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Continuing on our previous work (A. Donev, A. Nonaka, Y. Sun, T. G. Fai, A.
L. Garcia and J. B. Bell, Comm. App. Math. and Comp. Sci. 9 (2014), no. 1,
47–105), we develop semi-implicit numerical methods for solving low Mach
number fluctuating hydrodynamic equations appropriate for modeling diffusive
mixing in isothermal mixtures of fluids with different densities and transport
coefficients. We treat viscous dissipation implicitly using a recently developed
variable-coefficient Stokes solver (M. Cai, A. J. Nonaka, J. B. Bell, B. E. Griffith
and A. Donev, Commun. Comput. Phys. 16 (2014), no. 5, 1263–1297). This
allows us to increase the time step size significantly for low Reynolds number
flows with large Schmidt numbers compared to our earlier explicit temporal
integrator. Also, unlike most existing deterministic methods for low Mach number
equations, our methods do not use a fractional time-step approach in the spirit of
projection methods, thus avoiding splitting errors and giving full second-order
deterministic accuracy even in the presence of boundaries for a broad range of
Reynolds numbers including steady Stokes flow. We incorporate the Stokes
solver into two time-advancement schemes, where the first is suitable for inertial
flows and the second is suitable for the overdamped limit (viscous-dominated
flows), in which inertia vanishes and the fluid motion can be described by a steady
Stokes equation. We also describe how to incorporate advanced higher-order
Godunov advection schemes in the numerical method, allowing for the treatment
of (very) large Péclet number flows with a vanishing mass diffusion coefficient.
We incorporate thermal fluctuations in the description in both the inertial and
overdamped regimes. We validate our algorithm with a series of stochastic and
deterministic tests. Finally, we apply our algorithms to model the development of
giant concentration fluctuations during the diffusive mixing of water and glycerol,
and compare numerical results with experimental measurements. We find good
agreement between the two, and observe propagative (nondiffusive) modes at
small wavenumbers (large spatial scales), not reported in published experimental
measurements of concentration fluctuations in fluid mixtures. Our work forms the
foundation for developing low Mach number fluctuating hydrodynamics methods
for miscible multispecies mixtures of chemically reacting fluids.
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I. Introduction

Flows of realistic mixtures of miscible fluids exhibit several features that make
them more difficult to simulate numerically than flows of simple fluids. Firstly,
the physical properties of the mixture depend on the concentration of the different
species composing the mixture. This includes both the density of the mixture
at constant pressure, and transport coefficients such as viscosity and mass dif-
fusion coefficients. Common simplifying assumptions such as the Boussinesq
approximation, which assumes a constant density and thus incompressible flow, or
assuming constant transport coefficients, are uncontrolled and not appropriate for
certain mixtures of very dissimilar fluids. Secondly, for liquid mixtures there is a
large separation of time scales between the various dissipative processes, notably,
mass diffusion is much slower than momentum diffusion. The large Schmidt
numbers Sc ∼ 103–104 typical of liquid mixtures lead to extreme stiffness and
make direct temporal integration of the hydrodynamic equations infeasible. Lastly,
flows of mixtures exhibit all of the numerical difficulties found in single component
flows, for example, well-known difficulties caused by advection in the absence of
sufficiently strong dissipation (diffusion of momentum or mass), and challenges
in incorporating thermal fluctuations in the description. Here we develop a low
Mach number approach to isothermal binary fluid mixtures that resolves many of
the above difficulties, and paves the way for incorporating additional physics such
as the presence of more than two species [5], chemical reactions [11; 1], multiple
phases and surface tension [50; 15], and others.

Stochastic fluctuations are intrinsic to fluid dynamics because fluids are composed
of molecules whose positions and velocities are random. Thermal fluctuations affect
flows from microscopic to macroscopic scales [26; 56] and need to be consistently
included in all levels of description. Fluctuating hydrodynamics (FHD) incorporates
thermal fluctuations into the usual Navier–Stokes–Fourier laws in the form of
stochastic contributions to the dissipative momentum, heat, and mass fluxes [22].
FHD has proven to be a very useful tool in understanding complex fluid flows
far from equilibrium [31; 50; 54; 4]; however, theoretical calculations are often
only feasible after making many uncontrolled approximations [22], and numerical
schemes used for fluctuating hydrodynamics are usually far behind state-of-the-art
deterministic computational fluid dynamics (CFD) solvers.

In this work, we consider binary mixtures and restrict our attention to isothermal
flows. We consider a specific equation of state (EOS) suitable for mixtures of
incompressible liquids or ideal gases, but otherwise account for advective and
diffusive mass and momentum transport in full generality. Recently, some of us
developed finite-volume methods for the incompressible equations [6]. We have
also developed low Mach number isothermal fluctuating equations [28], which
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eliminate the stiffness arising from the separation of scales between acoustic and
vortical modes [38; 47; 49]. The low Mach number equations account for the
fact that for mixtures of fluids with different densities, diffusive and stochastic
mass fluxes create local expansion and contraction of the fluid. In these equations
the incompressibility constraint should be replaced by a “quasi-incompressibility”
constraint [49; 40], which introduces some difficulties in constructing conservative
finite-volume techniques [46; 48; 21; 43; 42; 28]. In Section II we review the
low Mach number equations of fluctuating hydrodynamics for a binary mixture of
miscible fluids, as first proposed in Ref. [28].

The numerical method developed in Ref. [28] uses an explicit temporal integrator.
This requires using a small time step and is infeasible for liquid mixtures due
to the stiffness caused by the separation of time scales between fast momentum
diffusion and slow mass diffusion. In recent work [24], some of us developed
temporal integrators for the equations of fluctuating hydrodynamics that have several
important advantages. Notably, these integrators are semi-implicit, allowing one to
treat fast momentum diffusion (viscous dissipation) implicitly, and other transport
processes explicitly. These temporal integrators are constructed to be second-order
accurate for the equations of linearized fluctuating hydrodynamics (LFHD), which
are suitable for describing thermal fluctuations around stable macroscopic flows
over a broad range of length and time scales [22]. Importantly, the linearization
of the fluctuating equations is carried out automatically by the code, making the
numerical methods very similar to standard deterministic CFD schemes. Finally,
specific integrators are proposed in Ref. [24] to handle the extreme separation of
scales between the fast velocity and the slow concentration by taking an overdamped
limit of the inertial equations.

In this work, we extend the semi-implicit temporal integrators proposed in
Ref. [24] for incompressible flows to account for the quasi-incompressible nature of
low Mach number flows. We apply these temporal integrators to the staggered-grid
conservative finite-volume spatial discretization developed in Ref. [28], and addi-
tionally generalize the treatment of advection to allow for the use of monotonicity-
preserving higher-order Godunov schemes [8; 9; 41; 44].

Our work relies heavily on several prior works, which we will only briefly
summarize in the present paper. The spatial discretization we describe in more
detail in Section III B is identical to that proposed by Donev et al. [28], which itself
relies heavily on the treatment of thermal fluctuations developed in Refs. [6; 28]. A
key development that makes the algorithm presented here feasible for large-scale
problems is recent work by some of us [13] on efficient multigrid-based iterative
methods for solving unsteady and steady variable-coefficient Stokes problems on
staggered grids. Our high-order Godunov method for mass advection is based on
the work of Bell et al. [9; 41; 44].
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The temporal integrators developed in Section III D are a novel approach to low
Mach number hydrodynamics even in the deterministic context. In high-resolution
finite-volume methods, the dominant paradigm has been to use a splitting (fractional-
step) or projection method [16] to separate the pressure and velocity updates [3; 21;
7; 2; 37]. We followed such a projection approach to construct an explicit temporal
integrator for the low Mach number equations [28]. When viscosity is treated
implicitly, however, the splitting introduces a commutator error that leads to the
appearance of spurious or “parasitic” modes in the presence of physical boundaries
[32; 12; 23]. There are several techniques to reduce (but not eliminate) these
artificial boundary layers [12], and for sufficiently large Reynolds number flows the
time step size dictated by advective stability constraints makes the splitting error
relatively small in practice. At small Reynolds numbers, however, the splitting error
becomes larger as viscous effects become more dominant, and projection methods
do not apply in the steady Stokes regime for problems with physical boundary
conditions. Methods that do not split the velocity and pressure updates but rather
solve a combined Stokes system for velocity and pressure have been used in the
finite-element literature for some time, and have more recently been used in the
finite-volume context for incompressible flow [35]. Here we demonstrate how the
same approach can be effectively applied to the low Mach number equations for a
binary fluid mixture [28], to construct a method that is second-order accurate up to
boundaries, for a broad range of Reynolds numbers including steady Stokes flow.

We test our ability to accurately capture the static structure factor for equilibrium
fluctuation calculations. Then, we test our methods deterministically on two variable
density and variable viscosity low Mach number flows. First, we confirm second-
order deterministic accuracy in both space and time for a lid-driven cavity problem
in the presence of a bubble of a denser miscible fluid. Next, we simulate the
development of a Kevin–Helmholtz instability as a lighter less viscous fluid streams
over a denser more viscous fluid. These tests confirm the robustness and accuracy
of the methods in the presence of large contrasts, sharp gradients, and boundaries.
Next we focus on the use of fluctuating low Mach number equations to study
giant concentration fluctuations. In Section V we apply our methods to study the
development of giant fluctuations [58; 19; 56; 55] during free diffusive mixing of
water and glycerol. We compare simulation results to experimental measurements
of the time-correlation function of concentration fluctuations during the diffusive
mixing of water and glycerol [19]. The relaxation times show signatures of the
rich deterministic dynamics, and a transition from purely diffusive relaxation of
concentration fluctuations at large wavenumbers, to more complex buoyancy-driven
dynamics at smaller wavenumbers. We find reasonably good agreement given the
large experimental uncertainties, and observe the appearance of propagative modes
at small wavenumbers, which we suggest could be observed in experiments as well.



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 167

II. Low Mach number equations

At mesoscopic scales, in typical liquids, sound waves are very low amplitude
and much faster than momentum diffusion; hence, they can usually be eliminated
from the fluid dynamics description. Formally, this corresponds to taking the zero
Mach number singular limit Ma→ 0 of the well-known compressible fluctuating
hydrodynamics equations system [39; 22]. In the compressible equations, the
coupling between momentum and mass transport is captured by the equation of
state (EOS) for the pressure P(ρ, c; T0) as a local function of the density ρ(r, t)
and mass concentration c(r, t) at a specified temperature T0(r), assumed to be
time-independent in our isothermal model.

The low Mach number equations can be obtained by making the ansatz that
the thermodynamic behavior of the system is captured by a reference pressure
P0(r, t), with the additional pressure contribution π(r, t) = O(Ma2) capturing
the mechanical behavior while not affecting the thermodynamics. We will restrict
consideration to cases where stratification due to gravity causes negligible changes
in the thermodynamic state across the domain. In this case, the reference pressure is
spatially constant and constrains the system so that the evolution of ρ and c remains
consistent with the thermodynamic EOS

P
(
ρ(r, t), c(r, t); T0(r)

)
= P0(t). (1)

Physically this means that any change in concentration must be accompanied by a
corresponding change in density, as would be observed in a system at thermodynamic
equilibrium held at the fixed reference pressure and temperature. The EOS defines
density ρ

(
c(r, t); T0(r), P0(t)

)
as an implicit function of concentration in a binary

liquid mixture. The EOS constraint (1) can be rewritten as a constraint on the
divergence of the fluid velocity v(r, t),

ρ∇ · v =−β ∇ · F, (2)

where F is the total diffusive mass flux defined in (10), and the solutal expansion
coefficient

β(c)=
1
ρ

(
∂ρ

∂c

)
P0,T0

is determined by the specific form of the EOS.
In this work we consider a specific linear EOS,

ρ1

ρ̄1
+
ρ2

ρ̄2
=

cρ
ρ̄1
+
(1− c)ρ
ρ̄2

= 1, (3)

where ρ̄1 and ρ̄2 are the densities of the pure component fluids (c = 1 and c = 0,
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respectively), giving

β = ρ

(
1
ρ̄2
−

1
ρ̄1

)
=

ρ̄1− ρ̄2

cρ̄2+ (1− c)ρ̄1
. (4)

It is important that for this specific form of the EOS β/ρ is a material constant
independent of the concentration; this allows us to write the EOS constraint (9)
in conservative form ∇ · v = −∇ · (βρ−1 F) and take the reference pressure P0

to be independent of time. The specific form of the density dependence (4) on
concentration arises if one assumes that two incompressible fluids do not change
volume upon mixing, which is a reasonable assumption for liquids that are not too
dissimilar at the molecular level. Surprisingly the EOS (3) is also valid for a mixture
of ideal gases. If the specific EOS (3) is not a very good approximation over the
entire range of concentration 0≤ c ≤ 1, it may be a very good approximation over
the range of concentrations of interest if ρ̄1 and ρ̄2 are adjusted accordingly. Our
choice of the specific form of the EOS will aid significantly in the construction of
simple conservative spatial discretizations that strictly maintain the EOS without
requiring complicated nonlinear iterative corrections.

In fluctuating hydrodynamics, stochastic contributions to the momentum and
mass fluxes are formally modeled as follows [6]:

6 =
√
ηkB T (W +WT ),

9 =
√

2χρµ−1
c kB T W̃,

(5)

where kB is Boltzmann’s constant, η is the shear viscosity, χ is the diffusion coeffi-
cient, µ(c; T0, P0) is the chemical potential of the mixture with µc = (∂µ/∂c)P0,T0 ,
and W(r, t) and W̃(r, t) are standard zero mean, unit variance random Gaussian
tensor and vector fields, respectively, with uncorrelated components,〈

Wi j (r, t)Wkl(r ′, t ′)
〉
= δikδ jl δ(t − t ′)δ(r − r ′),

and similarly for W̃ .
A standard asymptotic low Mach analysis [38], formally treating the stochastic

forcing as smooth, leads to the isothermal low Mach number equations for a binary
mixture of fluids in conservation form [28],

∂t(ρv)+∇π =−∇ · (ρvvT )+∇ · (η∇v+6)+ ρg (6)

∂t(ρ1)=−∇ · (ρ1v)+∇ · F (7)

∂t(ρ2)=−∇ · (ρ2v)−∇ · F (8)

∇ · v =−∇ · (βρ−1 F), (9)

where the deterministic and stochastic diffusive mass fluxes are denoted by

F = ρχ∇c+9. (10)
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Here ∇ = ∇ +∇
T is a symmetric gradient, ρ1 = ρc is the density of the first

component, ρ2 = (1− c)ρ is the density of the second component, and g is the
gravitational acceleration. The gradient of the nonthermodynamic component
of the pressure π (Lagrange multiplier) appears in the momentum equation as
a driving force that ensures the EOS constraint (9) is obeyed. We note that the
bulk viscosity term gives a gradient term that can be absorbed in π and therefore
does not explicitly need to appear in the equations. Temperature dynamics and
fluctuations are neglected in these equations; however, this type of approach can be
extended to include thermal effects. The shear viscosity η(c; T0, P0) and the mass
diffusion coefficient χ(c; T0, P0) in general depend on the concentration. Note that
the two density equations (7) and (8) can be combined to obtain the usual continuity
equation for the total density,

∂tρ =−∇ · (ρv), (11)

and the primitive (nonconservation law) form of the concentration equation,

ρ(∂t c+ v ·∇c)=∇ · F. (12)

Our conservative numerical scheme is based on Equations (6), (7), (9), and (11).
In Ref. [28] we discussed the effect of the low Mach constraint on the thermal

fluctuations, suitable boundary conditions for the low Mach equations, and presented
a gauge formulation of the equations that formally eliminates pressure in a manner
similar to the projection operator formulation for incompressible flows. Importantly,
the gauge formulation demonstrates that although the low Mach equations have the
appearance of a constrained system, one can write them in an unconstrained form
by introducing a gauge degree of freedom for the pressure. For the purposes of
time integration, one can therefore treat these equations as standard initial-value
problems [28] and use the temporal integrators developed in Ref. [24].

A. Linearized low Mach fluctuating hydrodynamics. It is important to note that
the equations of fluctuating hydrodynamics should be interpreted as a mesoscopic
coarse-grained representation of the mass, momentum and energy transport in fluids
[45]. As such, these equations implicitly contain a mesoscopic coarse-graining
length and time scale that is larger than molecular scales [33] and can only formally
be written as stochastic partial differential equations (SPDEs). A coarse-graining
scale can explicitly be included in the SPDEs [27; 29]; such a coarse-graining scale
explicitly enters in our finite-volume spatiotemporal discretization through the grid
spacing (equivalently, the volume of a grid cell, or more precisely, the number of
molecules per grid cell). Additional difficulties are posed by the fact that in general
the noise in the nonlinear equations is multiplicative, requiring a careful stochastic
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interpretation; the Mori–Zwanzig projection formalism [34] suggests the correct
stochastic interpretation is the kinetic one [36].

For compressible and incompressible flows, the SPDEs of linearized fluctuating
hydrodynamics (LFHD) [22] can be given a precise continuum meaning [20; 30;
23; 24]. In these linearized equations one splits each variable into a deterministic
component and small fluctuations around the deterministic solution, e.g., c(r, t)=
c̄(r, t)+ δc(r, t), where c̄ is a solution of the deterministic equations (6), (7), (9)
and (11), with 9 = 0 and 6 = 0. Here δc is the solution of a linear additive-noise
equation obtained by linearizing (12) to first order in the fluctuations and evaluating
the noise amplitude at the deterministic solution; more precisely, LFHD is an
expression of the central limit theorem in the limit of weak noise. In this work, in
the stochastic setting we restrict our attention to LFHD equations. As discussed in
Ref. [24], we do not need to write down the (rather tedious) complete form of the
linearized low Mach number equations (for an illustration, see the next subsection)
since the numerical method will perform this linearization automatically. Namely,
the complete nonlinear equations are essentially equivalent to the LFHD equations
when the noise is sufficiently weak, i.e., when the hydrodynamic cells contain many
molecules.

The low Mach number equations pose additional difficulties because they rep-
resent a coarse-graining of the dynamics not just in space but also in time. As
such, even the linearized equations cannot directly be interpreted as describing a
standard diffusion process. This is because the stochastic mass flux 9 in the EOS
constraint (9) makes the velocity formally white-in-time [28]. We note, however,
that the analysis in Ref. [27] shows that there is a close connection between mass
diffusion and advection by the thermally fluctuating velocity field, and thus between
9 and velocity fluctuations. This suggests that a precise interpretation of the low
Mach constraint in the presence of stochastic mass fluxes requires a very delicate
mathematical analysis. In this work we rely on the implicit coarse-graining in
time provided by the finite time step size in the temporal integration schemes to
regularize the low Mach equations [28]. Furthermore, for the applications we study
here, we can neglect stochastic mass fluxes and assume 9 ≈ 0, in which case the
difficulties related to a white-in-time velocity disappear.

B. Overdamped limit. At small scales, flows in liquids are viscous-dominated and
the inertial momentum flux ρvvT can often be neglected in a zero Reynolds number
approximation. In addition, in liquids, there is a large separation of time scales
between the fast momentum diffusion and slow mass diffusion, i.e., the Schmidt
number Sc= η/(ρχ) is large. This makes the relaxation times of velocity modes
at sufficiently large wavenumbers much smaller than those of the concentration
modes. Formally treating the stochastic force terms as smooth for the moment,
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the separation of time scales implies that we can replace the inertial momentum
equation (6) with the overdamped steady-Stokes equation

−∇ · (η∇v)+∇π =∇ ·6+ ρg,

∇ · v =−(ρ̄−1
2 − ρ̄

−1
1 )∇ · (χρ∇c+9). (13)

The above equations can be used to eliminate velocity as a variable, leaving only
the concentration equation (12). Note that the density equation (11) simply defines
density as a function of concentration and thus is not considered an independent
equation.

The solution of the Stokes system

−∇ · (η∇v)+∇π = f ,

∇ · v =−h, (14)

where f (r, t) and h(r, t) are applied forcing terms, can be expressed in terms of a
generalized inverse Stokes linear operator1 L−1

[η( · , t)] that is a functional of the
viscosity (and thus the concentration),

v =L−1
[η]( f , h).

In the linearized fluctuating equations, one must linearize around the (time
dependent) solution of the deterministic nonlinear equation

ρ̄(∂t c̄+ v̄ ·∇c̄)=∇ · (ρ̄χ̄∇c̄), (15)

where we have used the shorthand notation ρ̄ = ρ(c̄), η̄ = η(c̄), χ̄ = χ(c̄). Here
the velocity is an implicit function of concentration defined via

−∇ · (η̄∇v)+∇π̄ = ρ̄g

∇ · v̄ =−(ρ̄−1
2 − ρ̄

−1
1 )∇ · (χ̄ ρ̄∇c̄),

which we can write in shorthand notation as

v̄ =L−1
[η̄]
(
ρ̄g, (ρ̄−1

2 − ρ̄
−1
1 )∇ · (χ̄ ρ̄∇c̄)

)
. (16)

Here we develop second-order integrators for the deterministic overdamped low
Mach equation (15)+(16).

In the stochastic setting, the solution of (13) is white in time because the stochastic
mass and momentum fluxes are white in time. This means that the advective term v ·

∇c requires a specific stochastic interpretation, in addition to the usual regularization
(smoothing) in space required to interpret all nonlinear terms appearing in formal
fluctuating hydrodynamics SPDEs. By performing a precise (albeit formal) adiabatic

1More generally, in the presence of inhomogeneous boundary conditions, the solution operator for
(14) is an affine rather than a linear operator.
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mode elimination of the fast velocity variable under the assumption of infinite
separation of time scales, Donev et al. arrive at a Stratonovich interpretation of the
random advection term v ·∇c (see Appendix A of Ref. [27]). This analysis does
not, however, directly extend to the low Mach number equations since it relies in
key ways on the incompressibility of the fluid. Generalizing this sort of analysis
to the case of variable fluid density is nontrivial, likely requiring the use of the
gauge formulation of the low Mach equations, and appears to be beyond the scope
of existing techniques. Variable (i.e., concentration-dependent) viscosity and mass
diffusion coefficients can be handled using existing techniques although there are
subtle nonlinear stochastic effects arising from the fact that the noise in the velocity
equation is multiplicative and the invariant measure (equilibrium distribution) of
the fast velocity depends on the slow concentration.

In the linearized setting, however, the difficulties associated with the interpretation
of stochastic integrals and multiplicative noise disappear. The complete form of the
linearized equations contains many terms and is rather tedious. Since we will never
need to explicitly write this form let us illustrate the procedure by assuming χ and
η to be constant. For the concentration, we obtain the linearized equation

ρ̄(∂t(δc)+ (δv) ·∇c̄)=∇ ·
(
ρ̄χ∇(δc)+ ρ̄ ′χ(∇c̄)δc

)
− ρ̄−1ρ̄ ′∇ · (ρ̄χ∇c̄)δc, (17)

where ρ̄ ′ = dρ(c̄)/dc = ρ̄β(ρ̄) relates concentration fluctuations to density fluc-
tuations via the EOS. Here we split δv = δvc + δv f into a component δvc that is
continuous in time and a component δv f that is white in time,

δvc =L−1
[η̄]
(
ρ̄ ′gδc, (ρ̄−1

2 − ρ̄
−1
1 )∇ · (ρ̄χ∇(δc))

)
,

δv f =L−1
[η̄](∇ ·6, ∇ ·9).

The term ρ̄(δv f ) ·∇c̄ in (17) is interpreted as an additive noise term with a rather
complicated and potentially time-dependent (via η̄(c̄(r, t))) spatial correlation
structure. In this work we develop numerical methods that solve the overdamped
linearized Equation (17) to second-order weakly [24].

III. Spatiotemporal discretization

Our baseline spatiotemporal discretization of the low Mach equations is based on the
method of lines approach where we first discretize the (S)PDEs in space to obtain a
system of (S)ODEs, which we then solve using a single-step multistage temporal
integrator. The conservative finite-volume spatial discretization that we employ here
is essentially identical to that developed in our previous works, Refs. [28; 13]. In
summary, scalar fields such as concentration and densities are cell-centered, while
velocity is face-centered. In order to ensure conservation, the conserved momentum
ρv and mass densities ρ1 and ρ are evolved rather than the primitive variables v
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and c. Diffusion of mass and momentum is discretized using standard centered
differences, leading to compact stencils similar to the standard Laplacian. Stochastic
mass fluxes are associated with the faces of the regular grid, while for stochastic
momentum fluxes we associate the diagonal elements with the cell centers and the
off-diagonal elements with the nodes (in 2D) or edges (in 3D) of a regular grid with
grid spacing 1x .

Here we focus our discussion on three new aspects of our spatiotemporal
discretization. After summarizing the dimensionless numbers that control the
appropriate choice of advection method and temporal integrator, in Section B we
describe our implementation of two advection schemes and a discussion of the
advantages of each. In Section C we describe our implicit treatment of viscous
dissipation using a GMRES solver for the coupled velocity-pressure Stokes system.
In Section D we describe our overall temporal discretization strategies for the
inertial and overdamped regimes.

A. Dimensionless numbers. The suitability of a particular temporal integrator or
advection scheme depends on the following dimensionless numbers:

cell Reynolds number Rec =
U1x
ν

,

cell Péclet number Pec =
U1x
χ

,

Schmidt number Sc= ν

χ
=

Pe
Re
,

where ν = η/ρ is the kinematic viscosity. Observe that the first two depend on the
spatial resolution and the typical flow speed U , while the Schmidt number is an
intrinsic material property of the mixture. Also note that the physically relevant
Reynolds Re and Péclet Pe numbers would be defined with a length scale much
larger than 1x , such as the system size, and thus would be much larger than the
discretization-scale numbers above. In this work, we are primarily interested in
small-scale flows with Rec . 1 and large Sc (liquid mixtures).

The choice of advection scheme for concentration (partial densities) is dictated by
Pec. If Pec & 2, centered advection schemes will generate nonphysical oscillations,
and one must use the Godunov advection scheme described below. However, it is
important to note that in this case the spectrum of fluctuations will not be correctly
preserved by the advection scheme; if fluctuations need to be resolved it is advisable
to instead reduce the grid spacing and thus reduce the cell Péclet number to Pec . 2
and use centered advection.

The choice of the temporal integrator, on the other hand, is determined by the
importance of inertia and the time scale of interest. If Rec is not sufficiently small,
then there is no alternative to resolving the inertial dynamics of the velocity. Now
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let us assume that Re� 1, i.e., viscosity is dominant. If the time scale of interest is
the advective timescale L/U , where L is the system size, then one should use the
inertial equations. However, the inertial temporal integrator described in Section
III D will be rather inefficient if the time scale of interest is the diffusive time scale
L2/χ , as is the case in the study of diffusive mixing presented in Section V. This
is because the Crank–Nicolson (implicit midpoint) scheme used to treat viscosity
in our methods is only A-stable, and, therefore, if the viscous Courant number
ν1t/1x2 is too large, unphysical oscillations in the solution will appear (note
that this problem is much more serious for fluctuating hydrodynamics due to the
presence of fluctuations at all scales). In order to be able to use a time step size on
the diffusive time scale, one must construct a stiffly accurate temporal integrator.
This requires using an L-stable scheme to treat viscosity, such as the backward
Euler scheme, which is however only first-order accurate.

Constructing a second-order stiffly accurate implicit-explicit integrator in the
context of variable density low Mach flows is rather nontrivial. Furthermore,
using an L-stable scheme leads to a damping of the velocity fluctuations at large
wavenumbers and is inferior to the implicit midpoint scheme in the context of
fluctuating hydrodynamics [23]. Therefore, in this work we choose to consider
separately the overdamped limit Re→ 0 and Sc→∞ (note that the value of Pe
is arbitrary). In this limit we analytically eliminate the velocity as an independent
variable, leaving only the concentration equation, which evolves on the diffusive
time scale. We must emphasize, however, that the overdamped equations should be
used with caution, especially in the presence of fluctuations. Notably, the validity of
the overdamped approximation requires that the separation of time scales between
the fast velocity and slow concentration be uniformly large over all wavenumbers,
since fluctuations are present at all length scales. In the study of giant fluctuations
we present in Section V, buoyancy effects speed up the dynamics of large-scale
concentration fluctuations and using the overdamped limit would produce physically
incorrect results at small wavenumbers. In microgravity, however, the overdamped
limit is valid and we have used it to study giant fluctuations over very long time
scales in a number of separate works [14; 27].

B. Advection. We have implemented two advection schemes for cell-centered
scalar fields, and describe under what conditions each is more suitable. The first is
a simpler nondissipative centered advection discretization described in our previous
work [28]. This scheme preserves the skew-adjoint nature of advection and thus
maintains fluctuation-dissipation balance in the stochastic context. However, when
sharp gradients are present, centered advection schemes require a sufficient amount
of dissipation (diffusion) in order to avoid the appearance of Gibbs-phenomenon
instabilities. Higher-order Godunov schemes have been used successfully with
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cell-centered finite volume schemes for some time [8; 9; 41; 44]. In these semi-
Lagrangian advection schemes, a construction based on characteristics is used to
estimate the average value of the advected quantity passing through each cell face
during a time step. These averages are then used to evaluate the advective fluxes.
Our second scheme for advection is the higher-order Godunov approach of Bell,
Dawson, and Shubin (BDS) [9]. Additional details of this approach are provided in
the next subsection.

The BDS scheme can only be used to advect cell-centered scalar fields such
as densities. This is because the scheme operates on control volumes, and there-
fore applying it to staggered fields requires the use of disjoint control volumes,
thereby greatly complicating the advection procedure for non-cell-centered data.
We therefore limit ourselves to using the skew-adjoint centered advection scheme
described in Refs. [6; 23] to advect momentum. Although some Godunov schemes
for advecting a staggered momentum field have been developed [53; 35], they are
not at the same level of sophistication as those for cell-centered scalar fields. For
example, in Ref. [53] a piecewise constant reconstruction is used, and in Ref. [35]
extrapolation is performed in space only, and not in time. In our target applications,
there is sufficient viscous dissipation to stabilize centered advection of momentum
(note that the mass diffusion coefficient is several orders of magnitude smaller than
the kinematic viscosity in typical liquids).

The BDS advection scheme is not skew-adjoint and thus adds some dissipation in
regions of sharp gradients that are not resolved by the underlying grid. Thus, unlike
the case of using centered advection, the spatially discrete (but still continuous
in time) fluctuating equations do not obey a strict discrete fluctuation-dissipation
principle [30; 23]. Nevertheless, in high-resolution schemes such as BDS artificial
dissipation is added locally in regions where centered advection would have failed
completely due to insufficient spatial resolution. Furthermore, the BDS scheme
offers many advantages in the deterministic context and allows us to simulate high
Péclet number flows with little to no mass diffusion. For well-resolved flows with
sufficient dissipation there is little difference between BDS and centered advection.
Note that both advection schemes are spatially second-order accurate for smooth
flows.

1. BDS advection. Simple advection schemes, such as the centered scheme de-
scribed in our previous work [28], directly computes the divergence of the advective
flux f = φv evaluated at a specific point in time, where φ is a cell-centered quantity
such as density, and v is a specified face-centered velocity. By contrast, the BDS
scheme uses the multidimensional characteristic geometry of the advection equation

∂φ

∂t
+∇ · (φv)= q, (18)
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to estimate time-averaged fluxes through cell faces over a time interval 1t , given
φn , as well as a face-centered velocity field v and a cell-centered source q that
are assumed constant over the time interval. In actual temporal discretizations
v ≈ v(tn+1/2) ≈ v(tn

+1t/2) is a midpoint (second-order) approximation of the
velocity over the time step. Similarly, q≈q(tn+1/2) will be a centered approximation
of the divergence of the diffusive and stochastic fluxes over the time step. In the
description of our temporal integrators, we will use the shorthand notation BDS
to denote the approximation to the advective fluxes used in the BDS scheme for
solving (18),

φn+1
= φn

−1t ∇ · (BDS(φn, v, q, 1t))+1t q.

BDS is a conservative scheme based on computing time-averaged advective fluxes
through every face of the computational grid, for example, in two dimensions,

BDSi+1/2, j = fi+1/2, j = φi+1/2, jvi+1/2, j ,

where vi+1/2, j is the given normal velocity at the face, and φi+1/2, j represents the
space-time average of φ passing through face-(i + 1/2, j) in the time interval 1t .
The extrapolated face-centered states φi+1/2, j are computed by first reconstructing
a piecewise continuous profile of φ(r, t) in every cell that can, optionally, be
limited based on monotonicity considerations. The multidimensional characteristic
geometry of the flow in space-time is then used to estimate the time-averaged flux;
see the original papers [9; 41; 44] for a detailed description. In the original advection
BDS schemes in two dimensions [9] and three dimensions [44], a piecewise-bilinear
(in two dimensions) or trilinear (in three dimensions) reconstruction of φ was
used. Subsequently, the schemes were extended to a quadratic reconstruction in
two dimensions [41]. Note that handling boundary conditions in BDS properly
requires additional investigations, and the construction of specialized one-sided
reconstruction stencils near boundaries. In our implementation we rely on cubic
extrapolation based on interior cells and the specified boundary condition (Dirichlet
or Neumann) to fill ghost cell values behind physical boundaries, and then apply
the BDS procedure to the interior cells using the extrapolated ghost cell values.

BDS advection, as described in [9; 41; 44], does not strictly preserve the EOS
constraint, unlike centered advection. The characteristic extrapolation of densities
to space-time midpoint values on the faces of the grid, (ρ1)i+1/2, j and ρi+1/2, j , are
not necessarily consistent with the EOS, unlike centered advection where they are
simple averages of values from neighboring cells, and thus guaranteed to obey the
EOS by linearity. A simple fix that makes BDS preserve the EOS, without affecting
its formal order of accuracy, is to enforce the EOS on each face by projecting the
extrapolated values (ρ1)i+1/2, j and ρi+1/2, j onto the EOS. In the L2 sense, such a
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projection consists of the update

(ρ1)i+1/2, j ←
ρ̄2

1

ρ̄2
1 + ρ̄

2
2
(ρ1)i+1/2, j −

ρ̄1ρ̄2

ρ̄2
1 + ρ̄

2
2
(ρ2)i+1/2, j ,

and similarly for ρ2, or equivalently, ρ = ρ1+ ρ2. Note that this projection is done
on each face only for the purposes of computing advective fluxes and is distinct
from any projection onto the EOS performed globally.

C. GMRES solver. The temporal discretization described in our previous work
[28] was fully explicit, whereas the discretization we employ here is implicit in the
viscous dissipation. The implicit treatment of viscosity is traditionally handled by
time-splitting approaches, in which a velocity system is solved first, without strictly
enforcing the constraint. The solution is then projected onto the space of vector
fields satisfying the constraint [16]. This type of time-splitting introduces several
artifacts, especially for viscous-dominated flows; here we avoid time-splitting by
solving a combined velocity-pressure Stokes linear system, as discussed in detail in
Ref. [13].

The implicit treatment of viscosity in the temporal integrators described in Section
III D requires solving discretized unsteady Stokes equations for a velocity v and a
pressure π ,

θρv−∇ · (η∇v)+∇π = f,

∇ · v = h,

for given spatially varying density ρ and viscosity η, right-hand sides f and h,
and a coefficient θ ≥ 0. We solve these linear systems using a GMRES Krylov
solver preconditioned by the multigrid-based preconditioners described in detail in
Ref. [13]. This approach requires only standard velocity (Helmholtz) and pressure
(Poisson) multigrid solvers, and requires about two to three times more multigrid
iterations than solving an uncoupled pair of velocity and pressure subproblems (as
required in projection-based splitting methods).

There are two issues that arise with the Stokes solver in the context of temporal in-
tegration that need special care. In fluctuating hydrodynamics, typically the average
flow v̄ changes slowly and is much larger in magnitude than the fluctuations around
the flow δv. In the predictor stages of our temporal integrators the convergence
criterion in the GMRES solver is based on relative tolerance. Because the right-hand
side of the linear system and the residual are dominated by the deterministic flow,
it is hard to determine when the fluctuating component of the flow has converged
to the desired relative accuracy. In the corrector stage of our predictor-corrector
schemes, we use the predicted state as a reference, and switch to using absolute error
as the convergence criterion in GMRES, using the same residual error tolerance
as was used in the predictor stage. This ensures that the corrector stage GMRES
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converges quickly if the predicted state is already a sufficiently accurate solution of
the Stokes system. Another issue that has to be handled carefully is the imposition
of inhomogeneous boundary conditions, which leads to a linear system of the form

Axnew
+ bBC = b,

where bBC comes from nonhomogeneous boundary conditions. Both of these
problems are solved by using a residual correction technique to convert the Stokes
linear system into one for the change in the velocity and pressure 1x = xnew

− x̄old

relative to an initial guess or reference state x̄old, which is typically the last known
velocity and pressure, except that the desired inhomogeneous boundary conditions
are imposed; this ensures that boundary terms vanish and the Stokes problem for1x
is in homogeneous form. Note that any Dirichlet boundary conditions for the normal
component of velocity should be consistent with h, and any Dirichlet boundary
conditions for the tangential component of the velocity should be evaluated at the
same point in time (e.g., beginning, midpoint, or endpoint of the time step) as h.

D. Temporal discretization. In this section we construct temporal integrators for
the spatially discretized low Mach number equations, in which we treat viscosity
semi-implicitly. For our target applications, the Reynolds number is sufficiently
small and the Schmidt number is sufficiently large that an explicit viscosity treatment
would lead to an overall viscous time step restriction,

η1t
1x2 <

1
2d
,

We present temporal integrators in which we avoid fractional time stepping and
ensure strict (to within solver and roundoff tolerances) conservation and preservation
of the EOS constraint. The key feature of the algorithms developed here is the
implicit treatment of viscous dissipation, without, however, using splitting between
the velocity and pressure updates, as discussed at more length in the introduction.
The feasibility of this approach relies an efficient solver for Stokes systems on a
staggered grid [13]; see also Section III C for additional details.

In the temporal integrators developed here, we treat advection explicitly, which
limits the advective Courant number to

vmax1t
1x

< C ∼ 1.

Mass diffusion is also treated explicitly since it is typically much slower than
momentum diffusion and in many examples also slower than advection. Explicit
treatment of mass diffusion leads to an additional stability limit on the time step
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since the diffusive Courant number must be sufficiently small,

χ1t
1x2 <

1
2d
,

where d is the number of spatial dimensions and 1x is the grid spacing. Implicit
treatment of mass diffusion is straightforward for incompressible flows, see Algo-
rithm 2 in Ref. [24], but is much harder for the low Mach number equations due
to the need to maintain the EOS constraint (3) via the constraint (9). Even with
explicit mass diffusion, provided that the Reynolds is sufficiently small and the
Schmidt number is sufficiently large, a semi-implicit viscosity treatment results in
a much larger allowable time step.

1. Predictor-corrector time stepping schemes. In Algorithm 1 we give the steps
involved in advancing the solution from time level n by a time interval 1t to time
level n+1, using a semi-implicit trapezoidal temporal integrator [24] for the inertial
fluctuating low Mach number equations (6), (7), (9) and (11). In Algorithm 2 we
give an explicit midpoint temporal integrator [24] for the overdamped low Mach
number equations (7), (11) and (13).

In order to ensure strict conservation of mass and momentum, we evolve the
momentum density m=ρv and the mass densities ρ1 and ρ (an equally valid choice
is to evolve ρ1 and ρ2). Whenever required, the primitive variables v = m/ρ and
c = ρ1/ρ are computed from the conserved quantities. Unlike the incompressible
equations, the low Mach number equations require the enforcement of the EOS
constraint (3) at every update of the mass densities ρ1 and ρ, notably, both in the
predictor and the corrector stages. This requires that the right-hand side of the
velocity constraint (9) be consistent with the corresponding diffusive fluxes used
to update ρ1. In order to preserve the EOS and also maintain strict conservation,
Algorithms 1 and 2 use a splitting approach, in which we first update the mass
densities and then we update the velocity using the updated values for the density
ρ and the diffusive fluxes that will be used to update ρ1. Note, however, that after
many time steps the small errors in enforcing the EOS due to roundoff and solver
tolerances can accumulate and lead to a systematic drift from the EOS. This can be
corrected by periodically projecting the solution back onto the EOS using an L2

projection, see Section III.C in Ref. [28].
In our presentation of the temporal integrators, we use superscripts to denote

where a given quantity is evaluated, for example, ηp,n+1
≡ η(cp,n+1). Even though

we use continuum notation for the divergence, gradient and Laplacian operators,
it is implicitly understood that the equations have been discretized in space. The
white-noise random tensor fields W(r, t) and W̃(r, t) are represented via one or
two collections of i.i.d. uncorrelated normal random variables W and W̃ , generated
independently at each time step, as indicated by superscripts and subscripts [23;
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24]. Spatial discretization adds an additional factor of 1V−1/2 due to the delta
function correlation of white-noise, where 1V is the volume of a grid cell [23].
For simplicity of notation we set W =W +W T .

Several variants of the inertial Algorithm 1 preserve deterministic second-order
accuracy. For example, in the corrector stage for ρ1, for centered advection we use
a trapezoidal approximation to the advective flux,

1
2(ρ1v)

n
+

1
2(ρ1v)

?,n+1, (19)

but we could have also used a midpoint approximation(
ρn

1 + ρ
?,n+1
1

2

)(
vn
+ v?,n+1

2

)
. (20)

without affecting the second-order weak accuracy [24]. Note that BDS advection
by construction requires a midpoint approximation to the advective velocity; no
analysis of the order of stochastic accuracy is available for BDS advection at present.
In the corrector step for velocity, in Algorithm 1 we use corrected values for the
viscosity, but one can also use the values from the predictor η∗,n+1.

2. Order of accuracy. For explicit temporal integrators, we relied on a gauge
formulation to write the low Mach equations in the form of a standard unconstrained
initial-value problem, thus allowing us to use standard integrators for ODEs [28].
In the semi-implicit case, however, we do not use a gauge formulation because the
Stokes solver we use works directly with the pressure and velocity. This makes
proving second-order temporal accuracy nontrivial even in the deterministic context;
we therefore rely on empirical convergence testing to confirm the second-order
deterministic accuracy.

In the stochastic context, there is presently no available theoretical analysis when
BDS advection is employed; existing analysis [30; 23; 24] assumes a method of lines
(MOL) discretization in which space is discretized first to obtain a system of SODEs.
For centered advection, which does lead to an MOL discretization, the algorithms
used here are based on the second-order weak temporal integrators developed in
Ref. [24]. In particular, for the case of the inertial equations (6), (7), (9) and (11),
we base our temporal integrator on an implicit trapezoidal method. It should be
emphasized however that the analysis in Ref. [24] applies to unconstrained Langevin
systems, while the low Mach equations are constrained by the EOS. Nevertheless,
the deterministic accuracy of the method is crucial even when fluctuations are of
primary interest, because in linearized fluctuating hydrodynamics the fluctuations
are linearized around the solution of the deterministic equations, which must itself
be computed numerically accurately [24] in order to have any chance of computing
the fluctuations accurately. For the case of the overdamped equations (7), (11)
and (13), we base our temporal integrator on an implicit midpoint method. In
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1. Compute the diffusive / stochastic fluxes for the predictor. Note that these can be obtained
from step 5. of the previous time step,

Fn
= (ρχ∇c)n +

√
2(χρµ−1

c )nkB T
1t 1V

W̃ n.

2. Take a predictor forward Euler step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρ
?,n+1
1 = ρn

1 +1t ∇ · Fn
−1t ∇ ·

{
BDS(ρn

1 , vn, ∇ · Fn, 1t) for BDS,
ρn

1 vn for centered.

3. Compute c?,n+1
= ρ

?,n+1
1 /ρ?,n+1 and calculate corrector diffusive fluxes and stochastic

fluxes,

F?,n+1
= (ρχ∇c)?,n+1

+

√
2(χρµ−1

c )?,n+1kB T
1t 1V

W̃ n.

4. Take a predictor Crank–Nicolson step for the velocity, using vn as a reference state for
the residual correction form of the Stokes system,

ρ?,n+1v?,n+1
− ρnvn

1t
+∇π ?,n+1

=∇· (−ρvv)n + ρn g+ 1
2∇· (ηn

∇vn
+ η?,n+1

∇v?,n+1)+∇·

(√
ηnkB T
1t 1V

W n
)
,

∇· v?,n+1
=−∇ · (βρ−1 F?,n+1).

Take a corrector step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρn+1
1 = ρn

1 +
1t
2

∇ ·F?,n+1/2−1t ∇ ·

{
BDS(ρn

1 , v?,n+
1/2, ∇ · F?,n+1/2, 1t) for BDS,

1
2 (ρ1v)

n
+

1
2 (ρ1v)

?,n+1 for centered,

where F?,n+1/2 = (Fn
+ F?,n+1)/2 and v?,n+

1/2 = (vn
+ v?,n+1)/2.

5. Compute cn+1
= ρn+1

1 /ρn+1 and compute

Fn+1
= (ρχ∇c)n+1

+

√
2(χρµ−1

c )n+1kB T
1t 1V

W̃ n+1.

6. Take a corrector step for velocity by solving the Stokes system, using v?,n+1 as a reference
state,

ρn+1vn+1
− ρnvn

1t
+∇πn+1/2

=
1
2∇ · ((−ρvv)n + (−ρvv)?,n+1)+ 1

2 (ρ
n
+ ρn+1)g+ 1

2∇ · (ηn
∇vn
+ ηn+1

∇vn+1)

+
1
2
∇ ·

[(√
ηnkB T
1t 1V

+

√
ηn+1kB T
1t 1V

)
W n

]
,

∇ · vn+1
=−∇ · (βρ−1 Fn+1).

Algorithm 1. Semi-implicit trapezoidal temporal integrator for the inertial fluctuating low
Mach number equations (6), (7), (9) and (11).
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1. Calculate predictor diffusive fluxes and generate stochastic fluxes for a half step to the
midpoint,

Fn
= (ρχ∇c)n +

√
2(χρµ−1

c )nkB T
(1t/2)1V

W̃ n
A.

2. Generate a random advection velocity by solving the steady Stokes equation with random
forcing,

∇πn
=∇ · (ηn

∇vn)+∇ ·

(√
ηnkB T

(1t/2)1V
W n

A

)
+ ρn g

∇ · vn
=−∇ · (βρ−1 Fn).

3. Take a predictor midpoint Euler step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρ
?,n+1/2
1 = ρn

1 +
1t
2

∇ · Fn
−
1t
2

∇ ·

{
BDS(ρn

1 , vn, ∇ · Fn, 1t
2 ) for BDS,

ρn
1 vn for centered,

and compute c?,n+1/2 = ρ
?,n+1/2
1 /ρ?,n+

1/2.

4. Calculate corrector diffusive fluxes and generate stochastic fluxes,

F?,n+1/2 = (ρχ∇c)?,n+
1/2+

√
2(χρµ−1

c )?,n+
1/2kB T

1t 1V

(
W̃ n

A+ W̃ n
B

√
2

)
,

where W̃ n
B is a collection of random numbers generated independently of W̃ n

A.

5. Solve the corrected steady Stokes equation

∇π ?,n+
1/2 =∇ · (η?,n+

1/2∇v?,n+
1/2)+∇ ·

[√
η?,n+

1/2kB T
1t 1V

(
W n

A+W n
B

√
2

)]
+ ρ?,n+

1/2 g

∇ · v?,n+
1/2 =−∇ · (βρ−1 F?,n+1/2).

6. Correct ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρn+1
1 = ρn

1 +1t ∇ · F?,n+1/2−1t ∇ ·

{
BDS(ρn

1 , v?,n+
1/2, ∇ · F?,n+1/2, 1t) for BDS,

(ρv)?,n+
1/2 for centered,

and set cn+1
= ρn+1

1 /ρn+1.

Algorithm 2. A time step of our implicit midpoint temporal integrator for the overdamped
equations (7), (11) and (13).

this case the analysis presented in Ref. [24] does apply since the velocity is not a
variable in the overdamped equations and the limiting equation for concentration is
unconstrained. This analysis indicates that the overdamped temporal integrator in
Algorithm 2 is second-order weakly accurate for the linearized overdamped low
Mach number equations.
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IV. Validation and testing

In this section we apply the inertial and overdamped low Mach algorithms described
in Section III in a stochastic and several deterministic contexts. First, we demonstrate
our ability to accurately model equilibrium fluctuations by analyzing the static
spectrum of the fluctuations. Next, we confirm the second-order deterministic order
of accuracy of our methods on a low Mach number lid-driven cavity test. Next,
we confirm that the BDS advection scheme enables robust simulation in cases
when there is little or no mass diffusion (i.e., nearly infinite Péclet number). Lastly,
we use the inertial algorithm to simulate the development of a Kelvin–Helmholtz
instability when a lighter less viscous fluid is impulsively set in motion on top of a
heavier more viscous fluid.

A. Equilibrium fluctuations. One of the key quantities used to characterize the
intensity of equilibrium thermal fluctuations is the static structure factor or static
spectrum of the fluctuations at thermodynamic equilibrium. We examine the static
structure factors in both the inertial and overdamped regimes. We use arbitrary
units with T = 1, kB = 1, molecular masses m1 = 1, m2 = 2, and pure component
densities ρ̄1 = 2/3, ρ̄2 = 2. We initialize the domain with c = 0.5, which gives
ρ = 1. The diffusion coefficient was constantχ = 1, whereas the viscosity varies
linearly from η = 1 to η = 10 (for the inertial tests), and from η = 1 to η = 100
(for the overdamped tests) as c varies from 0 to 1, but note that at equilibrium the
concentration fluctuations are small so the viscosity varies little over the domain.
We assume an ideal mixture, giving chemical potential µ−1

c kB T = c(1 − c)×
[cm2+ (1−c)m1] (see Refs. [28; 10]). At these conditions, the equilibrium density
variance is 1V 〈(δρ)2〉 = Sρ = 0.375, where 1V is the volume of a grid cell
(see Appendix A1 in Ref. [28]). We use a periodic system with 32 × 32 grid
cells with 1x = 1y = 1, with the thickness in the third direction set to give a
large 1V = 106 and thus small fluctuations, ensuring consistency with linearized
fluctuating hydrodynamics. A total of 105 time steps are skipped in the beginning to
allow equilibration of the system, and statistics are then collected for an additional
106 steps. We run both the inertial and overdamped algorithms using three different
time steps, 1t = 0.1, 0.05, and 0.025, the largest of which corresponds to 40% of
the maximum allowable time step by the explicit mass diffusion CFL condition.

In Table 1 we observe that as we reduce the time step by a factor of two, we see
a reduction in error in the average value of Sρ over all wavenumbers by a factor
of ∼4 (second-order convergence) for the inertial algorithm, and a factor of ∼8
(third-order convergence) for the overdamped algorithm (the latter being consistent
with the fact that the explicit midpoint method is third-order accurate for static
covariances [23]). In Figure 1 we show the spectrum of density fluctuations at
equilibrium for three different time step sizes. At thermodynamic equilibrium, the



184 ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

1t Sρ |Error| Order

Inertial 0.1 0.3201 0.0549
0.05 0.3624 0.0126 2.12
0.025 0.3722 0.0029 2.14

Overdamped 0.1 0.4192 0.0442
0.05 0.3786 0.0036 3.63
0.025 0.3755 0.0005 2.92

Table 1. Equilibrium static structure factor Sρ averaged over all wavevectors for the iner-
tial and overdamped algorithms using three different time steps. The exact solution from
theory is Sρ = 0.375, allowing us to estimate an order of accuracy from the average error
over all wavenumbers. Note that there are significant statistical errors present, especially
at small wavenumbers, and these make it difficult to reliably estimate the asymptotic order
of accuracy empirically when the error is very small (as for the overdamped integrator).

Figure 1. Equilibrium static structure factor Sρ as a function of wavevector (zero being at
the center of the figures) for the overdamped simulations with 1t = 0.1 (left), 1t = 0.05
(middle), and 1t = 0.025 (right). The correct result, which is recovered in the limit
1t→ 0, is Sρ = 0.375. The artifacts decrease by roughly a factor of 8 as the time step is
reduced in half.

static structure factors are independent of the wavenumber due to the local nature
of the correlations. Since we include mass diffusion using an explicit temporal
integrator, for larger time steps we expect to see additional deviation from a flat
spectrum at the largest wavenumbers (i.e., for k ∼1x−1) [30; 23]. In the limit of
sufficiently small time steps, we recover the correct flat spectrum, demonstrating
that our model and numerical scheme obey a fluctuation-dissipation principle.

B. Deterministic lid-driven cavity convergence test. In this section, we simulate
a smooth test problem and empirically confirm deterministic second-order accuracy
of Algorithms 1 and 2 even in the presence of boundary conditions, inertial effects,
and gravity, as well as nonconstant density, mass diffusion coefficient, and viscosity.
The problem is a deterministic lid-driven cavity flow, following previous work by
Boyce Griffith for incompressible constant-density and constant-viscosity flow [35].

We use CGS units (centimeters for length, seconds for time, grams for mass).
We consider a square (two dimensions) or cubic (three dimensions) domain with
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side of length L = 1 bounded on all sides by no-slip walls moving with a specified
velocity. The bottom and top walls (y-direction) are no-slip walls moving in equal
and opposite directions, setting up a circular flow pattern, while the remaining walls
are stationary. The top wall has a specified velocity given in two dimensions by

u(x, t)=

{
1
4

[
1+ sin

(
2πx − π

2

)][
1+ sin

(
2π t − π

2

)]
, t < 1

2 ,

1
2

[
1+ sin

(
2πx − π

2

)]
, t ≥ 1

2 ,
(21)

and in three dimensions by

u(x, z, t)= w(x, z, t)

=

{
1
8

[
1+ sin

(
2πx − π

2

)][
1+ sin

(
2π z− π

2

)][
1+ sin

(
2π t − π

2

)]
, t < 1

2 ,

1
4

[
1+ sin

(
2πx − π

2

)][
1+ sin

(
2π z− π

2

)]
, t ≥ 1

2 .
(22)

Note that the wall velocity tapers to zero at the corners in order to regularize the
corner singularities [35]; similarly, the velocity smoothly increases with time to its
final value in order to avoid potential loss of accuracy due to an impulsive start of
the flow. The two liquids have pure-component densities ρ̄1 = 2 and ρ̄2 = 1. The
initial conditions are v = 0 for velocity, and a Gaussian bump of higher density for
the concentration, c(r, t) = exp(−75r2), where r is the distance to the center of
the domain. The viscosity varies linearly as a function of concentration, such that
η= 0.1 when c= 0 and η= 1 when c= 1. Similarly, the mass diffusion coefficient
varies linearly as a function of concentration, such that χ = 10−4 when c = 0 and
χ = 10−3 when c = 1. In order to confirm that second-order accuracy is preserved
even in the limit of infinite Péclet number if BDS advection is employed, we also
perform simulations with χ = 0. Figure 2 illustrates the initial and final (at time
t = 2) configurations of concentration and velocity in two dimensions.

Figure 2. Initial (t = 0) and final (t = 2) concentration (scalar color field) and velocities
(vector field) for the low Mach number lid-driven cavity test problem.



186 ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

Recall that advection of the concentration can be treated using centered advection
or the BDS advection scheme (see Section III B 1). BDS advection can use either a
bilinear (trilinear in 3D) or a quadratic reconstruction (2D only), and can further
be limited to avoid the appearance of spurious local extrema. Here we present
convergence results for the following test problems:

• Test 1: Centered advection, nonzero χ

• Test 2: Unlimited bilinear BDS advection, nonzero χ

• Test 3: Unlimited quadratic BDS advection, nonzero χ

• Test 4: Unlimited bilinear BDS advection, χ = 0.

We perform Tests 1–4 using both the inertial Algorithm 1 and the overdamped
Algorithm 2. The Reynolds number in this test is of order unity and there is only a
small difference in the results for the inertial and overdamped equations. Recall
that concentration is the only independent variable in the overdamped equations.

In two dimensions, we discretize the problem on a grid of 642, 1282, 2562 or
5122 cells. The time step size for the coarsest simulation is 1t = 5× 10−3 and
it is halved as the resolution doubles. This corresponds to an advective Courant
number of vmax1t/1x ∼ 0.3 for each simulation. The diffusive Courant number is
χ1t/1x2

∼ 0.16 (recall that the stability limit is 1/4= 0.25 in two dimensions) for
the finest simulation, reducing by a factor of 2 with each successive grid coarsening.
We simulate the flow and compute error norms at time t = 2. In Table 2 we

refinement 64–128 order 128–256 order 256–512

Test 1: u 1.93× 10−3 1.91 5.12× 10−4 1.96 1.32× 10−4

v 8.69× 10−4 1.99 2.19× 10−4 2.00 5.49× 10−5

c 3.02× 10−4 1.99 7.60× 10−4 2.00 1.90× 10−4

Test 2: u 1.92× 10−3 1.91 5.11× 10−4 1.95 1.32× 10−4

v 9.08× 10−4 1.96 2.34× 10−4 1.99 5.91× 10−5

c 2.63× 10−3 1.72 7.99× 10−4 1.92 2.11× 10−4

Test 3: u 1.92× 10−3 1.91 5.11× 10−4 1.95 1.32× 10−4

v 8.62× 10−4 1.95 2.23× 10−4 1.98 5.64× 10−5

c 1.95× 10−3 1.99 4.91× 10−4 2.00 1.23× 10−4

Test 4: u 1.91× 10−3 1.92 5.06× 10−4 1.96 1.30× 10−4

v 9.78× 10−4 2.01 2.43× 10−4 2.02 6.00× 10−5

c 4.29× 10−3 1.90 1.15× 10−3 1.97 2.93× 10−4

Table 2. Convergence of errors in the L∞ norm for a two-dimensional inertial low Mach
lid-driven cavity problem as the grid is refined in space and time, for the components of
the velocity v = (u, v) and concentration c. The order of convergence is estimated from
the error ratio between two successive refinements.



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 187

refinement 64–128 order 128–256 order 256–512

Test 1: 3.57× 10−3 2.01 8.89× 10−4 2.00 2.22× 10−4

Test 2: 2.70× 10−3 1.78 7.87× 10−4 1.92 2.08× 10−4

Test 3: 1.95× 10−3 1.98 4.95× 10−4 1.89 1.34× 10−4

Test 4: 4.23× 10−3 1.93 1.11× 10−3 1.96 2.86× 10−4

Table 3. Convergence of errors in the L∞ norm for a two-dimensional overdamped low
Mach lid-driven cavity problem as the grid is refined in space and time, for concentration c.
The order of convergence is estimated from the error ratio between successive refinements.

present estimates of the order of convergence in the L∞ (max) norm for the velocity
components and concentration for the inertial equations. We see clear second-order
pointwise convergence, without any artifacts near the boundaries. Similar results
are obtained for the concentration in the overdamped limit, as shown in Table 3.

In three dimensions, we discretize the problem on a grid of 323, 643, 1283 or
2563 cells. The time step size for the coarsest simulation is 1t = 1.25× 10−2,
which corresponds to an advective Courant number of ∼ 0.4, and diffusive Courant
number of ∼ 0.10 (stability limit is 1/6≈ 0.17) for the finest resolution simulation.
We simulate the flow and compute error norms at time t = 1. We limit our study
here to inertial flow and only perform Tests 1 and 2 (note that there is presently
no available unlimited quadratic BDS advection scheme in three dimensions, so
test 3 cannot be performed). We also try a higher-order one-sided difference for the
tangential velocity at the no-slip boundaries, which does not affect the asymptotic
rate of convergence, but it can significantly reduce the magnitude of the errors, and
enables us to reach the asymptotic regime for smaller grid sizes [35]. The numerical
convergence results shown in Table 4 demonstrate the second-order deterministic
accuracy of our method in three dimensions.

C. Deterministic sharp interface limit. In this section we verify the ability of
the BDS advection scheme to advect concentration and density without creating
spurious oscillations or instabilities, even in the absence of mass diffusion, χ = 0,
and in the presence of sharp interfaces. The problem setup is similar to the inertial
lid-driven cavity test presented above, with the following differences. First, the
gravity is larger, g = (0,−5), so that the higher density region falls downward a
significant distance. Secondly, the initial conditions are a constant background of
c = 0 with a square region covering the central 25% of the domain initialized to
c = 1 (see the left panel of Figure 3). The correct solution of the equations must
remain a binary field, c = 1 inside the advected square curve, and c = 0 elsewhere.
In this test we employ limited quadratic BDS, and use a grid of 2562 cells and a
fixed time step size 1t = 2.5×10−3, corresponding to an advective CFL number of
∼ 0.6. In Figure 3, we show the concentration at several points in time, observing
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32–64 Rate 64–128 Rate 128–256

Test 1: u 7.66× 10−3 1.75 2.27× 10−3 1.88 6.16× 10−4

v 3.12× 10−3 1.96 8.02× 10−4 1.99 2.02× 10−4

w 7.66× 10−3 1.75 2.27× 10−3 1.88 6.16× 10−4

c 1.22× 10−2 2.00 3.06× 10−3 2.00 7.64× 10−4

Test 1: u 2.30× 10−3 1.97 5.88× 10−4 2.02 1.45× 10−4

with higher-order v 9.01× 10−4 2.23 1.92× 10−4 1.99 4.82× 10−5

boundary stencil w 2.30× 10−3 1.97 5.88× 10−4 2.02 1.45× 10−4

c 1.21× 10−2 1.99 3.05× 10−3 2.00 7.62× 10−4

Test 2: u 7.67× 10−3 1.75 2.28× 10−3 1.89 6.16× 10−4

v 3.11× 10−3 1.96 8.01× 10−4 1.99 2.02× 10−4

w 7.67× 10−3 1.75 2.28× 10−3 1.89 6.16× 10−4

c 9.79× 10−3 1.91 2.61× 10−3 1.97 6.68× 10−4

Test 2: u 2.30× 10−3 1.96 5.89× 10−4 2.01 1.46× 10−4

with higher-order v 8.90× 10−4 2.21 1.92× 10−4 1.99 4.82× 10−5

boundary stencil w 2.30× 10−3 1.96 5.89× 10−4 2.01 1.46× 10−4

c 9.70× 10−3 1.91 2.59× 10−3 1.96 6.67× 10−4

Table 4. Convergence of errors in the L∞ norm for a three-dimensional inertial low Mach
lid-driven cavity problem as the grid is refined in space and time, for the components of the
velocity v = (u, v, w) and concentration c. The order of convergence is estimated from the
error ratio between successive refinements.

Figure 3. Advection of a square bubble in a lid-driven cavity flow, using the limited
quadratic BDS scheme. Concentration is shown as a color plot at times t = 0, 2, 4.

very little smearing of the interface, even as the deformed bubble passes near the
bottom boundary.

D. Deterministic Kelvin–Helmholtz instability. We simulate the development of
a Kelvin–Helmholtz instability in three dimensions in order to demonstrate the
robustness of our inertial time-advancement scheme in a deterministic setting. Our
simulation uses 256× 128× 256 computational cells with grid spacing 1x = 1/256.
We use periodic boundary conditions in the x and z directions, a no-slip condition on
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the y boundaries, with prescribed velocity v(x, y=0, z)=0 on the bottom boundary
and v(x, y = 0.5, z)= (1, 0, 0) on the top boundary. We use an adaptive time step
size 1t adjusted to maintain a maximum advective CFL number vmax1t/1x ≤ 0.9.
The binary fluid mixture has a 10:1 density contrast with ρ̄1 = 10 and ρ̄2 = 1.
Viscosity varies linearly with concentration, such that η = 10−4 for c = 0 and
η = 10−3 for c = 1. The mass diffusion coefficient is fixed at χ = 10−6, which
makes the diffusive CFL number χ1t/1x2

∼ 10−4, making it necessary to use
BDS advection in order to avoid instabilities due to sharp gradients at the interface.
We employ the bilinear BDS advection scheme [9] with limiting in order to preserve
strict monotonicity and maintain concentration within the bounds 0≤ c ≤ 1.

The initial condition is c = 1 in the lower-half of the domain, and c = 0 in the
upper-half of the domain, so that light fluid sits on top of heavy fluid with a discon-
tinuity in the concentration and velocity at the interface. The initial momentum is
set to ρv = (1, 0, 0) in the upper-half of the domain and ρv = 0 in the lower-half of
the domain. Gravity has a magnitude of g= 0.1 acting in the downward y-direction.
In order to set off the instability, in a row of cells at the centerline, c is initialized
to a random value between 0 and 1. The subsequent temporal evolution of the
density (which is related to concentration via the EOS) is displayed in Figure 4,
showing the development of the instability with no visible numerical artifacts. We
also observe uniformly robust convergence of the GMRES Stokes solver throughout
the simulation.

Figure 4. The development of a Kelvin–Helmholtz instability as a lighter less-viscous
fluid streams over a ten times denser and more viscous fluid. Contour surfaces of the
density, ranging from ρ = 1 (red) to ρ = 10 (blue), are shown at times t = 1.72, 3.16, 4.53,
and 5.85 s.
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V. Giant concentration fluctuations

Advection of concentration by thermal velocity fluctuations in the presence of large
concentration gradients leads to the appearance of giant fluctuations of concentration,
as has been studied theoretically and experimentally for more than a decade [57;
58; 19; 56; 55]. In this section, we use our algorithms to simulate experiments
measuring the temporal evolution of giant concentration fluctuations during free
diffusive mixing in a binary liquid mixture. Croccolo et al. [19] report experimen-
tal measurements of the temporal evolution of the time-correlation functions of
concentration fluctuations during the diffusive mixing of water and glycerol. In
the experiments, a solution of glycerol in water with mass fraction of c = 0.39 is
carefully injected in the bottom half of the experimental domain, under the c = 0
pure water in the top half. The two fluids slowly mix over the course of many hours
while a series of measurements of the concentration fluctuations are performed.

In the experiments, quantitative shadowgraphy is used to observe and measure
the strength of the fluctuations in the concentration via the change in the index
of refraction. The observed light intensity, once corrected for the optical transfer
function of the equipment, is proportional to the intensity of the fluctuations in the
concentration averaged along the vertical (gradient) direction,

c⊥(x, z; t)= H−1
∫ H

y=0
c(x, y, z; t) dy,

where H is the thickness of the sample in the vertical direction. The quantity
of interest is the correlation function of the Fourier coefficients δ̂c⊥(kx , kz; t) of
c⊥(x, z; t),

C(τ ; t, k)=
〈
(δ̂c⊥(kx , kz; t + τ))(δ̂c⊥(kx , kz; t))?

〉
,

where k=
√

k2
x + k2

z is the wavenumber (in our two dimensional simulations kz = 0),
τ is a delay time, and t is the elapsed time since the beginning of the experiment.
In principle, the averaging above is an ensemble average but in the experimental
analysis, and also in our processing of the simulation results, a time averaging
over a specified time window T is performed in lieu of ensemble averaging. This
approximation is justified because the system is ergodic and the evolution of the
deterministic (background) state occurs via slow diffusive mixing of the water and
glycerol solutions, and thus happens on a much longer time scale (hours) than the
time delays of interest (a few seconds).

The Fourier transform (in time) of C(τ ) is called the dynamic structure factor.
The equal-time correlation function

S(k; t)= C(τ = 0; t, k)
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is the static structure factor, and is more difficult to measure in experiments [19].
For this reason, the experimental results are presented in the form of normalized
time-correlation functions,

C̃(τ ; t, k)=
C(τ ; t, k)

S(k; t)
.

The wavenumbers observed in the experiment and simulation are k = κ · 2π/L ,
where κ is an integer and L is the horizontal extent of the observation window
or the simulation box size. When evaluating the theory, we account for errors
in the discrete approximation to the continuum Laplacian by using the effective
wavenumber

k⊥ = kx
sin(kx1x/2)
(kx1x/2)

(23)

instead of the actual discrete wavenumber kx [6].
The confinement in the vertical direction is expected to play a small role because

of the large thickness (2cm) of the sample, and a simple quasiperiodic (bulk)
approximation can be used. Approximate theoretical analysis [22] suggests that at
steady state the dominant nonequilibrium contribution to the static structure factor,

S(k; t)=
kB T

(ηχk4− ρβgh)
h2, (24)

exhibits a k−4 power-law decay at large wavenumbers, and a plateau to kB T h/(ρβg)
for wavenumbers smaller than a rollover k4

c = ρβgh/(ηχ) due to the influence
of gravity (buoyancy). Here h(t)= dc̄(y; t)/dy is the deterministic (background)
concentration gradient, which decays slowly with time due to the continued mixing
of the water and glycerol solutions.

An overdamped approximation suggests that the time correlations decay expo-
nentially, C̃(τ ; t, k)= exp(−τ/τk), with a relaxation time or decay time

τ−1
k = χk2

[
1+

ρβgh
ηχk4

]
, (25)

that has a minimum at k = kc with value τ−1
min = 2χk2

c ∼
√

hg. For wavenumbers
k < kc the relaxation time becomes smaller and can in fact become very small
at the smallest wavenumbers, requiring small time step sizes in the simulations
to resolve the dynamics and ensure stability of the temporal integrators. In the
presence of gravity, at small wavenumbers the separation of time scales used to
justify the overdamped limit fails and the fluid inertia has to be taken into account
[24]. This changes the prediction for the time correlation function to be a sum of
two exponentials with relaxation times,

τ−1
1/2
=

1
2(ν+χ)k

2
±

1
2

√
k4(ν−χ)2− 4βgh, (26)
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where ν = η/ρ. This expression becomes complex-valued for

k . kp =

(
4βgh
ν2

)1/4

=

(
4χ
ν

)1/4

kc,

indicating the appearance of propagative rather than diffusive modes for small
wavenumbers, closely related to the more familiar gravity waves. While experimen-
tal measurements over wavenumbers k . kp are not reported by Croccolo et al. [19],
their experimental data does contain several wavenumbers in that range. We report
here simulation results for propagative concentration modes at small wavenumbers.
To our knowledge, experimental observation of propagative modes has only been
reported for temperature fluctuations [52].

Because it is essentially impossible to analytically solve the linearized fluctu-
ating equations in the presence of spatially inhomogeneous density and transport
coefficients and nontrivial boundary conditions, the existing theoretical analysis of
the diffusive mixing process [58] makes a quasiperiodic constant-coefficient and
constant-gradient incompressible approximation [22]. This approximation, while
sufficient for qualitative studies, is not appropriate for quantitative studies because
the viscosity η and mass diffusion coefficient χ vary by about a factor of three
from the bottom to the top of the sample. In our simulations we account for the full
dependence of density, viscosity and diffusion coefficient on concentration.

A. Simulation parameters. For LFHD there is no difference between the two and
three dimensional problems due to the symmetries of the problem [22]. Because
very long simulations with a small time step size are required for this study, we
perform two-dimensional simulations. Furthermore, in these simulations we do
not include a stochastic flux in the concentration equation, i.e., we set 9 = 0,
so that all fluctuations in concentration arise from the coupling to the fluctuating
velocity. With this approximation we do not need to model the chemical potential
of the mixture and obtain µc. This approximation is justified by the fact that it is
known experimentally that the nonequilibrium fluctuations are much larger than the
equilibrium ones for the conditions we consider [19]; in fact, the fluctuations due
to nonzero 9 are smaller than solver or even roundoff tolerances in the simulations
reported here.

We base our parameters on the experimental studies of diffusive mixing in a
water-glycerol mixture, as reported by Croccolo et al. [19]. In the actual experiments
the fluid sample is confined in a cylinder 2 cm in diameter and 2 cm thick in the
vertical direction. In our simulations, the two-dimensional physical domain is
1.132 cm× 1.132 cm discretized on a uniform 256× 256 two dimensional grid,
with a thickness of 1 cm along the z direction. This large thickness makes the
magnitude of the fluctuations very small since the cell volume 1V contains a
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very large number of molecules, and puts us in the linearized regime [24]. The
width of the domain L = 1.132 cm is chosen to match the observation window in
the experiments, and thus also match the discrete set of wavenumbers between
the simulations and experiments. Earth gravity g =−9.81 m2/s is applied in the
negative y (vertical) direction; for comparison we also perform a set of simulations
without gravity. Periodic boundary conditions are applied in the x-direction and
impenetrable no-slip walls are placed at the y boundaries. The initial condition is
c = 0.39 in the bottom half of the domain and c = 0 in the top half, with velocity
initialized to zero. The temperature is kept constant at 300 K throughout the domain.
Centered advection is used to ensure fluctuation-dissipation balance over the whole
range of wavenumbers represented on the grid.

A very good fit to the experimental equation of state (dependence of density
on concentration at standard temperature and pressure) over the whole range of
concentrations of interest is provided by the EOS (3) with the density of water set
to ρ̄2= 1 g/cm3 and the density of glycerol set to ρ̄1= 1.29 g/cm3. Experimentally,
the dependence of viscosity on glycerol mass fraction has been fit to an exponential
function [19], which we approximate with a rational function over the range of
concentrations of interest [51],

η(c)≈
1.009+ 1.1262 c

1− 1.5326 c
· 10−2 g

cm s
. (27)

The diffusion coefficient dependence on the concentration has been studied experi-
mentally, and we employ the fit proposed in Ref. [25],

χ(c)=
1.024− 1.002 c

1+ 0.663 c
· 10−5 cm2

s
, (28)

which is in reasonable but not perfect agreement with a Stokes–Einstein relation
η(c)χ(c) = const. Note that the Schmidt number Sc = ν/χ ∼ 103. In Ref. [19],
based on the experimental measurements and the approximate theoretical model,
it is suggested that χ ≈ 10−5 cm2/s is constant over the range of concentrations
present. For comparison, we also perform simulations in which we keep the
diffusion coefficient independent of concentration, while still taking into account
the concentration dependence of viscosity. It is worth noting that there is a no-
table disagreement between experimental measurements of χ(c) using different
experimental techniques [25] and the true dependence is not known with the same
accuracy as that of η(c).

When gravity is present, we use the inertial Algorithm 1, with a rather small
time step size 1t = 0.01375 s due to the fact that the smallest relaxation time
measured is on the order of 0.1 s. For this time step size, the viscous CFL number
is ν1t/1x2

∼ 10–30, indicating that the viscous dynamics is resolved except at
the wavenumbers comparable to the grid spacing. In the absence of gravity we use
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Starting Time (s) Total Time Steps End Time (s)

600.6 3328 600+ 33281t = 646.36
3003 10784 3151.28

8108.1 4992 8176.74
15015 4768 15080.6

Table 5. Time intervals over which we average the dynamic correlation functions used to
compute the relaxation times shown in Figure 5.

the overdamped Algorithm 2, which allows us to use a much larger time step size
(on the diffusive time scale), 1t = 0.22 s, giving a diffusive CFL number on the
order of χ1t/1x2 . 0.1. Using larger time step sizes than this would require an
implicit treatment of mass diffusion.

B. Results. Our simulations closely mimic the experiments of Croccolo et al. [19].
We perform a long (stochastic) run of the diffusive mixing up to physical time t =
21,021 s, saving a snapshot and statistics every 21,840 time steps, which corresponds
to 300 seconds of physical time. We then perform 8 short runs with different random
seeds starting from the saved snapshots, and compute time correlation functions
averaged over a short time interval. Note that in the experiments a similar procedure
is used in which data is collected over short time intervals during a single long
mixing process. Croccolo et al. report measurements at t = 600 s, 3060 s, 8160 s,
and 14,880 s. Table 5 lists the time intervals over which we collect statistics in
the simulations, which match those in the experiments as well as possible. The
time interval between successive snapshots used in the computation of the time
correlation function is four time steps or 0.055 s, which is four times smaller
than the interval used in the experimental analysis. In the experiments averaging is
performed over a range of wavenumbers in the (kx , kz) plane with similar magnitude.
Since we perform two dimensional simulations we average over the 8 independent
simulations; in the end the statistical errors are lower in the simulation results since
experiments are subject to large experimental noise not present in the simulations.

1. Dynamic structure factors. In order to extract a relaxation time, we fit the
numerical results for the normalized time-correlation function to an analytical
formula. For the first four wavenumbers k = (1, 2, 3, 4) · 2π/L , clear oscillations
(propagative modes) were observed, as illustrated in the top panel of Figure 5. For
these wavenumbers we used the fit

C̃(t)= exp(−t/τ)
(

A sin(2π t/T )+ cos(2π t/T )
)
, (29)

where the relaxation time τ , the coefficient A and the period of oscillation T are the
fitting parameters. For the remaining wavenumbers, we used a double-exponential
decay for the fitting,
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C̃(t)= α exp(−t/τ1)+ (1−α) exp(−t/τ2), (30)

where α, τ1 and τ2 are the fitting parameters. This leads to good fits for k > kp ∼

32 cm−1; for a few transitional wavenumbers such as k ∼ 28 cm−1 the fit is not as
good, as illustrated in the top panel of Figure 5. From the fit (30) we obtain the
relaxation time τ as the point at which the amplitude decays by C̃(τ )= 1/e.
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Figure 5. Dynamics of concentration fluctuations during free-diffusive mixing of water
and glycerol. (Top) Numerical results for the time correlation functions for several selected
wavenumbers about 8160 s from the beginning of the experiment. Symbols indicate
results from the simulations and lines of the same color indicate the fit to (29) for the first
(k ≈ 5.6 cm−1) and fourth (k ≈ 22.2 cm−1) wavenumbers, or to (30) for the remaining
wavenumbers. Note that the statistical errors due to the finite averaging increase with time
and the tails of the correlation functions are not reliably estimated. (Bottom) Relaxation or
decay times as a function of wavenumber at several points in time. Empty symbols show
results from computer simulations, and filled from experimental measurements [19].
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A similar procedure was also used to obtain the relaxation time from the experi-
mental data of Croccolo et al. [19] for all wavenumbers2. The experimental data
shows monotonically decaying correlation functions C̃(τ ; t, k) for all measured
wavenumbers, not consistent with the oscillatory correlation function observed
for the four smallest wavenumbers in our simulations [24]; see the top panel
of Figure 5. We believe that this mismatch is due to the way measurements
for different wavenumbers of similar modulus are averaged in the experimental
calculations. In our two-dimensional simulations, we do not perform any averaging
over wavenumbers. We believe that the experimentally measured time correlation
functions capture the real part of the decay times only and thus have the form of a
sum of exponentials. Due to the lower time resolution and the fact that the static
structure factor is not known, for the experimental data we used a single exponential
fit and added an offset to account for the background noise,

C(t)= A exp(−t/τ)+ B.

In the bottom panel of Figure 5 we compare simulation and experimental results
for the real part of the decay or relaxation time τk , at several points in time measured
from the beginning of the experiment. Good agreement is observed between the two
with the same qualitative trends: a diffusive relaxation time τ−1

k ≈ χk2 for large
wavenumbers, with a maximum at k ≈ kc, and then another minimum at k ≈ kp.
Note that decay times are not reported by Croccolo et al. [19] for wavenumbers
k . kp since that work focuses on the effect of gravity for k . kc. In our analysis
of the experimental data we included all measured wavenumbers, including those
for which propagative modes are observed. Here, the diffusion coefficient varies
with concentration according to (28); very similar results for the relaxation times
were obtained by keeping χ ≈ 10−5 cm2/s constant, as suggested by Croccolo et al.
[19]. This indicates that the dynamic correlations are not very sensitive to the
concentration dependence χ(c). In future work we will perform a more careful
comparison to experiments.

2. Static structure factors. Extracting the static structure factor from experimental
measurements is complicated by several factors, including the presence of optical
prefactors such as the transfer function of the instrument, and the appearance of
additional contributions to the scattered light intensity such as shot noise, contri-
butions due to giant temperature fluctuations [52], and capillary waves [17; 18].
We therefore study the evolution of the static structure factor using simulations
only. In the top panel of Figure 6 we show numerical results for the static structure
factor S(k; t) of the discrete concentration field averaged along the y-axes, at a

2The experimental data for the time correlation functions were graciously given to us by Fabrizio
Croccolo.
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series of times t chosen to match those of the experimental measurements. Instead
of ensemble averaging, here we performed a temporal average of the spectrum of
the vertically averaged concentration over a period of 300 s, ending at the time
indicated in the legend of the figure. The characteristic k−4 power law decay at
large wavenumbers and the plateau at small wavenumbers predicted by (24) are
clearly observed in Figure 6, consistent with a value of h decreasing with time. A
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Figure 6. Evolution of the static structure factor during free-diffusive mixing of water
and glycerol. (Top) With Earth gravity. Solid lines show results for simulations in which
χ(c) depends on concentration according to (28), while dashed lines of the same color
correspond to simulations in which χ ≈ 10−5 cm2/s is constant. Fluctuations at large
wavenumbers follow a k−4 power law but are damped by gravity at small wavenumbers.
(Bottom) Without gravity. Observe the large difference in the vertical axes showing “giant”
fluctuations in the microgravity case. Note that these are results from a single simulation,
mimicking a single experiment, and therefore there are large statistical uncertainties at
small wavenumbers (large decorrelation times).



198 ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

quantitative difference is seen between the results for variable and constant diffusion
coefficients, consistent with a different value of the imposed concentration gradient
h due to the somewhat different evolution of c̄(y, t).

In the bottom panel of Figure 6 we show numerical results for the static structure
factor that would be obtained had the experiment been performed in microgravity
(g = 0). In this case, we use the overdamped Algorithm 2 since there is a persistent
large separation of time scales between the slow concentration and fast velocity.
We see clear development of a k−4 power law as predicted by (24) for g = 0.
Note that here the concentration gradient is established instantaneously, in fact,
it is the largest in the initial configuration and then decays on the diffusive time
scale; this is different from simulations of the development of giant fluctuations
in microgravity during the GRADFLEX experiment reported in [24], in which
the concentration gradient is slowly established on a diffusive scale. The results
in Figure 6 show that it takes some time for the giant fluctuations at smallest
wavenumbers to develop; the diffusive relaxation time corresponding to the smallest
wavenumber studied, kmin ≈ 5 cm−1, is τmax = (χk2

min)
−1
∼ 4, 000 s. After a

time ∼ (χk2)−1, the amplitude of the fluctuations S(k)∼ k−4h2(t) decays slowly
due to the diffusive mixing, and eventually the system will fully mix and reach
thermodynamic equilibrium.

VI. Conclusions

We have developed a low Mach number algorithm for diffusively mixing mixtures
of two liquids with potentially different density and transport coefficients. In the low
Mach number setting, the incompressible constraint is replaced by a quasicompress-
ible constraint that dictates that stochastic and diffusive mass fluxes must create
local expansion and contraction of the fluid to maintain a constant thermodynamic
(base) pressure.

We employed a uniform-grid staggered-grid spatial discretization [6]. Following
prior work in the incompressible simple-liquid case [35], we treated viscosity
implicitly without splitting the pressure update, relying on a recently developed
variable-coefficient Stokes solver [13] for efficiency. This approach works well
for any Reynolds number, including the viscous-dominated overdamped (zero
Reynolds number) limit, even in the presence of nontrivial boundary conditions.
Furthermore, by using a high-resolution BDS scheme [9] to advect the concentration
we robustly handled the case of no mass diffusion (no dissipation in the concentration
equation). In our spatial discretization we strictly preserved mass and momentum
conservation, as well as the equation of state (EOS) constraint, by using a finite-
volume (flux-based) discretization of advective fluxes in which fluxes are computed
using extrapolated values of concentration and density that obey the EOS. Our
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temporal discretization used a predictor-corrector integrator that treats all terms
except momentum diffusion (viscosity) explicitly [24].

We empirically verified second-order spatiotemporal accuracy in the deterministic
method. In the stochastic context, establishing the weak order of accuracy is
nontrivial in the general low Mach number setting. For centered advection our
temporal integration schemes can be shown to be second-order accurate for the
special case of a Boussinesq constant-density (incompressible) approximation, or in
the overdamped (inertia-free) limit. Existing stochastic analysis does not apply to
the case of BDS advection because Godunov schemes do not fit a method-of-lines
approach, but rather, employ a space-time construction of the fluxes. The presence
of nontrivial density differences between the pure fluid components and nonzero
mass diffusion coefficient, complicates the analysis even for centered advection,
due to the presence of a nontrivial EOS constraint on the fluid dynamics. It is a
challenge for future work to develop improved numerical analysis of our schemes
in both the deterministic and the stochastic setting.

In future work, we will demonstrate how to extend the algorithms proposed
here to multispecies mixtures of liquids using a generalization of the low Mach
number constraint. The nontrivial multispecies formulation of the diffusive and
stochastic mass fluxes has already been developed by some of us in the compressible
setting [5].

It is also possible to include thermal effects in our formulation, by treating the
temperature in a manner similar to the way we treated concentration here. Two
key difficulties are constructing a spatial discretization that ensures preservation
of an appropriately generalized EOS, as well as developing temporal integrators
that can handle the moderate separation of time scales between the (typically)
slower heat diffusion and (typically) faster momentum diffusion. In particular, it
seems desirable to also treat temperature implicitly. Such implicit treatment of mass
or heat diffusion is nontrivial because it would require solving coupled (via the
EOS constraint) velocity-temperature or velocity-concentration linear systems, and
requires further investigation.

In the staggered-grid based discretization developed here, we can only employ
existing higher-order Godunov advection schemes for the cell-centered scalar fields
such as concentration and density. It is a challenge for future work to develop
comparable methods to handle advection of the staggered momentum field. This
would enable simulations of large Reynolds number flows. It should be noted,
however, that our unsplit approach is most advantageous at small Reynolds numbers.

A challenge for future work on low Mach number fluctuating hydrodynamics is
to account for the effects of surface tension in mixtures of immiscible or partially
miscible liquids. This can be most straightforwardly accomplished by using a
diffuse-interface model, as some of us recently did in the compressible setting for



200 ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

a single-fluid multiphase system [15]. One of the key challenges is handling the
fourth-order derivative term in the concentration equation in a way that ensures
stability of the temporal integrator, as well as developing a consistent discretization
of the Korteweg stresses on a staggered grid [50].

The semi-implicit temporal integrators we described here can deal well with
a broad range of Reynolds or Schmidt numbers in the deterministic (smooth)
setting. In the context of fluctuating hydrodynamics, however, all modes are
thermally excited and treatment of viscosity based on a Crank–Nicolson method
(implicit midpoint rule) are bound to fail for sufficiently large Schmidt numbers
(or sufficiently low Reynolds numbers). In this work we solved this problem for
the case of infinite Schmidt, zero Reynolds number flows by taking an overdamped
limit of the original inertial equations before temporal discretization. It is a notable
challenge for the future to develop uniformly accurate temporal integrators that
work over a broad range of Reynolds or Schmidt numbers, including the asymptotic
overdamped limit, in the presence of thermal fluctuations.
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