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We present a new composite mesh finite element method for fluid-structure
interaction problems. The method is based on surrounding the structure by a
boundary-fitted fluid mesh that is embedded into a fixed background fluid mesh.
The embedding allows for an arbitrary overlap of the fluid meshes. The coupling
between the embedded and background fluid meshes is enforced using a stabilized
Nitsche formulation that allows us to establish stability and optimal-order a priori
error estimates. We consider here a steady state fluid-structure interaction problem
where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes
equations. We evaluate an iterative solution procedure based on splitting and
present three-dimensional numerical examples.

1. Introduction

In fluid-structure interaction applications, the underlying geometry of the computa-
tional domain may change significantly due to displacement of the structure. In order
to deal with this situation in a standard setting with conforming elements, a mesh
motion algorithm must be used. If the displacements are significant, the deformation
of the mesh may lead to deteriorating mesh quality, which may ultimately require
remeshing of the computational domain. Alternative, more flexible, techniques are
therefore of significant practical interest.

In this paper, we consider a combination of standard moving meshes and so-
called CutFEM technology [8]. Essentially, the structure or elastic solid is first
embedded into a boundary-fitted fluid mesh that moves along with the deformation
of the solid to keep the fluid-structure interface intact. The motion of the fluid mesh
surrounding the structure is obtained by solving an elasticity problem with given
displacement at the fluid-structure interface. The boundary-fitted fluid mesh is then
embedded into a fixed background mesh where we allow for an arbitrary overlap of
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the fluid meshes in order to facilitate the repositioning of the moving fluid mesh
within the fixed background mesh. The fluid is then discretized on both the moving
overlapping domain, using an arbitrary-Lagrangian–Eulerian-type (ALE) approach
[14; 15], and on the fixed background mesh, using a standard discretization posed
in an Eulerian frame.

The coupling at the fluid-fluid interface between the overlapping and underlying
fluid meshes is handled using a stabilized Nitsche method developed for the Stokes
problem in [41]. The stabilization is constructed in such a way that the resulting
scheme is inf-sup stable and the resulting stiffness matrix is well-conditioned inde-
pendent of the position of the overlapping fluid mesh relative to the fixed background
fluid mesh. As a result, optimal-order error estimates are also established. In order
to deal with the cut elements arising at the interface, we compute the polyhedra
resulting from the intersections between the overlapping and background meshes.
These polyhedra may then be described using a partition into tetrahedra; this partition
may in turn be used to perform numerical quadrature. We refer to [39] for a detailed
discussion of the implementation aspects of cut element techniques in three spatial
dimensions. We remark that Nitsche-based formulations for Stokes boundary and
interface problems where the surface in question is described independently of a
single, fixed background mesh were proposed in [10; 40; 25; 9]. A Nitsche-based
composite mesh method was first introduced for elliptic problems in [23].

One may also consider formulations where the structure is described via its
moving boundary, which is immersed into a fixed background fluid mesh. Prominent
examples are Cartesian grid methods, e.g., [42], the classical immersed boundary
method introduced by Peskin [44; 45], its finite element pendant proposed in [7;
57; 56] and formulations based on Lagrange multipliers [57; 55; 20; 19; 46] and on
Nitsche’s method [24]. However, the use of an additional boundary-fitted fluid mesh
as in the current work is attractive since it allows for the resolution of boundary
layers and computation of accurate boundary stresses. Often, the construction of
the surrounding fluid mesh can easily be generated by extending the boundary
mesh in the normal direction. We plan to further investigate the properties of the
fluid-structure coupling in future work.

As our proposed scheme combines an ALE-based discretization on the fluid
mesh surrounding the structure with an Eulerian-based discretization on the fixed
background fluid mesh, it can be classified as a hybrid Eulerian-ALE or Chimera
approach. Such hybrid schemes are built upon the concept of overlapping meshes
introduced for finite difference and finite volume schemes in the early works of
Volkov [52], Starius [48; 49] and Steger et al. [50] and later by Chesshire and
Henshaw [12] and Aftosmis et al. [1], where the primary concern was to ease the
burden of mesh generation by composing individually meshed, static geometries.
The idea of gluing meshes together was then explored for finite element methods
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by Cebral and Löhner [11] and Löhner et al. [37; 36] to study the flow around
independently meshed complex objects such as cars, collections of buildings or
stents in aortic vessels. In these works, relatively simple interpolation schemes
were used to communicate the solution between overlapping meshes. To achieve a
physically more consistent coupling between the solution parts presented on different
domains, Schwarz-type domain iteration schemes using Dirichlet–Neumann and
Robin coupling on overlapping domains have been proposed for the Navier–Stokes
equations in [27]. A completely different route was taken by Day and Bochev [13],
who reformulated elliptic interface problems as suitable first-order systems aug-
mented with least-square stabilizations to enforce the interface conditions between
the mesh domains to be tied together.

Introducing special interpolation stencils close to the fluid-fluid interface, a finite-
volume-based Chimera method for flow problems involving multiple moving rigid
bodies was formulated in [54; 18] and [26], where higher-order Godunov fluxes
were used. This method was then extended by Banks et al. [6] to deal with (linearly)
elastic solids in two space dimensions and thus represents an instance of a hybrid
ALE-fixed-grid method. This approach has barely been explored in the context of
finite element methods for fluid-structure interaction problems: Wall et al. [53] and
later Shahmiri et al. [47] used interpolation between fluid meshes and extended
finite element techniques to couple fluid-fluid meshes and Baiges and Codina [5]
introduced an auxiliary ALE step to convect information on the fixed background
mesh between two consecutive time-steps.

In contrast to these contributions, our method is based on a variational finite
element approach that leads to a monolithic and physically consistent coupling
between the overlapping and underlying fluid meshes, which eliminates the need
to introduce inconsistent interpolation operators. In addition, opposed to similar
finite-element-based approaches presented, e.g., in [53; 47], our scheme used for
the fluid problem is proven stable and optimally convergent, even for higher-order
elements, independent of the location of the interface as shown in [41]. Thus,
the new scheme for the fluid-structure interaction problem proposed in this work
exhibits the necessary robustness that is essential for developing reliable hybrid
ALE-fixed-mesh methods.

In the current work, we consider the steady state deformation of a hyperelastic
solid immersed into a viscous fluid governed by the Stokes equations. We solve for
the steady state solution using a fixed-point iteration where in each iteration the fluid,
solid and mesh motion problems are solved sequentially. We present two numerical
examples in three dimensions, including one example with a manufactured reference
solution.

The outline of the remainder of this paper is as follows. In Section 2, we
summarize the governing equations of the fluid-structure interaction (FSI) problem.
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Figure 1. Fluid and structure domains for the stationary fluid-structure interaction problem.

In Section 3, we describe the overlapping mesh method. In Section 4, we present
an algorithm for the solution of the stationary fluid-structure interaction model
problem. In Section 5, we present three-dimensional numerical examples before
drawing some conclusions in Section 6.

2. A stationary fluid-structure interaction problem

We consider a fluid-structure interaction problem posed on a domain �=� f
∪�s

where � f is the domain occupied by the fluid and �s is the domain occupied by the
solid. We assume that both � f and �s are open and bounded and that they are such
that � f

∩�s
=∅. Furthermore, we decompose the fluid domain into two disjoint

subdomains � f
1 and � f

2 such that � f
=� f

1 ∪�
f
2 . Here, � f

2 represents a part of
the fluid domain surrounding the solid domain �s ; more precisely, we assume that
∂� f

1 ∩ ∂�
s
= ∅. The fluid-structure interface and the interface between the two

fluid domains are denoted respectively by

0 f s
= ∂� f

2 ∩ ∂�
s and 0 f f

= ∂� f
1 ∩ ∂�

f
2 .

Here, the topological boundary ∂X for any given set X is defined by ∂X = X \ X̊
where X and X̊ denote the closure and interior of X , respectively. For simplicity,
we assume that the fluid domain boundary consists of two disjoint parts ∂� f

=

0 f s
∪ ∂� f

D and that the solid domain boundary decomposes in a similar manner:
∂�s
= 0 f s

∪ ∂�s
D . This notation is summarized in Figure 1.

We assume that the fluid dynamics are governed by the Stokes equations of
the following form: find the fluid velocity u f

: � f
→ R3 and the fluid pressure

p f
:� f
→ R such that

−∇ · (ν f
∇u f
− p f I)= f f in � f , (2-1)

∇ · u f
= 0 in � f , (2-2)

where f f is a given body force and ν f is the fluid viscosity.
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Next, we assume that the velocity is prescribed on both the fluid-structure
interface and on the remainder of the fluid boundary:

u f
= 0 on 0 f s, (2-3)

u f
= g f on ∂� f

D. (2-4)

Moreover, we enforce the continuity of the fluid velocity and of the fluid “stress”
on the fluid-fluid interface by the following conditions:

[u f
] = 0 on 0 f f , (2-5)

[(ν f
∇u f
− p f I) · n] = 0 on 0 f f . (2-6)

Here [v] = v1− v2 denotes the jump in a function (or each component of a vector
field) v over the interface 0 f f where vi = v|� f

i
denotes the restriction of v to � f

i
for i = 1, 2. Furthermore, n is the unit normal of 0 f f directed from � f

2 into � f
1 .

Correspondingly, we assume that the structure deforms as an elastic solid sat-
isfying the following equations: find us

:�s
→ R3 such that

−∇ · σ s(us)= f s in �s, (2-7)

where σ s is the (Cauchy) stress tensor and f s is a given body force. The precise
form of the Cauchy stress tensor will depend on the choice of the elastic constitutive
relation. In later sections, we will consider both linearly elastic and hyperelastic con-
stitutive equations relating the displacement to the stress. As boundary conditions,
we assume that the displacement of the structure is given on part of the boundary and
that the structure experiences a boundary traction ts

N on the fluid-structure interface:

us
= gs

D on ∂�s
D, (2-8)

σ s(us) · n= ts
N on 0 f s . (2-9)

The coupling between the fluid and the structure problems requires the fluid
and solid stresses and velocities to be in equilibrium at the interface 0 f s . In the
stationary case considered here, these kinematic and kinetic continuity conditions
are taken care of by ensuring that (2-3) and

ts
N = σ

f (u f ) · n (2-10)

hold, where σ f is the fluid stress tensor σ f (u f , p f )= 2ν f ε(u f )− p f I and ε(u f )

is the symmetric gradient ε(u f )= 1
2(∇u f

+∇(u f )T).
In summary, the stationary fluid-structure interaction problem considered in this

work is completely described by the set of equations (2-1)–(2-10).
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Figure 2. Chimera mesh configuration of the computational domain in the starting step of
the fixed-point iteration. Left: fixed fluid background mesh T0 overlapped by the structure
mesh T̂ s and a surrounding fitting fluid mesh T̂ f

2 . Right: reduced fluid background mesh
T ∗1 and fluid overlap region �O .

3. An overlapping finite element discretization of the FSI problem

The nonlinear nature of the fluid-structure interaction problem (2-1)–(2-10) man-
dates a nonlinear solution scheme such as a Newton-type or fixed-point method.
A classical and well-studied approach is to decompose the coupled problem into
separate systems of equations via a Dirichlet–Neumann fixed-point iteration [43;
32; 31]. This is also the route taken here. Alternatively, more sophisticated iteration
schemes based on a Robin-type reformulation of the interface conditions (2-3),
(2-9) and (2-10) might be employed; see for instance [3; 4]. The basic idea
of the Dirichlet–Neumann fixed-point iteration is to start with solving the fluid
problem (2-1)–(2-6) on a given starting domain. The resulting fluid boundary
traction acting on the fluid-structure interface then serves as Neumann data for the
structure problem (2-7)–(2-10). The structure deformation dictates a displacement
of the fluid domain boundary and, in turn, a new configuration of the fluid domain.
This sequence of steps is repeated until convergence.

Each of the three subproblems (the fluid problem, the structure problem and
the domain deformation) will be solved numerically using separate finite element
discretizations. Overall, we will employ an overlapping mesh method in which a
fixed background mesh is used for part of the fluid domain and a moving mesh
is used for the combination of the structure domain and its surrounding fluid
domain. We note that methods based on overlapping meshes (as the one considered
here) are sometimes also called Chimera methods. Before describing each of the
discretizations, we present an overview of the setup of the computational domains.

For simplicity, we assume that the computational domain � is fixed throughout
the fixed-point iteration while the fluid and structure subdomains will be updated
in each iteration step. In each step, we consider the following setup, illustrated in
Figure 2, of the computational domains. First, we assume that � is tessellated by
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a background mesh T0. Second, we assume that the current representation of the
subdomains � f

2 and �s are tessellated by meshes T f
2 and T s , respectively, and that

these meshes match at their common interface. As a result, T f s
= T f

2 ∪T
s defines

an admissible and conforming mesh of the combined domain � f s
= (� f

2 ∪�
s)◦.

All meshes are assumed to be admissible and to consist of shape-regular simplices.
We further note that the background tessellation T0 may be decomposed into

three disjoint subsets:
T0 = T0,1 ∪ T0,2 ∪ T0,0. (3-1)

Here T0,1, T0,2 and T0,0 are defined with reference to � f s and denote the sets
of elements in T0 that are not, completely or partially overlapped by � f s . More
precisely, T0,1= {T ∈ T0 : T ⊂� f

1 }, T0,2= {T ∈ T0 : T ⊂� f s} and T0,0 = {T ∈ T0 :

|T ∩� f
1 |> 0 and |T ∩� f s

|> 0}. In addition, we assume that T0 is sufficiently fine
near the fluid-fluid interface in the sense that T ∩�s

=∅ for all T ∈ T0,0 . In other
words, the elements in the fluid background mesh have to be small enough close
to 0 f f such that a single element does not stretch from the fluid-fluid interface to
the fluid-structure interface. Next, we introduce the reduced background mesh T ∗1 ,
consisting of the elements in T0 that are either not or only partially overlapped
by � f s , and associated domain �∗1:

T ∗1 = T0,1 ∪ T0,0, �∗1 =
⋃

T∈T ∗1

T . (3-2)

Note that �∗1 contains (but is generally larger than) � f
1 . We further define the

so-called fluid overlap region �O = �
f
2 ∩�

∗

1. In general, for each overlapping
mesh configuration described by some (background) mesh and some overlapping
domain, the procedure described above defines what we shall refer to as the reduced
(background) mesh.

3.1. An overlapping mesh method for the fluid problem. Here we present a finite
element discretization of (2-1)–(2-6) posed on a pair of overlapping meshes, first
proposed by Massing et al. [41]. The pair of meshes consist of an overlapped mesh
and an overlapping mesh: in our case, the reduced background mesh T ∗1 plays the
role of the overlapped mesh while T f

2 is the overlapping mesh.
For any given mesh T , let Vh(T ) be the space of continuous piecewise linear

vector fields and let Qh(T ) be the space of continuous piecewise linear scalar fields,
both defined relative to T . We define the composite finite element spaces Vh and
Qh for the overlapping fluid meshes by

V f
h = Vh(T ∗1 )⊕ Vh(T

f
2 ), Q f

h = Qh(T ∗1 )⊕ Qh(T
f

2 ). (3-3)

Moreover, we denote by V f
h,g f the subspace of V f

h that satisfies the boundary
conditions (2-3)–(2-4) and by V f

h,0 the corresponding homogeneous version. The
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overlapping mesh discretization of (2-1)–(2-6) is then: find (u f
h , p f

h ) ∈ V f
h,g f × Q f

h
such that

A f
h (u

f
h , p f

h ; v, q)= L f
h (v, q) for all (v, q) ∈ V f

h,0× Q f
h , (3-4)

where A f
h is defined for all u, v ∈ V f

h and all p, q ∈ Q f
h by

A f
h (u, p; v, q)= a f

h (u, v)+ b f
h (v, p)+ b f

h (u, q)+ i f
h (u, v)− j f

h (p, q) (3-5)

and the forms a f
h , b f

h , i f
h and j f

h are given by

a f
h (u, v)= (∇u,∇v)

� f
1 ∪�

f
2
− (〈∂nu〉, [v])0 f f

− (〈∂nv〉, [u])0 f f + γ (h−1
[u], [v])0 f f , (3-6)

b f
h (v, q)=−(∇ · v, q)

� f
1 ∪�

f
2
+ ([v] · n, 〈q〉)0 f f , (3-7)

i f
h (u, v)= (∇(u1− u2),∇(v1− v2))�O , (3-8)

j f
h (p, q)= δ

∑
T∈T ∗1 ∪T

f
2

h2
T (∇ p,∇q)T (3-9)

for δ > 0. Here and throughout, ( · , · )K denotes the L2(K ) inner product over
some domain K while 〈v〉 denotes a convex combination 〈v〉 = α1v1+ αv2 with
α1 + α2 = 1 of v across the interface 0 f f . In particular, we choose 〈v〉 = v2 in
accordance with Hansbo et al. [23]. Finally, the linear form L f

h is defined by

L f
h (v, q)= ( f f , v)− δ

∑
T∈T ∗1 ∪T

f
2

h2
T ( f f ,∇q)T (3-10)

for all v ∈ V f
h and all q ∈ Q f

h .
A major strength of the employed scheme for the fluid problem is that the

extension of the stabilization term (3-9) from the physical domain � f
1 to the overlap

region �O in combination with the least-square stabilization (3-8) results in a
well-conditioned and optimally convergent scheme, independent of the location
of the overlapping mesh with respect to the fixed background mesh. Thereby,
typical difficulties arising from potentially small cut cells where |T ∩� f

2 | � |T |
for T ∈ T0,0 are completely eliminated. Consequently, for a continuous solution
(u f , p f ) satisfying (2-1)–(2-6) and a discrete solution (u f

h , p f
h ) satisfying (3-4),

the following optimal error estimate holds independently of the fluid-fluid interface
position [41]:

|||(u f
− u f

h , p f
− p f

h )|||6 Ch|u f
|2,� f + |p f

|1,� f . (3-11)

Here, ||| · ||| is an appropriate version of the standard norm on H 1(� f )× L2(� f )

accounting for the fluid overlap region �O ; see [41] for more details.
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3.2. A finite element discretization of the structure problem. The structure prob-
lem is described by (2-7)–(2-9) in the current solid domain. As the current solid
domain is actually unknown, a standard approach to discretizing such problems is
to map the governing equations back to a fixed reference (Lagrangian) frame. We
choose a reference domain �̂s with coordinates x̂ and denote the deformation map
from the reference to the current solid domain by φs :

x = φs(x̂) for x̂ ∈ �̂s . (3-12)

In general, the notation for all domains and quantities pulled back to the Lagrangian
framework will be endowed with a ˆ ; for instance, �̂s and ûs denote the solid
reference domain and solid displacement in the reference frame, respectively. In
particular, φs

= I + ûs .
In the Lagrangian frame, the problem reads: find the solid displacement ûs

:

�̂s
→ R3 such that

−∇ · 5̂(ûs)= f̂ s in �̂s, (3-13)

ûs
= ĝs

D on ∂�̂s
D, (3-14)

5̂(ûs) · n̂= t̂s
N on 0̂ f s . (3-15)

Here, the displacement ûs and the boundary displacement ĝs
D result from the

standard affine pull-back of the corresponding quantities in the current domain,
for instance ûs(x̂) = us(x), and n̂ is the outward normal of the fluid-structure
interface in the reference frame. Further, let Fs

= ∇φs and J s
= det Fs . We let

f̂ s(x̂)= J s f s(x). Moreover, 5̂(ûs) denotes the first Piola–Kirchhoff stress tensor,
resulting from a Piola transformation of the Cauchy stress tensor σ s :

5̂(ûs)(x̂)= J s(x̂)σ s(φs(x̂))(Fs)−T(x̂). (3-16)

In view of (2-10), we will enforce that the boundary traction acting on the solid
in the reference domain is the Piola transform of the fluid traction exerted on the
fluid-structure interface by the fluid in the current or physical configuration. This
will be detailed in Section 4.

The governing equations (3-13)–(3-15) must be completed by a constitutive
equation relating the stress to the strain. In the case of a hyperelastic material, by
definition, there exists a strain energy density 9 such that

5̂(F)=
∂9

∂F
. (3-17)

One example is the Saint-Venant–Kirchhoff material model, in which

9(F)= µ tr E2
+

1
2λ(tr E)2, where E = 1

2(F
T F− I), (3-18)

for Lamé constants µ, λ > 0.



106 ANDRÉ MASSING, MATS G. LARSON, ANDERS LOGG AND MARIE E. ROGNES

In the special case of a linearly elastic material, we assume that the reference
and physical configurations coincide so that (2-7)–(2-9) hold over �̂s directly
with σ s(us)= 2µε(us)+ λ tr(ε(us))I .

To solve (3-13)–(3-15) numerically, let T̂ s be a tessellation of �̂s such that
T s
= φs(T̂ s) and introduce the finite element approximation space

V̂ s
h,g = {v ∈ Vh(T̂ s) : v|∂�̂s

D
= g}, (3-19)

where Vh(T̂ s) is the space of continuous piecewise linear vector fields defined
relative to T̂ s as before. The finite element formulation of (3-13)–(3-15) then reads:
find ûs

h ∈ V̂ s
h, ĝs

D
such that

(5̂(ûs
h),∇v)�̂s − ( t̂s

N , v)0̂ f s − ( f̂ s, v)�̂s = 0 for all v ∈ V̂ s
h,0. (3-20)

Note that the generally nonlinear constitutive relation and the geometric nonlinearity
mandate a nonlinear solution scheme, such as a Newton method or an inner fixed-
point iteration for (3-20).

3.3. Deformation of the surrounding fluid domain. The overlapping mesh method
relies on keeping the background part of the fluid domain� f

1 fixed while moving the
part of the fluid domain � f

2 surrounding the structure. This movement ensures that
the mesh T f

2 of the latter part of the fluid domain and the structure mesh T s match at
the fluid-structure interface. The movement is dictated by the structure deformation
only at the fluid-structure interface: the motion of the interior of the fluid domain
� f

2 is subject to numerical modeling. Standard approaches for the domain motion
include mesh smoothing via diffusion-type equations or treating the fluid domain
as a pseudoelastic structure. Here, we choose the latter approach and model the
deformation of the fluid domain as a linearly elastic structure. This approach
allows for typically larger deformations than a simple diffusion-equation-based
mesh smoothing while avoiding unnecessary complexity.

We start with a fixed reference domain �̂ f
2 and consider the following mesh

deformation problem over this domain: find the mesh displacement ûm
: �̂ f

2 → R3

such that

−∇ · σ̂m(ûm)= 0 in �̂ f
2 , (3-21)

σ̂m(ûm) · n̂= 0 on 0̂ f f , (3-22)

ûm
= ûs on 0̂ f s, (3-23)

where the stress tensor σ̂m is given by

σ̂m(ûm)= 2µmε(ûm)+ λm tr(ε(ûm))I (3-24)

for chosen Lamé constants µm, λm > 0. Let now T̂ f
2 be a tessellation of �̂ f

2 .
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We define the finite element space V̂ m
h,g by

V̂ m
h,g = {v ∈ Vh(T̂

f
2 ) : v|0̂ f s = g}. (3-25)

The corresponding finite element formulation of the mesh problem (3-21)–(3-23) is
then: find ûm

h ∈ V̂ m
h,ûs such that

(σ̂m(ûm
h ), v)�̂ f

2
= 0 for all v ∈ V̂ m

h,0. (3-26)

Finally, we define T f
2 =φ

m
h (T̂

f
2 )with the discrete mesh deformation φm

h = I+ûm
h .

The current surrounding fluid domain is then defined accordingly: � f
2 = φ

m
h (�̂

f
2 ).

The use of boundary condition (3-22) ensures that the fluid-structure interface is
preserved in the sense that

0 f s
= ∂� f

2 ∩ ∂�
s
= φm

h (0̂
f s)= φs

h(0̂
f s), (3-27)

where φs
h is the solid deformation given by the discrete solution ûs

h of prob-
lem (3-20).

4. Solution algorithm for the discretized FSI problem

We are now in a position to give a detailed description of the overall solution scheme
for the fully coupled fluid-structure interaction problem. We start with reviewing
the formulation of the fluid-structure coupling in the discrete setting. For the
discrete formulation, a third interface condition (3-23) needs to be added to the two
interface conditions (2-3) and (2-9) due to the additional mesh deformation problem
described in Section 3.3. The mesh deformation allows us to express the fluid stress
tensor acting on 0 f s in the reference configuration 0̂ f s via a Piola transformation.
Consequently, the stress equilibrium condition (2-9) at the fluid-structure interface
can be reformulated in the Lagrangian frame according to (3-15). In summary, the
discrete formulation of the fluid-structure interface conditions reads:

u f
= 0 on 0 f s, (4-1)

ûs
= ûm on 0̂ f s, (4-2)

5̂(ûs)(x̂) · n̂(x̂)= J m(x̂) σ f (φm(x̂))(Fm)−T(x̂) · n̂(x̂) on 0̂ f s . (4-3)

As outlined in Section 3, we employ a classical Dirichlet–Neumann fixed-point iter-
ation approach to ensure that the interface conditions (4-1)–(4-3) are approximately
satisfied by the computed solution within a user-provided tolerance. The iteration
scheme is presented in detail in Algorithm 1, where the relaxation parameter ωi

was chosen dynamically to accelerate the convergence of the fixed-point iteration.
Moreover, the fluid boundary traction is incorporated as Neumann data in the weak
formulation of the structure problem by a properly chosen functional representing the
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ûs,k
:= 0

ûm,k
:= 0

do
Update overlapping fluid meshes
�s,k+1

:= (I + ûs,k)(�̂s)

�
f,k+1
2 := (I + ûm,k)(�̂ f

2 )

� f s,k+1
:=�s,k+1

∪�
f,k+1
2

Compute reduced background mesh (T f,k+1
1 )∗ with respect to � f s,k+1.

T f,k+1
:= (T f,k+1

1 )∗ ∪ T f,k+1
2

Solve fluid problem
Find (u f,k+1

h , p f,k+1
h ) such that for all (v f,k+1

h , q f,k+1
h ) ∈ V f,k+1

h × Q f,k+1
h

A f,k
h (u f,k+1

h , p f,k+1
h ; v

f,k+1
h , q f,k+1

h )= L f,k+1(v
f,k+1

h , q f,k+1
h ).

Update boundary traction functional
Define L f s,k+1( · ) by

L f s,k+1(v̂
s,k+1
h ) := R f,k+1(u f,k+1

h , p f,k+1
h ; v

f,k+1
h ).

Solve structure problem
Find ûs,k+1

h such that for all v̂ ∈ V̂ s
h

As
h(û

s,k+1
h , v̂)= Ls(v̂)+ L f s,k+1(v̂).

Dynamic relaxation
Compute ωk+1 according to (4-6).
ûs,k+1

h := ωk+1ûs,k+1
h + (1−ωk+1)ûs,k

h

Solve mesh problem
Find ûm,k+1

h such that for all v̂ ∈ V̂ m
h

Am
h (û

m,k+1
h , v̂)= Ls(v̂),

ûm,k+1
h = ûs,k+1

h on 0̂ f s .

while ‖ûs,k+1
h − ûs,k

h ‖6 tol

Algorithm 1. Fixed-point iteration.

boundary traction weighted with some given test function. A thorough explanation
of both of these intermediate steps will be given in the next sections.

4.1. Dynamic relaxation. Let U k
S

denote the coefficient vector of the finite element
approximation ûs,k

h of (3-20) computed in the k-th iteration step. To accelerate the
convergence of the iteration scheme, a relaxation step is introduced:

U k+1
S
:= ωkU k+1

S
+ (1−ωk)U k

S
, (4-4)

where the relaxation parameter ωk is dynamically chosen in each iteration step.
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Here, we employed Aiken’s method, which is a simple scheme, yet it can greatly
improve the convergence rate compared to a fixed choice of ωk , as demonstrated
by Küttler and Wall [30; 31]. Introducing the residual displacement 1kUS by

1kUS :=U k
S
−U k−1

S
, (4-5)

the new relaxation parameter ωk+1 is then computed by

ωk =max
{
ωmax, ωk−1

(
1−

1k+1US

‖1k+1US −1
kUS‖

2

)}
, (4-6)

where ωmax is a safety parameter chosen to avoid too-large over-relaxation. The
convergence of the fixed-point iteration might be accelerated further by employ-
ing more sophisticated schemes based on Robin–Robin coupling [3; 4] or vector
extrapolation [31].

4.2. Computation of the boundary traction. Given the solution u f and a pressure
solution p f of the fluid subproblem (2-1)–(2-4), the incorporation of the fluid
boundary traction into the weak formulation of the structure problem (3-20) requires
the evaluation of the so-called weighted fluid boundary traction on 0 f s defined by

L f s(v)= (σ f (u f , p f ) · n, v)0 f s (4-7)

for test functions v ∈V s . The functional (4-7) possesses various equivalent represen-
tations in the continuous case that are no longer equivalent when fluid velocity u f

and pressure p f and test function v are replaced by their discrete counterparts u f
h ,

p f
h and vh ∈ V s

h (�), respectively. It has been observed by Dorok [16], John [28]
and Giles et al. [21] that using (4-7) directly might lead to an inaccurate evaluation
of the weighted boundary traction. In our work, we therefore employ an alternative
formulation of the weighted boundary traction in the form

L f s(vh)= (σ
f (u f

h , p f
h ),Ext vh)� f − ( f f ,Ext vh)� f , (4-8)

which was proposed and investigated by Giles et al. [21] in the context of a posteriori
error estimation. Here, Ext v is any function in H 1(� f s) such that Ext(vh)|0 f s = vh .
Compared to the naive evaluation using (4-7), the formulation (4-8) was shown to
compute the weighted boundary traction more accurately and to greatly improve
the convergence of stress-related quantities such as the lift and drag coefficients.

5. Numerical results

We conclude this paper with two numerical tests, both in three spatial dimensions.
The numerical experiments were carried out using the DOLFIN-OLM library. We
first study the convergence rates for the finite element approximations of the fluid
velocity, fluid pressure and structure displacement by constructing an artificial



110 ANDRÉ MASSING, MATS G. LARSON, ANDERS LOGG AND MARIE E. ROGNES

fluid-structure interaction problem possessing an analytical solution. Second, we
consider the flow around an elastic flap immersed in a three-dimensional channel.

5.1. Software for overlapping mesh variational formulations. The assembly of
finite element tensors corresponding to standard variational formulations on con-
forming, simplicial meshes, such as (3-20), involves integration over elements
and possibly interior and exterior facets. In contrast, the assembly of variational
forms defined over overlapping meshes, such as (3-6)–(3-9) and (3-10), additionally
requires integration over cut elements and cut facets. These mesh entities are of
polyhedral, but otherwise arbitrary, shape. As a result, the assembly process is
highly nontrivial in practice and requires additional geometry-related preprocessing,
which is challenging in particular for three-dimensional meshes.

As part of this work, the technology required for the automated assembly of
general variational forms defined over overlapping meshes has been implemented
as part of the software library DOLFIN-OLM. This library builds on the core
components of the FEniCS Project [34; 33], in particular DOLFIN [35], and the
computational geometry libraries CGAL [51] and GTS [22]. DOLFIN-OLM is
open source and freely available from http://launchpad.net/dolfin-olm.

There are two main challenges involved in the implementation: the computational
geometry and the integration of finite element variational forms on cut cells and
facets. The former involves establishing a sufficient topological and geometric de-
scription of the overlapping meshes for the subsequent assembly process. To this end,
DOLFIN-OLM provides functionality for finding and computing the intersections
of triangulated surfaces with arbitrary simplicial background meshes in three spatial
dimensions; this functionality relies on the computational geometry libraries CGAL
and GTS. These features generate topological and geometric descriptions of the cut
elements and facets. Based on this information, quadrature rules for the integration
of fields defined over these geometrical entities are produced. The computational
geometrical aspect of this work extends, but shares many of the features of, the
previous work [39] and is described in more detail in the aforementioned reference.

Further, by extending some of the core components of the FEniCS Project,
in particular FFC [29; 34, Chapter 11] and UFC [34, Chapter 16], this work
also provides a finite element form compiler for variational forms defined over
overlapping meshes. Given a high-level description of the variational formulation,
low-level C++ code can be automatically generated for the evaluation of the cut
element, cut facet and surface integrals, in addition to the evaluation of integrals over
the standard (uncut) mesh entities. The generated code takes as input appropriate
quadrature points and weights for each cut element or facet; these are precisely
those provided by the DOLFIN-OLM library.

As a result, one may specify variational forms defined over finite element spaces
on overlapping meshes in high-level UFL notation [2; 34, Chapter 17], define the

http://launchpad.net/dolfin-olm
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overlapping fluid meshes {T0, T
f

2 } and then invoke the functionality provided by the
DOLFIN-OLM library to automatically assemble the corresponding stiffness matrix.
In particular, the numerical experiments presented below, employing the variational
formulation defined by (3-4), have been carried out using this technology.

5.2. Convergence test. While numerical studies presented in [41] confirmed the
theoretically predicted convergence rates for the overlapping mesh method for the
pure flow problem presented in Section 3.1, we here conduct a convergence study
of the coupled FSI problem to verify the overall solution algorithm as described
in Algorithm 1. To examine the convergence rates for the finite element approxima-
tions of the fluid velocity, fluid pressure and structure displacement, we construct a
stationary FSI problem with a known analytical solution by employing the method
of manufactured solutions as outlined in the following. The detailed analytical
derivation of the fluid- and structure-related quantities are not included here to keep
the presentation at an appropriate length but can be obtained as an IPython-based
notebook available at http://nbviewer.ipython.org/6291921.

In the reference configuration, the fluid domain �̂ f consists of a straight tube of
length L = 1.0 and diameter R f

= 0.4. We decompose �̂ f into a tube of radius
R f

1 = 0.3 and a cylinder annulus satisfying 0.3 6 r 6 0.4= R f
2 . The solid domain

�̂s is given by a cylinder annulus of thickness H s
= 0.1 surrounding the fluid

domain �̂ f . Using cylinder coordinates, the displacement ûs of the solid domain is
prescribed by a purely radial, z-dependent translation

ûs(r, ϕ, z)= H(z)er , (5-1)

where H(z)= H s2z(1− z). Correspondingly, the deformation of the fluid domain
is determined by a radial stretching of the form

ûm(r, ϕ, z)= ρ(1+ H(z)/R f )er . (5-2)

The reference and physical configuration of the various domains are depicted in
Figure 3.
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Figure 3. Cross-section through the cylinder-symmetric reference (left) and physical
(right) domains for the analytical FSI reference problem.

http://nbviewer.ipython.org/6291921
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To obtain a divergence-free velocity field in the final physical configuration, the
fluid velocity is defined as a simple parabolic channel flow on the reference domain
and then mapped to the physical domain via the Piola transformation induced by the
fluid domain deformation (5-2). For the pressure, we simply choose p(x, y, z)=
1− z. Since the interface condition (4-3) is not satisfied exactly, we introduce an
auxiliary traction ta given by the nonvanishing jump in the normal stresses:

ta =
(
5̂(ûs)(x̂)− J m(x̂)σ f (φm(x̂))(Fm)−T(x̂)

)
· n̂s on 0̂ f s . (5-3)

Regarding the remaining boundary parts, the solid displacement is uniquely deter-
mined by imposing the given displacement ûs as a Dirichlet boundary condition
on ∂�̂s

\ 0̂ f s . For the fluid problem, we prescribed the velocity profile on the inlet
and impose the zero pressure on the outlet.

In the reference configuration, a discretization of the solid domain �̂s and the
fluid domain �̂ f

2 is provided by two fitted and conforming meshes T̂ s and T̂ f
2 ,

respectively, while the fluid domain �̂ f
1 is represented by a structured Cartesian mesh

T̂ f
1 overlapped by the mesh T̂ f

2 ; see Figures 4 and 5. The numerical approximation

Figure 4. Computed velocity (top) and pressure (bottom) solutions on the fixed fluid
background mesh T f

1 (left) and entire overlapping fluid mesh {T f
1 , T

f
2 } (right) for the

analytical FSI problem.



A CUT AND COMPOSITE MESH METHOD FOR FLUID-STRUCTURE INTERACTION 113

Figure 5. Displacements for the analytical FSI reference problem. Left: structure dis-
placement of the solid tube. Right: displacement of the fluid mesh added.

of the fluid velocity, fluid pressure and structure displacement are then computed on
a sequence of four overlapping meshes. The mesh sizes of the initial meshes T̂ f

1 ,
T̂ f

2 and T̂ s are 0.246, 0.14 and 0.212, respectively, and each of the subsequent
meshes is generated from the previous one by uniformly refining each mesh. Based
on the manufactured exact solution, the experimental order of convergence (EOC)
is then computed by

EOC(k)=
log(Ek−1/Ek)

log 2
,

where Ek denotes the error of the numerical solution computed at refinement level k.
The numerical experiment was conducted using ν f

= 0.001 for the fluid viscosity
and Lamé parameters given by

µ= E/(2+ 2ν), λ= E · ν/((1+ ν)(1− 2ν)) (5-4)

in �s with E = 10 and ν = 0.3.
For the penalty parameters in the stabilized overlapping mesh method for the

fluid problem, we pick γ = 10 and δ = 0.5. Since the overall computational time is
dominated by the assembly and solution of the fluid system, the displacement field
is conveniently solved using a direct solver while the linear system arising from the
fluid problem is solved by applying a transpose-free quasiminimal residual solver
with an algebraic multigrid preconditioner.

Using continuous piecewise linear functions for the approximation of the fluid
velocity, fluid pressure and the structure displacement, the theoretically predicted
convergence rate for a corresponding uncoupled problem is at least 1.0 when
measuring the velocity and displacement error in the H 1-norm and the pressure
error in the L2-norm. Note that it is common to observe a higher experimental order
of convergence of ∼ 1.5 for the pressure approximation when stabilized, equal-
order interpolation elements are used to discretize the flow problem. Assuming
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Refinement ‖u f
h − u f

‖1 EOC ‖p f
h − p f

‖0 EOC ‖us
h − us

‖1 EOC

0 1.01188 3.61948 · 10−3 3.87181 · 10−4

1 0.51000 0.99 1.55216 · 10−3 1.22 1.40771 · 10−4 1.46
2 0.21912 1.22 3.70746 · 10−4 2.06 4.39062 · 10−5 1.68
3 0.12485 0.81 1.29430 · 10−4 1.52 1.17800 · 10−5 1.9

Table 2. Convergence rates of the overlapping mesh finite element method for the analyti-
cal FSI problem.

at most quadratic convergence of the displacement solution in the L2-norm, the
L2-error will be reduced by approximately 0.52·3

≈ 0.016 after three uniform mesh
refinements. To not pollute the overall convergence rate with the iteration error,
we therefore chose tol= 0.001 for the relative L2-error between two consecutive
displacement solutions computed in the iteration loop. With the given tolerance,
the Dirichlet–Neumann iteration converged after 5–7 iterations for each refinement
level. The resulting errors for the sequence of refined meshes are summarized in
Table 2. For the fluid velocity and fluid pressure, the observed convergence rates
are in agreement with the theoretical error decrease expected from an uncoupled
problem. For the solid displacement, the observed convergence rates 1.46–1.9 for
the H 1-error are better than the theoretically expected rate of ∼ 1.

5.3. Flow around an elastic flap. In the second numerical example, we consider a
channel flow around an elastic flap for different orientations of the flap with respect
to the channel geometry. Here, we can take full advantage of the developed method
and techniques as the overlapping mesh approach handles large deformation within
a single simulation easily. As an additional benefit, our proposed scheme allows
us to seamlessly reposition the flap for a series of numerical experiments and thus
has great potential for future applications in design and optimization processes that
involve fluid-structure interaction problems in their forward simulation; see for
instance [38; 17].

Within the channel domain � = [0, L] × [0,W ] × [0, H ] with L = 2.5 and
W = H = 0.41, the bottom side of the flap of dimensions Ls

= 0.06, W s
= 0.2

and H s
= 0.24 is centered around the point (L/2,W/2, 0). In the first numerical

experiment, the flap is clamped on the boundary [(L − Ls)/2, (L + Ls)/2] ×
[(W −W s)/2, (W +W s)/2]×{0} while the flap is rotated 65◦ around the z-axis in
a second experiment. For the numerical experiment, we assume that the flow can be
described by the Stokes equations with fluid viscosity ν f

= 0.001 while the flap is
modeled as an hyperelastic material satisfying the Saint-Venant–Kirchhoff constitu-
tive equation (3-18) with the Lamé constants µ and λ defined by (5-4) for E s

= 15
and νs

= 0.3. We set the inflow profile u f
= (16 · 0.45y(W − y)z(H − z), 0, 0)

at the inlet {0} × [0,W ] × [0, H ], a “do-nothing” boundary condition given by
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Figure 6. Flow around an elastic flap for two different flap orientations. Left: magnitude
and streamlines of the velocity approximation in x-z (top) and x-y (bottom) cross-sections.
The transparent block around the gray-colored flap visualizes the fluid mesh T f

2 surround-
ing the structure. The streamlines within T f

2 are drawn slightly thicker to illustrate the
smooth transition of the velocity approximation from the outer to the inner fluid domain.
Right: pressure distribution and magnitude of the structure displacement.

ν∂nu− pn = 0 at the outlet {L} × [0,W ] × [0, H ] and a no-slip condition u = 0
elsewhere on the boundary.

The numerical results for aligned and rotated flaps are shown in Figure 6. We
especially note the smooth transition of the velocity and pressure solutions from
fluid background T f

1 to the solid-surrounding fluid mesh T f
2 ; the interface is not

visible. The meshes used for simulation of the rotated flap are shown in Figure 7.

6. Conclusions

We presented a Nitsche-based cut and composite mesh method for fluid-structure
interaction problems. The method utilizes a Nitsche-type coupling between two
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Figure 7. Background fluid mesh, structure mesh and its surrounding fluid mesh in the
reference configuration.

fluid meshes: one fixed background mesh and one moving overlapping fluid mesh
that is fitted to the boundary of a hyperelastic object and deforms with the object.
The fluid-fluid coupling is monolithic in the sense that it determines a coupled
system involving both the underlying and overlapping degrees of freedom. In
previous work [41], we have shown that the coupling is stable and that the solution
has optimal-order convergence for a stationary model problem.

To solve for the steady state solution of a fluid-structure interaction problem with
large elastic deformations, we consider a fixed-point iteration where we solve for
the fluid, compute a boundary traction for the solid, solve for the solid, solve for the
mesh motion of the overlapping fluid mesh and finally update the geometry. This
involves computing new intersections between underlying and overlapping meshes.
Employing a provably stable overlapping mesh method for fluid-fluid coupling, the
proposed scheme for the fluid-structure problem is guaranteed to be robust and
insensitive to the overlap configuration.

We verified the expected convergence rates for a model problem with a manufac-
tured solution and demonstrated the flexibility of our approach by computing the
steady state solution for an elastic flap in a channel at two different orientations. It
should be noted that the overlapping mesh method allows the flap to be repositioned
in the channel without requiring the generation of a single conforming fluid mesh
for each configuration. Only an elementwise, local representation of the cut cells
near the interface together with some appropriate quadrature schemes are required;
see for instance [39].

Future work involves extending our method to fully time-dependent flow gov-
erned by the incompressible Navier–Stokes equations. We note that the nonlinear
convection term can be handled in our setting using a discontinuous Galerkin
coupling with up-winding and that, from a computational point of view, taking a
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time step is closely related to taking one step in our fixed-point iteration algorithm.
Another area of interest is the direct coupling between fluids and solids.
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