smooth problems. In addition,
the algorithm is implemented in a high-performance computing framework and
can perform structured-grid fluid dynamics calculations at unprecedented scale
and resolution, up to 262,144 processor cores. We demonstrate robustness and
performance of the algorithm by simulating incompressible flow for a wide range
of Reynolds numbers in two and three dimensions: Stokes and low Reynolds
number flows in both constructed and image data geometries (Re� 1 to Re= 1),
flow past a cylinder (Re= 300), flow past a sphere (Re= 600) and turbulent flow
in a contraction (Re= 6300).
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1. Introduction

In this paper, we describe a conservative, high-resolution algorithm for the incom-
pressible Navier–Stokes equations in complex geometries. The primary outcome of
this work is a simulation capability that can be applied to a wide range of flows
where high resolution is sought — from low Reynolds number flow in geologic or
engineered porous media, for example, to direct numerical simulation of turbulence.
Our approach is based on an adaptive, finite volume embedded boundary method.
In the context of a complete description of the overall algorithm, we present several
novel numerical techniques including: a volume-weighted scheme for finite volume
discretizations that avoids the small-cell problem associated with hyperbolic solvers
based on cut cell methods and a stable second-order time integration method that is
faster than other second-order schemes used in the context of embedded boundary
methods. We demonstrate second-order convergence of the algorithm. We apply the
algorithm to benchmark flow past a cylinder in 2D and 3D, flow past a sphere in 3D
and high Reynolds number flow in a 2D contraction as well as Stokes flow and low
Reynolds number flow in packed bed geometries and realistic subsurface materials.
We also demonstrate the adaptive mesh refinement capability of the algorithm as
well as scalable performance to 262,144 processor cores.

1.1. Equations of motion. We consider the incompressible Navier–Stokes equa-
tions with constant density:

∂u
∂t
+ (u · ∇)u =−∇ p+ ν1u, (1-1)

∇ · u = 0, (1-2)

where u is the fluid velocity, ∇ p is the pressure gradient and ν is the kinematic
viscosity. To close the system, we specify boundary conditions for a bounded inflow-
outflow problem. For example, for flow in the x direction in a two-dimensional
channel, the boundary conditions are, at inflow,

u = (3
2 u(1− y2/a2), 0),

∂p
∂x
= 0, (1-3)

where u is average inflow velocity and a is half the width of the channel in the
y direction; at solid walls,

u = 0,
∂p
∂y
= 0; (1-4)

and at outflow,
∂u
∂x
= 0, p = 0. (1-5)

Given initial conditions u0
= u(x, 0) and p0

= p(x, 0), the system of equations
defined by (1-1)–(1-5) constitutes an initial boundary value problem (IBVP) that can



A FINITE VOLUME METHOD FOR NAVIER–STOKES IN COMPLEX GEOMETRIES 45

Figure 1. Left: example of an irregular geometry on a Cartesian grid. Middle: close-up
view of embedded boundaries “cutting” regular cells. Right: single cut cell showing
boundary fluxes. The shaded area represents the volume of cells excluded from the domain.
Dots represent cell centers. Each “×” represents a centroid.

be solved by a variety of methods (e.g., immersed boundary [27], ghost fluid [18]
or discontinuous Galerkin [46]). We are ultimately interested in efficient, scalable
computations to obtain high resolution for a wide range of Reynolds number flows in
complex geometries. We address this problem with a predictor-corrector projection
formulation based on a finite volume, embedded boundary method with adaptive
mesh refinement.

1.2. Numerical approach.

1.2.1. Embedded boundary method. Cartesian grid methods have become an in-
creasingly popular modeling approach to solving partial differential equations
(PDEs) in complex geometries. There are several Cartesian grid approaches (e.g., im-
mersed boundary [42], immersed interface [28] and ghost fluid [18]); however, we fo-
cus on the cut cell approach, which is based on finite volume approximations. A cut
cell, or embedded boundary, method refers to a finite volume discretization in irregu-
lar cells on a Cartesian grid that result from the intersection of the boundary and the
rectangular cells of the grid (see Figure 1). Conservative numerical approximations
to the solution can be found from discrete integration over the nonrectangular control
volumes, or cut cells, with fluxes located at centroids of the edges or faces of a control
volume. This approach has been used as the basis for second-order accurate methods
for elliptic, parabolic and hyperbolic PDEs in two and three dimensions [21; 32; 15].

One of the advantages of the method is that the problem of generating the
description of complex geometry on the grid (starting from, for example, surface
tessellations produced by a CAD system or implicit function representation of
x-ray microtomography images) has been made more tractable [1; 29]. Another
advantage of the embedded boundary method is that it is amenable to adaptive
mesh refinement (AMR) [10]. Block structured AMR is a technique to add grid
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resolution efficiently and dynamically in areas of interest while leaving the rest of
the domain at a coarser resolution. AMR was originally applied to finite difference
methods for inviscid shock hydrodynamics [7] and has been extended to inviscid,
incompressible flow [30] and viscous flow [2; 31] in rectangular domains. AMR has
been combined with embedded boundary methods to model inviscid and viscous
compressible flows in complex geometries [40; 15; 19].

For incompressible flows, embedded boundary methods have been mostly applied
to inviscid flows (e.g., [3]). As attractive as cut cell methods are for efficient gridding
of complex geometries, these methods are still gaining ground in the engineering
community for modeling of incompressible viscous flows perhaps due to the high
resolution that is required in and around cut cells to resolve viscous boundary layers.
Therefore, AMR and high-performance computing have become necessary partners
for cut cell methods to be effective 3D modeling tools. Furthermore, discussion of
such methods usually centers around the “small-cell problem” due to the arbitrary
nature of the cut cell approach; also of importance are accuracy of gradients and
higher-order strategies.

Several methods have been proposed for incompressible viscous flow using the
cut cell approach. In [60], a single-grid (nonadaptive) finite volume method is used
for 2D incompressible viscous flows and is demonstrated on an array of cylinders in a
channel. In [43], adaptivity is combined with a volume-of-fluid method and applied
to practical engineering problems in 3D. Cell-merging is used to treat the small-cell
problem. Second-order accuracy is demonstrated with particular attention given
to the pressure gradient. In [25], a cut cell method on a staggered grid is applied to
a moderate Reynolds number flow in 3D. A “cell-linking” method is proposed that
links small cells with a master cell, placing the cell a small distance from the master
and inducing a high-diffusion flux that forces the two velocities to take the same
value. A cell-merging technique was used in [13] as part of a cut cell projection
method. In a precursor [52] to the work presented here, an embedded boundary
method was used to model fluid-particle flow through a packed bed geometry. This
work was later generalized to AMR in a computationally efficient framework using
novel stenciling techniques in cut cells [53]. The small-cell problem was addressed
by a linear hybridization of conservative and nonconservative estimates of the
convective derivative akin to [11; 6] with redistribution of the unconserved mass.

1.2.2. Projection method. Projection methods address the time-discretization issue
of the constrained evolution equations of incompressible flow. These methods are
based on the Hodge–Helmholtz decomposition of a vector field into a divergence-
free part and a gradient of a scalar field, effectively separating the vortical dynamics
induced by a viscous, divergence-free velocity field from the potential flow problem.
Projection methods have taken several different paths since Chorin’s original method
was introduced [12], primarily depending on the choice of scheme for higher-order
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discretization of the nonlinear advection term (e.g., [24; 55]). Our approach is
based on the work of Bell, Colella and Glaz (BCG) [4] and the family of methods
that followed (e.g., [26; 2; 49; 31]). The BCG method makes use of high-resolution
finite difference methods for hyperbolic PDEs, such as Godunov or upwinding
schemes, combined in a fractional step approach with fast iterative methods for
elliptic and parabolic PDEs to achieve second-order spatial and temporal accuracy.
BCG was made more robust for larger Courant–Friedrichs–Lewy (CFL) numbers
with the introduction of an intermediate marker-and-cell (MAC) projection in the
advection step [5]. In [49], the BCG method was extended to time-dependent
domains using quadrilateral, mapped grids and a consistent decomposition of the
velocity field that standardized the implementation of boundary conditions for
projection methods. The projection method was generalized to a nonadaptive
embedded boundary approach for time-dependent domains in [34].

In this paper, we combine these methods — adaptive, finite volume and projec-
tion — using the predictor-corrector projection formulation in [49], the adaptive
approach in [31] and the computational fluid dynamics tools for adaptive embedded
boundary methods in [53] to solve the incompressible Navier–Stokes equations
in complex geometries. The algorithm is implemented in the Chombo software
framework, which supports adaptive, embedded boundary methods and also enables
large scale computations (http://chombo.lbl.gov). The resulting algorithm is conser-
vative, second-order accurate and scalable to 262,144 processor cores. The central
new idea of the algorithm is a volume-weighted scheme that avoids the small-cell
problem associated with explicit embedded boundary methods and leads to better
stability properties than previous approaches in [53; 15; 52].

We organize the discussion of the algorithm as follows. The finite difference
algorithm is described in its entirety in Section 2. The embedded boundary, finite
volume method is described in Section 3 for the case of cut cells where the dis-
cretization requires special stencils that differ from the finite difference method.
For ease of exposition, the algorithm is described in 2D; the 3D discretization is
included if it is not an obvious extension from 2D. We include brief descriptions of
algorithm modifications needed for AMR throughout the discussion and particularly
for hyperbolic and elliptic discretizations near coarse-fine interfaces. Accuracy of
the method, performance measurements and simulation results are presented in
Section 4. Conclusions are summarized and discussed in Section 5.

2. Algorithm discretization

A second-order accurate in time discretization of the evolution equation (1-1) is

U n+1
=U n

+1t (ν1U n+1/2
− (U · ∇)U n+1/2

−∇ pn+1/2),

http://chombo.lbl.gov
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where U n is an approximation of the velocity field at the discrete time tn
= tn−1

+1t .
We choose a second-order upwind method for hyperbolic terms, a second-order
implicit discretization of parabolic terms and an approximate projection method
to enforce incompressibility with special centering of the pressure gradient. We
combine these methods in a semi-implicit predictor-corrector formulation based
on [49] to advance the solution.

2.1. Temporal discretization. The momentum equation (1-1) can be formulated
as a parabolic equation of the form Ut =L(U )+ f (U ), where L is a second-order
elliptic operator such as the Laplacian. Second-order accuracy in time can be
achieved by the Crank–Nicolson method for parabolic equations as in [4]. It has
been previously reported that, in the presence of embedded boundaries, the Crank–
Nicolson scheme is unstable for parabolic equations, and in particular, when the
embedded boundary is moving, coefficients are strongly varying or discontinuities
exist in the solution [32]. Instead, the Runge–Kutta method of [54] is recommended
to achieve second-order accuracy. In practice, we have not experienced such
instabilities with Crank–Nicolson for stationary boundaries nor in current work with
moving boundaries (e.g., [34]). Furthermore, significant computational savings are
gained from the use of Crank–Nicolson, which requires only D (number of space
dimensions) solutions to the Helmholtz problem while the second-order Runge–
Kutta method as described in [54] requires 2D solutions to the Helmholtz problem.

The Crank–Nicolson discretization is

(
I −

ν1t
2
1
)

U n+1,∗
=

(
I +

ν1t
2
1
)

U n
+1t f n+1/2, (2-1)

f n+1/2
=−(U · ∇)U n+1/2

−∇ pn−1/2. (2-2)

The intermediate velocity, U n+1,∗, in (2-1) is a second-order approximation to the
solution that satisfies the boundary conditions but does not necessarily satisfy the
incompressibility constraint due to the lagged pressure gradient in (2-2).

2.2. Projection formulation. The projection method [12] is used to enforce incom-
pressibility in discretization (2-1). In general, a smooth vector field, w, on a simply
connected domain, �, can be orthogonally decomposed into a divergence-free
component, wd , and a gradient of a scalar potential, ψ ,

w = wd +∇ψ,

∇ ·wd = 0,

1ψ =∇ ·w
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with boundary conditions wd · n = 0 and ∂ψ/∂n = w · n on ∂�. We can apply a
discrete version of the projection to the discretization (2-1) to obtain a divergence-
free velocity and pressure gradient

U n+1
= P(W ),

∇ pn+1/2
=

1
1t

Q(W ),

W =U n+1,∗
+1t∇ pn−1/2,

where Q = GL−1 D, P = I − Q and L, D and G are discrete representations of
the Laplacian, divergence and gradient, respectively. These projection operations
procedurally reduce to the solution of the Poisson problem and an update of the
velocity and pressure gradient by the gradient of the solution to the Poisson problem

Lφ = D(W ), (2-3)

U n+1
=W − G(φ), (2-4)

∇ pn+1/2
=

1
1t

G(φ). (2-5)

We note that the projection target, W , contains the intermediate velocity augmented
by the lagged pressure gradient resulting in a pressure formulation with improved
stability in comparison to the pressure correction formulation in [49].

The form of G, and thus L, depends on the centering of the projection target, W ,
which is cell-centered in this case. However, the discretization of divergence, based
on the discrete form of the divergence theorem, is applied as a sum of differences
of face-centered data in each direction. In compact notation, we have

D(W )i =
1
h

D∑
d=1

(Wi+êd/2−Wi−êd/2). (2-6)

If we also consider that the gradient is applied to the cell-centered solution to
Poisson’s equation, φi , then D and G are not discrete adjoints and L 6= DG. This
projection is, therefore, approximate and D(P(W ))= O(h2), the same magnitude
as the truncation error. Also, the operator is not idempotent; i.e., P2

6= P .
If the divergence and gradient are discrete adjoints and L ≡ DG, then the projec-

tion is discretely exact, i.e., D(P(W ))= 0; see [12]. This is the case of the so-called
MAC projection, defined to be Pmac

≡ (I − Qmac) and Qmac
≡ Gmac(Lmac)−1 D.

The discrete Laplacian operator can then be defined as the conservative divergence
of the face-centered gradient:

L i ≡ D(Gmac(φ))i =
1
h

D∑
d=1

(Gmac,d(φ)i+êd/2−Gmac,d(φ)i−êd/2). (2-7)
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This is the finite difference discretization of the Laplacian used in the various elliptic
operators throughout the algorithm such as in (2-3).

The cell-centered projection can be constructed by wrapping two averaging
operators around the MAC projection:

P = I − AF→C(Qmac(AC→F )).

First, an operator to average cell-centered velocities to face centers is needed for the
divergence in (2-3). For a face with a normal direction d , the averaging operation is

AC→F (W d)i+êd/2 =
1
2(W

d
i+êd +W d

i ). (2-8)

Then, an averaging operator that is used to average gradients from face centers to
cell centers is defined by

AF→C(Gmac(φ)d)i =
1
2(G

mac,d
i+êd/2(φ)+ Gmac,d

i−êd/2(φ)). (2-9)

The averaging operator, AF→C , effectively results in a centered-difference for the
gradient away from boundaries.

The face-centered gradient, Gmac, of a cell-centered scalar, φi , is defined to be
the finite difference approximation in the normal direction of the face:

Gmac(φ)di+êd/2 =
1
h
(φi+êd −φi ).

For homogeneous Neumann domain boundary conditions, this gradient is 0; for
Dirichlet domain boundary conditions, we use an odd extension of the solution at
the boundary to obtain the gradient.

The transverse gradient at a face is the average of neighboring normal gradients
in transverse directions, d ′, to a d-face:

Gmac(φ)d
′

i+êd/2 =
1

NG

∑
i+êd′/2∈Gd′,d

(
Gmac(φ)d

′

i+êd′/2

)
,

where Gd ′,d is the set of faces in the transverse d ′ direction and NG is the number of
faces in this set. On a regular grid, G is the set of four neighboring adjacent faces in
a d ′ direction. At solid wall domain boundaries, linear extrapolation of transverse
gradients is used to preserve a constant pressure gradient as in Poiseuille flow. For
transverse gradients whose face stencil crosses an orthogonal domain boundary, the
appropriate one-sided difference is taken.

MAC gradients that are preprocessed by the averaging operator, AF→C , in (2-9)
make use of linear extrapolation at boundary faces from interior faces to avoid
over-specification of the problem. For the cell-centered projection target that is
preprocessed by the averaging operator, AC→F , in (2-8), boundary conditions are
applied to the normal component. Referring to the channel boundary conditions
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(1-3)–(1-5), these are W · n = uin at the inlet, W · n = 0 at no-flow solid walls
and a quadratic extrapolation at the outlet that satisfies the Neumann boundary
condition. Projection operator gradients are matched at coarse-fine interfaces by
simple averaging as in [30].

2.3. Hyperbolic discretization. The advection term, (U · ∇)U n+1/2
i, j , in (1-1) is

discretized in conservation form since the flow is incompressible:

∇ · (UU )n+1/2
i, j

=
1
h

(
un+1/2

i+1/2, jU
n+1/2
i+1/2, j − un+1/2

i−1/2, jU
n+1/2
i−1/2, j + v

n+1/2
i, j+1/2U n+1/2

i, j+1/2− v
n+1/2
i, j−1/2U n+1/2

i, j−1/2

)
,

where i and j are the cell-centered grid indices in two dimensions, n is the number
of the timestep and U = (u, v). Here, we consider two dimensions for ease of
exposition — one direction that is normal to the flow (x) and one transverse (y) —
with obvious extension of the transverse discretization to a third dimension (z).

We use an upstream-centered Taylor expansion to extrapolate the cell-centered
velocity to the half step in time and cell edges:

Û n+1/2
i+1/2, j =U n

i, j +
1x
2
∂U n

∂x
+
1t
2
∂U n

∂t
.

Substitution of the PDE for the temporal derivative into the Taylor expansion yields
extrapolated velocities in all directions from the cell center to both sides of a cell
edge (or face in 3D):

Û x,+
i, j =U n

i, j+
1
2 min

[(
1−un

i, j
1t
1x

)
, 1
]
(δN

x U )ni, j−
1t

21y
vn

i, j (δ
T
y U )ni, j+

ν1t
2
1U n

i, j ,

Û x,−
i, j =U n

i, j−
1
2 min

[(
1+un

i, j
1t
1x

)
, 1
]
(δN

x U )ni, j−
1t

21y
vn

i, j (δ
T
y U )ni, j+

ν1t
2
1U n

i, j ,

Û y,+
i, j =U n

i, j+
1
2 min

[(
1−vn

i, j
1t
1y

)
, 1
]
(δN

y U )ni, j−
1t

21x
un

i, j (δ
T
x U )ni, j+

ν1t
2
1U n

i, j ,

Û y,−
i, j =U n

i, j−
1
2 min

[(
1+vn

i, j
1t
1y

)
, 1
]
(δN

y U )ni, j−
1t

21x
un

i, j (δ
T
x U )ni, j+

ν1t
2
1U n

i, j ,

where superscripts x and y refer to the coordinate direction of the extrapolation and
“+” and “−” indicate the direction of the extrapolation from the cell center to the
inside of an edge (inside left/bottom of an edge is the “+” state; inside right/bottom
is the “−” state).

The monotonized second-order normal slopes with van Leer limiting [56; 15] are

(δN
x U )ni, j =

{
(δxU )vL if (U n

i+1, j −U n
i, j )(U

n
i, j −U n

i−1, j ) > 0,
0 if (U n

i+1, j −U n
i, j )(U

n
i, j −U n

i−1, j )≤ 0,
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where

(δxU )vL
= sign(U n

i+1, j −U n
i−1, j )

×min
(
2|U n

i, j −U n
i−1, j |, 2|U n

i+1, j −U n
i, j |,

1
2 |U

n
i+1, j −U n

i−1, j |
)
.

The upwinded transverse slopes are

(δT
y U )ni, j =

{
U n

i, j+1−U n
i, j +

1
2ν1t(1U n

i, j+1−1U n
i, j ) if vn

i, j < 0,

U n
i, j −U n

i, j−1+
1
2ν1t(1U n

i, j −1U n
i, j−1) if vn

i, j ≥ 0,

(δT
x U )ni, j =

{
U n

i+1, j −U n
i, j +

1
2ν1t(1U n

i+1, j −1U n
i, j ) if un

i, j < 0,

U n
i, j −U n

i−1, j +
1
2ν1t(1U n

i, j −1U n
i−1, j ) if un

i, j ≥ 0

with a stability correction due to [35]. All slopes make use of one-sided differences
at domain boundaries; at coarse-fine boundaries, we use linear interpolation and
flux matching [31].

A Riemann problem is then solved to obtain the edge states, U . For example,
x-face states are

U i+1/2, j =


Û x,+

i, j if 1
2(u

n
i, j + un

i+1, j ) > 0,

Û x,−
i+1, j if 1

2(u
n
i, j + un

i+1, j ) < 0,
1
2

(
Û x,+

i, j + Û x,−
i+1, j

)
if 1

2(u
n
i, j + un

i+1, j )= 0.

To make up for the omitted pressure gradient in the velocity extrapolation, the
solution to the Riemann problem is projected onto the space of divergence-free
vectors using a MAC projection

U n+1/2
= Pmac(U )=U −Gmac((DGmac)−1 D(U )). (2-10)

The divergence is calculated as

D(U n+1/2)i, j =
[
(ui+1/2, j − ui−1/2, j )+ (vi, j+1/2− vi, j−1/2)

]/
h.

Both components of velocity have been accounted for up to this point, including
the boundary conditions for the normal component. The transverse component of
velocity at domain boundaries is taken to be the “+” or “−” state on the inside of
the boundary edge in keeping with the idea of an inviscid predictor step.

Our method has a stability constraint on the timestep due to the CFL condition
for the advection terms

1t <
σh

umax , (2-11)
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where σ ≤ 1 and umax is the magnitude of the maximum local wave speed. For adap-
tive calculations, all levels of refinement use the same timestep. We note that subcy-
cling in time is possible; however, it requires the solution to an additional Poisson
equation to enforce the divergence-free constraint with free-stream preservation [31].

3. Finite volume embedded boundary method

In grid cells where the irregular domain intersects the Cartesian grid, finite volume
discretizations must be constructed to obtain conservative discretizations of flux-
based operations defined by finite differences in the previous section. First, the
underlying description of space is given by rectangular control volumes on a
Cartesian gridϒi=[(i− 1

2 V )h, (i+ 1
2 V )h], i ∈ZD , where D is the dimensionality of

the problem, h is the mesh spacing and V is the vector whose entries are all 1. Given
an irregular domain �, we obtain control volumes Vi =ϒi ∩� and faces Ai±êd/2,
which are the intersections of the boundary of ∂Vi with the coordinate planes
{Ex : xd = (id±

1
2)h}. The intersections of the boundary of the irregular domain with

the Cartesian control volume are defined as AB
i = ∂�∩ϒi . For ease of exposition,

it is assumed that there is only one control volume per Cartesian cell. However, the
algorithm described here has been generalized to allow for boundaries whose width
is less than the mesh spacing, i.e., multivalued cells. In regular cells, the finite
volume approximation reduces to the finite difference method described in Section 2.

To construct finite volume methods using this description, several quantities need
to be derived from the geometric objects:

• volume fractions, κi , and area fractions, αi ,

κi =
|Vi |

hD , αi+ês/2 =
|Ai+êd

s /2|

h(D−1) , αB
i =
|AB

i |

hD−1 ,

• centroids of the faces and of AB
i ,

Exi+êd/2 =

[
1

|Ai+êd/2|

∫
Ai+êd/2

Ex d A
]
, Ex B

i =

[
1
|AB

i |

∫
AB

i

Ex d A
]
,

• the average of outward normals of ∂� over AB
i ,

n̂ i =
1
|AB

i |

∫
AB

i

n̂ d A,

where D is the dimension of space and 1≤ d ≤ D. We assume we can compute all
derived quantities to O(h2).

Geometric objects are determined by a hierarchical application of the divergence
theorem to discrete values of implicit function representations of the geometry
on the grid (see [34; 29; 45] for details on embedded boundary grid generation).
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Figure 2. 3D bilinear flux interpolation stencil showing the interpolation point marked by
an “×” for a 3D face in the ê1 direction using face-centered points A, B, C and D.

Coarsened geometries are obtained by coarsening of the graph. The volume of
a coarse cell is exactly the volume of the fine cells that it comprises. This grid
generation machinery is part of the Chombo software libraries.

The conservative approximation of the divergence of a flux EF can now be defined
by applying a discrete form of the divergence theorem

D( EF)v =
1

hκv

( D∑
d=1

(
αi+êd/2 F̃d

i+êd/2−αi−êd/2 F̃d
i−êd/2

)
+αB

v F B
v

)
, (3-1)

where F̃i+êd/2 indicates that the flux has been interpolated to the face centroid using
linear (2D) or bilinear (3D) interpolation of face-centered fluxes. For example, given
the cell edge with outward normal ê1, with centroid Ex , the 2D linearly interpolated
flux in the d direction (d 6= 1) is defined by

F̃d
i+ê1/2 = ηFi+ê1/2+ (1− η)Fi+ê1/2±êd ,

η = 1−
|Ex · êd

|

hd
,

±=

{
+ if Ex · êd > 0,
− if Ex · êd

≤ 0.

(3-2)

The 3D bilinear interpolation of the flux for a face with normal ê1 can be written as

F̃i+ê1/2 = ωFd
i+ê1/2+ (1−ω)F

d
i±êd′+ê1/2

,

ω = 1−
|Ex · êd ′

|

hd ′
,

±=

{
+ if Ex · êd ′ > 0,
− if Ex · êd ′

≤ 0,

(3-3)

where d ′ 6= d and d ′ 6= 1 (see Figure 2).
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3.1. Elliptic operators. The conservative discretization of the divergence theorem
in (3-1) provides a flux-based formula for the discretization of the elliptic operations
in the algorithm. We use the geometric multigrid approach described in [53] to solve
these elliptic systems. In the context of Poisson’s equation, as in the projections (2-3)
and (2-10), the operator is the Laplacian and the flux is simply the gradient of
a scalar, EF = ∇ϕ, with Neumann boundary conditions, F B

= n̂ · ∇ϕ = 0, at
the embedded boundary. However, in the context of Helmholtz, as in (2-1), the
embedded boundary is a no-slip boundary for the velocity, requiring an elliptic
operator with Dirichlet boundary conditions at the embedded boundary. In this
case, the flux at the embedded boundary, F B

= n̂ · ∇ϕ, must be constructed while
maintaining global second-order accuracy.

In [21], the flux at the embedded boundary due to a Dirichlet boundary condition
is constructed by effectively casting a ray from the centroid of the boundary along
the normal into the domain, interpolating ϕ to points along the ray (quadratic in 2D
and biquadratic in 3D), computing the normal gradient of ϕ by differencing the
interpolated points in 1D along the ray and obtaining a τ ≈ O(h2) local truncation
error approximation of n̂ · ∇ϕ. In general, local truncation error on the interior of
a domain is τ ≈ O(h2) and at the boundary τ ≈ O(h/κ). It can be shown that
global solution error is ε = O(h2). For the case of Dirichlet boundary conditions,
the same conclusion holds for τ = O(1) at the boundary owing to the two orders
of magnitude of freedom in the local truncation error resulting from the method
of images (odd extensions) and the homogeneous condition at the boundary. (For
Neumann boundary conditions, the minimum requirement to maintain second-order
global error is τ = O(h).) The conclusion for Dirichlet boundary conditions, shown
in [21] using potential theory, is that it is sufficient to have O(1) boundary conditions
to achieve second-order convergence of solution error for elliptic equations.

In practice, however, we have found that the second-order stencil for Dirichlet
boundary conditions first described in [21] is not stable for lower Reynolds number
flows (much less the Stokes limit) and flows where there exist steep gradients near
the boundary. To fix this instability, we make use of the two orders of magnitude
of freedom in the local truncation error and instead apply a lower-order truncation
error stencil (τ ≈ O(h)) to interpolate the flux at the irregular boundary centroid, B
[50; 52; 51; 47]. The flux, n̂ · ∇ϕ, is obtained by solving a least squares linear
system for ∇ϕ:

A · ∇ϕ = δϕ,

A= (δEx1, δEx2, . . . , δEx p)
T ,

δϕ = (δϕ1, δϕ2, . . . , δϕp)
T ,

δExm = Exm − ExB,

δϕm = ϕm −ϕB .



56 DAVID TREBOTICH AND DANIEL T. GRAVES

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

d2

d1

1

3

2

n

B

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

d2

d1

B

1 2

3

54

6 7

n

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Figure 3. Least squares stencil to obtain flux for the Dirichlet boundary condition on the
embedded boundary in 2D (left) and 3D (right) with radius 1.

The stencil of points (m= 1, 2, . . . , p), which excludes the cut cell that contains the
embedded boundary, is determined by the direction of the normal at the boundary.
In 2D, the normal points to a quadrant that includes up, side and corner cells
with p = 3, resulting in two equations and three unknowns in the least squares
system. In 3D, the normal points to an octant with p= 7, resulting in three equations
and seven unknowns. The stencils are shown in Figure 3.

In the case of very complex geometries such as those experienced in porous
media flows where boundaries are very close together and can exhibit cusps and
semidisconnected cavities, this least squares stencil approach based on direction
of the normal can be relaxed to use any points available in a monotone path from
the root cell with a radius greater than 1 but with the same restrictions on p. For
adaptive calculations, we use higher-order (quadratic) interpolation to fill ghost
cells for second-order elliptic operators (Laplacian) at coarse-fine boundaries in
order to avoid O(1) truncation error [30].

We also note that geometric multigrid coarsening can be challenging in very
complex geometries. As an example, for the pressure-Poisson equations (2-3)
and (2-10), the presence of a semidisconnected cavity in the domain can result in
a Neumann problem with nonzero null space. We therefore rely on a combined
embedded boundary-algebraic multigrid (EB-AMG) approach to solve elliptic
equations in very complex geometry cases [48].

3.2. Advective derivative. Since the flow is incompressible, we make use of the
conservative form of the advection term, ∇ · (EuEu), in (3-1) with EF = EuEu. The
problem with this discretization for advection is that the CFL stability constraint on
the timestep is at best1t =O((h/vmax

i )(κi )
1/D), where vmax

i is the magnitude of the
maximum wave speed for the i-th control volume. This is the well-known small-cell
problem for embedded boundary, cut cell methods. There have been a number of
proposals to deal with this problem, including merging the small control volumes
with nearby larger ones [44; 14; 43; 25], the development of specialized stencils
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that guarantee the required cancellations [9; 8; 20; 23] or simply using a threshold
volume below which the cell is considered completely covered, i.e., κ = 0, as in [17].

Our previous approach in [53] was to expand the range of influence of the small
control volumes algebraically to obtain a stable method, akin to [11; 6; 41]. We used
a linear hybridization of conservative and nonconservative estimates of ∇ · (EuEu):

∇ · (EuEu)n+1/2
i = κi (∇ · (EuEu))Ci + (1− κi )(∇ · (EuEu))NC

i .

The small denominator in ∇ · (EuEu) is canceled, and a stable method is obtained.
However, the method fails to conserve mass by an amount measured by the difference
between the hybrid discretization and the conservative one:

δMi = κi
(
(∇ · (EuEu))Ci − (∇ · (EuEu))

NC
i
)
= κi (1− κi )(∇ · (EuEu))Ci − (∇ · (EuEu))

NC
i .

To maintain overall conservation, δMi can be redistributed into nearby cells i ′:

∇ · (EuEu)n+1/2
i ′ := ∇ · (EuEu)n+1/2

i ′ +wi,i ′δMi , i ′ ∈ N (i),

wi,i ′ ≥ 0,
∑

i ′∈N (i)

wi,i ′κi ′ = 1, (3-4)

where N (i) is some set of indices in the neighborhood of i and including i . The
sum condition (3-4) makes the redistribution step conservative. The weights wi,i ′

must be bounded, independent of (κi ′)
−1. We use volume-weighted redistribution,

wi,i ′ =

( ∑
i ′∈N (i)

κi ′

)−1

,

where N (i) is a set of indices, including i , within a radius of influence of 1 and
connected by a monotone path.

The success of this approach depends on the calculation of ∇ · (EuEu)NC because
it is almost entirely responsible for the update of ∇ · (EuEu)i in control volumes
with κi � 1. Specifically, ∇ · (EuEu)NC must be designed so that the solution in small
control volumes comes into equilibrium with the larger control volumes around it.
We now enforce this point by summing the conservative approximation itself in a
domain of influence around the cut cell and normalizing it by the sum of volume
fractions in those cells to obtain the nonconservative approximation:

∇ · (EuEu)NC
i =

∑
i ′∈N (i)

(
κi ′∇ · (EuEu)Ci ′

)
∑

i ′∈N (i)
κi ′

. (3-5)

To compute ∇·(EuEu)C, fluxes EuEu are interpolated to face centroids as in (3-2) or (3-3)
and substituted into (3-1).
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3.3. Volume-weighted scheme. In a new approach, we avoid the small-cell prob-
lem altogether by taking advantage of the structure of our finite volume elliptic
solvers, which take the form κL = κρ, where L is the elliptic operator, ρ is the
right-hand side and κ is the volume fraction of a cut cell. This volume-weighted
form allows us to compute source terms in (2-1) that are also volume-weighted.
We also introduce a conservative form of the cell-centered pressure gradient in the
pressure-correction form of the projection. The overall algorithm is as follows:

(1) Initially a cell-centered velocity is obtained from the projection of the pre-
scribed conditions, U 0

= P(U init), similar to a potential flow solution. The
pressure gradient is constructed to balance the viscous stress from this initial
velocity, ∇ p−1/2

= ν1U 0, to ensure a stable calculation (see Section 4.3 for
details) and then made to be volume-weighted, κ∇ p−1/2.

(2) If the flow is inertial (say, Re > 0.1), then velocities are extrapolated from
cell centers to cell edges as in Section 2.3 and only the conservative volume-
weighted advection term is computed, κ(∇ · (UU )n+1/2). If the Reynolds
number is low (say, Re < 0.1) or approaches the Stokes limit such that
Eu · ∇ Eu� ν1Eu, then this step is unnecessary.

(3) The implicit Helmholtz equation (2-1) is solved in the form of our finite volume
elliptic equation κL = κρ, where the right-hand side has volume-weighted
terms including the source term:

κ
(

I −
ν1t

2
1
)

U n+1,∗

= κ
(

U n
+1t

(ν1t
2
1U n

− (U · ∇)U n+1/2
−∇ pn−1/2

))
. (3-6)

(4) For the approximate projection, a volume-weighted Poisson equation

κ1δ = κD(U n+1,∗) (3-7)

is solved, where δ = pn+1/2
− pn−1/2 indicates pressure correction form.

(5) The volume-weighted cell-centered gradient of the pressure correction, δ, is
computed using a corollary to the divergence theorem for gradients:

κG(δ)= V
∫∫∫

∂δ

∂xi
dV = V

∫∫
δ(êi · n̂i ) d A. (3-8)

The value of the pressure correction at the cell center can be used at the
boundary centroid, or a more elaborate least squares system can be solved for
the boundary value.

(6) The volume-weighted intermediate velocity is corrected with the volume-
weighted gradient of the pressure correction

κU n+1
= κU n+1,∗

− κG(δ). (3-9)
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(7) If the flow is inertial, then the volume-weighting is removed from velocity in
a normalization procedure similar to (3-5) so that the velocity can be used in
the advection step of the next timestep

U n+1
=

∑
i ′∈N (i)

(κi ′U n+1
i ′ )∑

i ′∈N (i)
κi ′

. (3-10)

Here, we note that normalization of the volume-weighted velocity is allowed
because the velocity has already been sufficiently smoothed in the solution to
the viscous Helmholtz equation (3-6). For consistency with step (2), this final
step (7) is not necessary for low Reynolds number or Stokes flow.

4. Results

4.1. Accuracy. To demonstrate the accuracy of the algorithm, we consider incom-
pressible flow inside a sphere. The fluid is initialized as a Gaussian vortex

ω(r)= e−20(4r−0.5)2,

where r is measured from the center of the sphere at x0 to a point x as r2
=

(x−x0)
2
+(y− y0)

2
+(z−z0)

2 in 3D. The initial velocity can then be prescribed by

u(x, t0)= ω(r)((z− z0)− (y− y0))/r,
v(x, t0)= ω(r)((x − x0)− (z− z0))/r,
w(x, t0)= ω(r)((y− y0)− (x − x0))/r.

In 2D, r2
= (x − x0)

2
+ (y− y0)

2 and

u(x, t0)=−ω(r)(y− y0)/r,
v(x, t0)= ω(r)(x − x0)/r.

The Reynolds number for this study is Re= 5 based on vortex strength and diameter.
We estimate the error in the solution using the standard Richardson procedure,

where computations of differing resolutions are evolved to the same time and
compared in a certain norm (see [34] for details). Convergence rates for the 2D
state variables are displayed in Tables 1, 2 and 3 for the L1, L2 and L∞ norms,

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.781614× 10−5 1.981 4.513495× 10−6 1.990 1.135840× 10−6

v 1.788296× 10−5 1.981 4.529397× 10−6 1.991 1.139716× 10−6

∇
x p 1.245135× 10−4 1.998 3.117580× 10−5 1.999 7.798800× 10−6

∇
y p 1.245125× 10−4 1.998 3.117575× 10−5 1.999 7.798797× 10−6

Table 1. 2D solution error convergence rates using the L1-norm for h = 1
2048 .
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Variable e8h→4h Order e4h→2h Order e2h→h

u 2.997859× 10−5 1.977 7.613610× 10−6 1.989 1.918581× 10−6

v 3.011462× 10−5 1.978 7.645604× 10−6 1.989 1.926329× 10−6

∇
x p 2.672975× 10−4 1.997 6.696069× 10−5 1.999 1.675127× 10−5

∇
y p 2.672958× 10−4 1.997 6.696059× 10−5 1.999 1.675127× 10−5

Table 2. 2D solution error convergence rates using the L2-norm for h = 1
2048 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.234211× 10−4 1.980 3.129091× 10−5 1.990 7.878456× 10−6

v 1.237856× 10−4 1.980 3.138271× 10−5 1.990 7.899819× 10−6

∇
x p 1.396595× 10−3 1.995 3.504449× 10−4 1.998 8.771770× 10−5

∇
y p 1.396573× 10−3 1.995 3.504435× 10−4 1.998 8.771761× 10−5

Table 3. 2D solution error convergence rates using the L∞-norm for h = 1
2048 .

respectively. We demonstrate second-order accuracy for all variables in all norms.
A fixed step size of 1t = 0.00025, which is equivalent to a CFL number of σ = 0.5,
is run for 512 steps at the finest resolution of h = 1

2048 . We note that the pressure
gradient resulting from a single application of the projection is first-order (the scalar
pressure is second-order) [16; 49]. To obtain a second-order pressure gradient,
an additional approximate projection is required. The computational cost of this
additional projection is minimized by initialization of the pressure to the value
obtained from the first application of the projection.

We show convergence results in 3D in Tables 4, 5 and 6. At the finest resolution
of h = 1

256 , a fixed step size of 1t = 0.0005, which is equivalent to a CFL number
of σ = 0.5, is run for 64 steps. The convergence rates are second-order for all
variables in all norms except that the velocity components are slightly less than
second-order in the L∞-norm. We attribute this slight degradation in accuracy to
the solution not being fully resolved in the asymptotic regime for convergence.

4.2. Stability of the approximate projection. We demonstrate that the approximate
projection operator is stable, i.e., ‖P‖< 1 (see [26]), by showing that the divergence
of a velocity field diminishes with repeated application of the projection. The

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.071815× 10−3 1.865 2.941499× 10−4 1.948 7.623080× 10−5

v 1.069533× 10−3 1.864 2.937195× 10−4 1.948 7.613267× 10−5

w 1.068955× 10−3 1.865 2.933635× 10−4 1.948 7.603024× 10−5

∇
x p 1.593183× 10−2 1.806 4.556606× 10−3 1.933 1.192892× 10−3

∇
y p 1.592733× 10−2 1.805 4.556155× 10−3 1.933 1.192860× 10−3

∇
z p 1.593025× 10−2 1.806 4.556234× 10−3 1.933 1.192863× 10−3

Table 4. 3D solution error convergence rates using the L1-norm for h = 1
256 .
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Variable e8h→4h Order e4h→2h Order e2h→h

u 2.294986× 10−3 1.846 6.382495× 10−4 1.900 1.709917× 10−4

v 2.288364× 10−3 1.847 6.361839× 10−4 1.900 1.704523× 10−4

w 2.287161× 10−3 1.847 6.357047× 10−4 1.900 1.703239× 10−4

∇
x p 4.846120× 10−2 1.748 1.442698× 10−2 1.922 3.808233× 10−3

∇
y p 4.845033× 10−2 1.748 1.442543× 10−2 1.921 3.808121× 10−3

∇
z p 4.843998× 10−2 1.748 1.442312× 10−2 1.921 3.807923× 10−3

Table 5. 3D solution error convergence rates using the L2-norm for h = 1
256 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.891858× 10−2 1.841 5.280958× 10−3 1.781 1.536950× 10−3

v 1.903841× 10−2 1.849 5.285737× 10−3 1.803 1.514318× 10−3

w 1.911926× 10−2 1.846 5.319278× 10−3 1.793 1.534994× 10−3

∇
x p 4.893581× 10−1 1.565 1.653736× 10−1 1.868 4.529462× 10−2

∇
y p 4.880882× 10−1 1.562 1.652861× 10−1 1.868 4.528107× 10−2

∇
z p 4.886462× 10−1 1.564 1.653033× 10−1 1.868 4.528735× 10−2

Table 6. 3D solution error convergence rates using the L∞-norm for h = 1
256 .

velocity field is initialized to a potential flow past an infinitely long cylinder with
radius of 0.1. The cylinder is in the center of a unit square domain. We iteratively
project the velocity field, U , and evaluate the norm of the divergence, κD(U ), and
the norm of the pressure gradient, ∇φ, after each projection. Figures 4 and 5 show
that all norms of both fields monotonically decrease with the number of projection
iterations. Flattening of the curves near the end is due to the residual of the solution
to the Poisson equation by multigrid iterations approaching machine accuracy.

4.3. Stability in the Stokes limit. We use the algorithm to compute a range of
unsteady flows, including low Reynolds number flows where a steady state may
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Figure 4. Norms (L∞, L2 and L1) of κDEu (left) and ∇φ (right) versus the number of
projection iterations in the 2D test with h = 1

256 .



62 DAVID TREBOTICH AND DANIEL T. GRAVES

0.0001

0.001

0.01

0.1

1

10

1 10 100

L∞(κDEu)
L2(κDEu)
L1(κDEu)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100

L∞(|∇φ|)
L2(|∇φ|)
L1(|∇φ|)

Figure 5. Norms (L∞, L2 and L1) of κDEu (left) and ∇φ (right) versus the number of
projection iterations in the 3D test with h = 1

64 .

exist. In this flow regime, parameters can approach the Stokes limit, Re→ 0,
where Re=Uclc/ν and Uc and lc are characteristic quantities, leading to the Stokes
equations (Navier–Stokes less the advective derivative). However, the Stokes
equations do not capture all the physics of flows even at Re= 0.1, a value that has
traditionally been considered well inside the Stokes limit. We demonstrate this point
by considering flow near a sharp corner as in [36]. Figure 6 shows a comparison
between solving the unsteady Stokes and Navier–Stokes equations to a steady state
in an abrupt expansion channel, both for the same initial data at Re = 0.1. The
magnitude of the velocity and extent of the recirculation zone are noticeably greater
when Eu · ∇ Eu is included in the calculation as seen in the difference in the location
of the innermost contour. Comparison of plots of the velocity along a line through
the recirculation zone shows a 5% difference. The difference between the solutions
is more dramatic as the Reynolds number increases. The criterion for a steady-state
solution is U n+1

−U n < ε1t , where ε = 10−8.
To perform stable computations for low Reynolds number flows (Re< 0.1), we

must construct a well-posed IBVP such that both the momentum and continuity
equations are satisfied by the initial conditions. We obtain a divergence-free potential
flow field that satisfies the no-flow normal boundary conditions by projecting the
velocity: U 0

= P(U init), where U init
= 0 inside the domain. The pressure gradient

is calculated to balance the viscous stress due to the flow field: ∇ p−1/2
= ν1U 0. In

this regime, since viscous effects can dominate inertial forces (ν >Uclc), we define
the viscous timestep to be 1tν = h2/ν. The stability constraint for the algorithm in
the low Reynolds number regime is 1t =min(1tCFL,1tν).

4.4. Scalability and performance. The algorithm described here has been imple-
mented in the Chombo software framework. Chombo provides a set of tools for
implementing finite difference and finite volume methods for the solution of PDEs
on block-structured adaptively refined rectangular grids. Chombo also supports
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Figure 7. Packed cylinder geometries for weak scaling (replication) test in Figure 8.
Left: 1 cm-long cylinder packed with 750 spheres (2048× 2048× 2048) with resolution
h ≈ 2.44µm. This geometry is used for N = 512, 4096, 32768, 261144. Middle: 2 cm-
long cylinder packed with 1500 spheres (2048×1024×1024) with resolution h≈ 4.88µm.
This geometry is used for N = 1024, 8192, 65536. Right: 4 cm-long cylinder packed with
3000 spheres (4096× 1024× 1024) with resolution h ≈ 4.88µm. This geometry is used
for N = 2048, 16384, 131072. The spheres have radii 250µm.

computations in complex geometries with embedded boundaries. Chombo software
libraries enable high-performance computing, data management and I/O for large-
scale simulations.

We demonstrate the scalability and performance of our Chombo-based algorithm
using a weak scaling test for flow through a cylinder packed with spheres (see
Figure 7) as in [48]. In weak scaling, the problem domain is refined by the same
factor as the increase in the number of processor cores (e.g., factor of 2 refinement in
each spatial dimension, D, requires 2D times the number of cores). These tests are
conducted on the NERSC Cray XC30 system, Edison, for up to 131,072 cores and

Figure 8. Weak scaling on the NERSC Cray XC30 (Edison) and OLCF Cray XK7 (Titan,
no GPUs). The horizontal axis is concurrency, N , and the vertical axis is average time in
seconds per timestep.
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Figure 9. Steady-state flow through the packed cylinder geometry in Figure 7 (middle).
Axial velocity is shown with magnified views of the top and bottom of the cross-sectional
slice. Inlet axial velocity is 0.01 cm/sec with Re= 0.5. Computation was performed on
NERSC Cray XC30 Edison using 65,536 processor cores.

on the OLCF Cray XK7 system, Titan, for up to 262,144 CPU cores. We perform
10 timesteps of the algorithm and take the average time per timestep in seconds.
We use a sweet spot for domain decomposition and load balancing of one box per
processor core, where one box is 323 cells. Since a large number of spheres have to
be randomly placed in a cylinder, it is difficult to guarantee a fixed number of spheres
per box. However, the scaling is theoretically very close to replicated data as in [53].
Therefore, we take three different aspect ratios of the cylinder — where each aspect
ratio is a weak scaling test in itself — and combine into one continuous scaling curve
in Figure 8. The three sets of weak scaling data are depicted by shape: a 1-to-1 cylin-
der packed with 750 spheres run on 512, 4096, 32,768 and 262,144 cores (squares), a
2-to-1 cylinder with 1500 spheres run on 1024, 8192 and 65,536 cores (triangles) and
a 4-to-1 cylinder with 3000 spheres run on 2048, 16,384 and 131,072 cores (circles).

On Edison, we observe excellent performance with about 83% efficiency from
512 to 131,072 cores — a relatively flat weak scaling curve — and an average time
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Figure 10. Steady-state flow through the packed cylinder geometry in Figure 7 (middle).
Transverse (z) velocity shown with magnified views of the top and bottom of the cross-
sectional slice. Inlet axial velocity is 0.01 cm/sec with Re = 0.5. Computation was
performed on NERSC Cray XC30 Edison using 65,536 processor cores.

per timestep of 20 seconds at the highest concurrency. On Titan, we observe about
67% efficiency from 512 to 131,072 cores and only 50% up to 262,144 cores. We
note a slight dip at N = 4096, and even slighter at N = 32768, in both curves that
is likely due to a lower percentage of cut cells from refinement of the geometry. We
do observe an upward trend in the weak scaling curve on Titan, particularly at the
two highest concurrencies (it should be flat throughout), but overall the time only
slightly doubles from the lowest concurrency to the highest. We consider the result
on Titan to be good performance for the vast range of concurrencies and given the
flow physics and geometry. Furthermore, performance is in the neighborhood of
1 timestep per minute at the highest concurrency on Titan, which is an acceptable
metric for a large-scale fluid dynamics calculation. We do not make use of the
GPUs on Titan for this scaling test, which may contribute to degraded performance.

4.5. Simulation results. We present simulation results for the 2D and 3D incom-
pressible Navier–Stokes equations for a range of Reynolds numbers in various
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Figure 11. Steady-state flow through the packed cylinder geometry in Figure 7 (right).
From top to bottom, we show the axial (x) and transverse (y) and (z) velocities. Inlet axial
velocity is 0.01 cm/sec with Re= 0.5. Spheres have not been voided in the visualization
unlike in Figures 9 and 10. Computation was performed on OLCF Titan using 131,072
processor cores.
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Figure 12. Steady-state flow through Bedford limestone: embedded boundary grid in gray
with z-velocity data (left) and magnification of the bottom of the disk (right). Resolution
is h = 43 nm with 2048× 2048× 320 total grid cells and 29% porosity. Inlet velocity is
0.0376 cm/sec. Computation was performed on OLCF Titan using 40,960 processor cores.

geometries. Flow problems are set up such that the flow is typically from left to
right in the x direction, the kinematic viscosity is that of water, ν = 0.01 cm2/sec,
and the average velocity at inflow is 1 cm/sec (Poiseuille in 2D and constant in 3D)
unless otherwise stated. For flows where inertial forces have an effect (typically
Re>0.1), the CFL number is σ =0.9. All units are specified in the CGS system. The
maximum grid size resulting from domain decomposition and the AMR hierarchy
is 2562 cells per grid block (box) in 2D and 323 cells per grid block in 3D. The
criterion for steady-state flow is U n+1

−U n < ε1t , where ε = 10−8.

4.5.1. Low Reynolds number flow. We demonstrate the algorithm at the low end of
the Reynolds number flow regime by showing steady-state results for the packed
cylinder used in the scaling study. Using 65,536 processor cores on the NERSC
Cray XC30 Edison, we simulate steady-state flow in the 2-to-1 cylinder packed
with 1500 spheres as in Figure 7 (middle). In Figures 9 and 10, we show the axial
(x) and transverse (z) velocities with magnified views to convey the tortuosity of the
flow and the resolved viscous boundary layer in the pore space. The grid resolution
for this simulation is 2048× 1024× 1024 cells.

To demonstrate hero run capability, we also simulated steady-state flow in the
4-to-1 cylinder geometry packed with 3000 spheres in Figure 7 (right). The steady-
state velocity is shown in Figure 11. This simulation made use of 131,072 processor
cores on OLCF Titan. The Reynolds number is 0.5 for both simulations.

4.5.2. Direct numerical simulation from image data. In addition to synthetic ge-
ometries as in the packed cylinder, we demonstrate direct simulation from microto-
mography image data. Figure 12 shows flow in Bedford limestone with porosity
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Figure 13. Steady-state flow through fractured shale: embedded boundary grid in gray
(top left) with slices at mid-planes of z-velocity (top right), magnifications (middle) and
rotated view of boundary data (bottom left) with slice planes near maximum velocity
location (bottom right). Resolution is h = 48.4 nm with 1920× 1600× 640 total grid cells
and 18% porosity. Inlet velocity is 0.008 cm/sec. Computation was performed on NERSC
Hopper using 60,000 processor cores.

of 29%. In this simulation, resolution of the cross section is critical in order to
capture viscous effects in very tight pore space. The grid resolution of this simulation
is 2048× 2048× 320 cells or h = 43 nm. The image voxel size is 4.4µm.

We also demonstrate the ability to model fully resolved steady-state flow in a
fractured shale in Figure 13. The geometry in this case is obtained from focused
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Figure 14. Flow past a cylinder at Re = 300. Top: 2D simulation of vorticity. Middle:
3D simulation of y vorticity in the x-z plane at z = 4.125. Bottom: 3D simulation of
y vorticity in the x-y plane at y = 4. The cylinder has radius r = 0.0625 and is shown
in white centered at x = 1, y = 4.125 in 2D and x = 1, y = 4, z = 4.125 in 3D. Time
simulated is 98 seconds.
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Figure 15. 2D flow past a cylinder at Re= 300 with extended wake (l = 32). From top to
bottom: vorticity, AMR hierarchy of boxes enclosing the wake and two finest levels. The
cylinder has radius r = 0.0625 and is shown as a black spot near the inlet. Wake extends
approximately 250 cylinder diameters. Time simulated is 112 seconds.

ion beam scanning electron microscopy (FIB-SEM) image data. The pore space is
tighter than the limestone, even though a fracture aperture is present, with a porosity
of 18%. The grid resolution is 1920× 1600× 640 or h = 48 nm. The image voxel
size is 50 nm. In both the synthetic packed cylinder and the image data simulations,
we make use of the EB-AMG method in [48] to solve elliptic problems in these
very complex geometries.

4.5.3. Flow past a cylinder (Re= 300). We perform direct numerical simulation
(DNS) of flow past a cylinder in both 2D and 3D. The diameter of the cylinder
centered at x = 1 is d = 0.125 in a domain that has dimensions l = 16 and w = 8.
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Figure 16. Zoomed-in view of Figure 14 showing AMR hierarchy. Top: 2D vorticity
at left and right sections in the wake with grid block outlines for 4 levels of refinement,
factor of 2. Each block has a maximum of 162 cells (cells not shown). The finest level
(h = 1

512 ) is gridded on 5% of the total domain. Bottom: 3D y vorticity in the x-z plane at
y = 4 at left and right sections in the wake with grid block outlines and cells for 2 levels
of refinement, factor of 2. Each block contains 163 cells in 3D (cells shown for the x-z
plane). The finest level (h = 1

64 ) is gridded on 12% of the total domain.

With Uc = 1, lc = d = 0.125 and ν = 0.0004167, the Reynolds number for this
simulation is Re=300. In Figure 14 (top), we performed a highly resolved four-level
AMR calculation in 2D at Re=300 where the finest level covers only 5% of the total
domain at t=98. The length of wake in this calculation is a very long 120d , which is
shown to be necessary to capture the halfway downstream secondary structures and
far downstream tertiary structures. (We have also simulated an extended domain with
twice the length (l = 32) shown in Figure 15 that depicts additional wake structures
but with no comparison to 3D.) A recirculation zone persists within the secondary
wake structure along the centerline between the vortices above and below. We
simulate a domain width of 64d and use slip wall boundary conditions at boundaries
transverse to the x direction of the flow to minimize the interaction of domain
boundary effects with the wake. The additional mesh refinement tracks dynamically
with the magnitude of vorticity in time using a refinement threshold of 2.0. Grid
blocks are outlined (cells not shown) for this five-level calculation in Figure 16 (top).
Each grid block contains a maximum of 162 cells for a given level of refinement.
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Figure 17. 3D isocontour (ωz = 0.001) of z vorticity for flow past a cylinder at Re= 300
and t = 98 seconds. The isocontour is contained by the finest level of grid blocks.

We performed a simulation in 3D for comparison to 2D using the same parameters
but with only two additional AMR levels. Williamson notes a transition Reynolds
number regime up to 300, beyond which velocity fluctuations become irregular
and vortex formation is three-dimensional [57; 58; 59]. In the 3D simulation, a
number of transient structures develop in the fluid that organize at very long time
into a persistent train of vortices (see Figure 14, middle and bottom), which is only
similar to the near wake in 2D (see Figure 14, top). The third dimension has a
self-organizing effect on the wake structures as previously noted [22; 61]. The flow
in the wake is clearly not two-dimensional as seen in the bowing of the peaks and
valleys and narrowing of the length of the rows. This point is further emphasized in
the isocontour plot of z vorticity in Figure 17. We also show the grid blocks with
cells for this two-level calculation in Figure 16 (bottom). The finest level is gridded
on 12% of the domain at t = 98. Each grid block contains a maximum of 163 cells
for a given level of refinement.

4.5.4. Flow past a sphere (Re= 600). We perform DNS of 3D flow past a sphere.
The diameter of the sphere, centered at x = 1, is d = 0.125 in a domain that has
dimensions l = 16 and w= 8. With Uc = 2, lc = d = 0.125 and ν = 0.0004167, the
Reynolds number for this simulation is Re= 600. In Figure 18, we show a resolved
three-level AMR calculation where the finest level covers less than 1% of the total
domain. (The domain is very large in order to minimize boundary interactions
with the wake.) The base grid is 512× 256× 256 with two additional levels of
refinement, factor of 4. The maximum grid box size in the AMR hierarchy is 323.
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Figure 18. Flow past a sphere, Re= 600. Top: velocity in the x direction shown in 3D
with AMR grids. Middle: velocity in the x direction in the x-y plane with grids. Bottom:
velocity in the y direction and pressure in the x-y plane. The base grid is 512× 256× 256
with 2 additional levels of refinement, factor of 4. The domain is 16 cm long and 8 cm
wide by 8 cm wide. Sphere diameter is 0.125 cm. Inlet velocity is 2 cm/sec. Simulated
time is 2 seconds and early in wake formation with no vortex shedding. The simulation
was performed on 8192 nodes, 1 rank per node on ALCF BGQ Mira.

The 3D plots at the top of Figure 18 depict a notched wake in the velocity field but
no oscillations at t = 2 seconds. We show outlines of the grid boxes to indicate
refinement only around the sphere and the wake and not away from the interesting
part of the flow. The second row of plots shows the same in a 2D slice. At the
bottom of the figure, we show a transverse component of velocity as well as the
pressure. Figure 19 depicts a wake that has begun to oscillate at t = 2.5 seconds.

4.5.5. High Reynolds number flow in a contraction (Re= 6300). We show results
for another example of the effectiveness of AMR when combined with the embedded
boundary method by demonstrating DNS of flow in a sudden contraction. This
example is intended to model flow of oil upward in a long (over 4 km) pipe buried
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Figure 19. Flow past a sphere, Re= 600. Top: vorticity in the z direction and with AMR
grids. Middle: velocity in the x direction and pressure. Bottom: velocity in the y direction
and velocity in the z direction. The base grid is 512× 256× 256 with 2 additional levels
of refinement, factor of 4. The domain is 16 cm long and 8 cm by 8 cm in cross section.
Sphere diameter is 0.125 cm. Inlet velocity is 2 cm/sec. Simulated time is 2.5 seconds and
early in wake formation, but vortices have begun to shed. All plots are shown in x-y plane.
The simulation was performed on 8192 nodes, 1 rank per node on ALCF BGQ Mira.

in the sea bed that undergoes essentially a contraction at the sea floor near a blowout
preventer (as in the Deepwater Horizon Macondo well [33; 39]). In such a scenario,
it is critical to solve for the bulk flow characteristics like pressure drop and flow
rate over the entire length of the pipe in order to assess the likelihood of success for
intervention strategies. However, it is equally critical to resolve the microscopic,
by comparison, boundary layer effects near the blowout preventer in order to be
able to determine failure points. Here, we focus on Newtonian flow in a 1 m-
length section of the pipe near a 4-to-1 contraction in two dimensions of Cartesian
coordinates for demonstration purposes only. The base grid contains 2048× 1024
cells (0.488 mm resolution) with 32 boxes of 2562 cells. Three additional levels of
refinement (factor of 4) are added dynamically for an effective resolution of 7.6µm
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Figure 20. Turbulent flow in 2D contraction, Re≈ 6300. Top left: conceptual model for
oil flow entering a hypothetical failed blowout preventer depicted as a wellbore contracted
into a (stuck) drill pipe. Top middle: axial fluid velocity in 100 cm-long by 50 cm-wide
section of contraction. Top right: pressure. Middle left: increased magnification of
velocity near the contraction corner with finer levels of AMR boxes (center). Middle right:
increased magnification of pressure. Bottom left: increased magnification of velocity
with finer levels of AMR boxes and mesh (bottom middle). Bottom right: increased
magnification of pressure. Velocity range is −65.52 cm/sec (blue) to 84.66 cm/sec (red).
Inlet average velocity is 10 cm/sec. Pressure range is −6662 bar (blue) to 3398 bar (red).
The base grid is 2048× 1024 with 3 additional levels of refinement, factor of 4. Time is
t = 0.125 sec. Computations were performed on 8192 cores at NERSC.
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near the contraction. The finest AMR level contains 8975 boxes and covers less
than 3% of the domain. The Reynolds number is approximately 6300. Figure 20
depicts transient turbulent flow in the contraction at t = 0.125 seconds. We show
both velocity and pressure with extreme gradients near and just downstream of
the contraction. We show increased magnification in the lower figures with box
boundaries and, in the bottom row, mesh resolution.

5. Conclusions

We present a conservative, second-order accurate method to solve the incompressible
Navier–Stokes equations in complex geometries. The method is based on a finite
volume, embedded boundary approach that makes use of the discrete form of
the divergence theorem to discretize the solution in irregular control volumes
resulting from the intersection of solid boundaries with a regular, Cartesian grid.
The method reduces to a standard finite difference approach in regular cells away
from the boundary. We introduce several novel ideas including a volume-weighted
scheme that avoids the small-cell problem associated with cut cell methods and
a conservative cell-centered gradient for approximate projections. We have cou-
pled the embedded boundary method with AMR to provide a high-performance,
high-resolution simulation tool for modeling multiscale, multiphysics problems
in complex geometries. The algorithm scales to 262,144 processor cores and is
amenable to direct simulation from image data. The cut cell algorithm described
here is the basis for a high-performance production code that models 3D engineering
scale problems involving incompressible viscous flow and transport in complex
geometries. We demonstrate the robustness of the algorithm for a wide range of
Reynolds numbers and flow geometries — from creeping flow in realistic pore space
to transitional flows past bluff bodies to turbulent pipe flow.

We model moderate Reynolds number phenomena for flow past a cylinder at a
fidelity that has not yet been achieved. Typically, only the near wake of the cylinder
is modeled numerically as in [22; 61]. In 2D, we observe secondary, tertiary and
even quaternary structures far downstream of the near wake at a scale that is much
broader than previously modeled, up to 250 cylinder diameters downstream in the
wake. By comparison, in 3D, we observe a very long and persistent single train of
vortices with coherent structures in the cross-channel direction for the same length
wake as in the 2D case. Similarly, we have also demonstrated high resolution of
turbulent flow past a sphere in the early stages of wake formation. This capability
could prove to be very effective in an investigation of both near and far wake
dynamics in high Reynolds number flows past bluff bodies.

We have shown that the method is also suitable for direct numerical simulation of
high Reynolds number internal flows. The adaptive capability captures small-scale,
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microscopic features in the viscous boundary layer near a singular geometric feature
such as a contraction while also resolving bulk flow properties in a domain that
is 6 orders of magnitude larger than the finest spatial resolution of the boundary
layer. This demonstration was motivated by a large-scale engineering model for
worst-case discharge and failure point analysis of the Deepwater Horizon Macondo
oil well blowout in 2010.

With demonstrated capability to perform direct simulation from image data,
the algorithm has served as the basis for low Reynolds number reactive transport
simulations in realistic pore space [37; 38] and is proving to be a useful tool for
modeling flow in fractured subsurface materials. The algorithm is also amenable to
methods for tracking fluid-fluid and fluid-solid interfaces [34], providing a consistent
approach to modeling multiphase flow and time-dependent boundary problems.
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HIGH-ACCURACY EMBEDDED BOUNDARY
GRID GENERATION USING THE DIVERGENCE THEOREM

PETER SCHWARTZ, JULIE PERCELAY, TERRY J. LIGOCKI,
HANS JOHANSEN, DANIEL T. GRAVES, DHARSHI DEVENDRAN,

PHILLIP COLELLA AND ELI ATELJEVICH

We present an algorithm to produce the necessary geometric information for finite
volume calculations in the context of Cartesian grids with embedded boundaries.
Given an order of accuracy for the overall calculation, we show what accuracy is
required for each of the geometric quantities and we demonstrate how to calculate
the moments using the divergence theorem. We demonstrate that, for a known
flux, these moments can be used to create a flux divergence of the expected order.

1. Introduction

This work is motivated by the desire to solve partial differential equations (PDEs)
conservatively in the context of complex geometries. As an example, consider
Poisson’s equation. Given a charge density ρ, Poisson’s equation can be written as

∇ · (∇φ)= ρ (1)

for the potential φ. If we integrate this equation over a control volume � and apply
the divergence theorem, this becomes∫

∂�

∇φ · n̂ d A =
∫
�

ρ dV,

where n̂ is the outward-facing unit normal to the surface. Our volumes are Cartesian
cells cut by an embedded boundary. Refer to Figure 1 for an illustration. We refer
to the unshaded region as the “volume”. The boundaries of the volume aligned to
coordinate directions that connect to other volumes we refer to as “faces”. We refer
to the section of the embedded boundary that cuts the volume as the “EB face”.

Formally, the underlying description of space is given by rectangular control
volumes on a Cartesian mesh ϒi = [(i − 1

2 u)h, (i + 1
2 u)h], i ∈ ZD, where D

Research at LBNL was supported financially by the Office of Advanced Scientific Computing Research
of the US Department of Energy under contract number DE-AC02-05CH11231. All work was done
using the Chombo software infrastructure developed by LBNL [4; 5].
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Figure 1. Illustration of cut cell notation. The shaded region is outside the solution domain.
The volume v is connected to other volumes via the faces aligned with the coordinate
planes. The EB face is formed by the intersection of the embedded boundary and the cell.

is the dimensionality of the problem, h is the mesh spacing, and u is the vector
whose entries are all one (note we use bold font u = (u1, . . . , ud , . . . , u D) to
indicate a vector quantity). Given an irregular domain�, we obtain control volumes
Vi =ϒi ∩� and faces Ai,d± = Ai±ed/2, which are the intersection of the boundary
of ∂Vi with the coordinate planes {x : xd = (id ±

1
2)h} (ed is the unit vector in

the d direction). We also define AB,i to be the intersection of the boundary of the
irregular domain with the Cartesian control volume: AB,i = ∂�∩ϒi . From here
on, the subscript i is implied as the analysis applies to any given volume Vi .

Given a flux F (in the case of the Poisson equation (1), F =∇φ), we can rewrite
the volume integral of the divergence of F as an integral over each face in the
volume:∫

V
∇ · F dV =

D∑
d=1

(∫
Ad+

Fd d A−
∫

Ad−

Fd d A+
∫

AB

Fd nd(x) d A
)
, (2)

where we define nd(x) to be the d-th component of the outward-facing unit normal to
the EB face. The accuracy with which one computes the integrals above will depend
on the accuracy of the geometric description of the volume and its associated faces.

Throughout this paper, we use the following compact “multi-index” notation:

(x− x) p
=

D∏
d=1

(xd − xd)
pd ,

p! =
D∏

d=1

pd !.

Given a point in space x and a D-dimensional integer vector p, we define m p
v (x)

to be the p-th moment of the volume V relative to the point x:

m p
v (x)=

∫
V
(x− x) p dV . (3)
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Clearly, the volume of the cut cell |V | = m z
v , where z is the zero vector. We define

the face moments m p
d±(x) to be the p-th moments (relative to the point x) of the

faces Ad±:

m p
d±(x)=

∫
Ad±

(x− x) p d A. (4)

We define two moments corresponding to the embedded boundary face AB :

m p
B(x)=

∫
AB

(x− x) p d A, (5)

m p
B,d(x)=

∫
AB

(x− x) pnd(x) d A. (6)

Note that (6) includes the normal to the embedded boundary face.
Given a sufficiently smooth function ψ , we can approximate ψ in the neighbor-

hood of x using a multidimensional Taylor expansion:

ψ(x)=
∑
|q|<Q

1
q!
ψ (q)(x)(x− x)q + O(hQ) (7)

with the multi-index partial derivative notation

ψ (q) = ∂qψ =
∂q1

∂xq1
1
· · ·

∂qD

∂xqD
D
ψ. (8)

We express averages over volumes as

〈∇ · F〉V ≡
1
|V |

∫
V
(∇ · F) dV .

We define the volume fraction κ to be fraction of the volume of the cell inside the
solution domain so that

κ = h−D
|V | = h−Dm z

v. (9)

Given a flux function F, the κ-weighted divergence of the flux is defined to be
the volume average of the divergence multiplied by κ:

κ〈∇ · F〉V =
1

hD

∫
V
∇ · F dV

=
1

hD

D∑
d=1

(∫
Ad+

Fd(x) d A−
∫

Ad−

Fd(x) d A+
∫

AB

Fd(x)nd(x) d A
)
. (10)

We weigh the conservative divergence this way to avoid small-κ numerical instabil-
ities. For example, implicit algorithms for Poisson’s equation (1) solve the discrete
system

κ〈∇ ·∇φ〉V = κ〈ρ〉V
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for φ [9; 17], which avoids very large negative eigenvalues from terms with κ−1.
Since κ is only a diagonal scaling, the accuracy of the method is primarily dependent
on the accuracy of the discretization of (∇ ·∇φ).

Explicit algorithms for hyperbolic systems with flux F may use a hybrid operator
that is a linear combination of a conservative discretization for κ〈∇ · F〉 and a
nonconservative (not in flux-divergence form) but stable approximation of ∇ · F
to advance the solution. The loss of conservation for this hybrid operator can
be calculated and redistributed to neighboring cells so that the overall scheme is
globally conservative [2; 6; 3; 8; 14; 13]. Suppose we have κDC(F), an O(h P)

conservative discretization of κ∇ · F. Suppose we also have DNC(F), an O(h P)

nonconservative discretization of ∇ · F, i.e.,

DNC(F)=∇ · F+ O(h P),

κDC(F)= κ∇ · F+ O(h P).

The hybrid operator DH(F) is given by

DH(F)= κDC(F)− (1− κ)DNC(F)

=∇ · F+ O(h P),

and the resulting loss of conservation in each cell is given by

δ = κDC(F)− κDH(F)

= κ(1− κ)(DC(F)− DNC(F))= O(h P),

where for stability arguments δ must be redistributed in a κ-weighted way [3; 8].
This is of the order of the truncation error so that the accuracy of the method only
depends on the accuracy of the two discretizations of the flux divergence. We wish
to investigate what accuracy is necessary for the moment calculations to achieve a
given order of accuracy in κDC(F).

Embedded boundaries have been used in a wide variety of applications, and
several different grid generation techniques have emerged. In an early paper in the
field, Pember et al. [16] use a piecewise-planar approximation for grid generation for
solutions of inviscid, polytropic gas dynamics. Aftosmis et al. [1] use triangulation
to generate grids for a wide variety of extremely complex geometries; their software
is still widely used. Singh et al. [18] use triangulation to reconstruct moving
boundaries. The embedded boundary algorithms in [3; 8; 14; 13] use a second-
order, implicit function–based approach. Miller et al. [12] use a time-dependent,
second-order implicit function approach to cut four-dimensional cells to generate
moving geometries. Sussman and Puckett [19] use piecewise-planar volume of
fluid reconstruction in their incompressible flow algorithm. Nourgaliev et al. [15]
and Marella et al. [11] use a piecewise-linear reconstruction in their sharp interface
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methods. All these algorithms use piecewise-planar approximations to the cutting
surface to generate geometric information. These algorithms are first order in D(F)
(second-order fluxes), so second-order geometric information is accurate enough
for their purposes. In the graphics and computational geometry community, there
has been a substantial amount of work done in geometric moment computation
using the divergence theorem. Yang et al. [20] use the divergence theorem to
compute geometric moments for image analysis. Gonzalez-Ochoa et al. [7] have
a fast divergence theorem–based moment algorithm specialized for surfaces that
are described as polynomials. These algorithms are highly focused on reducing
computational complexity, and though their accuracy is measured for a particular
refinement, no concern is given to the algorithms’ convergence rate with grid
refinement. The current work is intended to be a careful exploration of the required
accuracy for geometric moments in the context of embedded boundary calculations
using higher-order finite volume methods.

2. Accuracy of the discrete divergence

Given an order of accuracy Q, suppose we can approximate F to O(hQ). If we
expand F in (2) using (7), we get∫

V
(∇ · F) dV =

∑
|q|<Q

D∑
d=1

1
q!

F (q)d (x)
(∫

Ad+

(x− x)q d A−
∫

Ad−

(x− x)q d A

+

∫
AB

(x− x)qnd(x) d A
)
+ O(hQ+D−1).

The accuracy of the expression is O(hQ+D−1) because it is an O(hQ) Taylor series
integrated over an area of order hD−1. Using our moment definitions ((4) and (6)),∫

V
(∇ · F) dV =

∑
|q|<Q

D∑
d=1

1
q!

F (q)d (x)
(
mq

d+−mq
d−+mq

B,d

)
+ O(hQ+D−1). (11)

Now suppose we can discretize each moment to O(h R). We define our discrete
moments as

Mq
v =

∫
V
(x− x)q dV + O(h R)= mq

v + O(h R), (12)

Mq
d± =

∫
Ad±

(x− x)q d A+ O(h R)= mq
d±+ O(h R), (13)

Mq
B,d =

∫
AB

(x− x)qnd d A+ O(h R)= mq
B,d + O(h R), (14)

Mq
B =

∫
AB

(x− x)q d A+ O(h R)= mq
B + O(h R). (15)
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We take these moment definitions and put them into (11) to get our discrete, κ-
weighted average divergence of the flux:

κD(F)i =
1

hD

∑
|q|<Q

D∑
d=1

1
q!

F (q)d (x)
(
Mq

d+−Mq
d−+Mq

B,d

)
= κ〈∇ · F〉V + O(hQ−1)+ O(h R−D). (16)

The first error term is from (11), and the second is from (13) and (14); both have
been divided by the full cell volume, hD . So if one desires a weighted divergence of
accuracy O(h P), one needs fluxes approximated to accuracy O(hQ) and moments
approximated to accuracy O(h R), where

Q = P + 1,

R = P + D.
(17)

3. Algorithm

Consider a volume V at cell i (see Figure 1), and let x be some point in cell i . We
may choose x as the origin of our coordinate system so that ‖x− x‖ = O(h) for
any point x in V . In the following derivation, we will set x = 0 without loss of
generality.

In (2), if we choose F = xq ed , we get D equations of the form

qd

∫
V

xq−ed dV =
∫

Ad+

xq d A−
∫

Ad−

xq d A+
∫

AB

xqnd d A.

Recall that the normal to the embedded boundary is a function of space n(x), so
we assume that we can expand this last integral using a Taylor series of n about
x = 0 to an appropriate order of accuracy S:∫

AB

xqnd(x) d A =
∑
|s|<S

1
s!
∂ snd(0)m

q+s
B + O(h|q|+D+S−1). (18)

The advantage of this expansion is that m B does not include nd(x) in the integrand.
Combining and moving the first term of the Taylor series to the left-hand side,
we have

qdmq−ed
v − nd(0)m

q
B

= mq
d+−mq

d−+
∑

0<|s|<S

1
s!
∂ snd(0)m

q+s
B + O(h|q|+D+S−1). (19)

Note that, for higher-order moments, we need fewer terms in the Taylor series
for the normal to obtain a truncation error of O(h R) because the truncation error
depends on |q| + S. In particular, if |q| = Q, (17) shows that we only need S = 0,
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0. Compute all derivatives of the normal, ∂ snd (see Section 3.2).
1. Compute one-dimensional moments Mq

V,1 using root-finding and integration.
2. Irregular one-dimensional moments Mq

B,1 are zero.
3. Loop through other dimensions as follows:

for (D = 2, 3)
for (|q| = {Q, Q− 1, . . . , 0})

Set ρ:

ρ = Mq
d+,D−1−Mq

d−,D−1+
∑

1≤|s|<S

∂ snd

s!
Mq+s

B,D .

Solve for Mq−ed
V,D and Mq

B,D:

qd Mq−ed
V,D − nd Mq

B,D = ρ.

end loop over moments
end loop over dimensions

Figure 2. Outline of the moment algorithm. The second subscript of the moments refers
to dimensionality (M p

v,3 refers to the three-dimensional M p
v , for example).

and the third term on the right-hand side drops out. Also, notice that mq
d+ and mq

d−
are integrals of lower dimension.

We drop the truncation error term in (19) and define the approximate moments
(Mq

v , etc.) using the set of equations

qd Mq−ed
v − nd(0)M

q
B = Mq

d+−Mq
d−+

∑
1≤|s|<S

1
s!
∂ snd(0)M

q+s
B . (20)

If the moments on the left are treated as unknowns and the moments on the right
are treated as known, then this set of equations forms a system of linear equations
for a fixed |q|. The key to the algorithm is to compute the moments in an order that
assures the quantities on the right are known. In particular, we compute the moments
in lower dimensions first and use them as known quantities in the equation for higher
dimension. For a given dimension, we generate moments in order of decreasing |q|
starting with |q| = Q. Because the third term on the right-hand side of (20) depends
on moments with orders |q|+1, . . . , Q, the procedure guarantees that term is known.
The algorithm can also be described as a recursion as shown by Ligocki et al. [10]
(the conference paper associated with this work). Figure 2 shows an outline of the
algorithm. The number of unknowns is N|q|−1+ N|q|, where N|q| is the number of
monomials of degree |q|. (One can think of N|q| as the length of the |q|-th row of
the Pascal’s triangle formed by the moments.) The number of equations is DN|q|.
Since N|q|−1 < N|q|, this is an overdetermined system that can be solved using least
squares. The normal and all its derivatives are computed as shown in Section 3.2.
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Figure 3. Illustration of an under-resolved geometry. When the curvature of the implicit
function is too great to be resolved, we refine locally and sum the finer moments to compute
the under-resolved cell’s moments.

3.1. Under-resolved geometry. Note that the above algorithm can fail in the case
of an under-resolved geometry. If the curvature of the implicit function is too high,
the situation shown in Figure 3 can result. To resolve this, we refine the grid locally
until the implicit function is resolved. We use the divergence of the normal as a
measure for under-resolution. Given a tolerance ε, if D(n) > ε at volume v and
the set of finer volumes S = {v f } that compose the volume v, we get the equation

mv =

∑
v f ∈S

mv f .

If the geometry is not smooth enough to be resolved, a maximum level of resolution
is defined. This paper is primarily concerned with convergence rates. Convergence
tests require smooth, resolved geometries, so none of the geometries presented in
this paper need this refinement.

3.2. Calculation of derivatives of the normal using an implicit function. Our
geometry is defined as the zero set of an implicit function ψ(x), the zero level set
of which is the embedded boundary. The normal n̂ of the embedded boundary is
defined as

n̂ =
∇ψ

L
,

where L = |∇ψ |. For the d-th component of the normal, the multi-index product
rule can be used for higher partial derivatives p of the quantity ψ (ed ) = Lnd :

ψ ( p+ed ) = ∂ pψ (ed )

= ∂ p(Lnd)

=

∑
q≤ p

( p
q

)
∂ p−q L∂qnd .

Note that the left-hand side is a known value from the implicit function. On the
right-hand side, we have unknown derivatives of L and nd . We can rewrite to
express the highest normal derivative as

L∂ pnd = ψ
( p+ed )−

∑
q≤ p, q 6= p

( p
q

)
∂ p−q L∂qnd .
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Next, we will evaluate the derivatives of L . To find a recursion formula, we first
apply the chain rule to ∂L2:

∂ ei
L2
= ∂ ei ∑

d

(ψ (ed ))2,

2L∂ ei
L =

∑
d

2ψ (ed )ψ (ed+ei ),

∂ ei
L =

∑
d

ψ (ed )

L
ψ (ed+ei )

=

∑
d

ndψ
(ed+ei ).

Looking at the right-hand side, we have calculated a derivative ∂ ei
L from nd and

known derivatives of ψ . Extending to the case of p ≥ ei , we have

∂ pL = ∂ p−ei
(∂ ei

ψ) (21)

= ∂ p−ei ∑
d

ndψ
(ed+ei ) (22)

=

∑
d

∑
r≤q

(q
r

)
∂ rnd∂

q−r+ed+ei
ψ, where q = p− ei . (23)

Again, this expresses higher-order derivatives of L in terms of lower-order deriva-
tives of nd and known derivatives of ψ . The choice of ei is arbitrary but is such
that all the ∂ rnd have already been computed. To calculate all the powers needed
in (23), we can choose ei

= ed , calculate the required derivatives for d = 0 first,
then add those with derivatives in d = 1, etc. This guarantees that the requested
derivatives will have already been calculated in the recursion.

4. Results

4.1. Geometric description. Our convergence tests are calculated using a geometry
of an ellipsoid (or an ellipse in two dimensions) centered in a unit domain. The
implicit function, ψ(x), that defines the ellipsoid is given by

ψ(x)=
D∑

d=1

( xd − x0,d

Ad

)2
− R2,

where x0 is put at the center of the domain. The stretching constant A= {1, 2, 3}
in three dimensions (A= {1, 2} in two dimensions). The constant, R = 0.15, sets
the unexpanded radius of the ellipsoid. The surface of the ellipsoid is described by
the surface where ψ(x)= 0.
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Variable ε2h $ εh Variable ε2h $ εh

M(0,0)
v 3.405× 10−12 7.08 2.525× 10−14 M(0,0)

B 2.719× 10−10 6.92 2.244× 10−12

M(1,0)
v 1.330× 10−13 6.30 1.688× 10−15 M(1,0)

B 1.802× 10−11 6.98 1.426× 10−13

M(2,0)
v 2.028× 10−14 7.00 1.582× 10−16 M(2,0)

B 2.684× 10−12 6.97 2.143× 10−14

M(3,0)
v 2.783× 10−15 6.51 3.052× 10−17 M(3,0)

B 1.495× 10−13 7.06 1.122× 10−15

M(4,0)
v 1.490× 10−15 7.03 1.141× 10−17 M(4,0)

B 4.426× 10−14 7.00 3.466× 10−16

M(0,1)
v 9.842× 10−13 7.05 7.402× 10−15 M(0,1)

B 1.634× 10−11 7.01 1.266× 10−13

M(1,1)
v 3.844× 10−14 6.40 4.550× 10−16 M(1,1)

B 1.931× 10−13 5.29 4.945× 10−15

M(2,1)
v 6.041× 10−15 7.02 4.655× 10−17 M(2,1)

B 1.952× 10−13 6.97 1.561× 10−15

M(3,1)
v 8.044× 10−16 6.61 8.225× 10−18 M(3,1)

B 9.528× 10−15 7.05 7.168× 10−17

M(0,2)
v 1.826× 10−13 7.02 1.411× 10−15 M(0,2)

B 6.589× 10−13 6.94 5.363× 10−15

M(1,2)
v 7.132× 10−15 6.63 7.202× 10−17 M(1,2)

B 3.190× 10−15 5.70 6.125× 10−17

M(2,2)
v 4.375× 10−16 5.76 8.079× 10−18 M(2,2)

B 1.459× 10−14 7.06 1.094× 10−16

M(0,3)
v 6.396× 10−15 5.75 1.185× 10−16 M(0,3)

B 5.994× 10−13 7.06 4.493× 10−15

M(1,3)
v 5.497× 10−16 6.13 7.872× 10−18 M(1,3)

B 2.194× 10−14 6.76 2.025× 10−16

M(0,4)
v 8.242× 10−16 6.76 7.610× 10−18 M(0,4)

B 2.491× 10−14 5.74 4.657× 10−16

Table 1. Volume (left) and embedded boundary (right) moment convergence rates for
h = 1/128 using the L∞ norm in two dimensions. The implicit function is an ellipse
described in Section 4.1.

4.2. Moment convergence tests. To test the convergence rate of the moments, we
use Richardson extrapolation, which means that the exact solution on a finer level
of refinement is used as an exact solution. Since we are dealing with integrals, the
coarsening operation is simple addition. Define Ah→2h to be the operator to get the
exact solution on the coarse level from the fine solution. Given S f , the set of fine
volumes that cover a coarse volume i ,

Ah→2h(M)i =
∑

i f ∈S f

Mi f .

Mh is defined to be our solution on a grid with resolution h. For an exact solution me,
we use me

2h = Ah→2h(Mh) and the error is given by

εh
= Mh(t)−me(t). (24)

The order of convergence $ is estimated by

$ =
log(‖ε2h

‖/‖εh
‖)

log(2)
. (25)



EMBEDDED BOUNDARY GRID GENERATION USING THE DIVERGENCE THEOREM 93

Variable ε2h $ εh Variable ε2h $ εh

M(0,0,0)
v 7.744× 10−13 5.73 1.461× 10−14 M(3,0,1)

v 3.329× 10−17 7.54 1.789× 10−19

M(1,0,0)
v 6.130× 10−15 6.75 5.706× 10−17 M(0,1,1)

v 1.577× 10−15 7.87 6.745× 10−18

M(2,0,0)
v 9.836× 10−16 7.89 4.153× 10−18 M(1,1,1)

v 1.173× 10−16 7.97 4.682× 10−19

M(3,0,0)
v 1.096× 10−16 7.84 4.773× 10−19 M(2,1,1)

v 1.845× 10−17 7.75 8.553× 10−20

M(4,0,0)
v 5.936× 10−17 7.98 2.356× 10−19 M(0,2,1)

v 1.314× 10−16 7.59 6.834× 10−19

M(0,1,0)
v 5.449× 10−14 6.44 6.281× 10−16 M(1,2,1)

v 1.383× 10−17 7.72 6.545× 10−20

M(1,1,0)
v 1.132× 10−15 7.77 5.178× 10−18 M(0,3,1)

v 1.338× 10−17 7.26 8.748× 10−20

M(2,1,0)
v 1.761× 10−16 8.11 6.382× 10−19 M(0,0,2)

v 1.036× 10−14 7.61 5.304× 10−17

M(3,1,0)
v 3.908× 10−17 7.87 1.672× 10−19 M(1,0,2)

v 4.254× 10−16 7.53 2.306× 10−18

M(0,2,0)
v 4.901× 10−15 7.95 1.985× 10−17 M(2,0,2)

v 2.390× 10−17 7.40 1.414× 10−19

M(1,2,0)
v 3.301× 10−16 7.87 1.412× 10−18 M(0,1,2)

v 1.772× 10−16 7.98 7.008× 10−19

M(2,2,0)
v 3.225× 10−17 7.74 1.505× 10−19 M(1,1,2)

v 1.369× 10−17 8.02 5.263× 10−20

M(0,3,0)
v 4.400× 10−16 7.70 2.114× 10−18 M(0,2,2)

v 1.307× 10−17 7.41 7.664× 10−20

M(1,3,0)
v 2.666× 10−17 7.61 1.367× 10−19 M(0,0,3)

v 5.093× 10−16 7.45 2.913× 10−18

M(0,4,0)
v 2.817× 10−17 7.66 1.393× 10−19 M(1,0,3)

v 2.115× 10−17 7.52 1.156× 10−19

M(0,0,1)
v 1.570× 10−14 7.04 1.196× 10−16 M(0,1,3)

v 1.376× 10−17 7.67 6.749× 10−20

M(1,0,1)
v 2.987× 10−16 7.50 1.654× 10−18 M(0,0,4)

v 2.252× 10−17 7.43 1.310× 10−19

M(2,0,1)
v 3.498× 10−16 7.96 1.408× 10−18

Table 2. Volume moment convergence rates for h = 1/128 using the L∞ norm in three
dimensions. The implicit function is the ellipsoid described in Section 4.1.

We set P = 5, so in two dimensions, we expect all the moments to converge to order
h P+D=7. Table 1 shows these two-dimensional results, and we show the expected
convergence, even using the L∞ norm. In three dimensions, we expect (with P = 5)
the moments to all converge to O(h8). Tables 2 and 3 show these three-dimensional
results, and we show the expected convergence, also using the L∞ norm.

4.3. Flux divergence convergence tests. We use an analytic function as a flux
function F =∇ψ , where

ψ =

D∏
d=1

cos(2π(xd − x0,d)),

where x0 is the center of the domain. We set P = 4 and compute DK using (16). In
both two and three dimensions, we get the expected rates of convergence. Near the
embedded boundary, we get third-order convergence, and away from the irregular
boundary, we get fourth-order. Table 4 shows the O(3, 3.5, 4) rates that one would
expect in the L∞, L2, and L1 norms.



94 SCHWARTZ ET AL.

Variable ε2h $ εh Variable ε2h $ εh

M(0,0,0)
B 1.687× 10−10 4.44 7.790× 10−12 M(3,0,1)

B 8.564× 10−16 8.20 2.906× 10−18

M(1,0,0)
B 3.121× 10−12 6.66 3.089× 10−14 M(0,1,1)

B 1.200× 10−13 6.00 1.873× 10−15

M(2,0,0)
B 1.705× 10−13 7.46 9.697× 10−16 M(1,1,1)

B 5.201× 10−15 8.10 1.896× 10−17

M(3,0,0)
B 1.612× 10−14 7.94 6.575× 10−17 M(2,1,1)

B 4.043× 10−16 7.47 2.285× 10−18

M(4,0,0)
B 2.437× 10−15 8.02 9.407× 10−18 M(0,2,1)

B 9.659× 10−15 7.22 6.470× 10−17

M(0,1,0)
B 1.041× 10−11 4.97 3.315× 10−13 M(1,2,1)

B 5.686× 10−16 8.06 2.132× 10−18

M(1,1,0)
B 1.111× 10−13 6.32 1.386× 10−15 M(0,3,1)

B 4.861× 10−16 7.11 3.521× 10−18

M(2,1,0)
B 7.297× 10−15 7.93 2.997× 10−17 M(0,0,2)

B 3.829× 10−13 7.54 2.057× 10−15

M(3,1,0)
B 4.923× 10−16 7.59 2.561× 10−18 M(1,0,2)

B 1.190× 10−14 7.96 4.786× 10−17

M(0,2,0)
B 5.984× 10−13 5.69 1.157× 10−14 M(2,0,2)

B 1.127× 10−15 8.13 4.031× 10−18

M(1,2,0)
B 8.115× 10−15 7.41 4.779× 10−17 M(0,1,2)

B 5.905× 10−15 7.82 2.606× 10−17

M(2,2,0)
B 9.585× 10−16 7.80 4.315× 10−18 M(1,1,2)

B 4.104× 10−16 7.85 1.778× 10−18

M(0,3,0)
B 2.451× 10−14 6.54 2.637× 10−16 M(0,2,2)

B 5.964× 10−16 7.71 2.856× 10−18

M(1,3,0)
B 1.044× 10−15 7.87 4.472× 10−18 M(0,0,3)

B 4.159× 10−14 7.63 2.096× 10−16

M(0,4,0)
B 1.820× 10−15 7.70 8.776× 10−18 M(1,0,3)

B 1.530× 10−15 7.71 7.299× 10−18

M(0,0,1)
B 9.229× 10−12 7.76 4.251× 10−14 M(0,1,3)

B 7.425× 10−16 7.76 3.423× 10−18

M(1,0,1)
B 7.297× 10−14 7.99 2.868× 10−16 M(0,0,4)

B 2.263× 10−15 7.54 1.216× 10−17

M(2,0,1)
B 1.618× 10−14 7.80 7.266× 10−17

Table 3. Embedded boundary moment convergence rates for h = 1/128 using the L∞
norm in three dimensions. The implicit function is the ellipsoid described in Section 4.1.

5. Conclusions

Given a desired order of accuracy, we present analysis which shows the accuracy
required for the geometric moments in the context of Cartesian grids with embedded

D Norm ε2h $ εh

2 L∞ 8.839× 10−6 2.98 1.122× 10−6

2 L1 1.512× 10−7 3.96 9.728× 10−9

2 L2 7.424× 10−7 3.45 6.772× 10−8

3 L∞ 2.287× 10−5 2.98 2.898× 10−6

3 L1 2.663× 10−7 3.98 1.685× 10−8

3 L2 1.225× 10−6 3.49 1.094× 10−7

Table 4. Convergence results for the error in the divergence of an analytical flux (DK (F))
(described in the text) in two and three dimensions for h = 1/128 (εh is the error for
h = 1/128; ε2h is the error for h = 1/64).
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boundaries. We demonstrate using convergence tests that our moments are calculated
to the expected order and that, for a known flux, these moments can be used to
create a flux divergence of the expected order. This work provides the foundation
for higher-order finite volume, embedded boundary methods.
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