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A REAL-SPACE GREEN’S FUNCTION METHOD FOR
THE NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS

BORIS LO, VICTOR MINDEN AND PHILLIP COLELLA

A new method for solving the transverse part of the free-space Maxwell equations
in three dimensions is presented. By taking the Helmholtz decomposition of
the electric field and current sources and considering only the divergence-free
parts, we obtain an explicit real-space representation for the transverse propagator
that explicitly respects finite speed of propagation. Because the propagator
involves convolution against a singular distribution, we regularize via convolution
with smoothing kernels (B-splines) prior to sampling based on a method due to
Beyer and LeVeque (1992). We show that the ultimate discrete convolutional
propagator can be constructed to attain an arbitrarily high order of accuracy by
using higher-order regularizing kernels and finite difference stencils and that
it satisfies von Neumann’s stability condition. Furthermore, the propagator is
compactly supported and can be applied using Hockney’s method (1970) and
parallelized using the same observation as made by Vay, Haber, and Godfrey
(2013), leading to a method that is computationally efficient.

1. Introduction

In this paper, we present a method for solving Maxwell’s equations. Our approach
will be based on the expression of the evolution of the magnetic and transverse
electric fields in terms of a first-order, constant-coefficient hyperbolic system

∂u(x, t)
∂t

= Lu(x, t)+ f (x, t), (x, t) ∈ RD
×R+,

u(x, 0)= u0(x), x ∈ RD,

(1)

where L is a constant-coefficient first-order linear differential operator in space and
f is some known source term. Formally, the solution to (1) can be written explicitly
using Duhamel’s formula:

u(x, t +1t)= eL1t u(x, t)+
∫ 1t

0
eL(1t−s) f (x, t + s) ds. (2)

MSC2010: primary 65M12, 65M80; secondary 65D05, 65D07, 78M25.
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This is the starting point for a broad class of time-integration schemes, known as
exponential integrators [10], that use (2) to eliminate stiff terms contained in L ,
which, if treated explicitly, would impose unnecessary and undesirable time-step
constraints. This constraint is removed by applying (2) to the spatially discretized
equations and evaluating the action of the matrix corresponding to eηL on a vector
using fast matrix-free methods. Such methods eliminate the stability constraint
corresponding to the fast time scales in L .

In the present work, we use (2) as a starting point for eliminating the speed-of-light
CFL stability condition in solving Maxwell’s equations by explicitly discretizing
an integral form of the propagator eηL for the original system of PDEs. This type
of approach has been proposed previously in [2] and further examined in [13; 9]. In
our approach, we use a Helmholtz decomposition to treat the divergence-free and
curl-free parts of the solution separately, which allows us to express the propagator
in terms of convolutions with weighted delta distributions over the sphere |x| = cη,
where c is the speed of light. We then discretize (2) in space by replacing the
delta distributions with regularized approximate delta distributions defined on a
rectangular grid, using the ideas in [19]. This leads to approximations of any order of
spatial accuracy of the continuous propagator by discrete convolution operators on a
rectangular grid. The discrete kernel satisfies a form of finite propagation speed; i.e.,
its support is contained in a bounded set of grid points of radius O(σ + P), where
σ is the CFL number for the speed of light and P is the order of accuracy of the
spatial approximation. This naturally leads to a domain-decomposition formulation
of the problem, in which the convolution over the entire domain is replaced with
a collection of convolutions over small patches that cover the domain. Due to
boundedness of the support of the discrete propagator kernel, the resulting parallel
application of the propagator is independent of the decomposition into patches.
Finally, the evaluation of the time integral in (2) is approximated by quadratures,
and the discrete convolutions are evaluated using FFTs with Hockney’s method
[11, pp. 180–181]. This method is closely related to the domain decomposition
in [20] but differs from that method in that the starting point for our method is
a discretization of a real-space propagator while the approach in [20] discretizes
a propagator in Fourier space. We will discuss the relative merits of the two
approaches in Section 6.

The remainder of this paper is organized as follows. In Section 2, we formalize
our problem statement and present a high-level outline of our algorithm and its
various components. In Section 3, we describe the discretization process in detail for
a comprehensive presentation of each component of the algorithm. In Section 4, we
perform a stability analysis of our procedure showing that under certain assumptions
the von Neumann stability condition is satisfied. In Section 5, we present a number
of numerical tests that show an implementation of our algorithm in action as
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applied to the free-space Maxwell equations. Finally, in Section 6, we make some
concluding remarks.

2. Problem statement and derivation of propagators

Here, and in what follows, functions of space and/or time will frequently be written
omitting their explicit spatial and temporal dependencies, e.g., ψ = ψ(x, t). We
will also use the operator notation P t(u)≡ eLt(u). In this notation, (2) is written as

u(t +1t)= P1t(u0)+

∫ 1t

0
P1t−s( fs) ds, (3)

where fs(t)≡ f (t + s).

2.1. The scalar wave equation propagator. To illustrate our approach, we will
first derive a real-space propagator for the 3-D wave equation,

∂2φ

∂t2 =1φ,

φ(x, 0)= φ0(x),
∂φ(x, 0)
∂t

= ψ0(x).
(4)

We introduce unknowns v ≡ ∇φ and p ≡ ∂φ
∂t , permitting us to recast (4) as a

first-order hyperbolic system for v and p with initial-value constraints, i.e.,

∂v

∂t
=∇ p,

∂p
∂t
=∇ · v,

v(x, 0)= v0(x)≡∇φ0(x), p(x, 0)= p0(x)≡ ψ0(x).
(5)

Because v0 = ∇φ is the gradient of some function, we see that ∇ × v0 ≡ 0. This
implies that ∇ × vt = 0 for all time t > 0. The curl-free constraint on v0 is a
necessary and sufficient condition for the first-order system (5) to be equivalent
to (4) as it is necessary for v0 to be curl-free so that the second-order equation can
be recovered from the first-order system.

Taking the Fourier transform in x, we obtain

∂

∂t

[
ṽ(k, t)
p̃(k, t)

]
=

[
0 i k

i kT 0

] [
ṽ(k, t)
p̃(k, t)

]
, (6)

where we interpret the Fourier variable k as a column vector. The operator expo-
nential of this system matrix scaled by 1t is P̃1t

W , the Fourier transform of our
desired propagator. Since we need consider only curl-free v, we see that P̃1t

W can
be written

P̃1t
W =

[
cos|k|1t i k(sin|k|1t)/|k|

i kT (sin|k|1t)/|k| cos|k|1t

]
. (7)
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Note that, in full generality, the top-left block of P̃1t
W has terms involving k̂k̂T and

I − k̂k̂T , but the block reduces to cos|k|1t when restricted to curl-free input.
Taking an inverse Fourier transform and defining the kernels G1t and H1t via

G1t(z)≡
δ(|z| −1t)

4π1t
, (8)

H1t(z)≡
∂

∂s

(
δ(|z| − s)

4πs

)∣∣∣∣
s=1t

, (9)

we see that the action of the propagator on an arbitrary state vector h(x) ≡[
f (x) g(x)

]T
with f curl-free is given by

P1t
W (h)=

[
H1t
∗ f +G1t

∗∇g
G1t
∗ (∇ · f )+ H1t

∗ g

]
, (10)

where convolutions are defined spatially as

(K ∗ f )(x)≡
∫

R3
K ( y) f (x− y) d y (11)

and convolution of a scalar quantity with a vector quantity is taken componentwise.
Considering again (3) and noting the lack of sources, we see that we can obtain the
solution to (5) for any final time tfinal =1t by evaluating[

v(1t)
p(1t)

]
=

[
H1t
∗ v0+G1t

∗∇ p0

G1t
∗ (∇ · v0)+ H1t

∗ p0

]
. (12)

Here, the absence of sources obviates the need to treat the time integral in (3)
and therefore reduces the problem entirely to discretely applying (10). We note
that (10) can be derived from the classical solution starting with the second-order
formulation as seen in [22]. However, we outline the approach starting with the
first-order system as an analog to Maxwell’s equations.

We see that for application of (10) it is necessary to approximate convolution
against the singular kernels G1t and H1t . To make H1t more amenable to approx-
imation, we use some calculus to reduce convolutions against H1t to convolutions
against G1t combined with weights and spatial derivatives. We begin with the
Fourier relationship

∂

∂s

(
δ(|x| − s)

4πs

)
= F−1

[cos|k|s]. (13)

It is not difficult to verify that if we write x and k in terms of their components
then we have

cos|k|s =
sin|k|s
|k|s

− i
3∑

d=1

∂

∂kd

(
sin|k|s
|k|s

)
ikd . (14)
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Defining the new convolutional kernels G1t
d for d = 1, 2, 3 via

G1t
d (z)≡

zdδ(|z| −1t)
4π1t

, (15)

i.e., convolution in space against the weighted distribution xdδ(|x|−1t)/(4π), we
see from standard rules of Fourier analysis that (14) is the Fourier transform of the
operator that acts on a function f : R3

7→ R via

(H1t
∗ f )=

1
1t

G1t
∗ f −

3∑
d=1

G1t
d ∗

∂ f
∂zd

. (16)

2.2. The Maxwell propagator. Similarly to Section 2.1, we can derive an expres-
sion for the propagator for the solution of Maxwell’s equations written in terms
of spatial derivatives and convolutions. We begin by writing the set of Maxwell’s
equations for (x, t) ∈ R3

×R+ as

∂E
∂t
= c∇ × B− J,

∂B
∂t
=−c∇ × E, (17)

∇ · E = ρ, ∇ · B = 0, (18)

with appropriate initial conditions. Here, E and B are the electric and magnetic
fields, respectively, J is a known current source term, ρ is the bound current density,
and c is the speed of light in vacuum.

To find a solution for Maxwell’s equations, we first use a Helmholtz decomposi-
tion to break the electric field and current source into their longitudinal (curl-free)
and transverse (divergence-free) parts

E = EL + ET , J = JL + JT , (19)

where ∇×EL ≡ 0 and ∇ ·ET ≡ 0 and similarly for JL and JT . This decomposition
leads to a first-order system of hyperbolic PDEs describing the coupling between ET

and B (see (17))

∂ET

∂t
= c∇ × B− JT ,

∂B
∂t
=−c∇ × ET , (20)

∇ · ET = 0, ∇ · B = 0. (21)

The divergence-free conditions (21) are initial-value constraints, similar to the
curl-free constraint on v0 for the wave equation, and if satisfied at time t = 0, then
they are satisfied at all later times according to (20). The longitudinal component
of the electric field EL can be specified either in terms of Coulomb’s law,

EL =−∇φ, ∇ · EL = ρ, (22)
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or directly from applying the Helmholtz decomposition to the evolution equation
for E,

∂EL

∂t
=−JL . (23)

These two specifications of EL are equivalent, provided that, at time t = 0, (22)
is satisfied. In practice, the choice of which of these two formulations to use in
discretizing EL depends on the details of how the evolution of ρ is specified. The
risk is that, by using (23), accumulation of numerical error will cause (22) not to be
satisfied. We will not address this issue here other than to note that the formulation
given here will require the solution of Poisson’s equation at least to compute the
Helmholtz decomposition of J and possibly to solve (22). For those problems, we
can use fast Poisson solvers, the cost of which will be made up for by the ability to
take larger time steps. Therefore, for the purposes of demonstrating the properties
of the method described here, we will consider only examples in which EL ≡ 0 and
JL ≡ 0. Given this and using reasoning similar to that in Section 2.1, we obtain the
action of the Maxwell propagator on a state vector h(x)=

[
ET (x) B(x)

]T
,

P1t
M (h)=

[
H c1t

∗ ET +Gc1t
∗ (∇ × B)

−Gc1t
∗ (∇ × ET )+ H c1t

∗ B

]
, (24)

from which the action on a divergence-free current source can be inferred. Contrary
to the source-free case we saw before, the appearance of JT in (20) will require the
treatment of the integral in (3) to obtain the full solution.

3. Discretization

As seen in Section 2, the wave equation and Maxwell propagators involve convo-
lution against kernels taking the form of (possibly weighted) delta distributions
supported on spheres. For example, convolution against the kernel G1t

d in (15) is
given by

(G1t
d ∗w)(x)≡

∫
zd

4π1t
δ(|z|−1t)w(x− z) d z=

∫
∂B1t

zd

4π1t
w(x− z) d z, (25)

where ∂B1t is the 3-D sphere of radius1t . Rewriting these convolutions as integrals
over singular surfaces as we have done above, we see that accurately computing
these convolutions reduces to accurately evaluating integrals of the form

I ≡
∫
0

g(z) f (z) d z, (26)

where 0 is a continuous and bounded surface and g ∈C(Rd) is a weighting function.
Accurate discretization on a Cartesian grid of the integral I is treated succinctly

by Tornberg and Engquist [19], who summarize a framework for replacing such
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integrals with sums of samples of a regularized integrand based on work concerning
singular source terms by Beyer and LeVeque [4]. We describe this in more detail
below.

3.1. Regularized delta distributions. As a precursor to integration over multi-
dimensional surfaces, consider integrating a function f :R→R against a 1-D delta
distribution with arbitrary center x ∈R, i.e., evaluating f (x) via the sifting formula

f (x)=
∫

R

f (x)δ(x − x) dx . (27)

The above integral can be thought of as integrating f (x) over a singular surface of
dimension 0, supported at the single point x . Because of its singular nature, simply
sampling f (x)δ(x − x) on a grid and approximating integration with summation
is not a numerically well defined operation. Instead, given a grid spacing h, we
consider sampling a regularized approximant δh(x − x). Beyer and LeVeque [4] in-
troduce the set of discrete moment conditions for such an approximant, summarized
succinctly in [19].

Definition 1 (discrete moment conditions [4; 19]). Given a grid spacing h > 0, we
say a function δh : R→ R is in the function class Qq if δh has compact support
[−mh,mh] for some m > 0 and

h
∑
j∈Z

( jh− x)rδh( jh− x)=
{

1, r = 0,
0, 1≤ r < q,

(28)

for any x ∈ R.

We note that the conditions in Definition 1 are simply discrete analogues of the
continuous moment conditions∫

∞

−∞

(x − x)rδ(x − x) dx =
{

1, r = 0,
0, 1≤ r < q,

(29)

which are satisfied by the delta distribution for arbitrarily large q.
For sufficiently regular functions f , the discrete moment conditions are sufficient

for consistency of δh; i.e., for δh ∈ Qq and f ∈ Cq , we have the asymptotic error
bound

f (x)− h
∑
j∈Z

f ( jh)δh( jh− x)=O(hq) (30)

for any x ∈ R [4]. In the Appendix, we give a review of how to find such 1-D
approximants satisfying the discrete moment conditions to order q while attaining
the minimum necessary support, which is essentially accomplished by piecewise
Lagrange interpolation.
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Figure 1. Left: a 2-D slice of the spherically supported delta distribution, where the
distribution takes the value +∞ on the dashed circle and is identically zero elsewhere.
Right: with regularization, the support of the distribution is smoothed such that the
distribution takes finite values and can be sampled on the underlying discrete grid.

To extend these 1-D ideas to multiple dimensions, we use the tensor product
formulation of Peskin [16], which obeys the following consistency result.

Theorem 2 (consistency of multidimensional discrete deltas [19]). Let 0 be a
continuous and bounded surface, g ∈C(Rd), and δhk ∈ Qq for k = 1, . . . , d. Define
the multidimensional function

δh(0, g, x)≡
∫
0

d∏
k=1

δhk (xk − zk)g(z) d z, (31)

where x = (x1, . . . , xd) ∈Rd and z= (z1, . . . , zd) ∈0. Suppose f ∈Cr (Rd). Then( d∏
k=1

hk

)∑
j∈Zd

δh(0, g, x j ) f (x j )−

∫
0

g(z) f (z) d z =O(hq), (32)

where x j = ( j1h1, . . . , jdhd) is a Cartesian grid point and h =maxk=1,...,d hk .

Intuitively, Theorem 2 gives a method to evaluate integrals of the form (26)
by regularizing the singular surface via convolution with the multidimensional
smoothing kernel δh . For example, with 0 = ∂B1t and g(z)≡ 1, we see that

δh(∂B1t , 1, x)= δ(|x| −1t) ∗
( d∏

k=1

δhk (xk − zk)

)
, (33)

so Theorem 2 essentially permits accurate discrete convolution against δ(|x| −1t)
by presmoothing the sphere with the kernel φ(x)=

∏d
k=1 δhk (xk) prior to sampling;

see Figure 1. This is the key step permitting accurate discretization of the singular
convolutional operators comprising our propagators.

3.2. Spherical quadrature. Discretization of the convolutional operators G1t and
G1t

d necessitates the generation of samples of the function δh(0, g, x) in (31), where
0 = ∂B1t and the weighting function g is defined by either g(z)≡ 1 or g(z)= zi ,
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depending on the kernel. In practice, we find that the integral in (31) has no simple
analytical solution and therefore must be replaced with some form of quadrature
scheme. We use the product Gaussian quadrature described in [3],

δh(∂B1t , g, x)=
∫
∂B1t

( d∏
k=1

δhk (xk − zk)g(z)
)

d z,

≈
π(1t)2

m

2m∑
j=1

m∑
i=1

wi

( d∏
k=1

δhk (xk − zi j,k)g(zi j )

)
, (34)

where zi j has polar coordinates (1t, θi , φ j ) with cos θi and wi the Gauss–Legendre
nodes and weights on [−1, 1] and φ j evenly spaced on [0, 2π ].

We note that, typically, such numerical quadratures use assumptions on the
smoothness of the integrand to prove convergence whereas the smoothness of the
integrand in (31) is dependent on the smoothness of δhk . However, we are not
interested in the intermediate error in evaluating δh(0, g, x) on a grid but rather the
operator error of δh(0, g, x) as a discrete convolutional operator when applied to
a smooth function f . Up to machine precision, the numerical quadrature and the
discrete convolution commute, and we thus achieve accuracy from our assumptions
on the smoothness of f rather than that of δh .

3.3. Final construction of operators. Given a spline approximation to the 1-D
delta distribution obeying moment conditions up to order q, we use the results
from the previous section to construct discretizations G1t,h and H1t,h of the
convolutional kernels G1t and H1t for a specified time step1t as follows. Defining
G1t,h via

G1t,h(xi )≡
1

4π1t

( d∏
k=1

hk

)
δh(∂B1t , 1, xi ), (35)

we see from Theorem 2 that the approximation G1t
∗ f ≈G1t,h

∗ fh is pointwise ac-
curate to order q , where the second convolution is understood as discrete convolution
of G1t,h with f sampled on a Cartesian grid. As discussed in Section 3.2, we use
product Gaussian quadrature to evaluate the spherical integral necessary to construct
the discrete delta distribution. The accuracy of this scheme thus necessarily depends
on the number of quadrature nodes used, but this can be taken to be sufficiently
high since G1t,h need be constructed only once as a precomputation. In practice,
we find that the number of quadrature nodes is not a limiting factor; see Section 5.1.

To construct the discrete kernel H1t,h , we note from (16) that we require a
discrete approximation of the weighted kernels G1t

d = zdδ(|z|−1t) for d = 1, 2, 3,
which we construct similarly to the kernel in (35) by taking g(z) = zd . Then,
approximating the spatial derivatives by precomposing the discrete kernels G1t,h

d
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Initialize p(0)h and v
(0)
h

Compute G1t,h , and H1t,h based on step size in time and space
/* Begin time-stepping loop */
for n = 1, 2, . . .
/* Update velocities */
v
(n)
x,h← H1t,h

∗ v
(n−1)
x,h + (G1t,h

∗1x ) ∗ p(n−1)
h

v
(n)
y,h← H1t,h

∗ v
(n−1)
y,h + (G1t,h

∗1y) ∗ p(n−1)
h

v
(n)
z,h← H1t,h

∗ v
(n−1)
z,h + (G1t,h

∗1z) ∗ p(n−1)
h

/* Update pressure */
p(n)h ← H1t,h

∗ p(n−1)
h +(G1t,h

∗1x )∗v
(n−1)
x,h +(G

1t,h
∗1y)∗v

(n−1)
y,h +(G

1t,h
∗1z)∗v

(n−1)
z,h

end for

Algorithm 1. Applying the wave equation propagator.

with corresponding finite difference stencils 1xd , we obtain H1t,h as

H1t,h
≡

1
1t

G1t,h
−

3∑
d=1

G1t,h
d ∗1xd (36)

using the equivalent expression (16). We choose central difference stencils accurate
to order q for consistency. For example, if q=4, then we use the typical fourth-order
central difference [7]

(1xd∗ fh)(xi )=

1
12 fh(xi−2ed)−

2
3 fh(xi−ed)+

2
3 fh(xi+ed)−

1
12 fh(xi+2ed)

h
, (37)

where ed is the d-th unit coordinate vector.
We note that, just as the continuous kernels G1t and H1t are compactly sup-

ported, so too are the discrete kernels with only slightly larger support size dependent
on the exact smoothing splines and finite difference stencils used.

3.4. A typical time step. For source-free applications, the Maxwell and wave equa-
tion propagators can in theory be constructed for1t = tfinal and applied as a one-step
method. However, for many applications of interest, such as particle-in-cell (PIC)
methods, it is necessary to evolve the solution only by a small time increment so
that sources can be computed and incorporated. Here we describe the computation
loop for time-stepping using the discrete kernels G1t,h and H1t,h described in
Section 3.3. Consider first the wave equation propagator of (10). Then, the solution
of the source-free problem (5) is obtained using the time-stepping process in
Algorithm 1. We use vx,h , vy,h , and vz,h to refer to the discrete representations
of components of v and 1x , 1y , and 1z to refer to finite difference operators in
each coordinate direction as defined in Section 3.3. As mentioned, the discrete
kernels G1t,h and H1t,h are compactly supported. This admits the use of Hockney’s
domain-doubling method [11] to evaluate all discrete convolutions efficiently.
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/* Electric field and source are transverse throughout */
Initialize E(0)

h and B(0)
h

Initialize Newton–Cotes quadrature weights {wm}
M
m=0

Compute Gc1s,h and H c1s,h based on step size in time and space
/* Begin time-stepping loop */
for n = 1, 2, . . .
/* Initialize for Newton–Cotes */
E(n)

h ← E(n−1)
h

B(n)
h ← B(n−1)

h
for m = 0, 1 . . . ,M − 1
/* Add source term for node tn,m = (n− 1)1t +m1s */
E(n)

h ← E(n)
h −wm Jh(tn,m)

/* Update electric field */
E (n)

x,h← H c1s,h
∗ E (n)

x,h + (G
c1s,h
∗1y) ∗ B(n)z − (G

c1s,h
∗1z) ∗ B(n)y

E (n)
y,h← H c1s,h

∗ E (n)
y,h + (G

c1s,h
∗1z) ∗ B(n)x − (G

c1s,h
∗1x ) ∗ B(n)z

E (n)
z,h ← H c1s,h

∗ E (n)
z,h + (G

c1s,h
∗1x ) ∗ B(n)y − (G

c1s,h
∗1y) ∗ B(n)x

/* Update magnetic field */
B(n)x,h← H c1s,h

∗ B(n)x,h − (G
c1s,h
∗1y) ∗ E (n)

z,h + (G
c1s,h
∗1z) ∗ E (n)

y,h

B(n)y,h← H c1s,h
∗ B(n)y,h − (G

c1s,h
∗1z) ∗ E (n)

x,h + (G
c1s,h
∗1x ) ∗ E (n)

z,h

B(n)z,h ← H c1s,h
∗ B(n)z,h − (G

c1s,h
∗1x ) ∗ E (n)

y,h + (G
c1s,h
∗1y) ∗ E (n)

x,h
end for
/* Final Newton–Cotes node */
E(n)

h ← E(n)
h −wM Jh(tn,M)

end for

Algorithm 2. Applying the Maxwell propagator.

Application of the transverse Maxwell propagator for (20) is analogous to
Algorithm 1 in the source-free case. In the presence of sources, however, we must
combine the basic flavor of the previous algorithm with a time-integration scheme
for treating the integral in (3). To accomplish this, we use a closed Newton–Cotes
method in time of the appropriate order with equispaced nodes {sm = m1s}Mm=0
(1s =1t/M):∫ 1t

0
P1t−s( fs) ds ≈

M∑
m=0

wmP1t−sm ( fsm )=

M∑
m=0

wmP(M−m)1s( fsm ) (38)

=

M∑
m=0

wm

M −m times︷ ︸︸ ︷
P1s(P1s(· · ·P1s( fsm ) · · · )), (39)

where, because the quadrature nodes are equispaced in time, we may make use of
the fact that, analytically, application of the propagator P(M−m)1s corresponding to
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Figure 2. Suppose that the domain is decomposed across a 3× 3 grid of processors such
that the central processor owns the central block of unknowns as well as the halo region.
Assuming the halo region is valid and sufficiently large, the local field values for time
n + 1 can be calculated by convolving the current local-plus-halo field values with the
propagator. In this figure, cells are shaded to show that the values of the corresponding
unknowns are correct for the current time on the central processor.

advancing the solution in time by (M −m)1s is equivalent to M −m successive
applications of the single-step propagator P1s , necessitating construction of only a
single discrete propagator. This leads to Algorithm 2 for the transverse Maxwell
propagator with transverse current source J .

Because we are considering using the short-time propagators in a time-stepping
loop, we have to consider the stability properties of the repeated application of these
propagators. We discuss this in Section 4. While we do not discuss it in detail here,
the number of nodes in the composite Newton–Cotes scheme described in (38) can
also affect stability.

3.5. Parallelization. The use of a compactly supported convolutional kernel to
regularize the 3-D delta distributions inherent in the propagators of (10) and (24)
has the computational benefit of numerically preserving the locality inherent in
the wave equation. In particular, in the same vein as Vay et al. [20], we can use
standard domain decomposition to parallelize the time-stepping procedure as in
Figure 2. This is in contrast to methods that use spectral expansions or global
Fourier transforms to obtain high accuracy.

Parallelization of our scheme follows the traditional communication-computation
loop of standard finite difference schemes:

(1) copy field values in halo region from neighboring processors, and then

(2) apply propagator to update local field values, invalidating values in halo region.
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Note that the width of the halo region here has a minimum bound dictated by the size
of the time step 1t since the size of the support of the spherical delta distributions
is dependent on how far in time the fields are to be advanced. For example, in
the presence of sources as in Algorithm 2, the size of the halo region should be
such that communication is only necessary after M applications of the discrete
propagator constructed with step size 1s =1t/M . Thus, 1t is chosen based on
the desired size of the halo region and 1s, which determines the CFL number, is
chosen based on the necessary resolution to resolve variation in the source.

4. Stability analysis

Letting P1s,h
M denote the discrete Maxwell propagator described by Algorithm 2,

we see that the evolution of the discretized electromagnetic fields is given by[
E(n)

h
B(n)

h

]
= P1s,h

M

([
E(n−1)

h
B(n−1)

h

])
.

Taking a Fourier transform, we obtain the Fourier-space relation[
Ẽ(n)

h
B̃(n)

h

]
= P̃1s,h

M

[
Ẽ(n−1)

h
B̃(n−1)

h

]
,

where now P̃1s,h
M is a matrix in k space (as opposed to a sum of convolutional

operators in physical space). For a typical von Neumann analysis of `2 stability, we
define ρ(k) to be the spectral radius of P̃1s,h

M and show that the necessary condition
(see, e.g., [17])

ρ(k)≤ 1+O(1s)

holds for all k. For analysis purposes, we assume that the integrals used to construct
the necessary regularized, spherically supported delta distributions are computed
exactly, i.e., without the use of the quadrature described in Section 3.2. Then, direct
computation shows that P̃1s,h

M (k) is given by

P̃1s,h
M =



H̃ c1s,h 0 0 0 −G̃c1s,h1̃z G̃c1s,h1̃y

0 H̃ c1s,h 0 G̃c1s,h1̃z 0 −G̃c1s,h1̃x

0 0 H̃ c1s,h
−G̃c1s,h1̃y G̃c1s,h1̃x 0

0 G̃c1s,h1̃z −G̃c1s,h1̃y H̃ c1s,h 0 0
−G̃c1s,h1̃z 0 G̃c1s,h1̃x 0 H̃ c1s,h 0

G̃c1s,h1̃y −G̃c1s,h1̃x 0 0 0 H̃ c1s,h


,

where the ordering of the blocks corresponds to the vector
[
Ẽx Ẽy Ẽz B̃x B̃y B̃z

]T

and the blocks of P̃1s,h
M are functions of the Fourier variable k corresponding to

the transforms of the discrete operators from Section 3.3.
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Lemma 3. The eigenvalues of P̃1s,h
M as a function of k are given by

λ1,2(k)= H̃ c1s,h(k)± G̃c1s,h(k)
√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k),

λ3(k)= H̃ c1s,h(k),

each of which appears with multiplicity 2.

Proof. This follows from direct computation via block linear algebra. �

To obtain explicit expressions for the eigenvalues in Lemma 3, we represent the
sampling operator using:

Definition 4. Given the spatial step sizes h1, h2, and h3, the 3-D Dirac comb Xh

is defined on R3 as

Xh(x)≡
∑
l∈Z3

( 3∏
d=1

δ(xd − ldhd)

)
.

In other words, Xh is a regular 3-D lattice of delta distributions.

For the methods described in this paper, the regularized 1-D delta distribution
used to construct the regularized 3-D delta distributions in Gc1s,h and H c1s,h is
given by shifting and scaling of some fundamental kernel W , i.e.,

δhd (x)≡
1

hd
W (x/hd), (40)

which we combine with the sampling operator to explicitly write the Fourier trans-
forms G̃c1s,h and H̃ c1s,h as

H̃ c1s,h(k)=
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
P̃1(k′)

]
dk′, (41)

G̃c1s,h(k)=
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
P̃2(k′)

]
dk′, (42)

where the functions P̃1 and P̃2 are defined in Fourier space according to

P̃1(k)≡
sin c|k|1s

c|k|1s
− i

3∑
d=1

∂

∂kd

[
sin c|k|1s

c|k|1s

]
1̃xd (kd),

P̃2(k)≡
sin c|k|1s
|k|

.

We are now ready to state and prove the fundamental stability result for the discrete
Maxwell propagator.
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Theorem 5. In Algorithm 2, assume that the regularized, spherically supported
delta distributions are computed exactly, i.e., without the use of quadrature. Sup-
pose further that the 1-D delta distributions are constructed using a fundamental
kernel W as in (40) satisfying the following properties:

(1) W̃ (k) is real and nonnegative for k ∈ R.

(2) W ( j)= 0 for j ∈ Z except W (0)= 1; i.e., W behaves like the Kronecker delta
on the lattice points.

In addition, suppose that for each d the finite difference stencil 1xd has real coeffi-
cients and odd symmetry and has spectrum bounded for |kdhd | ∈ (0, π] as

0≤
1̃xd (kd)

ikd
≤ 1.

Furthermore, define the quantity

R̃(k)≡
3∑

d=1

−ikd1̃xd (kd)

|k|2
,

and assume that there exists a bound B < 1 such that |R̃(k)| ≤ B < 1 for all k
with any |kd | ≥ π/hd . Then the time-stepping scheme satisfies the von Neumann
condition for

σ ≡
c1s

h
≥

1+ B
π(1− B)

,

where h =maxd hd .

Proof. Based on the assumption that 1xd is a real and odd finite difference stencil,
it has a purely imaginary Fourier transform. Using Lemma 3, we deduce that
P1s,h

M (k) has a spectral radius ρ given by

ρ(k)=
∣∣∣H̃ c1s,h(k)+ G̃c1s,h(k)

√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k)
∣∣∣.

Using the triangle inequality and plugging in expressions (41) and (42) yields

ρ(k)≤
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
· |S̃(k′)|

]
dk′

with the quantity S̃(k) defined according to

S̃(k)≡ P̃1(k)+ P̃2(k)
√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k). (43)

We will show that S̃ has magnitude bounded by 1 for all k and use this to show
that ρ is bounded by 1 for all k.



158 BORIS LO, VICTOR MINDEN AND PHILLIP COLELLA

Using some calculus and our definition of the quantity R̃, we write the term P̃1 as

P̃1(k)=
sin c|k|1s

c|k|1s
(1− R̃(k))+ R̃(k) cos c|k|1s,

which we note is purely real. Furthermore, we see that the second term in (43) is
purely imaginary. We proceed by breaking the argument across two separate cases.

First, assume that k is such that |kdhd | ∈ [0, π] for all d. Then by assumption,
R̃(k) ∈ [0, 1]. We use convexity to see that the real part of S̃(k) squared is bounded
according to

Re[S̃(k)]2 =
(

sin c|k|1s
c|k|1s

(1− R̃(k))+ R̃(k) cos c|k|1s
)2

≤

(
sin c|k|1s

c|k|1s

)2

(1− R̃(k))+ R̃(k)(cos c|k|1s)2.

On the other hand, the squared imaginary part of S̃(k) is bounded according to

Im[S̃(k)]2 = sin2 c|k|1s
(
|1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k)|
|k|2

)
≤ R̃(k) sin2 c|k|1s.

Combining these two bounds and using the fact that cos2(x)+ sin2(x) = 1, it is
simple to show that |S̃(k)|2 ≤ 1 as desired.

Next, suppose that |kd |>π/hd for some d . By assumption, |R̃| ≤ B and further
it is evident that |k| ≥ π/hd . In this case, we compute that the real part of S̃(k)
is given by

Re[S̃(k)]2 =
(

sin c|k|1s
c|k|1s

)2

(1− R̃(k))2+ R̃2(k) cos2 c|k|1s

+ 2(1− R̃(k))R̃(k) cos c|k|1s
sin c|k|1s

c|k|1s
.

Using the identity 2 cos(x) sin(x)= sin(2x) and the bound B from our assumptions,
we see

Re[S̃(k)]2 ≤
(

sin c|k|1s
c|k|1s

)2

(1+ B)2+ B cos2 c|k|1s+ B(1+ B)
∣∣∣∣sin 2c|k|1s

c|k|1s

∣∣∣∣.
We bound the sines by 1 and the magnitudes of k by π/hd to obtain

Re[S̃(k)]2 ≤
(

1
cπ/hd1s

)2

(1+ B)2+ B cos2 c|k|1s+ B(1+ B)
∣∣∣∣ 1
cπ/hd1s

∣∣∣∣
≤

1
σ 2π2 (1+ B)2+ B cos2 c|k|1s+ B(1+ B)

1
σπ

.



A GREEN’S FUNCTION METHOD FOR THE SOLUTION OF MAXWELL’S EQUATIONS 159

The imaginary part of S̃(k) is bounded trivially as before since

Im[S̃(k)]2 ≤ |R̃(k)| sin2 c|k|1s ≤ B sin2 c|k|1s.

Combining these two bounds and assuming σ ≥ (1+ B)/(π(1− B)) again gives
that |S̃(k)|2 ≤ 1.

Now we have shown that |S̃(k)| ≤ 1 for all k, from which it immediately follows
that ρ(k)≤ 1 since

ρ(k)≤
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
· |S̃(k′)|

]
dk′

≤

∫
R3

X2π/h(k− k′) ∗
( 3∏

d=1

W̃ (k ′dhd)

)
dk′

=

3∏
d=1

(∑
l∈Z

W̃ (kdhd + 2πl)
)
= 1,

where the last equality comes from the fact that by Poisson summation we have that∑
l∈Z W̃ (kh+ 2πl) is the discrete-space Fourier transform of W evaluated at kh,

which is unity everywhere by the fact that W behaves like the Kronecker delta on
the lattice points. This concludes the proof. �

The main result of Theorem 5 is somewhat odd in the sense that we have shown
the von Neumann condition holds for all σ above a certain minimum value whereas
in general we expect stability results to give an upper bound on σ . We believe this
to simply be an artifact of the proof technique employed.

To extend Theorem 5 to the wave equation propagator, we note that for this new
propagator the eigenvalues in Fourier space are given by

λW
1,2(k)= H̃1s,h(k)± G̃1s,h(k)

√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k),

λW
3 (k)= H̃1s,h(k)

with varying multiplicity. Analysis analogous to that in the proof of Theorem 5
proceeds in a similar fashion by taking c = 1. For the source-free case, it is not
necessary to use a quadrature scheme and thus one can take 1t =1s.

We must caution that, in proving Theorem 5, we have assumed that the spherical
integrals are performed exactly, which in practice is not possible. It is unclear
whether the use of a quadrature scheme such as described in Section 3.2 might
lead to unstable modes. Our numerical experiments, however, show no evidence of
instability.
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5. Numerical experiments

We have performed convergence studies using two tests: one where the exact
solution is known, where we can compute the true absolute error, and another
where the exact solution is unknown, where we estimate the convergence rate using
Richardson error estimation. We also present numerical test results investigating
any dependence the solution has on domain decomposition and number of points in
the spherical quadrature of (34). Lastly, we present timing results demonstrating
the weak scaling of our solver.

The following notation is used throughout the section:

N : number of grid points per spatial dimension,

h: grid spacing (1/N ),

σ : CFL number (c1t/h),

Nθ : number of points in the θ direction for the spherical quadrature,

Nt : number of time steps.

All tests are performed in a unit cube with N 3 points and Nθ = 16 unless otherwise
specified. All tests presented in this section were performed on the Edison machine
at the NERSC facility.

5.1. Results. We implemented our method in C++ using the Chombo library [1].
Our implementation uses a sixth-order central difference stencil for the spatial
derivatives, a sixth-order interpolation formula for the discrete delta distribution,
and the sixth-order Boole’s rule for the source integration. All convolutions are
performed via Hockney’s method with simple domain doubling using the FFTW
library [8]. We note that it is in fact not necessary to fully double the domain to
perform the convolutions for our solver — rather, we extend the domain with a
number of grid cells equal to the support of the discrete propagator, which is usually
much smaller than the local domain on each processor.

Plane wave. We begin by testing our code with no source ( J = 0 and ρ = 0) with
periodic boundary conditions and initial conditions of the form

Ex(x, y, z)= Bx(x, y, z)= 0,

Ey(x, y, z)= Bz(x, y, z)= Ey0 sin 2πx,

Ez(x, y, z)= Ez0 sin 2πx,

By(x, y, z)=−Ez(x, y, z)

in the domain �= [0, 1]3 m with tfinal =
25
8c s. Solving Maxwell’s equations with

these initial conditions yields a set of plane waves propagating in the x direction with
velocity c. Figure 3 shows the absolute error for σ = [1, 10, 100] for the sixth-order
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Figure 3. Max-norm error for the plane wave problem for σ = [1, 10, 100] with N =
[32, 64, 128, 256] with σNt = [100, 200, 400, 800], which corresponds to tfinal =

25
8c s.

The error scales as h4.99 for σ = 1, h5.22 for σ = 10, and h5.28 for σ = 100. The σ = 100
problem uses Nθ = 128, and the others use Nθ = 16.

solver with Ey0 = Ez0 = 1. As expected with constant-σ tests, the results yield
fifth-order convergence for the absolute error; i.e., we lose one order of accuracy
since the number of time steps is inversely proportional to the spatial step size.

Divergence-free current source. For the second test, we begin with zero initial condi-
tion and zero charge density but with a divergence-free current density [5] of the form

Jx(x, y, z)=−
(y− y0)

r
sin
(
πr
2a

)
cos10

(
πr
2a

)
cos11

(
π(z− z0)

d

)
sin(2πνt),

Jy(x, y, z)=
x − x0

r
sin
(
πr
2a

)
cos10

(
πr
2a

)
cos11

(
π(z− z0)

d

)
sin(2πνt),

Jz(x, y, z)= 0,

where r = r(x, y)≡
√
(x − x0)2+ (y− y0)2. With this source, we solve Maxwell’s

equations in a unit cube with open boundary conditions and parameters a = 0.25 m,
d = x0 = y0 = z0 = 0.5 m, and ν = 149 896 229 s−1 in the domain � = [0, 1]3 m
to tfinal =

5
32c s. This frequency was chosen to match the low-frequency test of

Chilton [5]. For this problem, the z component of the electric field is Ez = 0
for all time. Table 1 shows the Richardson error estimate for test problems with
σ =[ 12 , 1, 10] using the sixth-order solver. For σ = 1

2 and σ =1, the error estimate for
the nonzero components of the EM fields show fifth-order convergence as expected
and for Ez it shows sixth-order convergence. For σ = 10, we see unexpected
higher-order convergence for the error, which requires more investigation. However,
as we see in Figure 4, the solution differences between corresponding points as the
spatial resolution varies seem to indicate that our test cases sit within the asymptotic
regime (a necessary condition for the validity of Richardson error estimates).
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σ = 0.5 σ = 1 σ = 10
Component `∞ `1 `2 `∞ `1 `2 `∞ `1 `2

Ex 4.96 4.99 4.99 4.97 4.99 5.00 8.12 7.46 7.87
Ey 4.96 4.99 4.99 4.97 4.99 5.00 8.12 7.46 7.87
Ez 5.88 5.89 5.90 5.82 5.85 5.84 4.89 5.22 5.05
Bx 5.12 5.12 5.15 5.14 5.14 5.17 6.63 7.03 6.96
By 5.12 5.12 5.15 5.14 5.14 5.17 6.63 7.03 6.96
Bz 5.07 5.09 5.11 5.08 5.10 5.13 6.53 7.03 6.95

Table 1. Richardson error estimate of asymptotic rate using `∞, `1, and `2 norms for the
specified current test σ = [ 12 , 1, 10] with N = [129, 257, 513] and σNt = [20, 40, 80],
respectively, corresponding to tfinal =

5
32c s.

For the Richardson error estimation, we solve the problem to the same final time
with increasingly finer discretizations h, h/2, and h/4 and let ui denote the solution
corresponding to the grid with spacing i . We then sample the solution on the h/4
grid onto the h/2 grid and the solution on the h/2 grid onto the h grid. Letting Si

denote the sample operator that transfers a solution on a grid with spacing i/2 to a

Fine-medium difference Medium-coarse difference

σ
=
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−14
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Figure 4. Visualizations of the logarithm (base 10) of the absolute difference between
the solution on grids of different sizes, as used to obtain the antenna problem Richardson
error estimates in Table 1. Our Richardson estimates use three grids at sizes N = 513
(fine), N = 129 (medium), and N = 65 (coarse). For example, to obtain the fine-medium
difference, we subsample the values of Ex on the fine grid and measure the pointwise
difference between the values at the corresponding locations on the medium grid. The
figures here show a cross-sectional view of these quantities at the plane z = 0.5 m.
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Npatch Nθ `∞ error Npatch Nθ `∞ error

7 16 2.389× 10−11 9 32 6.343× 10−12

8 16 2.389× 10−11 9 64 3.543× 10−11

9 16 2.387× 10−11 9 128 4.175× 10−11

10 16 2.391× 10−11 9 256 1.031× 10−11

Table 2. Absolute `∞ error for the plane wave problem with σ = 1, N = 513, and
Nt = 160, corresponding to tfinal =

5
16c s. The domain is decomposed into N 3

patch number
of subdomains.

grid with spacing i , the `p norm error rate estimate is given by

q =
log

∣∣uh/2−Sh/2(uh/4)
∣∣

p − log
∣∣uh −Sh(uh/2)

∣∣
p

log 1
2

. (44)

For parallelization via domain decomposition, we break the domain into N 3
patch

subdomains and then solve the problem in parallel with a number of processors
Nproc = N 3

patch. The error in our algorithm should not depend on Npatch, which we
confirmed by solving the plane wave problem with fixed σ = 1, N = 513, and
Nt = 160 and varying Npatch. The absolute `∞ error results can be seen in the left
part of Table 2. As expected, the error shows no significant dependence on the
subdomain sizes. Further, for this same plane wave problem, we investigated the
dependance of the error on the number of discretization points used for the spherical
quadrature, Nθ , which shows a slight decreasing trend as expected; see the right
half of Table 2.

Table 3 shows weak scaling results of our algorithm in parallel applied to the
prescribed current-source problem with CFL parameter σ = 1

2 . As shown by the
normalized τ factor, our solver exhibits reasonable scaling once communication is
introduced in the problem while it is lower for the single-processor case where no
communication is necessary. Note that, while the number of processors scales with

N Nt Nproc tsolve (s) tquad(s) τ

65 20 1 613.65 0.02 1.11× 10−4

129 40 8 1471.29 0.03 1.37× 10−4

257 80 64 2791.86 0.03 1.32× 10−4

513 160 512 5830.04 0.03 1.38× 10−4

Table 3. Timing data for the prescribed current problem with σ = 1
2 with the domain sub-

divided into N 3
patch = Nproc total subdomains solved on Nproc processors. The time spent

in the solver, tsolve, and time spent doing the spherical quadrature, tquad, are taken from
the timing data of a single processor. The factor τ = tsolve Nproc/(N 3 Nt ) is a normalized
measure of time spent in the solver. In the perfect scaling case, τ would remain a constant.
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the total number of points in the spatial discretization, the number of time steps
increases by a factor of 2 between subsequent rows of the table, which is reflected
in the way tsolve roughly doubles between rows.

6. Conclusion

Our numerical results demonstrate that we attain the desired order of accuracy
through both a simple plane wave example (where the true solution is known)
and a more complicated example with a time-dependent source (where we employ
Richardson error estimates). The major advantage to this method is that it is easily
parallelizable. This method does not have a CFL condition based on the wave speed
so that the communication cost relative to an explicit method of same accuracy is
much lower. The lack of a time step constraint is also a significant cost reduction
when the field solver is used in PIC code. In addition, since the method is based on
convolutions with compactly supported kernels, the Hockney algorithm is used on
small patches of the domain; thus, it is well suited for multicore architectures with
deep memory hierarchies. Our implementation has shown good weak scaling via
parallelization in space. Our method is also computationally cheaper than explicit
methods of the same accuracy for large CFL or large number of grid points. Suppose
we would like to advance the solution by a time T using one time step of the present
method. If we define σ = dcT/he, then σ is the number of ghost points required in
each direction per patch. The amount of work it takes to solve the problem per patch
would then be the cost of the FFT and multiplication for Hockney, and therefore,
it is O((N + σ)3 log(N + σ)). On the other hand, for an explicit method, the CFL
stability condition on the time step implies that the number of time steps required to
advance the solution to time T is O(σ ), and the total work required per patch would
be O(N 3σ). Thus, we expect a decrease in the time to solution of the present method
relative to an explicit method to be O(log(N + σ)(1/N + 1/σ)). If the execution
time is dominated by the time to read and write the field data to and from cache,
then the present algorithm is performing O(1/σ) as many such communication
steps as an explicit method, and the time to solution is reduced by that factor.

In essence, the method presented in this paper solves the free-space Maxwell
equations by assuming that the fields have been separated into local and nonlocal
parts via Helmholtz decomposition and solving the local portion in parallel by
constructing a compactly supported discrete convolutional kernel via

(1) finding an explicit analytic form for the Maxwell propagator,

(2) regularizing the singularities with convolutional smoothing kernels,

(3) replacing spatial derivatives with finite difference stencils, and

(4) sampling the result on a Cartesian grid.
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Because the resulting discretized propagator takes the form of discrete convolution
against a compactly supported kernel, a regular decomposition of the domain
across processors with a halo region whose size is driven by the support of the
propagator (i.e., the size of 1t and the order of discretization accuracy) admits
exact application of the discrete propagator in parallel; i.e., the error is independent
of the domain decomposition. Furthermore, by appropriate choice of the smoothing
kernel and finite difference stencils, our method can attain an arbitrarily high order
of accuracy. We view the rigorous error analysis and demonstration of accuracy as
a strength of our paper and method. The method of [20] employs a similar idea
for parallelization, using linearity and finite propagation speed to justify domain
decomposition in the solution of Maxwell’s equations. In fact, the continuous
propagator for our method (24) is the same as the one used in [20]. However, the
method the authors present advances all fields in Fourier rather than physical space,
which they approximate in parallel by taking local FFTs on each subdomain. While
they assert spectral accuracy of their method, they do not provide any analysis
of he method, nor convergence results that would support such an assertion. The
authors do note that the finite number of modes used in this representation leads
qualitatively to small nonlocal errors, of which they defer analysis for later work.

It is important to keep in mind that the approach we show here assumes that the
electric field has been decomposed everywhere via the Helmholtz decomposition
and that the divergence-free component is to be treated by other methods. As such,
future work will focus on coupling of our method with a fast and accurate method
for Poisson’s equation in order to compute the solution to (22) and/or (23) in the
specific application to PIC methods for the Maxwell–Vlasov equations. While it
may appear that, by looking only at the case of JL ≡ 0, we are ignoring a large
computational cost, the trend in PIC methods for charged systems is towards a
large number of particles per cell, i.e., hundreds or thousands, for the purpose
of minimizing numerical noise. For electrostatic problems, the need for such
large numbers of particles per cell is indicated by the convergence theory for PIC
methods [21]. In this regime, the field solve constitutes a small fraction of the
cost, even with a Poisson solve included. However, for classical explicit time-
stepping methods, the time step for the overall calculation is constrained by the CFL
condition for the Maxwell solve so that the ability to use larger time steps provides
an additional tool to improve overall performance. Another area we will investigate
is the extension of this method to locally refined grids, using an approach analogous
to that in [14] for Poisson’s equation. Since our key motivation for this method is
to use it in a PIC method to simulate free plasmas where the EM waves radiate
out with open boundary conditions, we are not concerned with dealing with other
boundary conditions with this method. However, incorporating boundary conditions
in integral evolution methods for the wave equation has been examined [13].
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Finally, in the present method, we use the special structure of Maxwell’s equations
and the wave equation in 3-D to compute an analytic form for the propagator with
support on the surface of the sphere corresponding to the wave front. While the
propagator in 3-D involves integrating on the surface of a sphere, the propagator
does not take this form in general. For instance, the 2-D wave equation propagator
requires integration on a disc [22]. Therefore, it is not obvious if we could extend our
idea of regularization to other dimensions. Nonetheless, there are a number of ways
in which we could attempt to generalize this approach. One approach would be to
construct a discrete propagator directly, using iterates of an explicit method applied
to discrete-delta-function initial data. This would be done at most once per time step
on a small patch and then applied multiple times as a discrete convolution kernel, as
above. Another approach would be to use geometrical optics [12] as a starting point
for constructing a sufficiently accurate approximate propagator to represent the stiff
wave propagation. The first problem to which to apply either of these approaches
would be the wave equation in 2-D, followed by the linearized Euler equations in
the low-Mach number limit or linearized MHD in the low-Alfvén number limit.

Appendix: Constructing compactly supported delta approximations

To derive a function δh satisfying the discrete moment conditions, we first define
the unscaled approximant W such that

δh(x)=
1
h

W (x/h). (45)

Theorem 7.2.1 from [6] gives sufficient conditions for the discrete moment condi-
tions in terms of the behavior of the Fourier transform of W , which we restate here
without proof.

Theorem 6 (continuous moment conditions [6]). Consider the approximation

fapp(x)=
∑
j∈Z

W ( j − x) f ( j). (46)

Suppose that W decays sufficiently quickly, i.e., |W (x)| ≤ A exp(−B|x |) for some
constants A and B. Then, the interpolation formula is of degree q if the following
two conditions hold:

(1) The function W̃ (k)− 1 has a zero of order q at k = 0.

(2) The function W̃ (k) has a zero of order q at k = 2π j for integer j 6= 0.

We note that the first condition in Theorem 6 is equivalent to the continuous
moment conditions in (29) and the second condition arises from the periodic
summation of the spectrum of W due to sampling.
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For computation purposes, it is desirable that the support of W be as small
as possible. Due to a theorem of Tornberg and Engquist, we have the following
minimum bound on this support.

Theorem 7 (minimum support for an approximate delta function [19]). There exists
a function W ∈ Qq if and only if the support of W contains the interval [−q/2, q/2].
Furthermore, for each choice of q , there is a unique W that achieves this minimum
support though it is not, in general, smooth (or even continuous).

In other words, Theorem 7 says that the support of W centered at 0 must cover
at least q + 1 points in the discrete grid such that the support of W with arbitrary
center covers at least q points in the discrete grid. This ensures an adequate number
of degrees of freedom to satisfy the discrete moment conditions.

Define the B-splines via the recursion

Mq = Mq−1 ∗M1, M1 = χ[−1/2,1/2], (47)

where χ[a,b] is the indicator function of the interval [a, b]. It is evident that
Mq ∈ Cq−2 is supported on the interval [−q/2, q/2], and it is well known that
its Fourier transform is given by

M̃q(k)=
(

sin(k/2)
k/2

)q

, (48)

which has zeros of order q at nonzero integer multiples of 2π . Unfortunately,
M̃q(k)− 1 has zeros of only order 2 at k = 0, restricting B-splines to only second-
order approximations of the discrete delta distribution [15].

Based on these facts, we suppose for simplicity that q is even1 and introduce the
ansatz

W̃q(k)=
q/2−1∑

p=0

a2pk2p M̃q(k). (49)

Because M̃q(k) decays as 1/kq , we see that W̃q(k) decays at least as fast as 1/k2,
ensuring that Wq(x) is continuous. Furthermore, it is evident that W̃q(k) still has
zeros of order q at j2π for integer j 6= 0 regardless of the choice of coefficients ap.
Finally, we see that W̃q(k) is real and even, therefore leading to a Wq(x) that is
real and symmetric. It remains to choose these coefficients such that W̃q(k)−1 has
zeros of order q at k = 0.

Let the Taylor expansion of M̃q(k) about 0 be given by

M̃q(k)=
q/2−1∑

p=0

b2pk2p
+O(kq), (50)

1A similar argument holds for odd q, but the resulting approximant is not continuous.
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where we note that M̃q(k) is an even function and thus all odd coefficients are
necessarily zero. Then, the Taylor expansion of W̃q(k) about 0 is given by

W̃q(k)=
q/2−1∑
m=0

( m∑
p=0

a2pb2m−2p

)
k2m
+O(kq), (51)

where we see that the coefficients are given by a convolutional formula. To ensure
zeros of the appropriate order, we would like to choose ap such a0b0 = 1 and the
rest of the coefficients are 0. This leads to q/2 equations in q/2 unknowns in a
triangular system of the form

a0 0 0 · · · 0
a2 a0 0 · · · 0
a4 a2 a0 · · · 0
...

...
...

. . .
...

aq−2 aq−4 aq−6 · · · a0




b0

b2

b4
...

bq−2

=


1
0
0
...

0

 . (52)

It is easy to verify that, for the B-splines, a0= 1 and thus this system is nonsingular,
yielding a unique set of coefficients that lead to a W̃q(k) satisfying the conditions
of Theorem 6.

Now that we see we can attain a Fourier representation of an appropriate kernel
of the form in (49), it remains to transform back to the spatial domain. However,
by simple properties of the Fourier transform, we have that

Wq(x)=
q/2−1∑

p=0

a2p(−1)p M (2p)
q (x); (53)

i.e., we are simply taking a linear combination of the B-spline and its derivatives,
leading once again to a piecewise polynomial spline supported on [−q/2, q/2].

For completeness, we give the approximants Wq for q = 4, 6 produced by this
method:

W4(x)=


1
2 |x |

3
− |x |2− 1

2 |x | + 1, |x | ∈ [0, 1],
−

1
6 |x |

3
+ |x |2− 11

6 |x | + 1, |x | ∈ [1, 2],
0, else.

(54)

W6(x)=


−

1
12 |x |

5
+

1
4 |x |

4
+

5
12 |x |

3
−

5
4 |x |

2
−

1
3 |x | + 1, |x | ∈ [0, 1],

1
24 |x |

5
−

3
8 |x |

4
+

25
24 |x |

3
−

5
8 |x |

2
−

13
12 |x | + 1, |x | ∈ [1, 2],

−
1

120 |x |
5
+

1
8 |x |

4
−

17
24 |x |

3
+

15
8 |x |

2
−

137
60 |x | + 1, |x | ∈ [2, 3],

0, else.

(55)

We note that the first coincides with the “k-point central interpolation formula”
for k = 4 described, e.g., by Schoenberg [18]. In fact, discrete delta distributions
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matching moment conditions to order q correspond directly with interpolation
kernels on uniform grids that exactly integrate polynomials of order less than q [19],
so the fact that both methods achieve the minimum support size of [−q/2, q/2]
means they are one and the same by Theorem 7. Finally, we remark that different
forms of the ansatz in (49) can lead to kernels with slightly larger support but higher
degrees of smoothness, if that is desired.
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ANALYSIS OF ESTIMATORS FOR
ADAPTIVE KINETIC MONTE CARLO

DAVID ARISTOFF, SAMUEL T. CHILL AND GIDEON SIMPSON

Adaptive Kinetic Monte Carlo combines the simplicity of Kinetic Monte Carlo
(KMC) with a saddle point search algorithm based on Molecular Dynamics (MD)
in order to simulate metastable systems. Key to making Adaptive KMC effective
is a stopping criterion for the saddle point search. In this work, we examine a
criterion of S. T. Chill and G. Henkelman (J. Chem. Phys. 140 (2014), no. 21,
214110), which is based on the fraction of total reaction rate found instead of
the fraction of observed saddles. The criterion uses the Eyring–Kramers law
to estimate the reaction rate at the MD search temperature. We also consider
a related criterion that remains valid when the Eyring–Kramers law is not. We
examine the mathematical properties of both estimators and prove their mean
square errors are well behaved, vanishing as the simulation continues to run.

1. Introduction

An outstanding problem in theoretical materials science and chemistry is how to
reach laboratory time scales of microseconds (10−6 s) and longer using models,
based on Molecular Dynamics (MD), which resolve the atomistic time scale of
femtoseconds (10−15 s). Much of this scale separation is due to the presence of
metastable regions in the configuration space of the system. In such regions, often
defined by local minima of an energy landscape, the system stays close to a particular
configuration, such as a local minima, before crossing into some other metastable
region associated with a different configuration. Consequently, during much of a
direct MD simulation, the system is close to one metastable region or another. It
exhibits dynamics akin to a continuous time random walk on the set of metastable
states, with comparatively long waiting times.

Since much of the physical significance of these systems is characterized by the
sequence of visited metastable states and the time spent in each, there have been
a variety of efforts to systematically coarse grain the MD trajectory into a more
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computationally efficient continuous time random walk. A. F. Voter has proposed
three methods, Parallel Replica Dynamics, Hyperdynamics, and Temperature Ac-
celerated Dynamics, which can overcome metastability through intelligent usage of
the primitive Langevin dynamics [14; 16]. In recent years, significant effort has
been made to understand and quantify the approximations in these methods and
extend their applicability [2; 3; 1; 5; 11; 12; 15].

Another approach to the problem is Kinetic Monte Carlo (KMC), and this will
be the focus of this work. Let us assume our system is governed by a potential
energy V (x), x ∈Rd at inverse temperature β. Furthermore, we assume that we have
partitioned configuration space into an at most countable set of metastable states,�i ,
associated with local minima mi of V . The system can go from metastable state i
to metastable state j if there is a saddle point, si j , of V (x) joining �i and � j .
For conciseness, we will assume there is a single saddle point joining two given
adjacent metastable states, though, in general, there may be multiple pathways.

In traditional KMC, before a simulation is run, one must identify the metastable
states, their connectivity (i.e., which ones are joined by saddle points), and the
reaction rates of each such connection. Given all of this information, KMC is very
cheap to simulate. A single random number is generated and used to select one of
the possible reactions, the system migrates into the new metastable region, and the
algorithm repeats.

Unfortunately, such complete details of the metastable states and their connec-
tivity are, a priori, unavailable in all but the simplest low-dimensional systems.
This has motivated the development of Adaptive Kinetic Monte Carlo (AKMC)
[6; 17; 18]. In AKMC, the system starts in some metastable region �i . Saddle
points associated with �i are then sought via a saddle point search algorithm that
successively finds si j . Reaction rates for each such saddle can be estimated by the
Eyring–Kramers law [8]:

ki j = gi j exp[−β(V (si j )− V (mi ))], (1-1)

where, writing λ1 for the sole negative eigenvalue of ∇2V (si j ),

gi j =
|λ1|

π

√∣∣∣∣det∇2V (mi )

det∇2V (si j )

∣∣∣∣.
Once a sufficient number of saddles associated with �i have been identified, the
problem is treated by using traditional KMC with the thus far identified reactions
and their rates; this process then repeats in the next metastable region. Two things
are needed to proceed with AKMC:

(1) a saddle point search algorithm;

(2) a stopping criterion.
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In this work, we will consider the question of the stopping criterion, provided our
saddle point search algorithm satisfies certain assumptions. Our analysis will focus
on estimators similar to the one introduced by Chill and Henkelman [6]. We call
these Chill-type estimators.

In [6], the authors searched for saddle points out of each metastable state using
high-temperature MD. For concreteness, consider the Brownian dynamics in Rd :

d X t =−∇V (X t) dt +
√

2β−1 dWt . (1-2)

The aim is to model the dynamics at low temperature β = β lo. Starting at X0 ∈�i ,
integrate (1-2) at a higher temperature β = βhi (i.e., β lo > βhi) until the trajectory
leaves �i . Using the higher temperature βhi allows an escape to occur more quickly.
After the trajectory leaves �i , one of the saddle points si j is identified with this
pathway using, for instance, the nudged elastic band method [10; 9], and the
low-temperature reaction rate is computed using (1-1) with β = β lo. This is then
repeated, with a new initial condition chosen in �i . Throughout, the cumulative
simulation time is recorded.

Other saddle point search algorithms have been proposed, including the dimer
method and the string method [13; 7]. In our analysis, the key property that we
need to hold true for all of our search methods is the following. Let

Ni j (t)= Number of times saddle si j has been found by time t . (1-3)

Then for fixed i , during a saddle point search, the Ni j (t) are independent, with
respect to j , Poisson processes. We prove below that this holds for a carefully
performed saddle point search via integration of (1-2).

This article is organized as follows. We describe the saddle point search in
detail in Section 2, and prove some of its properties, including the above condition
on Ni j (t), in Section 3. In Section 4 we introduce stopping criteria for the saddle
point search, and in Section 5 we analyze these criteria. Section 6 contains proofs of
some of the estimates in Section 5. In Section 7 we make some concluding remarks.

2. Notation and saddle point search algorithm

Here and throughout (X t) is Brownian dynamics, that is, a stochastic process
satisfying (1-2). For simplicity we fix a single metastable set �≡�i and suppress
the index i in all of our notation from the introduction. For our purposes, V is
smooth, and � is an (open) basin of attraction of V with respect to the gradient
dynamics dy/dt =−∇V (y). We assume that ∂� is partitioned into finitely many
disjoint (measurable) subsets, called pathways and labeled 1, 2, . . . , N , such that
each pathway j contains a unique saddle point sj of V . When (X t) leaves �, it
must exit through one of the pathways 1, 2, . . . , N .
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The algorithm, as well as our analysis, depends heavily on the quasistationary
distribution (QSD) for (X t) in�, which we denote by ν. The QSD ν is a probability
measure that is locally invariant for (X t), in the sense that it is invariant conditionally
on the event that (X t) remains in �:

Definition 2.1. The QSD for (X t) in � is a probability measure ν supported in �
such that for all t > 0,

ν(·)= P(X t ∈ · | X0 ∼ ν, Xs ∈� for all s ∈ [0, t]).

Of course ν depends on �, but for simplicity we do not indicate this explicitly.
It has been shown [11] that ν exists, is unique, and satisfies

ν(A)= lim
n→∞

P(X t ∈ A | Xs ∈ A for s ∈ [0, t]), for all A ⊂�. (2-1)

Moreover this convergence is exponentially fast, uniformly in A. Equation (2-1)
leads to simple algorithms for sampling ν, based on the idea that a sample can be
obtained from the endpoint of a trajectory of (X t) that has remained in � for a
sufficiently long time; see [5] for details.

We are now ready to state the high-temperature saddle point search algorithm.
Versions of this algorithm have been used previously; see for instance [6] and
references therein. The search runs at a user-specified “high” (inverse) temperature
βhi. Below we write ν for the QSD in � at temperature β = βhi. We also write

H(t)=
{

0, t < 0,
1, t ≥ 0

for the Heaviside unit step function.

Algorithm 2.2. Set Nj (t) ≡ 0 for t ≥ 0 and j = 1, . . . , N . Let M be the current
cycle of the algorithm, and tsim the simulation clock. Initialize M = 1 and tsim = 0,
and iterate the following:

1. Generate a sample xM from ν. During this step tsim is stopped.

2. Starting at X0 = xM , evolve (X t) at β = βhi until it first leaves �, say at time
t = τ (M) through pathway I (M). The simulation clock tsim is running during
this step, and the stopping criterion is continuously checked. If at some time
tsim the criterion is met, the algorithm stops.

3. If I (M)= j , update Nj (t)= Nj (t)+H(t− tsim) for t ≥ 0 and record the saddle
point sj . Then update M = M + 1. During this step tsim is stopped.

It is not necessary to know N , and the pathways can be given labels according
to the order in which they are found. The simulation clock is cumulative, and it
only increases in Step 2. In particular, during the M-th cycle of the algorithm, tsim

increases by τ (M). The stopping criterion will be described in Section 4. Below
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we write tsim for the final value of the simulation clock in the algorithm, that is, its
value when the simulation is stopped. To refer to a generic simulation clock time
we write t . Thus, 0≤ t ≤ tsim and when the algorithm stops, Nj (t) is the number
of times an exit through pathway j has been observed by time t . Below we write
Nj (t) for its final value when the algorithm stops. We will also use the following
notation:

χ j (t)= 1Nj (t)≥1, N (t)=
N∑

j=1

Nj (t). (2-2)

That is, χ j (t)= 1 if an exit through pathway j has been observed at least once by
time t , and is 0 otherwise; N (t) is the total number of exits observed by time t .

3. Properties of the saddle point search

Our first result follows immediately from properties of the QSD established in [11].

Theorem 3.1. Suppose that in step 1 in the M-th cycle of Algorithm 2.2, xM is a
random variable with distribution ν. Then:

(i) τ (M) is exponentially distributed with mean κ−1: P(τ ( j) > t)= exp(−κt).

(ii) τ (M) and I (M) are independent.

Theorem 3.1 then leads to the following.

Theorem 3.2. Suppose that in step 1 of Algorithm 2.2, x1, x2, . . . are iid with
common distribution ν. Then:

(i) {N (t)}0≤t≤tsim is a Poisson process with parameter κ .

(ii) {Nj (t)}
j=1,...,N
0≤t≤tsim

are independent Poisson processes with parameters

κj := κpj , pj := P(I (1) = j). (3-1)

Proof. Let (Ñ (s))s≥0 be a Poisson process with parameter κ , which we denote by
Ñ (s) for brevity. Label each arrival time of Ñ (s) with a pathway j according to
the distribution pj , independently of the other arrival times, and let Ñj (s) be the
process with arrivals labeled by j . Then for r, s ≥ 0 and m1, . . . ,m N ≥ 0,

P

( N⋂
j=1

{
Ñj (r + s)− Ñj (r)= m j

})

= P

(
N (r + s)− N (r)=

N∑
j=1

m j

)(m1+· · ·+m N
m1, . . . ,m N

) N∏
j=1

pm j
j

=

N∏
j=1

e−κpj s(κpj s)m j

m j !
. (3-2)
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By summing over all mi ≥ 0 for i 6= j in the last expression above, we see that
for fixed r, s ≥ 0, the increment Ñj (r + s) − Ñj (r) is Poisson distributed with
mean κpj s. Ñj (s) also inherits independent increments from Ñ (s). This shows
that Ñj (s) is a Poisson process with parameter κj = κpj . Moreover, (3-2) shows
that Ñj (s), j = 1, . . . , N , are independent.

Let us now relate (Ñ (s))s≥0 with (N (s))0≤s≤tsim . For fixed s ∈ [0, tsim], the
time marginal N (s) is the largest m such that τ (1)+ · · ·+ τ (m) ≤ s. Together with
part (i) of Theorem 3.1, this shows that on [0, tsim], (N (s))0≤s≤tsim and (Ñ (s))s≥0

are Poisson processes with the same law. By part (ii) of Theorem 3.1, it follows
that the multivariate processes (Nj (s))

j=1,...,N
0≤s≤tsim

and (Ñj (s))
j=1,...,N
0≤s≤tsim

have the same
law. This establishes the result. �

4. Chill-type estimators and stopping criteria

The purpose of the high-temperature saddle point search (Algorithm 2.2) is to locate
“enough” of the low-temperature rate corresponding to the metastable set �. More
precisely, at a low temperature corresponding to β = β lo, the first exit time of X t

from � is approximately exponentially distributed with mean (k1+ · · · + kN )
−1,

where kj = klo
j is given by the Eyring–Kramers law (1-1) at β = β lo (recall the

subscript i has been suppressed). See [4] and references therein for rigorous results
in this direction. The kj are then exponential rates associated with leaving� through
pathway j at low temperature β lo. The proportion of low-temperature rate found
by time t in Algorithm 2.2 is

R(t) :=

∑N
j=1 χ j (t)kj∑N

j=1 kj
. (4-1)

The expected value of R(t) is

E[R(t)] = R(t) :=

∑N
j=1 pj (t)kj∑N

j=1 kj
, (4-2)

where
pj (t) := E[χ j (t)] = 1− exp(−κj t). (4-3)

Here κj is defined as in Theorem 3.2 at temperature β = βhi. The idea behind Chill-
type estimators is that when R(t) is sufficiently close to 1, the high-temperature
saddle point search can stop. There are two obstacles to this idea.

The first is that, at any time during Algorithm 2.2, it is unlikely that all saddle
points have been found. This problem is remedied by replacing kj in (4-1) with
χ j (t)kj , which is computable once pathway j has been found during the simulation.
The second obstacle is that an exact formula for pj (t) := E[χ j (t)] will not be known
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in practice. Chill-type estimators overcome the latter obstacle by using one of the
following approximations:

p̃j (t) := 1− exp[−khi
j t], khi

j given by Eyring–Kramers (1-1) at β = βhi,

p̂j (t) := 1− exp[−N̂j (t)], N̂j (t) :=
{

Nj (t), Nj (t)≥ 2,
0, else.

(4-4)

We have used the superscript hi to emphasize that the rate in (4-4) is computed at
temperature βhi (whereas kj is computed at low temperature β lo). Also note that
p̃j (t) is a physical estimate of E[χ j (t)] based on Eyring–Kramers, while p̂j (t) is
a (biased) Monte Carlo estimator. From (4-4) we obtain the following estimators
for R(t):

R̃(t) :=

∑N
j=1 p̃j (t)χ j (t)kj∑N

j=1 χ j (t)kj
, R̂(t) :=

∑N
j=1 p̂j (t)χ j (t)kj∑N

j=1 χ j (t)kj
. (4-5)

R(t), R̃(t), and R̂(t) are all random, while R(t) is deterministic. Both R̃(t) and
R̂(t) are explicitly computable at time t during the saddle point search. See [6] for
further discussion of R̃(t). To our knowledge R̂(t) has not appeared before in the
literature. We emphasize that R̂(t) may be used at any temperature βhi, while R̃(t)
is limited by the fact that it gives reasonable estimates of R(t) only at (relatively
low) temperatures where the Eyring–Kramers law holds.

After choosing R̃(t) or R̂(t) as the preferred estimator, the stopping criterion can
now be defined as follows: for a user-specified parameter ε > 0, stop Algorithm 2.2
in Step 3 if and only if

R̃(t) > 1− ε or R̂(t) > 1− ε, (4-6)

respectively. In Section 5 we give rigorous estimates of the bias and variance of the
estimators R̃(t) and R̂(t). These estimates show that, as t increases, when the algo-
rithm stops, on average at least (1−ε)% of the low-temperature rate has been found.

5. Analysis

The approximation p̃j (t) of pj (t) is usually considered valid when

βhi
� V (sj )− V (m),

with m the minimizer of V in �. To the authors’ knowledge, rigorous results are
scarce except when

sj = argmins1,...,sN
V (sj )− V (m);

see [4] and references therein. However, the following is a consequence of results
in [2]:
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Theorem 5.1. Suppose �= (a, b) is an interval and V is a Morse potential. Then
for each t > 0,

1− p̃j (t)
1− pj (t)

= 1+ O(1/βhi) as βhi
→∞, j = 1, 2. (5-1)

Proof. An examination of the proof of Theorem 4.1 of [2] shows that for j = 1, 2,

khi
j /κj = 1+ O(1/βhi) as βhi

→∞,

where khi
j is as in (4-4), and κj is as in Theorem 3.2 at temperature β = βhi. The

result follows. �

We next examine the approximation p̂(t) of p(t).

Theorem 5.2. Conditionally on N (t)≥ 1, N̂j (t) is an unbiased estimator for κj t :

E[N̂j (t) | N (t)≥ 1] = κj t. (5-2)

Also conditionally on N (t)≥ 1, p̂j (t) is a conservative estimate of pj (t):

E[ p̂j (t) | Nj (t)≥ 1] ≤ pj (t). (5-3)

Proof. Recall that Nj (t) is a Poisson process with parameter κj . Thus,

E[N̂j (t) | Nj (t)≥ 1] = (1− e−κj t)−1
∞∑

n=2

n
(κj t)ne−κj t

n!

=
κj t

1− e−κj t

∞∑
n=1

(κj t)ne−κj t

n!
= κj t.

Since x 7→ 1− e−x is a concave function, the second statement of the theorem
follows from Jensen’s inequality. �

The reason that we consider conditional expectations in Theorem 5.2 is that
Algorithm 2.2 cannot stop before N (t)≥ 1. Thus, we want estimates conditioned
on that event. We call p̂j (t) a conservative estimate for pj (t) because it is a lower
bound on average, so that using p̂j (t) in place of pj (t) leads to a larger average
stopping time for Algorithm 2.2.

Before proceeding we define, for real-valued random variables X and Y ,

Bias(X, Y ) := E[X − Y ], MSE(X, Y ) := Bias(X, Y )2+Var(X). (5-4)

Observe that the mean square error is not symmetric in its arguments.
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Theorem 5.3. Write q j (t) = 1− pj (t) = exp[−κj t] and K = k1+ · · · + kN . For
the estimator R̃(t),

|Bias(R̃(t), R(t))| ≤ N max
j
|Bias( p̃j (t), pj (t))| +

K
min j kj

R(t)max
j

q j (t),

Var(R̃(t))≤ 4 K 2

min j k2
j

R(t)2 max
j

q j (t),

MSE(R̃(t), R(t))≤ 2N 2 max
j

MSE( p̃j (t), pj (t))

+
K 2

min j k2
j

(
2 max

j
q j (t)+ 4

)
R(t)2 max

j
q j (t).

For the estimator R̂(t),

|Bias(R̂(t), R(t))| ≤ N max
j
|Bias( p̂j (t), pj (t))| +

K
min j kj

R(t)max
j

q j (t),

Var(R̂(t))≤ 2K 2

min j k2
j

R(t)2 max
j

q j (t)

+
(
1+ 2N 2 max

j
q j (t)

)
max

j
Var( p̂j (t)),

MSE(R̂(t), R(t))≤
(
1+ N 2

+ 2N 2 max
j

q j (t)
)

max
j

MSE( p̂j (t), pj (t))

+
4K 2

min j k2
j

R(t)2(1+max
j

q j (t))max
j

q j (t).

Here, all maxima and minima are taken over j ∈ {1, . . . , N }.

Proof. We give proofs in Section 6 below. �

We note that some of the bounds in Theorem 5.3 have been loosened so that
simpler expressions are obtained. This will become clear in the derivation of the
bounds in Section 6 below. We highlight that the bias is bounded by the bias
of the estimate of pj (t), together with another term representing an “inherent”
bias associated with R(t). This second term may be approximated by noting that
|R(t)|< 1 for all t and, due to Theorem 5.1, we expect q j (t) can be estimated by
the known function p̃j (t) or p̂j (t).

6. Estimates

In this section we give a proof of Theorem 5.3. Recall that q j (t) := 1− pj (t) and
K :=

∑N
j=1 kj is the total reaction rate. For brevity, we will sometimes suppress

the t dependence in our expressions. Also, all sums are over 1, . . . , N unless
otherwise indicated.
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6A. Preliminary calculations. Observe that

Bias(R̃(t), R(t))= Bias(R̃(t), R(t)), MSE(R̃(t), R(t))=MSE(R̃(t), R(t)),

and similarly for R̂(t); this fact will be used below without comment. There are a
few expressions that will show up repeatedly in the analyses of both R̃ and R̂. We
analyze them here for simplicity. Let

ξi = ki +
∑
m 6=i

kmχm (6-1)

We make the following calculations:

ki ≤ ξi ≤ K , (6-2a)

E[ξi ] = ki +
∑
m 6=i

pmkm = K −
∑
m 6=i

qmkm . (6-2b)

A lower bound on this can be obtained from Jensen’s inequality,

E[ξ−1
i ] ≥ E[ξi ]

−1
=

1
K−

∑
m 6=i qmkm

≥
1
K
+

1
K 2

∑
m 6=i

kmqm, (6-3)

while an upper bound can be obtained from the Edmundson–Madansky inequality,

E[ξ−1
i ] ≤

1
ki

K − E[ξi ]

K − ki
+

1
K

E[ξi ] − ki

K − ki
=

1
K
+

1
ki K

∑
m 6=i

kmqm . (6-4)

In the same way,

E[ξ−2
i ] ≥ E[ξi ]

−2
=

1(
K−

∑
m 6=i qmkm

)2 ≥
1

K 2 +
2

K 3

∑
m 6=i

qmkm, (6-5)

and

E[ξ−2
i ] ≤

1
k2

i

K − E[ξi ]

K − ki
+

1
K 2

E[ξi ] − ki

K − ki
=

1
K 2 +

K + ki

k2
i K 2

∑
m 6=i

qmkm . (6-6)

Therefore,

Var(ξ−1
i )≤

(K+ki

k2
i K 2
−

2
K 3

)∑
m 6=i

qmkm ≤
2

K k2
i

∑
m 6=i

qm(t)km, (6-7)

where we have lost some of the estimate in the last inequality for the sake of
conciseness.

6B. Estimates for R̃. Below it is useful to notice that

R̃(t)=
N∑

i=1

p̃i (t)χi (t)ki

ki +
∑

m 6=i χm(t)km
=

∑
i

p̃iχi ki

ξi
. (6-8)
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6B1. Bias. We begin with the direct calculation

E[R̃− R] =
N∑

i=1

E

[
χi p̃i ki

ξi
−
χi ki

K

]

=

N∑
i=1

( p̃i − pi )E

[
χi ki

ξi

]
+

N∑
i=1

E

[
χi pi ki

ξi
−
χi ki

K

]

=

N∑
i=1

( p̃i − pi )E

[
χi ki

ξi

]
+

N∑
i=1

E

[
K pi

ξi
− 1

]
︸ ︷︷ ︸

≡bi

pi ki

K
.

Using (6-3) and (6-4),

1
K

∑
m 6=i

kmqm − qi ≤ bi ≤
1
ki

∑
m 6=i

kmqm − qi .

Thus, ∣∣∣∣ N∑
i=1

bi
pi ki

K

∣∣∣∣≤ N∑
i=1

( N∑
j=1

kj

ki
q j

)
pi (t)ki

K
≤

K max j q j (t)
min j kj

R(t).

Combining the above expressions gives

|Bias(R̃(t), R(t))| ≤ N max
i
| p̃i (t)− pi (t)| +

K maxi qi (t)
mini ki

R(t). (6-9)

6B2. Variance. For the variance, we first write

R̃− E[R̃] =
N∑

i=1

(
χi

ξi
− E

[
χi

ξi

])
p̃i ki . (6-10)

Hence,

Var(R̃(t))=
N∑

i, j=1

ki kj p̃i p̃j Cov
(
χi

ξi
,
χ j

ξ j

)
︸ ︷︷ ︸

≡vi j

. (6-11)

Since vi j ≤
√
vi i
√
v j j , it will be sufficient for us to analyze the diagonal terms. By

Theorem 3.2, χi and ξi are independent. Thus

vi i = E[χi ]
2 Var(ξ−1

i )+ E[ξ−1
i ]

2 Var(χi )+Var(ξ−1
i )Var(χi ). (6-12)
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Using (6-6) and (6-7),

vi i ≤ pi Var(ξ−1
i )+ pi qi E[ξ

−2
i ]

≤ pi

(K+ki

k2
i K 2
−

2
K 3

)∑
m 6=i

qmkm + pi qi

( 1
K 2 +

K+ki

k2
i K 2

∑
m 6=i

qmkm

)
≤

pi qi

K 2 +
4pi

k2
i K

∑
m 6=i

qmkm ≤
4pi

k2
i

max
j

q j ≤
4
k2

i
max

j
q j (t)

≤
4

min j k2
j

max
j

q j (t). (6-13)

We have made some sacrifices in the last inequalities in order to obtain a more
concise expression. Consequently,

Var(R̃(t))≤
N∑

i, j=1

ki kj p̃i (t) p̃j (t)
√
vi i
√
v j j ≤

4K 2

mini k2
i

R(t)2 max
i

qi (t). (6-14)

6B3. MSE. Combining (6-9) and (6-14), we then obtain

MSE(R̃(t), R(t))≤ 2N 2 max
i
| p̃i (t)− pi (t)|2

+
K 2

mini k2
i

(
2 max

i
qi (t)+ 4

)
R(t)2 max

i
qi (t). (6-15)

In this calculation, we see that the mean square error may ultimately be dominated
by how well the p̃i approximate the pi .

6C. Estimates for R̂. We begin by noting that, since p̂j (t)= 0 if χ j (t) 6= 1,

R̂(t)=
∑

j

p̂j (t)kj

kj +
∑

m 6= j χm(t)kj
. (6-16)

6C1. Bias. We begin by writing

R̂− R =
N∑

i=1

( p̂i − pi )
ki

ξi
+

N∑
i=1

ki pi

ξi
−

ki pi

K
, (6-17)

so that, after taking an expectation,

E[R̂− R] =
∑
i=1

E

[
( p̂i − pi )

ki

ξi

]
+

N∑
i=1

(
E

[
K
ξi

]
− 1

)
ki pi

K
. (6-18)

Hence,

|Bias(R̂(t), R(t))| ≤ N max
i
|Bias( p̂i (t), p(t))| + K

mini ki
R(t)max

i
qi (t), (6-19)
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and we see that the observed bias is controlled by the biases of the approximate
probabilities, p̂i , and the inherent bias of the Chill-type estimators.

6C2. Variance. For the variance, we have

Var(R̂)=
N∑

i, j=1

ki kj Cov
(

p̂i

ξi
,

p̂j

ξ j

)
︸ ︷︷ ︸

≡v̂i j

. (6-20)

As before, we only need to study the diagonal entries, and use Theorem 3.2 to
obtain

v̂i i = E[ p̂i ]
2 Var(ξ−1

i )+ E[ξ−1
i ]

2 Var( p̂i )+Var( p̂i )Var(ξ−1
i )

≤ Var(ξ−1
i )+ E[ξ−2

i ]Var( p̂i )

≤
2

mini k2
i

max
i

qi +

( 1
K 2 +

2
mini k2

i
max

i
qi

)
Var( p̂i )

≤
2

mini k2
i

max
i

qi +

( 1
K 2 +

2
mini k2

i
max

i
qi

)
max

i
Var( p̂i ). (6-21)

We note that these estimates require full independence of Nj (t) for j = 1, . . . , N ,
not just independence of the χ j (t). Now,

Var(R̂(t))≤ 2K 2

mini k2
i

R(t)2 max
i

qi (t)+(1+2N 2 max
i

qi (t))max
i

Var( p̂i (t)). (6-22)

6C3. MSE. We can therefore express the mean square error of estimator R̂ as

MSE(R̂(t), R(t))≤ 4K 2

mini k2
i

R(t)2(1+max
i

qi (t))max
i

qi (t)

+
(
1+ N 2

+ 2N 2 max
i

qi (t)
)

max
i

MSE( p̂i (t), pi (t)). (6-23)

7. Discussion

We have considered three Chill-type estimators and shown them to be consistent.
Their biases are small, relative to their variances, and thus we have good estimators
of R(t), the true fraction of the observed rate in the system. They represent a
significant improvement over the original AKMC stopping criterion presented
in [17]. Indeed, these prior approaches attempted to estimate the fraction of the
saddles observed when, in fact, it is the fraction of the observed rate that is of
fundamental importance.

As an example, we will compare the accuracy of both estimators using a test
system that consists of saddle points sj corresponding to potential energy barriers



184 DAVID ARISTOFF, SAMUEL T. CHILL AND GIDEON SIMPSON

0 200 400 600
10�5

10�3

10�1

1-
E

st
im

at
or

n D �1
2

0 200 400

t

n D 0

0 100 200 300

n D 1
2

1 �R.t/

1 � QR.t/

1 � OR.t/

Figure 1. Comparison of the Chill-type estimators R̃(t) and R̂(t) to the true expected
proportion of the low-temperature rate found, R(t), on a test system that can deviate from
the Eyring–Kramer law.
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Figure 2. Comparison of the expected value of the Chill-type estimators R̃(t) and R̂(t) to
the true expected proportion of the low-temperature rate found, R(t), on a test system that
can deviate from the Eyring–Kramer law.

V (sj )− V (m)= 1+ 4
19 j , for j = 0, . . . , 19. The test system has rates that obey a

modified Arrhenius equation with the form

k̃hi
j =

(
β lo

βhi

)n

g j exp[β(V (sj )− V (m))]. (7-1)

Compare to Equation (1-1) (recall the subscript i has been suppressed). The variable
n controls how the rates deviate from an unmodified Arrhenius rate law. When
n = 0 the modified rates k̃hi

j are equal to the unmodified rates khi
j , while when

βhi < β lo, the modified rates are larger (resp. smaller) than the unmodified rates if
n > 0 (resp. n < 0).

We use Algorithm 2.2 on the test system with modified rates k̃hi
j . This means

(Nj (t))
j=1,...,N
0≤t≤tsim

are independent Poisson processes with parameters k̃hi
j . To compute
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R(t), we use (4-1) and sample χ j (t) via (2-2). To compute R̃(t) we use the
unmodified Arrhenius rates khi

j in (4-4). For each of R(t), R̃(t) and R̂(t), the
low-temperature rates kj = klo

j used in (4-1) and (4-5) are the same. We take g j = 1
for all j and βhi

= 2.5, β lo
= 10.0. The variable n was varied to compare the cases

where the Eyring–Kramers rates khi
j underestimate

(
n = 1

2

)
, overestimate

(
n =− 1

2

)
,

and provide an exact estimate (n = 0) of the modified rates k̃hi
j . Results are shown

in Figures 1 and 2. The test system shows that R̃(t) can overestimate R(t) if the
Eyring–Kramers rate deviates from the true rate at βhi, while R̂(t) tends to provide
a conservative estimate of R(t).
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COMPARISON OF CONTINUOUS AND DISCRETE-TIME
DATA-BASED MODELING FOR HYPOELLIPTIC SYSTEMS

FEI LU, KEVIN K. LIN AND ALEXANDRE J. CHORIN

We compare two approaches to the predictive modeling of dynamical systems
from partial observations at discrete times. The first is continuous in time, where
one uses data to infer a model in the form of stochastic differential equations,
which are then discretized for numerical solution. The second is discrete in
time, where one directly infers a discrete-time model in the form of a nonlinear
autoregression moving average model. The comparison is performed in a special
case where the observations are known to have been obtained from a hypoelliptic
stochastic differential equation. We show that the discrete-time approach has
better predictive skills, especially when the data are relatively sparse in time. We
discuss open questions as well as the broader significance of the results.

1. Introduction

We examine the problem of inferring predictive stochastic models for a dynamical
system, given partial observations of the system at a discrete sequence of times.
This inference problem arises in applications ranging from molecular dynamics to
climate modeling (see, e.g., [10; 12] and references therein). The observations may
come from a stochastic or a deterministic chaotic system. This inference process,
often called stochastic parametrization, is useful both for reducing computational
cost by constructing effective lower-dimensional models, and for making prediction
possible when fully resolved measurements of initial data and/or a full model are
not available.

Typical approaches to stochastic parametrization start by identifying a continuous-
time model, usually in the form of stochastic differential equations (SDEs), then dis-
cretizing the resulting model to make predictions. One difficulty with this standard
approach is that it often leads to hypoelliptic systems [19; 22; 28], in which the noise
acts on a proper subset of state space directions. As we will explain, this degeneracy
can make parameter estimation for hypoelliptic systems particularly difficult [28;
33; 30], making the resulting model a poor predictor for the system at hand.

MSC2010: 62M09, 65C60.
Keywords: hypoellipticity, stochastic parametrization, Kramers oscillator, statistical inference,
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Recent work [8; 21] has shown that fully discrete-time approaches to stochastic
parametrization, in which one considers a discrete-time parametric model and infers
its parameters from data, have certain advantages over continuous-time methods.
In this paper, we compare the standard, continuous-time approach with a fully
discrete-time approach, in a special case where the observations are known in
advance to have been produced by a hypoelliptic system whose form is known, and
only some parameters remain to be inferred. We hope that this comparison, in a
relatively simple and well-understood context, will clarify some of the advantages
and disadvantages of discrete-time modeling for dynamical systems. We note that
our discussion here leaves in abeyance the question of what to do in cases where
much less is known about the origin of the data; in general, there is no reason to
believe that a given set of observations was generated by any stochastic differential
equation or by a Markovian model of any kind.

A major difficulty in discrete modeling is the derivation of the structure, i.e., of
the terms in the discrete-time model. We show that when the form of the differential
equation giving rise to the data is known, one can deduce possible terms for the
discrete model, but not necessarily the associated coefficients, from numerical
schemes. Note that the use of this idea places the discrete and continuous models
we compare on an equal footing, in that both approaches produce models directly
derived from the assumed form of the model.

Model and goals. The specific hypoelliptic stochastic differential equations we
work with have the form

dxt = yt dt,

dyt = (−γ yt − V ′(xt)) dt + σ d Bt ,
(1-1)

where Bt is a standard Wiener process. When the potential V is quadratic, i.e.,

V (x)=
α

2
x2, α > 0,

we get a linear Langevin equation. When the potential has the form

V (x)=
β

4
x4
−
α

2
x2, α, β > 0,

this is the Kramers oscillator [20; 31; 3; 15]. It describes the motion of a particle
in a double-well potential driven by white noise, with xt and yt being the position
and the velocity of the particle; γ > 0 is a damping constant. The white noise
represents the thermal fluctuations of a surrounding “heat bath”, the temperature
of which is connected to γ and σ via the Einstein relation T = σ 2/(2γ ). This
system is ergodic, with stationary density p(x, y)∝ exp(−(2γ /σ 2)(1

2 y2
+ V (x))).

It has multiple time scales and can be highly nonlinear, but is simple enough to
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permit detailed numerical study. Parameter estimation for this system is also rather
well-studied [28; 30]. These properties make (1-1) a natural example for this paper.

One of our goals is to construct a model that can make short-time forecasts of
the evolution of the variable x based on past observations {xnh}

N
n=1, where h > 0

is the observation spacing, in the situation where the parameters γ , α, β, and σ
are unknown. (The variable y is not observed; hence, even when the parameters
are known, the initial value of y is missing when one tries to solve the SDEs to
make predictions.) We also require that the constructed model be able to reproduce
long-term statistics of the data, e.g., marginals of the stationary distribution. In
part, this is because the form of the model (either continuous or discrete-time)
is generally unknown, and reproduction of long-term statistics provides a useful
criterion for selecting a particular model. But even more important, in order for a
model to be useful for tasks like data assimilation and uncertainty quantification,
it must faithfully capture relevant statistics on time scales ranging from the short
term (on which trajectorywise forecasting is possible) to longer time scales.

Our main finding is that the discrete-time approach makes predictions as reliably
as the true system that gave rise to the data (which is of course unknown in general),
even for relatively large observation spacings, while a continuous-time approach is
only accurate when the observation spacing h is small, even in very low-dimensional
examples such as ours.

Paper organization. We briefly review some basic facts about hypoelliptic systems
in Section 2, including the parameter estimation technique we use to implement
the continuous-time approach. In Section 3, we discuss the discrete-time approach.
Section 4 presents numerical results, and in Section 5 we summarize our findings
and discuss broader implications of our results. For the convenience of the reader,
we collect a number of standard results about SDEs and their numerical solutions
in the appendices.

2. Brief review of the continuous-time approach

2A. Inference for partially observed hypoelliptic systems. Consider a stochastic
differential equation of the form

d X = f (X, Y ) dt,

dY = a(X, Y ) dt + b(X, Y ) dWt .
(2-1)

Observe that only the Y equation is stochastically forced. Because of this, the
second-order operator in the Fokker–Planck equation

∂

∂t
p(x, y, t)=−

∂

∂x
[ f (x, y)p(x, y, t)] −

∂

∂y
[a(x, y)p(x, y, t)]

+
1
2
∂2

∂y2 [b
2(x, y)p(x, y, t)] (2-2)
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for the time evolution of probability densities is not elliptic. This means that without
any further assumptions on (2-1), the solutions of the Fokker–Planck equation, and
hence the transition probability associated with the SDE, might be singular in
the X direction. Hypoellipticity is a condition that guarantees the existence of
smooth solutions for (2-2) despite this degeneracy. Roughly speaking, a system is
hypoelliptic if the drift terms (i.e., the vector fields f (x, y) and a(x, y)) help to
spread the noise to all phase space directions, so that the system has a nondegenerate
transition density. Technically, hypoellipticity requires certain conditions involving
the Lie brackets of drift and diffusion fields, known as Hörmander’s conditions [26];
when these conditions are satisfied, the system can be shown to possess smooth
transition densities.

Our interest is in systems for which only discrete observations of x are available,
and we use these observations to estimate the parameters in the functions f , a,
and b. While parameter estimation for completely observed nondegenerate systems
has been widely investigated (see e.g., [29; 33]), and there has been recent progress
toward parameter estimation for partially observed nondegenerate systems [16],
parameter estimation from discrete partial observations for hypoelliptic systems
remains challenging.

There are three main categories of methods for parameter estimation (see, e.g.,
the surveys [32; 33]):

• Likelihood-type methods, where the likelihood is analytically or numerically
approximated, or a likelihood-type function is constructed based on approxi-
mate equations. These methods lead to maximum likelihood estimators (MLE).

• Bayesian methods, in which one combines a prior with a likelihood, and one
uses the posterior mean as estimator. Bayesian methods are important when
the likelihood has multiple maxima. However, suitable priors may not always
be available.

• Estimating function methods, or generalized moments methods, where estima-
tors are found by estimating functions of parameters and observations. These
methods generalize likelihood-type methods, and are useful when transition
densities (and hence likelihoods) are difficult to compute. Estimating functions
can be constructed using associated martingales or moments.

Because projections of Markov processes are typically not Markov, and the system is
hypoelliptic, all three of the above approaches face difficulties for systems like (1-1):
the likelihood function is difficult to compute either analytically or numerically,
because only partial observations are available, and likelihood-type functions based
on approximate equations often lead to biased estimators [11; 28; 30]. There are
also no easily calculated martingales on which to base estimating functions [9].
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There are two special cases that have been well-studied. When the system is
linear, the observed process is a continuous-time autoregression process. Parameter
estimation for this case is well-understood; see, e.g., the review papers [4; 7]. When
the observations constitute an integrated diffusion (that is, f (x, y) = y and the
Y equation is autonomous, so that X is an integral of the diffusion process Y ),
consistent, asymptotically normal estimators are constructed in [9] using prediction-
based estimating functions, and in [11] using a likelihood-type method based
on Euler approximation. However, these approaches rely on the system being
linear or the unobserved process being autonomous, and are not adapted to general
hypoelliptic systems.

To our knowledge, for general hypoelliptic systems with discrete partial ob-
servation, only Bayesian-type methods [28] and a likelihood-type method [30]
have been proposed when f (x, y) is such that (2-1) can be written in the form of
(1-1) by a change of variables. In [28] Euler and Itô–Taylor approximations are
combined in a deterministic scan Gibbs sampler alternating between parameters
and missing data in the unobserved variables. The reason for combining Euler
and Itô–Taylor approximation is that Euler approximation leads to underestimated
MLE of diffusion but is effective for drift estimation, whereas Itô–Taylor expansion
leads to unbiased MLE of diffusion but is inappropriate for drift estimation. In [30]
explicit consistent maximum likelihood-type estimators are constructed. However,
all these methods require the observation spacing h to be small and the number of
observations N to be large. For example, the estimators in [30] are only guaranteed
to converge if, as N →∞, h→ 0 in such a way that Nh2

→ 0 and Nh→∞. In
practice, the observation spacing h> 0 is fixed, and large biases have been observed
when h is not sufficiently small [28; 30]. We show in this paper that the bias can be
so large that the prediction from the estimated system may be unreliable.

2B. Continuous-time stochastic parametrization. The continuous-time approach
starts by proposing a parametric hypoelliptic system and estimating parameters
in the system from discrete partial observations. In the present paper, the form
of the hypoelliptic system is assumed to be known. Based on the Euler scheme
approximation of the second equation in the system, Samson and Thieullen [30]
constructed the likelihood-type function, or “contrast”,

L N (θ)=

N−3∑
n=1

3
2
[ŷ(n+2)h − ŷ(n+1)h + h(γ ŷnh + V ′(xnh))]

2

hσ 2 + (N − 3) log σ 2,

where θ = (γ, β, α, σ 2) and

ŷn =
x(n+1)h − xnh

h
. (2-3)
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Note that a shift in time in the drift term, i.e., the time index of γ ŷnh+V ′(xnh) is nh
instead of (n+1)h, is introduced to avoid a

√
h correlation between ŷ(n+2)h− ŷ(n+1)h

and γ ŷ(n+1)h + V ′(x(n+1)h). Note also that there is a weighting factor 3
2 in the

sum, because the maximum likelihood estimator based on Euler approximation
underestimates the variance (see, e.g., [11; 28]).

The estimator is the minimizer of the contrast:

θ̂N = arg min
θ

L N (θ). (2-4)

The estimator θ̂N converges to the true parameter value θ = (γ, β, α, σ 2) under the
condition that h→ 0, Nh→∞, and Nh2

→ 0. However, if h is not small enough,
the estimator θ̂N can have a large bias (see [30] and the later sections), and the bias
can be so large that the estimated system may have dynamics very different from
the true system, and its prediction becomes unreliable.

Remark 2.1. In the case V ′(x) = αx , the Langevin system (1-1) is linear. The
process {xt : t ≥ 0} is a continuous-time autoregressive process of order 2, and there
are various ways to estimate the parameters (see the review [5]), e.g., the likelihood
method using a state-space representation and a Kalman filter [17], or methods for
fitting discrete-time autoregression moving average (ARMA) models [27]. However,
none of these approaches can be extended to nonlinear Langevin systems. In this
section we focus on methods that work for nonlinear systems.

Once the parameters have been estimated, one numerically solves the estimated
system to make predictions. In this paper, to make predictions for time t > Nh
(where N is the number of observations), we use the initial condition (xNh, ŷN )

in solving the estimated system, with ŷN being an estimate of yNh based on ob-
servations x . Since the system is stochastic, we use an “ensemble forecasting”
method to make predictions. We start a number of trajectories from the same initial
condition, and evolve each member of this ensemble independently. The ensemble
characterizes the possible motions of the particle conditional on past observations,
and the ensemble mean provides a specific prediction. For the purpose of short-term
prediction, the estimated system can be solved with small time steps; hence, a low
order scheme such as the Euler scheme may be used.

However, in many practical applications, the true system is unknown [8; 21],
and one has to validate the continuous-time model by its ability to reproduce the
long-term statistics of data. For this purpose, one has to compute the ergodic limits
of the estimated system. The Euler scheme may be numerically unstable when the
system is not globally Lipschitz, and a better scheme such as implicit Euler (see,
e.g., [23; 34; 24]) or the quasisymplectic integrator [25] is needed. In our study,
the Euler scheme is numerically unstable, while the Itô–Taylor scheme of strong
order 2.0 (Scheme C.2) produces long-term statistics close to those produced by the
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implicit Euler scheme. We use the Itô–Taylor scheme, since it has the advantage of
being explicit and was used in [28].

In summary, the continuous-time approach uses the following algorithm to
generate a forecasting ensemble of trajectories.

Algorithm 2.2 (continuous-time approach). With data {xnh}
N
n=1,

Step 1. estimate the parameters using (2-4),

Step 2. select a numerical scheme for the SDE, e.g., the Itô–Taylor scheme in the
appendix, and

Step 3. solve the SDE (1-1) with estimated parameters, using small time steps dt and
initial data (xNh, (xNh − xNh−h)/h), to generate the forecasting ensemble.

3. The discrete-time approach

3A. NARMA representation. In the discrete-time approach, the goal is to infer
a discrete-time predictive model for x from the data. Following [8], we choose
a discrete-time system in the form of a nonlinear autoregression moving average
(NARMA) model of the form

Xn =8n + ξn, (3-1)

8n := µ+

p∑
j=1

a j Xn− j +

r∑
k=1

bk Qk(Xn−p:n−1, ξn−q:n−1)+

q∑
j=1

c jξn− j , (3-2)

where p is the order of the autoregression, q is the order of the moving average,
and the Qk are given nonlinear functions (see below) of (Xn−p:n−1, ξn−q:n−1). Here
{ξn} is a sequence of i.i.d. Gaussian random variables with mean 0 and variance c2

0
(denoted by N(0, c2

0)). The numbers p, q, and r as well as the coefficients a j , b j ,
and c j are to be determined from data.

A main challenge in designing NARMA models is the choice of the functions Qk ,
a process we call “structure selection” or “structure derivation”. Good structure
design leads to models that fit data well and have good predictive capabilities.
Using too many unnecessary terms, on the other hand, can lead to overfitting or
inefficiency, while too few terms can lead to an ineffective model. As before, we
assume that a parametric family containing the true model is known, and we show
that suitable structures for NARMA can be derived from numerical schemes for
solving SDEs. We propose the following practical criteria for structure selection:
the model should be numerically stable, we select the model that makes the best
predictions (in practice, the predictions can be tested using the given data), and the
large-time statistics of the model should agree with those of the data. These criteria
are not sufficient to uniquely specify a viable model, and we shall return to this
issue when we discuss the numerical experiments.
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Once the Qk have been chosen, the coefficients (a j , b j , c j ) are estimated from
data using the following conditional likelihood method. Conditional on ξ1, . . . , ξm ,
the log-likelihood of {Xn = xnh}

N
n=m+1 is

L N (ϑ | ξ1, . . . , ξm)=

N∑
n=m+1

(Xn −8n)
2

2c2
0

+
N − q

2
log c2

0, (3-3)

where m =max{p, q} and ϑ = (a j , b j , c j , c2
0), and 8n is defined in (3-2). The log-

likelihood is computed as follows. Conditionally on given values of {ξ1, . . . , ξm},
one can compute 8m+1 from data {Xn = xnh}

m
n=1 using (3-2). With the value

of ξm+1 following from (3-1), one can then compute8m+2. Repeating this recursive
procedure, one obtains the values of {8n}

N
n=m+1 that are needed to evaluate the

log-likelihood. The estimator of the parameter ϑ = (a j , b j , c j , c2
0) is the minimizer

of the log-likelihood

ϑ̂N = arg min
ϑ

L N (ϑ | ξ1, . . . , ξm).

If the system is ergodic, the conditional maximum likelihood estimator ϑ̂N can be
proved to be consistent (see, e.g., [1; 13]), which means that it converges almost
surely to the true parameter value as N →∞. Note that the estimator requires the
values of ξ1, . . . , ξm , which are in general not available. But ergodicity implies
that if N is large, ϑ̂N forgets about the values of ξ1, . . . , ξm quickly anyway, and in
practice, we can simply set ξ1 = · · · = ξm = 0. Also, in practice, we initialize the
optimization with c1 = · · · = cq = 0 and with the values of (a j , b j ) computed by
least squares.

Note that in the case q = 0, the estimator is the same as the nonlinear least-
squares estimator. The noise sequence {ξn} does not have to be Gaussian for the
conditional likelihood method to work, so long as the expression in (3-3) is adjusted
accordingly.

In summary, the discrete-time approach uses the following algorithm to a generate
a forecasting ensemble.

Algorithm 3.1 (discrete-time approach). With data {xnh}
N
n=1,

Step 1. find possible structures for NARMA,

Step 2. estimate the parameters in NARMA for each possible structure,

Step 3. select the structure that fits the data best, in the sense that it reproduces best
the long-term statistics and makes the best predictions, and

Step 4. use the resulting model to generate a forecasting ensemble.
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3B. Structure derivation for the linear Langevin equation. The main difficulty
in the discrete-time approach is the derivation of the structure of the NARMA model.
In this section we discuss how to derive this structure from the SDEs, first in the
linear case.

For the linear Langevin equation, the discrete-time system should be linear.
Hence, we set r = 0 in (3-1) and obtain an ARMA(p, q) model. The linear
Langevin equation

dx = y dt,

dy = (−γ y−αx) dt + σ d Bt
(3-4)

can be solved analytically. The solution xt at discrete times satisfies

x(n+2)h = a1x(n+1)h + a2xnh − a22Wn+1,1+Wn+2,1+ a12Wn+1,2 (3-5)

(see Appendix A), where {Wn,i } are defined in (A-1), and

a1 = trace(eAh), a2 =−e−γ h, ai j = (eAh)i j for A=
(

0 1
−α −γ

)
. (3-6)

The process {xnh} defined in (3-5) is, strictly speaking, not an ARMA process
(see Appendix B for all relevant, standard definitions used in this section), because
{Wn,1}

∞

n=1 and {Wn,2}
∞

n=1 are not linearly dependent and would require at least two
independent noise sequences to represent, while an ARMA process requires only
one. However, as the following proposition shows, there is an ARMA process with
the same distribution as the process {xnh}. Since the minimum mean-square-error
state predictor of a stationary Gaussian process depends only on its autocovariance
function (see, e.g., [6, Chapter 5]), an ARMA process equal in distribution to the
discrete-time Langevin equation is what we need here.

Proposition 3.2. The ARMA(2, 1) process

Xn+2 = a1 Xn+1+ a2 Xn +Wn + θ1Wn−1, (3-7)

where a1 and a2 are given in (3-6) and the {Wn} are i.i.d. N(0, σ 2
W ), is the unique

process in the family of invertible ARMA processes that has the same distribution as
the process {xnh}. Here σ 2

W and θ1 (θ1 < 1 so that the process is invertible) satisfy
the equations

σ 2
W (1+ θ

2
1 + θ1a1)= γ0− γ1a1− γ2a2,

σ 2
W θ1 = γ1(1− a2)− γ0a1,

where {γ j }
2
j=0 are the autocovariances of the process {xnh} and are given in

Lemma A.1.

Proof. Since the stationary process {xnh} is a centered Gaussian process, we
only need to find an ARMA(p, q) process with the same autocovariance function
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as {xnh}. The autocovariance function of {xnh}, denoted by {γn}
∞

n=0, is given by
(see Lemma A.1)

γn = γ0×


1

λ1− λ2
(λ1eλ2nh

− λ2eλ1nh) if γ 2
− 4α 6= 0,

eλ0nh(1− λ0nh) if γ 2
− 4α = 0,

where (λ1, λ2) or λ0 are the roots of the characteristic polynomial λ2
+γ λ+α = 0

of the matrix A in (3-6).
On the other hand, the autocovariance function of an ARMA(p, q) process

Xn −φ1 Xn−1− · · ·−φp Xn−p =Wn + θ1Wn−1+ · · ·+ θq Wn−q ,

denoted by {γ (n)}∞n=0, is given by (see (B-4))

γ (n)=
k∑

i=1

ri−1∑
j=0

βi j n jζ−n
i for n ≥max{p, q + 1}− p,

where {ζi : i = 1, . . . , k} are the distinct zeros of φ(z) := 1−φ1z−· · ·−φpz p, and
ri is the multiplicity of ζi (hence

∑k
i=1 ri = p), and {βi j } are constants.

Since {γn}
∞

n=0 only provides two possible roots, ζi = e−λi h or ζi = e−λ0h for
i = 1, 2, the order must be p = 2. From these two roots, one can compute the
coefficients φ1 and φ2 in the ARMA(2, q) process:

φ1 = ζ
−1
1 + ζ

−1
2 = trace(eAh)= a1, φ2 =−ζ

−1
1 ζ−1

2 =−e−γ h
= a2.

Since γk−φ1γk−1−φ2γk−2=0 for any k≥2, we have q≤1. As γ1−φ1γ0−φ2γ1 6=0,
Example B.2 indicates that q 6= 0. Hence, q = 1 and the above ARMA(2, 1) is the
unique process in the family of invertible ARMA(p, q) processes that has the same
distribution as {xnh}. The equations for σ 2

W and θ1 follow from Example B.3. �

This proposition indicates that the discrete-time system for the linear Langevin
system should be an ARMA(2, 1) model.

Example 3.3. Suppose1 := γ 2
−4α < 0. Then the parameters in the ARMA(2, 1)

process (3-7) are given by a1 = 2e−(γ /2)h cos(1
2

√
−1h) and a2 =−e−γ h and

θ1 =
c− a1−

√
(c− a1)2− 4
2

, σ 2
w =

γ1(1− a2)− γ0a1

θ1
,

where c= γ0−γ1a1−γ2a2
γ1(1−a2)−γ0a1

and γn =
σ 2

2γα

(
cos
√
−1nh

2
+

γ
√
−1

sin
√
−1nh

2

)
for

n ≥ 0.

Remark 3.4. The maximum likelihood estimators of ARMA parameters can also be
computed using a state-space representation and a Kalman recursion (see, e.g., [6]).
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This approach is essentially the same as the conditional likelihood method in our
discrete-time approach.

Remark 3.5. The proposition indicates that the parameters in the linear Langevin
equation can also be computed from the ARMA(2, 1) estimators, because from the
proof we have γ =− ln(−a2)/h =−λ1− λ2, α = λ1λ2, and σ 2

= 2γασ 2
W , where

{λi : i = 1, 2} satisfy that {e−λi h : i = 1, 2} are the two roots of φ(z)= 1−a1z−a2z.

3C. Structure derivation for the Kramers oscillator. For nonlinear Langevin sys-
tems, in general there is no analytical solution, so the approach of Section 3B cannot
be used. Instead, we derive structures from the numerical schemes for solving
stochastic differential equations. For simplicity, we choose to focus on explicit
terms in a discrete-time system, so implicit schemes (in, e.g., [23; 34; 25]) are
not suitable. Here we focus on deriving structures from two explicit schemes: the
Euler–Maruyama scheme and the Itô–Taylor scheme of order 2.0; see Appendix C
for a brief review of these schemes. As mentioned before, we expect our approach
to extend to other explicit schemes, e.g., that of [2]. While we consider specifically
(1-1), the method used in this section extends to situations when f (x, y) is such
that (2-1) can be rewritten in form (1-1) and its higher-dimensional analogs by a
change of variables.

To warm up, we begin with the Euler–Maruyama scheme. Applying Scheme C.1
to the system (1-1), we find

xn+1 = xn + ynh,

yn+1 = yn(1− γ h)− hV ′(xn)+Wn+1,

where Wn = σh1/2ζn , with {ζn} an i.i.d. sequence of N(0, 1) random variables.
Straightforward substitutions yield a closed system for x

xn = (2− γ h)xn−1− (1− γ h)xn−2− h2V ′(xn−2)+ hWn−1.

Since V ′(x)= βx3
−αx , this leads to the following possible structure for NARMA:

Model (M1). Xn = a1 Xn−1+ a2 Xn−2+ b1 X3
n−2+ ξn +

q∑
j=1

c jξn− j +µ.

Next, we derive a structure from the Itô–Taylor scheme of order 2.0. Applying
Scheme C.2 to the system (1-1), we find

xn+1 = xn + h(1− 0.5γ h)yn − 0.5h2V ′(xn)+ Zn+1,

yn+1 = yn[1− γ h+ 0.5γ 2h2
− 0.5h2V ′′(xn)]

− h(1− 0.5γ h)V ′(xn)+Wn+1− γ Zn+1,
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where Zn = σh3/2(ζn + ηn/
√

3), with {ηn} being an i.i.d. N(0, 1) sequence inde-
pendent of {ζn}. Straightforward substitutions yield a closed system for x :

xn = xn−1[2− γ h+ 0.5γ 2h2
− h2V ′′(xn−2)] − 0.5h2V ′(xn−1)+ Zn

+ [1− γ h+ 0.5γ 2h2
− 0.5h2V ′′(xn−2)](−xn−2+ 0.5h2V ′(xn−2)− Zn−1)

− h2(1− 0.5γ h)2V ′(xn−2)+ h(1− 0.5γ h)(Wn−1− γ Zn−1).

Note that Wn is of order h1/2 and Zn is of order h3/2. Writing the terms in descending
order, we obtain

xn = (2− γ h+ 0.5γ 2h2)xn−1− (1− γ h+ 0.5γ 2h2)xn−2+ Zn − Zn−1

+ h(1− 0.5γ h)Wn−1− 0.5h2V ′(xn−1)+ 0.5h2V ′′(xn−2)(xn−1− xn−2)

+ 0.5γ h3V ′(xn−2)+ 0.5h2V ′′(xn−2)Zn−1− 0.5h4V ′′(xn−2)V ′(xn−2). (3-8)

This equation suggests that p = 2 and q = 0 or 1. The noise term Zn − Zn−1 +

h(1− 0.5γ h)Wn−1 is of order h1.5, and involves two independent noise sequences
{ζn} and {ηn}; hence, the above equation for xn is not a NARMA model. However,
it suggests possible structures for NARMA models. In comparison to Model (M1),
the above equation has different nonlinear terms of order h2: h2V ′(xn−1) and
h2V ′′(xn−2)(xn−1 − xn−2); and has additional nonlinear terms of orders 3 and
larger: h3V ′(xn−2), h2 Zn−1V ′′(xn−2), and h4V ′′(xn−2)V ′(xn−2). It is not clear
which terms should be used, and one may be tempted to include as many terms
as possible. However, this can lead to overfitting. Hence, we consider different
structures by successively adding more and more terms, and select the one that
fits data the best. Using the fact that V ′(x) = βx3

− αx , these terms lead to the
following possible structures for NARMA (for the reader’s convenience, we have
underlined all higher-order terms derived from V ′(x)).

Model (M2). Xn = a1 Xn−1+ a2 Xn−2+ b1 X3
n−1

+ b2 X2
n−2(Xn−1− Xn−2)+ ξn +

q∑
j=1

c jξn− j +µ,

where b1 and b2 are of order h2, and q ≥ 0.

Model (M3). Xn = a1 Xn−1+ a2 Xn−2+ b1 X3
n−1

+ b2 X2
n−2(Xn−1− Xn−2)+ b3 X3

n−2+ ξn +

q∑
j=1

c jξn− j +µ,

where b3 is of order h3, and q ≥ 0.

Model (M4). Xn = a1 Xn−1+ a2 Xn−2+ b1 X3
n−1+ b2 X2

n−2 Xn−1

+ b3 X3
n−2+ b4 X5

n−2+ b5 X2
n−2ξn−1+ ξn +

q∑
j=1

c jξn− j +µ,

where b4 is of order h4, and b5 is of order h3.5, and q ≥ 1.
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From Models (M2)–(M4), the number of nonlinear terms increases as their order
increases in the numerical scheme. Following [8; 21], we only use the form of the
terms derived from numerical analysis, and not their coefficients; we estimate new
coefficients from data.

4. Numerical study

We test the continuous and discrete-time approaches for data sets with different
observation intervals h. The data are generated by solving the general Langevin
equation (1-1) using a second-order Itô–Taylor scheme, with a small step size
dt = 1

1024 , and making observations with time intervals h = 1
32 , 1

16 , and 1
8 ; the

value of time step dt in the integration has been chosen to be sufficiently small
to guarantee reasonable accuracy. For each one of the data sets, we estimate the
parameters in the SDE and in the NARMA models. We then compare the estimated
SDE and the NARMA model by their ability to reproduce long-term statistics and
to perform short-term prediction.

4A. The linear Langevin equation. We first discuss numerical results in the lin-
ear case. Both approaches start by computing the estimators. The estimator
θ̂ = (γ̂ , α̂, σ̂ ) of the parameters (γ, α, σ ) of the linear Langevin equation (3-4) is
given by

θ̂ = arg min
θ=(γ,α,σ )

[ N−3∑
n=1

3
2
[ŷn+2− ŷn+1+ h(γ ŷn +αxn)]

2

hσ 2 + (N − 3) log σ 2
]
, (4-1)

where ŷn is computed from data using (2-3).
Following (3-7), we use the ARMA(2, 1) model in the discrete-time approach:

Xn+2 = a1 Xn+1+ a2 Xn +Wn + θ1Wn−1.

We estimate the parameters a1, a2, θ1, and σ 2
W from data using the conditional

likelihood method of Section 3A.
First, we investigate the reliability of the estimators. One hundred simulated

data sets are generated from (3-4) with true parameters γ = 0.5, α = 4, and σ = 1,
and with initial condition x0 = y0 =

1
2 and time interval [0, 104

]. The estimators, of
(γ, α, σ ) in the linear Langevin equation and of (a1, a2, θ1, σW ) in the ARMA(2, 1)
model, are computed for each data set. Empirical mean and standard deviation of
the estimators are reported in Table 1 for the continuous-time approach, and Table 2
for the discrete-time approach. In the continuous-time approach, the biases of the
estimators grow as h increases. In particular, large biases occur for the estimators of
γ : the bias of γ̂ increases from 0.2313 when h = 1

32 to 0.4879 when h = 1
8 , while

the true value is γ = 0.5; similarly large biases were also noticed in [30]. In contrast,
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Estimator True value h = 1
32 h = 1

16 h = 1
8

γ̂ 0.5 0.7313 (0.0106) 0.9538 (0.0104) 1.3493 (0.0098)
α̂ 4 3.8917 (0.0193) 3.7540 (0.0187) 3.3984 (0.0172)
σ̂ 1 0.9879 (0.0014) 0.9729 (0.0019) 0.9411 (0.0023)

Table 1. Mean and standard deviation of the estimators of the parameters (γ, α, σ ) of the
linear Langevin equation in the continuous-time approach, computed on 100 simulations.

Estimator h = 1
32 h = 1

16 h = 1
8

â1
1.9806 1.9539 1.8791
1.9807 (0.0003) 1.9541 (0.0007) 1.8796 (0.0014)

−â2
0.9845 0.9692 0.9394
0.9846 (0.0003) 0.9695 (0.0007) 0.9399 (0.0014)

θ̂1
0.2681 0.2684 0.2698
0.2667 (0.0017) 0.2680 (0.0025) 0.2700 (0.0037)

σ̂W
0.0043 0.0121 0.0336
0.0043 (0.0000) 0.0121 (0.0000) 0.0336 (0.0001)

Table 2. Mean and (in parentheses) standard deviation of the estimators of the parameters
(a1, a2, θ1, σW ) of the ARMA(2, 1) model in the discrete-time approach, computed on
100 simulations. The theoretical values (listed above the mean values) are computed from
Proposition 3.2.

the biases are much smaller for the discrete-time approach. The “theoretical values”
of a1, a2, θ1, and σ 2

W are computed analytically as in Example 3.3. Table 2 shows
that the estimators in the discrete-time approach have negligible differences from
the theoretical values.

In practice, the above test of the reliability of estimators cannot be performed,
because one has only a single data set and the true system that generated the data is
unknown.

We now compare the two approaches in a practical setting, by assuming that we
are only given a single data set from discrete observations of a long trajectory on
time interval [0, T ] with T = 217

≈ 1.31× 105. We estimate the parameters in the
SDE and the ARMA model, and again investigate the performance of the estimated
SDE and ARMA model in reproducing long-term statistics and in predicting the
short-term evolution of x . The long-term statistics are computed by time-averaging.
The first half of the data set is used to compute the estimators, and the second half
of the data set is used to test the prediction.

The long-term statistics, i.e., the empirical probability density function (PDF)
and the autocorrelation function (ACF), are shown in Figure 1. For all three values
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Figure 1. Empirical PDF and ACF of the ARMA(2, 1) models (blue dashed line) and the
estimated linear Langevin system (black dotted line), in the cases h = 1

32 (left), h = 1
16

(center), and h = 1
8 (right). The ARMA models reproduce the PDF and ACF almost

perfectly (red solid line), much better than the estimated SDEs.

of h, the ARMA models reproduce the empirical PDF and ACF almost perfectly.
The estimated SDEs miss the spread of the PDF and the amplitude of oscillation in
the ACF, and these error become larger as h increases.

Next, we use an ensemble of trajectories to predict the motion of x . For each
ensemble, we calculate the mean trajectory and compare it with the true trajec-
tory from the data. We measure the performance of the prediction by computing
the root-mean-square error (RMSE) of a large number of ensembles as follows:
take N0 short pieces of data from the second half of the long trajectory, denoted
by {(x(ni+1)h, . . . , x(ni+K )h)}

N0
i=1, where ni = K i . For each short piece of data

(x(ni+1)h, . . . , x(ni+K )h), we generate Nens trajectories {(X i, j
1 , . . . , X i, j

K )}
Nens
j=1 using

a prediction system (i.e., NARMA(p, q), the estimated Langevin system, or the
true Langevin system), starting all ensemble members from the same several-
step initial condition (x(ni+1)h, . . . , x(ni+m)h), where m = 2 max{p, q} + 1. For
NARMA(p, q) we start with ξ1 = · · · = ξq = 0. For the estimated Langevin system
and the true Langevin system, we start with initial condition (x(ni+m)h, ŷni ) with
ŷni = (x(ni+m)h−x(ni+m−1)h)/h and solve the equations using the Itô–Taylor scheme
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Figure 2. The linear Langevin system: RMSEs of 104 forecasting ensembles with size
Nens = 20, produced by the true system (black triangles), the system with estimated
parameters (red x’s), and the ARMA model (blue circles), in the cases h = 1

32 (left),
h = 1

16 (center), and h = 1
8 (right).

Estimator True value h = 1
32 h = 1

16 h = 1
8

γ̂ 0.5 0.8726 (0.0063) 1.2049 (0.0057) 1.7003 (0.0088)
β̂ 0.3162 0.3501 (0.0007) 0.3662 (0.0007) 0.4225 (0.0009)
σ̂ 1 0.9964 (0.0014) 1.0132 (0.0027) 1.1150 (0.0065)

Table 3. Mean and standard deviation of the estimators of the parameters (γ, β, σ ) of the
Kramers equation in the continuous-time approach, computed on 100 simulations.

of order 2.0 with a time step dt= 1
64 and record the trajectories every h/dt steps to

get the prediction trajectories (X i, j
1 , . . . , X i, j

K ).
We then calculate the mean trajectory for each ensemble X i

k=(1/Nens)
∑Nens

j=1 X i, j
k ,

k = 1, . . . , K . The RMSE measures, in an average sense, the difference between
the mean ensemble trajectory and the true data trajectory:

RMSE(kh) :=
(

1
N0

N0∑
i=1

|X i
k − x(ni+k)h|

2
)1/2

.

The RMSE measures the accuracy of the mean ensemble prediction; RMSE= 0
corresponds to a perfect prediction, and small RMSEs are desired.

The computed RMSEs for N0 = 104 ensembles with Nens = 20 are shown in
Figure 2. The ARMA(2, 1) model reproduces almost exactly the RMSEs of the
true system for all three observation step sizes, while the estimated system has
RMSEs deviating from that of the true system as h increases. The estimated system
has smaller RMSEs than the true system, because it underestimates the variance of
the true process xt (that is, σ̂ 2/(2α̂γ̂ ) < σ 2/(2αγ )) and because the means of xt

decay exponentially to 0. The steady increase in RMSE, even for the true system,
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Figure 3. RMSEs of Models (M2), (M3), and (M4) with ensemble size Nens = 20 in the
case h = 1

8 . Models with q = 1 have larger RMSEs than the models with q = 0. In the
case q = 0, Models (M2) and (M3) have almost the same RMSEs.

is entirely expected because the forecasting ensemble is driven by independent
realizations of the forcing, as one cannot infer the white noise driving the system
that originally generated the data.

4B. The Kramers oscillator. We consider the Kramers equation in the form

dxt = yt dt,

dyt = (−γ yt −β
−2x3

t + xt) dt + σ d Bt ,
(4-2)

for which there are two potential wells located at x =±β.
In the continuous-time approach, the estimator θ̂ = (γ̂ , β̂, σ̂ ) is given by

θ̂ = arg min
θ=(γ,β,σ )

[ N−3∑
n=1

3
2
[ŷn+2− ŷn+1+ h(γ ŷn +β

−2x3
n − xn)]

2

hσ 2 + (N − 3) log σ 2
]
.

(4-3)
As for the linear Langevin system case, we begin by investigating the reliability

of the estimators. One hundred simulated data sets are generated from the above
Kramers oscillator with true parameters γ = 0.5, β = 1/

√
10, and σ = 1, and with

initial condition x0 = y0 =
1
2 and integration time interval [0, 104

]. The estimators
of (γ, β, σ ) are computed for each data set. Empirical mean and standard deviation
of the estimators are shown in Table 3. We observe that the biases in the estimators
increase as h increases; in particular, the estimator of γ̂ has a very large bias.

For the discrete-time approach, we have to select one of the four NARMA(2, q)
models, Models (M1)–(M4). We make the selection using data only from a single
long trajectory (e.g., from the time interval [0, T ] with T = 218

≈ 2× 105), and
we use the first half of the data to estimate the parameters. We first estimate the
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Figure 4. Empirical PDFs and ACFs of the NARMA models (M2) (blue dotted line), (M3)
(black dashed line) and data (red solid line) in the case h = 1

8 . Model (M3) reproduces the
ACF and PDF better than Model (M2).

Estimator h = 1
32 h = 1

16 h = 1
8

â1 1.9906 (0.0004) 1.9829 (0.0007) 1.9696 (0.0014)
−â2 0.9896 (0.0004) 0.9792 (0.0007) 0.9562 (0.0014)
−b̂1 0.3388 (0.1572) 0.6927 (0.0785) 1.2988 (0.0389)

b̂2 0.0300 (0.1572) 0.0864 (0.0785) 0.1462 (0.0386)
b̂3 0.0307 (0.1569) 0.0887 (0.0777) 0.1655 (0.0372)
−µ̂ (×10−5) 0.0377 (0.0000) 0.1478 (0.0000) 0.5469 (0.0001)
σ̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)

Table 4. Mean and standard deviation of the estimators of the parameters of the NARMA
model (M3) with q = 0 in the discrete-time approach, computed from 100 simulations.

parameters for each NARMA model with q = 0 and q = 1, using the conditional
likelihood method described in Section 3A. Then we make a selection by the criteria
proposed in Section 3A. First, we test numerical stability by running the model for
a large time for different realizations of the noise sequence. We find that for our
model, using the values of h tested here, Model (M1) is often numerically unstable,
so we do not compare it to the other schemes here. (In situations where the Euler
scheme is more stable, e.g., for smaller values of h or for other models, we would
expect it to be useful as the basis of a NARMA approximation.) Next, we test the
performance of each of the models (M2)–(M4). The RMSEs of Models (M2) and
(M3) with q = 0 and q = 1 and Model (M4) with q = 1 are shown in Figure 3.
In the case q = 1, the RMSEs for Models (M2)–(M4) are very close, but they are
larger than the RMSEs of Models (M2) and (M3) with q = 0. To make a further
selection between Models (M2) and (M3) with q = 0, we test their reproduction of
the long-term statistics. Figure 4 shows that Model (M3) reproduces the ACFs and
PDFs better than Model (M2); hence, Model (M3) with q = 0 is selected.
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Figure 5. Empirical PDFs and ACFs of the NARMA model (M3) with q = 0 (blue dashed
line) and the estimated Kramers system (black dotted line), in the cases h = 1

32 (left),
h = 1

16 (center), and h = 1
8 (right). These statistics are better reproduced (red solid line)

by the NARMA models than by the estimated Kramers systems.

The mean and standard deviation of the estimated parameters of Model (M3)
with q = 0 and 100 simulations are shown in Table 4. Unlike in the linear Langevin
system case, we do not have a theoretical value for these parameters. However,
note that when h = 1

32 , â1 and â2 are close to 2− γ h + 0.5γ 2h2
= 1.9845 and

−(1− γ h+ 0.5γ 2h2)=−0.9845, respectively, which are the coefficients in (3-8)
from the Itô–Taylor scheme. This indicates that when h is small, the NARMA model
is close to the numerical scheme, because both the NARMA and the numerical
scheme approximate the true system well. On the other hand, note that σ̂W does
not increase monotonically as h increases. This clearly distinguishes the NARMA
model from the numerical schemes.

Next, we compare the performance of the NARMA model and the estimated
Kramers system in reproducing long-term statistics and predicting short-term dy-
namics. The empirical PDFs and ACFs are shown in Figure 5. The NARMA models
can reproduce the PDFs and ACFs equally well for three cases. The estimated
Kramers system amplifies the depth of double wells in the PDFs, and it misses the
oscillation of the ACFs.
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Figure 6. The Kramers system: RMSEs of 104 forecasting ensembles with size Nens= 20,
produced by the true Kramers system (black triangles), the Kramers system with estimated
parameters (red x’s), and the NARMA model (M3) (blue circles) with q = 0, in the cases
h = 1

32 (left), h = 1
16 (center), and h = 1

8 (right). The NARMA model has almost the same
RMSEs as the true system for all the observation spacings, while the estimated system has
larger RMSEs.

Results for RMSEs for N0 = 104 ensembles with size Nens = 20 are shown in
Figure 6. The NARMA model reproduces almost exactly the RMSEs of the true
Kramers system for all three step sizes, while the estimated Kramers system has
increasing error as h increases, due to the increasing biases in the estimators.

Finally, in Figure 7, we show some results using a much smaller observation
spacing, h = 1

1024 . Table 5 shows the estimated parameters, for both the continuous-
and discrete-time models. (Here, the discrete-time model is (M2).) Consistent with
the theory in [30], our parameter estimates for the continuous-time model are close
to their true values for this small value of h. Figure 7 compares the RMSE of the
continuous-time and discrete-time models on the same forecasting task as before.
The continuous-time approach now performs much better, essentially as well as
the true model. Even in this regime, however, the discrete-time approach remains
competitive.

4C. Criteria for structure design. In the above structure selection between Models
(M2) and (M3), we followed the criterion of selecting the one that fits the long-term
statistics best. However, there is another practical criterion, namely whether the
estimators converge as the number of samples increases. This is important because
the estimators should converge to the true values of the parameters if the model is
correct, due to the consistency discussed in Section 3A. Convergence can be tested
by checking the oscillations of estimators as data length increases: if the oscillations
are large, the estimators are likely not to converge, at least not quickly. Table 6
shows the estimators of the coefficients of the nonlinear terms in Models (M2) and
(M3), for different lengths of data. The estimators b̂1, b̂2, and b̂3 of Model (M3) are
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Continuous-time model parameters Discrete-time model parameters

γ̂ −β̂ σ̂ â1 −â2 −b̂1

0.5163 0.3435 1.0006 1.9997 0.9997 0.0097

−b̂2 −µ̂ (×10−8) ˆσW (×10−10)

0.0169 2.0388 6.2165

Table 5. Estimated parameters for the continuous-time and discrete-time models.
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Figure 7. RMSEs of 103 forecasting ensembles with size Nens = 20 with h = 1
1024 ,

produced by the true Kramers system (True SDE), the Kramers system with estimated
parameters (Est. SDE), and the NARMA model (M2) with q = 0. Since h = 1

1024 is
relatively small, the NARMA model and the estimated system have almost the same
RMSEs as the true system. Here the data is generated by the Itô–Taylor solver with step
size dt = 2−15

≈ 3× 10−5, and data length is N = 222
≈ 4× 106.

Data length Model (M2) Model (M3)
(×N ) −b̂1 −b̂2 −b̂1 b̂2 b̂3

1
8 0.3090 0.3032 0.3622 0.0532 0.0563
1
4 0.3082 0.3049 0.3290 0.0208 0.0217
1
2 0.3088 0.3083 0.3956 0.0868 0.0845

1 0.3087 0.3054 0.3778 0.0691 0.0697

Table 6. Consistency test. Values of the estimators in the NARMA models (M2) and (M3)
with q = 0. The data come from a long trajectory with observation spacing h = 1

32 . Here
N = 222

≈ 4× 106. As the length of data increases, the estimators of Model (M2) have
much smaller oscillation than the estimators of Model (M3).

unlikely to be convergent, since they vary a lot for long data sets. On the contrary,
the estimators b̂1 and b̂2 of Model (M2) have much smaller oscillations, and hence
they are likely to be convergent.
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Estimator h = 1
32 h = 1

16 h = 1
8

â1 1.9905 (0.0003) 1.9820 (0.0007) 1.9567 (0.0013)
−â2 0.9896 (0.0003) 0.9788 (0.0007) 0.9508 (0.0014)
−b̂1 0.3088 (0.0021) 0.6058 (0.0040) 1.1362 (0.0079)
−b̂2 0.3067 (0.0134) 0.5847 (0.0139) 0.9884 (0.0144)
−µ̂ (×10−5) 0.0340 (0.0000) 0.1193 (0.0000) 0.2620 (0.0001)
σ̂W 0.0045 (0.0000) 0.1119 (0.0001) 0.0012 (0.0000)

Table 7. Mean and standard deviation of the estimators of the parameters
(a1, a2, b1, b2, µ, σW ) of the NARMA model (M2) with q = 0 in the discrete-time
approach, computed on 100 simulations.

These convergence tests agree with the statistics of the estimators on 100 simula-
tions in Tables 4 and 7. Table 4 shows that the standard deviations of the estimators
b̂1, b̂2, and b̂3 of Model (M3) are reduced by half as h doubles, which is the opposite
of what is supposed to happen for an accurate model. On the contrary, Table 7
shows that the standard deviations of the parameters of Model (M2) increase as h
doubles, as is supposed to happen for an accurate model.

In short, Model (M3) reproduces better long-term statistics than Model (M2), but
the estimators of Model (M2) are statistically better (e.g., in rate of convergence) than
the estimators of Model (M3). However, the two have almost the same prediction
skill as shown in Figure 3, and both are much better than the continuous-time
approach. It is unclear which model approximates the true process better, and it is
likely that neither of them is optimal. Also, it is unclear which criterion is better
for structure selection: fitting the long-term statistics or consistency of estimators.
We leave these issues to be addressed in future work.

5. Concluding discussion

We have compared a discrete-time approach and a continuous-time approach to the
data-based stochastic parametrization of a dynamical system, in a situation where
the data are known to have been generated by a hypoelliptic stochastic system of a
given form. In the continuous-time case, we first estimated the coefficients in the
given equations using the data, and then solved the resulting differential equations;
in the discrete-time model, we chose structures with terms suggested by numerical
algorithms for solving the equations of the given form, with coefficients estimated
using the data.

As discussed in our earlier papers [8; 21], the discrete-time approach has several
a priori advantages:

• The inverse problem of estimating the parameters in a model from discrete data
is in general better-posed in a discrete-time than in a continuous-time model.



DATA-BASED MODELING FOR HYPOELLIPTIC SYSTEMS 209

In particular, the discrete-time representation is more tolerant of relatively
large observation spacings.

• Once the discrete-time parametrization has been derived, it can be used directly
in numerical computation; there is no need of further approximation. This is
not a major issue in the present paper where the equations are relatively simple,
but we expect it to grow in significance as the size of problems increases.

Our example validates the first of these points; the discrete-time approximations
generally have better prediction skills than the continuous-time parametrization,
especially when the observation spacing is relatively large. This was also the main
source of error in the continuous models discussed in [8]; note that the method for
parameter estimation in that earlier paper was completely different. Our discrete-
time models also have better numerical properties; e.g., when all else is equal,
they are more stable and produce more accurate long-term statistics than their
continuous-time counterparts.

We expect the advantages of the discrete-time approach to become more marked
as one proceeds to analyze systems of growing complexity, particularly larger, more
chaotic dynamical systems. A number of questions remain, first and foremost
being the identification of effective structures; this is of course a special case of
the difficulty in identifying effective bases in the statistical modeling of complex
phenomena. In the present paper we introduced the idea of using terms derived from
numerical approximations; different ideas were introduced in our earlier work [21].
More work is needed to generate general tools for structure determination.

Another challenge is that, even when one has derived a small number of potential
structures, we currently do not have a systematic way to identify the most effective
model. Thus, the selection of a suitable discrete-time model can be labor-intensive,
especially compared to the continuous-time approach in situations where a paramet-
ric family containing the true model (or a good approximation thereof) is known.
On the other hand, continuous-time approaches, in situations where no good family
of models is known, would face similar difficulties.

Finally, another open question is whether discrete-time approaches generally
produce more accurate predictions than continuous-time approaches for strongly
chaotic systems. Previous work has suggested that the answer may be yes. We plan
to address this question more systematically in future work.
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Appendix A: Solutions to the linear Langevin equation

Denoting

Xt =

(
xt

yt

)
, A=

(
0 1
−α −γ

)
, e=

(
0
σ

)
,

we can write (3-4) as
d Xt = AXt dt + e d Bt .

Its solution is

Xt = eAt X0+

∫ t

0
eA(t−u)e d Bu .

The solution at discrete times can be written as

x(n+1)h = a11xnh + a12 ynh +Wn+1,1,

y(n+1)h = a21xnh + a22 ynh +Wn+1,2,

where ai j = (eAh)i j for i, j = 1, 2, and

Wn+1,i = σ

∫ h

0
ai2(u) d B(nh+ u) (A-1)

with ai2(u) = (eA(h−u))i2 for i = 1, 2. Note that if a12 6= 0, then from the first
equation we get ynh = (x(n+1)h − a11xnh − Vn+1,1)/a12. Substituting it into the
second equation we obtain

x(n+2)h=(a11+a22)x(n+1)h+(a12a21−a11a22)xnh−a22Wn+1,1+a12Wn+1,2+Wn+2,1.

Combining with the fact that a11+ a22 = trace(eAh) and a12a21− a11a22 =−e−γ h ,
we have

x(n+2)h = trace(eAh)x(n+1)h−e−γ h xnh−a22Wn+1,1+Wn+2,1+a12Wn+1,2. (A-2)

Clearly, the process {xnh} is a centered Gaussian process, and its distribution is
determined by its autocovariance function. Conditionally on X0, the distribution of
Xt is N(eAt X0,6(t)), where 6(t) :=

∫ t
0 eAu eeT eAT u du. Since α, γ > 0, the real

parts of the eigenvalues of A, denoted by λ1 and λ2, are negative. The stationary
distribution is N(0,6(∞)), where 6(∞) = limt→∞6(t). If X0 has distribution
N(0,6(∞)), then the process (Xt) is stationary, and so is the observed process
{xnh}. The following lemma computes the autocorrelation function of the stationary
process {xnh}.
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Lemma A.1. Assume that the system (3-4) is stationary. Denote by {γ j }
∞

j=1 the
autocovariance function of the stationary process {xnh}; i.e., γ j := E[xkh x(k+ j)h]

for j ≥ 0. Then γ0 = σ
2/(2αγ ), and γ j can be represented as

γ j = γ0×


1

λ1− λ2
(λ1eλ2 jh

− λ2eλ1 jh) if γ 2
− 4α 6= 0,

eλ0 jh(1− λ0 jh) if γ 2
− 4α = 0

for all j ≥ 0, where λ1 and λ2 are the different solutions to λ2
+ γ λ+α = 0 when

γ 2
− 4α 6= 0, and λ0 =−γ /2.

Proof. Let 0( j) := E[Xkh XT
(k+ j)h] =6(∞)eAT jh for j ≥ 0. Note that γ j =011( j),

i.e., γ j is the first element of the matrix 0( j). Then it follows that

γ0 =611(∞), γ j = (6(∞)eAT jh)11.

If γ 2
−4α 6= 0, then A has two different eigenvalues λ1 and λ2 and can be written as

A= Q3 Q−1 with Q =
(

1 1
λ1 λ2

)
and 3=

(
λ1 0
0 λ2

)
.

The covariance matrix 6(∞) can be computed as

6(∞)= lim
t→∞

∫ t

0
Qe3u Q−1eeT Q−Te3T u QT du=σ 2

(
1/(2ab) 0

0 −1/(2b)

)
. (A-3)

This gives γ0 =611(∞)= σ
2/(2γα) and for j > 0,

γ j =611(∞)(eAT jh)11 =
1

λ1− λ2
(λ1eλ2 jh

− λ2eλ1 jh)γ (0).

In the case γ 2
− 4α = 0, A has a single eigenvalue λ0 = −γ /2, and it can be

transformed to a Jordan block

A= Q3 Q−1 with Q =
(

1 0
λ0 1

)
and 3=

(
λ0 1
0 λ0

)
.

This leads to the same 6(∞) as in (A-3). Similarly, we have γ0 = σ
2/(2γα) and

γ j =611(∞)(eAT jh)11 = eλ0 jh(1− λ0 jh)γ0. �

Appendix B: ARMA processes

We review the definition and computation of the autocovariance function of ARMA
processes in this subsection. For more details, we refer to [6, §3.3].
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Definition B.1. The process {Xn : n ∈ Z} is said to be an ARMA(p, q) process if
it is a stationary process satisfying

Xn −φ1 Xn−1− · · ·−φp Xn−p =Wn + θ1Wn−1+ · · ·+ θq Wn−q , (B-1)

for every n, where the {Wn} are i.i.d. N(0, σ 2
W ), and if the polynomials φ(z) :=

1− φ1z − · · · − φpz p and θ(z) := 1+ θ1z + · · · + θq zq have no common factors.
If {Xn −µ} is an ARMA(p, q) process, then {Xn} is said to be an ARMA(p, q)
process with mean µ. The process is causal if φ(z) 6= 0 for all |z| ≤ 1. The process
is invertible if θ(z) 6= 0 for all |z| ≤ 1.

The autocovariance function {γ (k)}∞k=1 of an ARMA(p, q) can be computed
from the following difference equations, which are obtained by multiplying each
side of (B-1) by Xn−k and taking expectations:

γ (k)−φ1γ (k− 1)− · · ·−φpγ (k− p)= σ 2
W

∑
k≤ j≤q

θ jψ j−k,

0≤ k <max{p, q + 1}, (B-2)

γ (k)−φ1γ (k− 1)− · · ·−φpγ (k− p)= 0, k ≥max{p, q + 1}, (B-3)

where ψ j in (B-2) is computed as (letting θ0 := 1 and θ j = 0 if j > q)

ψ j =

{
θ j +

∑
0<k≤ j φkψ j−k for j <max{p, q + 1},∑

0<k≤p φkψ j−k for j ≥max{p, q + 1}.

Denote by {ζi : i = 1, . . . , k} the distinct zeros of φ(z) := 1− φ1z − · · · − φpz p,
and let ri be the multiplicity of ζi (hence

∑k
i=1 ri = p). The general solution of the

difference (B-3) is

γ (n)=
k∑

i=1

ri−1∑
j=0

βi j n jζ−n
i for n ≥max{p, q + 1}− p, (B-4)

where the p constants βi j (hence the values of γ ( j) for 0≤ j <max{p, q+1}− p)
are determined from (B-2).

Example B.2 (ARMA(2, 0)). The autocovariance function for an ARMA(2, 0)
process Xn −φ1 Xn−1−φ2 Xn−2 =Wn is

γ (n)=
{
β1ζ
−n
1 +β2ζ

−n
2 if φ2

1 + 4φ2 6= 0,
(β1+β2n)ζ−n if φ2

1 + 4φ2 = 0

for n ≥ 0, where ζ1, ζ2, or ζ are the zeros of φ(z)= 1−φ1z−φ2z2. The constants
β1 and β2 are computed from the equations

γ (0)−φ1γ (1)−φ2γ (2)= σ 2
W ,

γ (1)−φ1γ (0)−φ2γ (1)= 0.
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Example B.3 (ARMA(2, 1)). We have ψ0 = 1 and ψ1 = φ1 for an ARMA(2, 1)
process Xn −φ1 Xn−1−φ2 Xn−2 =Wn + θ1Wn−1. Its autocovariance function is of
the same form as that in Example B.2, where the constants β1 and β2 are computed
from the equations

γ (0)−φ1γ (1)−φ2γ (2)= σ 2
W (1+ θ

2
1 + θ1φ1),

γ (1)−φ1γ (0)−φ2γ (1)= σ 2
W θ1.

Appendix C: Numerical schemes for hypoelliptic SDEs with additive noise

Here we briefly review the two numerical schemes, the Euler–Maruyama scheme
and the Itô–Taylor scheme of strong order 2.0, for hypoelliptic systems with additive
noise

dx = y dt,

dy = a(x, y) dt + σ d Bt ,

where a : R2
→ R satisfies suitable conditions so that the system is ergodic.

In the following, the step size of all schemes is h, and Wn = σ
√

hξn and Zn =

σh3/2(ξn+ηn/
√

3), where {ξn} and {ηn} are two i.i.d. sequences of N(0, 1) random
variables.

Scheme C.1 (Euler–Maruyama). xn+1 = xn + ynh,

yn+1 = yn + ha(xn, yn)+Wn+1.

Scheme C.2 (Itô–Taylor scheme of strong order 2.0).

xn+1 = xn + hyn + 0.5h2a(xn, yn)+ Zn+1,

yn+1 = yn + ha(xn, yn)+ 0.5h2
[ax(xn, yn)yn + (aay + 0.5σ 2ayy)(xn, yn)]

+Wn+1+ ay(xn, yn)Zn+1+ ayy(xn, yn)σ
2 1

6 h(W 2
n+1− h).

The Itô–Taylor scheme of order 2.0 can be derived as follows (see, e.g., works
of Kloeden and Platen [14; 18]). The differential equation can be rewritten in the
integral form

xt = xt0 +

∫ t

t0
ys ds,

yt = yt0 +

∫ t

t0
a(xs, ys) ds+ σ(Bt − Bt0).

We start from the Itô–Taylor expansion of x :

xtn+1 = xtn + hytn +

∫ tn+1

tn

∫ t

tn
a(xs, ys) ds dt + σ I n+1

10

= xtn + hytn + 0.5h2a(xtn , ytn )+ σ I n+1
10 + O(h5/2),
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where I n+1
10 :=

∫ tn+1
tn

(Bt − Btn ) dt . To get a higher-order scheme for y, we apply
Itô’s chain rule to a(xt , yt):

a(xt , yt)= a(xs, ys)+

∫ t

s
[ax(xr , yr )yr + (aay + 0.5σ 2ayy)(xr , yr )] dr

+ σ

∫ t

s
ay(xr , yr ) d Br .

This leads to the Itô–Taylor expansion for y (up to the order 2.0):

ytn+1 = ytn +

∫ tn+1

tn
a(xs, ys) ds+ σ(Btn+1 − Btn )

= ytn+ha(xtn , ytn )+σ(Btn+1−Btn )+ay(xtn , ytn )σ I n+1
10 +ayy(xtn , ytn )σ

2 I n+1
110

+ 0.5h2
[ax(xtn , ytn )ytn + (aay + 0.5σ 2ayy)(xtn , ytn )] + O(h5/2),

where I n+1
110 =

∫ tn+1
tn

∫ t
tn
(Bs − Btn ) d Bs dt . Representing σ(Btn+1 − Btn ), σ I n+1

10 , and
I n+1
110 by Wn+1, Zn+1, and 1

6 h(W 2
n+1− h), respectively, we obtain Scheme C.2.
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HYDRODYNAMICS OF SUSPENSIONS
OF PASSIVE AND ACTIVE RIGID PARTICLES:

A RIGID MULTIBLOB APPROACH

FLORENCIO BALBOA USABIAGA, BAKYTZHAN KALLEMOV,
BLAISE DELMOTTE, AMNEET PAL SINGH BHALLA,

BOYCE E. GRIFFITH AND ALEKSANDAR DONEV

We develop a rigid multiblob method for numerically solving the mobility problem for
suspensions of passive and active rigid particles of complex shape in Stokes flow in
unconfined, partially confined, and fully confined geometries. As in a number of existing
methods, we discretize rigid bodies using a collection of minimally resolved spherical
blobs constrained to move as a rigid body, to arrive at a potentially large linear system
of equations for the unknown Lagrange multipliers and rigid-body motions. Here we
develop a block-diagonal preconditioner for this linear system and show that a standard
Krylov solver converges in a modest number of iterations that is essentially independent
of the number of particles. Key to the efficiency of the method is a technique for fast
computation of the product of the blob-blob mobility matrix and a vector. For unbounded
suspensions, we rely on existing analytical expressions for the Rotne–Prager–Yamakawa
tensor combined with a fast multipole method (FMM) to obtain linear scaling in the
number of particles. For suspensions sedimented against a single no-slip boundary, we
use a direct summation on a graphical processing unit (GPU), which gives quadratic
asymptotic scaling with the number of particles. For fully confined domains, such as
periodic suspensions or suspensions confined in slit and square channels, we extend a
recently developed rigid-body immersed boundary method by B. Kallemov, A. P. S. Bhalla,
B. E. Griffith, and A. Donev (Commun. Appl. Math. Comput. Sci. 11 (2016), no. 1,
79–141) to suspensions of freely moving passive or active rigid particles at zero Reynolds
number. We demonstrate that the iterative solver for the coupled fluid and rigid-body
equations converges in a bounded number of iterations regardless of the system size. In
our approach, each iteration only requires a few cycles of a geometric multigrid solver for
the Poisson equation, and an application of the block-diagonal preconditioner, leading to
linear scaling with the number of particles. We optimize a number of parameters in the
iterative solvers and apply our method to a variety of benchmark problems to carefully
assess the accuracy of the rigid multiblob approach as a function of the resolution. We
also model the dynamics of colloidal particles studied in recent experiments, such as
passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods
sedimented against a wall.

MSC2010: 76M25.
Keywords: Stokes flow, colloidal suspensions, Stokesian dynamics, immersed boundary method.

217

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2016.11-2
http://dx.doi.org/10.2140/camcos.2016.11.217
http://msp.org
http://dx.doi.org/10.2140/camcos.2016.11.79
http://dx.doi.org/10.2140/camcos.2016.11.79


218 BALBOA USABIAGA, KALLEMOV, DELMOTTE, BHALLA, GRIFFITH AND DONEV

1. Introduction

The study of the hydrodynamics of colloidal suspensions of passive particles is an
old yet still active subject in soft condensed matter physics and chemical engineering.
In recent years there has been a growing interest in suspensions of active colloids
[79], which exhibit rich collective behaviors quite distinct from those of passive
suspensions. There is a growing number of computational methods for modeling
active suspensions [50; 93; 32; 125; 106; 70; 119; 118], which are typically built
upon well-developed techniques for passive suspensions in steady Stokes flow, i.e., at
zero Reynolds number. Since active particles typically have metallic subcomponents,
they are often significantly denser than the solvent and sediment toward the bottom
wall, making it necessary to address confinement and implement nonperiodic
boundary conditions in any method aimed at simulating experimentally relevant
configurations. Furthermore, since collective motions seen in active suspensions
involve large numbers of particles, and since hydrodynamic interactions among
particles decay slowly like the inverse of the distance, it is crucial to develop
methods that can capture long-ranged hydrodynamic effects, yet still scale to tens
or hundreds of thousands of particles.

For suspensions of passive particles the methods of Brownian [68; 58] and
Stokesian dynamics [117; 122] have dominated in chemical engineering, and
related techniques have been used in biochemical engineering [62; 25; 104; 48; 35].
These methods simulate the overdamped (diffusive) dynamics of the particles by
using Green’s functions for steady Stokes flow to capture the effect of the fluid.
While this sort of implicit solvent approach works very well in many situations, it
has several notable technical difficulties: achieving near-linear scaling for many-
particle systems is technically challenging, handling nontrivial boundary conditions
(bounded systems) is complicated and has to be done on a case-by-case basis [69;
122; 123; 124; 86; 2; 88; 90; 96; 77; 57], generalizations to nonspherical (and in
particular complex) particle shapes is difficult, and including thermal fluctuations is
nontrivial due to the need to obtain stochastic increments with the desired covariance.
In this work we develop relatively low-accuracy but flexible and simple rigid
multiblob methods that address these difficulties. Our approach builds heavily on a
number of existing techniques, combining elements from several distinct but related
methods. We extensively test the proposed methods and study their accuracy and
performance on a number of test problems.

The continuum formulation of the Stokes equations with suitable boundary
conditions on the surfaces of a collection of rigid particles is well-known and
summarized in more detail in Appendix A. Due to the linearity of the Stokes
equations, there is an affine mapping from the applied forces f and torques τ
and any specified apparent slip velocity due to active boundary layers ŭ, to the
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resulting particle motion given by the linear velocities u and the angular velocities ω.
Specifically, [

u
ω

]
=N

[
f
τ

]
−

(

N ŭ, (1)

where N is the mobility matrix, and

(

N is an active mobility linear operator. The
mobility problem consists of computing the rigid-body motion given the applied
forces and torques and apparent slip. The inverse of this problem is the resistance
problem, which computes the forces and torques on the body given a specified
motion of the body and active slip. Solving the mobility problem is a key component
of any numerical method for modeling the deterministic or fluctuating (Brownian)
dynamics of the particles.

In this paper we develop a mobility solver for suspensions of rigid particles
immersed in viscous fluid; specifically, we develop novel preconditioners for it-
erative solvers for the unknown motions of the rigid bodies, given the applied
external forces and torques as well as active apparent slip on the surface of the
particles. As we discuss in more detail in the body of the paper, our formulation
can readily solve the resistance problem; however, our iterative solvers will prove
to be more scalable for mobility computations (which are of primary interest) than
for resistance computations. Key to the success of our iterative solvers is the idea
that instead of eliminating variables using exact Schur complements and solving a
reduced system iteratively, as done in the majority of existing methods [126; 125;
31], one should instead iteratively solve an extended system that includes all of
the variables. This has the key advantage that the matrix-vector product becomes
an efficient direct calculation, and the Schur complement can be computed only
approximately and used to construct an effective preconditioner.

Like many other authors, we construct rigid bodies of essentially arbitrary shape
as a collection of rigidly connected collection of “blobs” or “beads” forming a
composite object [126] that we will refer to as a rigid multiblob. The hydrodynamic
interactions between blobs are represented using a Rotne–Prager tensor generalized
to the desired domain geometry (boundary conditions) [130]; specifically, we use
the Rotne–Prager–Yamakawa (RPY) tensor [113] for an unbounded domain, and
the Rotne–Prager–Blake (RPB) tensor [122] for a half-space domain. In Section 2
we describe how to obtain the hydrodynamic coupling between a large collection of
rigid multiblobs by solving a large linear system for Lagrange multipliers enforcing
the rigidity. A key contribution of our work is to develop an indefinite saddle-point
preconditioner for iterative solution of the resulting linear system. This precondi-
tioner is based on a block-diagonal approximation of the blob-blob mobility matrix,
in which all hydrodynamic interactions among distinct bodies (more precisely,
among blobs on distinct bodies) are neglected. The only system-specific component
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is the implementation of a fast matrix-vector multiplication routine, which in turn
requires a scalable method for multiplying the RPY mobility matrix by a vector.

For simple geometries such as an unbounded domain or particles sedimented
next to a no-slip boundary, simple analytical formulas for the RPY tensor are
well-known [122; 130], and can be used to construct an efficient matrix-vector
multiplication routine, for example, using fast multipole methods (FMMs) [89; 51],
or even direct summation on a GPU. We numerically study the performance and
accuracy of the rigid multiblob methods for suspensions in an unbounded domain
in Section 4, and study particles sedimented near a no-slip boundary in Section 5.
We find that resolving spherical particles with 12 blobs placed on the vertices of
an icosahedron [129] is notably more accurate than the FTS (force-torque-stresslet
plus degenerate quadrupole) truncation typically employed in Stokesian dynamics
simulations, provided that the effective hydrodynamic radius of the rigid multiblob
is adjusted to account for the finite size of the blobs. We also find that a small
number of iterations of a Krylov method are required to solve the required linear
system, and importantly, the number of iterations is constant independent of the
number of rigid bodies, making it possible to develop a linear or near-linear scaling
algorithm. For resistance problems, however, we observe a number of iterations
growing at least as fast as the linear dimensions of the system. This is consistent
with similar studies of iterative solvers for Stokesian dynamics by Ichiki [65].

For confined systems, however, even in the simplest case of a periodic system,
the Green’s function for Stokes flow and the associated RPY tensor is difficult to
obtain in closed form, and when it is possible to write an analytical result, the
resulting formulas are typically based on infinite series that are expensive to evaluate.
For periodic systems this is commonly addressed by using Ewald summation [10]
based on the fast Fourier transform (FFT) [126]; the present state of the art for
Stokes flow is the spectral Ewald method [90], which has recently been used for
Stokesian dynamics simulations of periodic suspensions [132]. A key deficiency of
most existing methods is that they rely critically on having triply periodic domains
and the use of the FFT. Generalizing these methods to nonperiodic domains while
keeping their linear scaling requires a large development effort and typically a new
implementation for every different geometry [57; 96]. Furthermore, in a number
of applications involving active particles [94; 105], there is a surface slip (e.g.,
electrohydrodynamic or osmophoretic flow) induced on the bottom boundary due
to the gradients created by the particles, and this slip drives or at least strongly
affects the motion of the particles. Accounting for this slip requires solving an
additional equation such as a Poisson or Laplace equation for the electric potential
or concentration of chemical fuel with nontrivial boundary conditions on the particle
and wall surfaces. The solution of this additional equation provides the slip boundary
condition for the Stokes equations, which must be solved to find the resulting fluid
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flow and active particle motion. Such nontrivial multiphysics coupling is quite hard
to accomplish in existing methods.

To address these difficulties, in Section 3 we develop a method for general
cuboidal confined domains which does not require analytical Green’s functions.
This relies on an immersed boundary (IB) method for obtaining an approximation to
the RPY tensor in confined geometries, as recently developed by some of the authors
[33]. This technique has been combined with the concept of multiblob representation
of rigid bodies in a follow-up work [129], but in this work stiff elastic springs were
used to enforce the rigidity. By contrast, we ensure the rigidity of the multiblobs
via Lagrange multipliers which are solved concurrently with solving for the fluid
pressure and velocity. Our key novel contribution is an effective preconditioner
for the rigidly constrained Stokes problem in periodic and nonperiodic domains,
obtained by combining our recently developed preconditioner for a rigid-body IB
method [71] with a block-diagonal preconditioner for the mobility subproblem.

In the IB method developed in Section 3 and studied numerically in Section 6,
analytical Green’s functions are replaced by an “on-the-fly” computation carried
out by a standard finite-volume fluid solver. This Stokes solver can readily handle
nontrivial boundary conditions; for example, slip along the walls [94; 105] can
easily be accounted for. Furthermore, suspensions at small but nonzero Reynolds
numbers can be handled with little extra work [7; 71]. Additionally, we avoid
uncontrolled approximations relying on truncations of multipole expansions to a
fixed order [117; 92; 7; 50], and we can seamlessly handle arbitrary body shapes
and deformation kinematics. Lastly, and importantly, in the spirit of fluctuating
hydrodynamics [33; 73; 4], it is straightforward to generate the stochastic increments
required to simulate the Brownian motion of small rigid particles suspended in
a fluid by including a fluctuating stress in the fluid equations, as we will discuss
in more detail in future work; here we focus on the deterministic mobility and
resistance problems. At the same time, our method also has some disadvantages
compared to methods such as boundary integral or boundary element methods.
Notably, it requires filling the domain with a dense uniform fluid grid, which is
expensive at low densities. It is also a low-order method that cannot compute
solutions as accurately as spectral boundary integral formulations. We do believe,
nevertheless, that the method developed here offers a good compromise between
accuracy, efficiency, scalability, flexibility, and extensibility, compared to other
more specialized formulations.

We apply our methods to a number of test problems for which analytical solutions
are known, but also study a few nontrivial problems that have not been properly
addressed in the literature. In Section 5.2 we study the mobility of a cylinder of
finite aspect ratio that is parallel to a no-slip boundary and compare to experimental
measurements and asymptotic theory based on a slender-body approximation. In
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Section 5.3 we study the formation of a stable rotating pair of active “extensor” or
“pusher” nanorods next to a no-slip boundary, and confirm the direction of rotation
observed in recent experiments [29]. In Section 6.4 we compute the effective
diffusion coefficient of a boomerang-shaped colloid in a slit channel, and compare
to recent experimental measurements [21; 22]. In Section 6.6 we study the mean
and variance of the sedimentation velocity in a binary suspension of spheres of size
ratio 2, and compare to recent Stokesian dynamics simulations [131; 132].

2. Rigid multiblob models of colloidal suspensions

In this section we develop the rigid multiblob model of colloidal particles at zero
Reynolds number. The kind of models we use here are not new, but we present the
method in detail instead of relying on previous presentations, the most relevant of
which are those of Swan et al. [125; 126]. This is in part to present the formulation
in our notation, and in part to explain the differences with other closely related
methods. Our key novel contribution in this section is the preconditioned iterative
solver described in Section 2.2; the performance and scaling of our mobility solver
is studied numerically for unbounded domains in Section 4.4, and for particles
confined near a single wall in Section 5.4.

The modeling of suspensions of rigid spheres at small Reynolds numbers is a
well-developed field with a long history. A powerful class of methods are related
to Brownian dynamics with hydrodynamic interactions (BDHI) [68; 58; 108; 75]
and Stokesian dynamics (SD) [117; 122; 62; 123; 8; 132] (note that these terms
are used differently in different communities). The difference between these two
(as we define them here) is that BDHI uses what we call a minimally resolved
model [33] in which each colloid (for colloidal suspensions) or polymer bead (for
polymeric suspensions) is only resolved at the monopole level, more precisely,
at the Rotne–Prager level [126]. By contrast, in SD the next level in a multipole
expansion is taken into account and torques and stresslets are also accounted for. It
has been shown recently that yet one more order needs to be kept in the multipole
expansion to model suspensions of active spheres [50; 119], and a suitable Galerkin
truncation of the multipole hierarchy has been developed for active spheres in
unbounded domains [119], as well as for active spheres confined near a no-slip
boundary [118]. It is also possible to account for higher-order multipoles [24; 26;
119; 81; 82], leading to more complicated (and computationally expensive) but also
more accurate models. It has also been shown that multipole expansions converge
very poorly for nearly touching spheres due to the divergence of the lubrication
forces, and in most methods for dense colloidal suspensions of hard spheres pairwise
lubrication corrections are added in a somewhat ad hoc manner; we will refer to
this approach as SD with lubrication.
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Figure 1. Rigid multiblob models of colloidal particles manufactured in recent experi-
mental work. Left three panels: a cylinder of aspect ratio of about 6, similar to the active
nanorods studied experimentally in [127; 29], for three different resolutions: minimally
resolved model with 14 blobs, marginally resolved model with 86 blobs, and well-resolved
model with 324 blobs. Right: a 120-blob model of a boomerang with square cross-section,
as studied experimentally in [21].

Given the well-developed tools for modeling sphere suspensions, it is natural to
leverage them when modeling suspensions of particles of more complex shapes.
Here we describe a technique capable of, in principle, modeling passive rigid
particles of arbitrary shape. The method can also be used to model, without any
extra effort, active particles with active slip layers, i.e., particles which are phoretic
(e.g., osmophoretic, electrophoretic, chemophoretic, etc.) due to an apparent slip at
their surface. For the purposes of hydrodynamic calculations, we discretize rigid
bodies by constructing them out of multiple rigidly connected spherical “blobs” or
beads of hydrodynamic radius a. These blobs can be thought of as hydrodynamically
minimally resolved spheres forming a rigid conglomerate that approximates the
hydrodynamics of the actual rigid object being studied. We prefer the word “blob”
over “sphere” or “point” or “monopole” because blobs are not spheres as they do
not have a well-defined surface like spheres do, they have a finite size associated
with them (the hydrodynamic blob radius a) unlike points, and they account for a
degenerate quadrupole associated to the Faxén corrections in addition to a force
monopole. The word “bead” is also appropriate, but we prefer to reserve that for
polymer models (bead-spring or bead-link models).

Examples of “multiblob” [129] models of two types of colloidal particles are
illustrated in Figure 1. In the leftmost panel, we show a minimally resolved model
of a rigid rod, with dimensions similar to active metallic “nanorods” used in recent
experiments [127; 29]. In this minimally resolved model the blobs, shown as spheres
with radius equal to a, are placed in a row along the axes of the cylinder. Such
minimally resolved models are particularly suited for cylinders of large but finite
aspect ratio; for very thin rods such as actin filaments boundary integral methods
based on slender-body theory [102] will be more effective. In the more resolved
model illustrated in the second panel from the left, a hexagon of blobs is placed
around the circumference of the cylinder to better resolve it. A yet more resolved
model with a dodecagon of blobs around the cylinder circumference is shown in
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the third panel from the left. In the rightmost panel of Figure 1 we show a blob
model of a colloidal boomerang with a square cross-section, as manufactured using
lithography and studied in [21]. Similar “bead” or “raspberry” models appear in a
number of studies of hydrodynamics of particle suspensions [104; 48; 46; 110; 91;
100; 125; 62; 25; 80; 18; 129; 106; 136].

In many studies, stiff elastic springs between the blobs are used to keep the
structure rigid; in some models the fluid or particle inertia is included also. Here,
we keep the structures strictly rigid and refer to the resulting structures as rigid
multiblob models. Such rigid multiblob models have been used in a number of
prior studies [104; 48; 46; 125; 62; 25; 80; 28], but we refer to [125] for a
detailed exposition. Our primary focus in this section will be to develop algorithmic
techniques that allow suspensions of tens or even hundreds of thousands of rigid
multiblob particles to be simulated efficiently. This is in many ways primarily an
exercise in numerical linear algebra, but one that is necessary to make the rigid
multiblob approach useful for simulating moderately dense suspensions. A second
goal, which will be realized in the results sections of this paper, will be to carefully
assess the accuracy of rigid multiblob models as a function of their resolution
(number of blobs per body).

2.1. Hydrodynamics of rigid multiblobs. We now summarize the main equations
used to solve the mobility and resistance problems for a collection of rigid multiblobs
immersed in a viscous fluid. We first discuss the hydrodynamic interaction between
blobs, and then discuss the hydrodynamic interactions between rigid bodies.

In the notation used below, we will use the Latin indices i , j , k, and l for individual
blobs, and reserve Latin indices p, q , r , and s for bodies. We will denote by Bp the
set of blobs comprising body p. We will consider a suspension of N rigid bodies with
a chosen reference tracking point on body p having position qp, and the orientation
of body p relative to a reference configuration represented by the quaternion θp [34].
The linear velocity of (the chosen tracking point on) body p will be denoted by up,
and its angular velocity will be denoted by ωp. The total force applied on body p is
fp, and the total torque is τp. The composite configuration vector of position and
orientation of body p will be denoted by Q p = {qp, θp}, the composite vector of
linear and angular velocity by Up = {up,ωp}, and the composite vector of forces
and torques by Fp = { fp, τp}. The position of blob i ∈ Bp will be denoted by ri ,
and its velocity will be denoted by ṙi . When not subscripted, vectors will refer to the
composite vector formed by all bodies or all blobs on all bodies. For example, U will
denote the linear and angular velocities of all bodies, and r will denote the positions
of all of the blobs. We will use a superscript to denote portions of composite vectors
for all blobs belonging to one body; for example, r(p) = {ri | i ∈ Bp} will denote
the vector of positions of all blobs belonging to body p.
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The fact that the multiblob p is rigid is expressed by the “no-slip” kinematic
condition

ṙi = up +ωp× (ri − qp) for all i ∈ Bp. (2)

This no-slip condition can be written for all bodies succinctly as

ṙ =KU, (3)

where K(Q) is a simple geometric matrix [126]. We will denote the apparent
velocity of the fluid at point ri by wi ≈ v(ri ). For a passive blob, i.e., a blob
that represents a passive part of the rigid particle, the no-slip boundary condition
requires that wi = ṙi . However, for active blobs an additional apparent slip of the
fluid relative to the surface of the body can be imposed, resulting in a nonzero
slip ŭi = wi − ṙi . This kind of active propulsion is termed “implicit swimming
gait” by Swan and Brady [122]. An “explicit swimming gait” [122] can be taken
into account without any modifications to the formulation or algorithm by simply
replacing (2) with

wi = ṙi = up +ωp× (ri − qp)+ ŭi . (4)

That is, the only difference between “slip” and “deformation” is whether the blobs
move relative to the rigid body frame dragging the fluid along, or stay fixed in the
body frame while the fluid passes by them. One can of course even combine the
two and have the blobs move relative to the rigid body while also pushing flow; for
example, this can be used to model an active filament where there is slip along the
filament but the filament itself is moving. In the end, the only thing that matters to
the formulation is the velocity difference

ŭi ≈ v(ri )− (up +ωp× (ri − qp)). (5)

In Appendix C we explain how to model permeable (porous) bodies by making the
apparent slip proportional to the fluid-blob force λ.

The fundamental problem tackled in this paper is the solution of the mobility
problem, that is, the computation of the motion of the bodies given the applied
forces and torques on the bodies and the slip velocity. Because of the linearity
of the Stokes equations and the boundary conditions, there exists an affine linear
mapping

U =N F−

(

M ŭ,

where the body mobility matrix N (Q) depends on the configuration and is the
central object of the computation. The active mobility matrix

(

M is a discretization
of the active mobility operator

(

N , and gives the active motion of force- and torque-
free particles. Note that

(

M is related to, but different from, the propulsion matrix
introduced in [119]. The propulsion matrix is essentially a finite-dimensional
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projection of the operator

(

N that only depends on the choice of basis functions
used to express the surface slip velocity ŭ, and does not depend on the specific
discretization of the body or quadrature rules, as does

(

M.
In the remainder of this section we develop a method for computing U given

F and ŭ, i.e., a method for computing the combined action of N and

(

M, for
large collections of nonoverlapping rigid particles. We will also briefly discuss the
resistance problem, in which we are given the motion of the bodies as a specified
kinematics, and seek the resulting drag forces and torques, which have the form

F =RU +

(

R ŭ,

where the body resistance matrix R = N−1 and

(

R = N−1 (

M is the active
resistance matrix.

Blob mobility matrix. The blob-blob translational mobility matrix M describes
the hydrodynamic interactions between the Nb blobs, accounting for the influence
of the boundaries. Specifically, if the blobs are free to move (i.e., not constrained
rigidly) with the fluid under the action of the set of translational forces λi , the
translational velocities of the blobs will be

w = ṙ + ŭ =Mλ. (6)

The mobility matrix M is a block matrix of dimension (d Nb)× (d Nb), where
d is the dimensionality. The d × d block Mi j computes the velocity of blob i
given the force on blob j , neglecting the presence of the other blobs in a pairwise
approximation.

To construct a suitable M, we can think of blobs as spheres of hydrodynamic
radius a. For two well-separated spheres i and j of radius a we have the far-field
approximation [75; 122; 130]

Mi j ≈ η
−1(I + 1

6a2
∇

2
r ′)(I +

1
6a2

∇
2
r ′′)G(r

′, r ′′)
∣∣r ′=r j

r ′′=ri
, (7)

where η is the fluid viscosity and G is the Green’s function for the steady Stokes
problem with unit viscosity, with the appropriate boundary conditions such as
no-slip on the boundaries of the domain. The differential operator I + (a2/6)∇2

is called the Faxén operator [75]. Note that the form of (7) guarantees that the
mobility matrix is symmetric-positive-semidefinite (SPD) by construction since G

is an SPD kernel.
For a three-dimensional unbounded domain with fluid at rest at infinity, the

Green’s function is isotropic and given by the Oseen tensor:

G(r ′, r ′′)≡O(r = r ′− r ′′)=
1

8πr

(
I +

r ⊗ r
r2

)
. (8)
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Using this expression in (7) yields the far-field component of the Rotne–Prager–
Yamakawa (RPY) tensor [113], commonly used in BDHI. A correction needs to be
introduced when particles are close to each other to ensure an SPD mobility matrix
[113], which can be derived by using an integral form of the RPY tensor valid even
for overlapping particles [130], to give

Mi j =
1

6πηa

{
C1(ri j )I +C2(ri j )(ri j ⊗ ri j )/r2

i j , ri j > 2a,
C3(ri j )I +C4(ri j )(ri j ⊗ ri j )/r2

i j , ri j ≤ 2a,
(9)

where ri j = ri − r j and

C1(r)=
3a
4r
+

a3

2r3 , C2(r)=
3a
4r
−

3a3

2r3 , C3(r)=1−
9r

32a
, C4(r)=

3r
32a

.

The diagonal blocks of the mobility matrix, i.e., the self-mobility, can be obtained
by setting ri j = 0 to obtain Mi i = (6πηa)−1 I , which matches the Stokes solution
for the drag on a translating sphere; this is an important continuity property of the
RPY tensor [39]. We will use the RPY tensor (9) for simulations of rigid-particle
suspensions in unbounded domains in Section 4.

In principle, it is possible to generalize the RPY tensor to any flow geometry, i.e.,
to any boundary conditions (and imposed external flow) [130], including periodic
domains [10; 99], as well as confined domains [122; 123]. However, we are not
aware of any tractable analytical expressions for the complete RPY tensor (including
near-field corrections) even for the simplest confined geometry of particles near
a single no-slip boundary. In the presence of a single no-slip wall, an analytic
approximation to Mi j is given by Swan and Brady [122] (and rederived later in
[49]) as a generalization of the Rotne–Prager (RP) tensor [113] to account for the
no-slip boundary using Blake’s image construction [13]. As shown in [130], the
corrections to the Rotne–Prager tensor (7) for particles that overlap each other but
not the wall are independent of the boundary conditions, and are thus given by the
standard RPY expressions (9) for unbounded domains. Therefore, in Section 5 we
compute M by adding to the RPY tensor (9) wall corrections corresponding to the
translation-translation part of the Rotne–Prager–Blake mobility given by (B1) and
(C2) in [122], ignoring the higher-order torque and stresslet terms in the spirit of
the minimally resolved blob model. The expressions derived by Swan and Brady
[122] assume that neither particle overlaps the wall and the resulting expressions
are not guaranteed to lead to an SPD M if one or more blobs overlap the wall, as
we discuss in more detail in the conclusions.

For more complicated geometries, such as a slit or a square (duct) channel,
analytical computations of the Green’s function become quite complicated and
tedious, and numerical computations typically require pretabulations [75; 123; 12].
In Section 6 we explain how a grid-based finite-volume Stokes solver can be used



228 BALBOA USABIAGA, KALLEMOV, DELMOTTE, BHALLA, GRIFFITH AND DONEV

to obtain the action of the Green’s function and thus compute the action of the
mobility matrix for confined domains, for essentially arbitrary combinations of
periodic, free-slip, no-slip, or stress boundary conditions.

Body mobility matrix. After discretizing the rigid bodies as rigid multiblobs, we
can write down a system of equations that constrain the blobs to move rigidly in a
straightforward manner. Letting λ be a vector of forces (Lagrange multipliers) that
acts on each blob to enforce the rigidity of the body, we have the following linear
system for λ, u, and ω for all bodies p:∑

j

Mi jλ j = up +ωp× (ri − qp)+ ŭi for all i ∈ Bp,∑
i∈Bp

λi = fp, (10)∑
i∈Bp

(ri − qp)×λi = τp.

The first equation is the no-slip condition obtained by combining (6) and (2). The
second and third equations are the force and torque balance conditions for body p.
Note that the physical interpretation of λ is a total force on the portion of the
surface of the body associated with a given blob. If one wants to think of (10) as
a regularized discretization of the first-kind integral equation (A-5) and obtain a
pointwise value of the traction force density, one should divide λ j by the surface
area 1A j associated with blob j , which plays the role of a quadrature weight [28];
we will discuss more sophisticated quadrature rules [120; 101] in the conclusions.

We can write the mobility problem (10) in compact matrix notation as a saddle-
point linear system of equations for the rigidity forces λ and unknown motion U :[

M −K
−KT 0

] [
λ

U

]
=

[
ŭ
−F

]
. (11)

Forming the Schur complement by eliminating λ we get (see also (1) in [125] or
(32) in [126])

U =N F− (NKTM−1)ŭ =N F−

(

M ŭ,

where the body mobility matrix N is

N = (KTM−1K)−1, (12)

and is evidently SPD since M is. Although written in this form using the inverse of
M, unlike in a number of prior works [104; 46; 62; 25; 80], we obtain U by solving
(11) directly using an iterative solver, as we explain in more detail in Section 2.2.
We note that one can compute a fluid velocity field v(r) from λ using a procedure
we describe in Appendix B.
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The resistance problem, on the other hand, consists of solving for λ in

Mλ=KU + ŭ, (13)

and then computing F =KTλ, giving

F = (KTM−1K)U + (KTM−1)ŭ =RU +

(

R ŭ.

At first glance, it appears that solving the resistance system (13) is easier than
solving the saddle-point problem (11); however, as we explain in more detail in
Section 4.4, the mobility problem is significantly easier to solve using iterative
methods than the resistance problem, consistent with similar observations in the
context of Stokesian dynamics [65]. Observe that the saddle-point formulation
(11) applies more broadly to mixed mobility/resistance problems, where some of
the rigid-body degrees of freedom are constrained but some are free [30]. An
example is a suspension of spheres being rotated by a magnetic field at a specified
angular velocity but free to move translationally, or a suspension of colloids fixed
in space by strong laser tweezers but otherwise free to rotate, or even a hinged body
that can only move in a partially constrained manner. In cases such as these we
simply redefine U to contain the free kinematic degrees of freedom and modify
the definition of the kinematic matrix K. Much of what we say below continues
to apply, but with the caveat that the expected speed of convergence of iterative
methods is expected to depend on the nature of the imposed constraints, as we
discuss in Section 4.4.

Note that (12) is somewhat formal, and in practice all inverses should be replaced
by pseudoinverses. For instance, in the limit when infinitely many blobs cover
the surface of a body, the mobility matrix M is not invertible since making λ
perpendicular to the surface will not yield any flow because it will try to compress
the (fictitious) incompressible fluid inside the body. Note that this nontrivial null
space of the mobility poses no problem when using an iterative method to solve
(11) because the right-hand side is in the proper range due to the imposition of the
volume-preservation constraint (A-6). It is also possible that the matrix KTM−1K
is not invertible. A typical example for this is the minimally resolved cylinder
shown in the leftmost panel of Figure 1. Because all of the forces λ are applied
exactly on the semiaxes of the cylinder, they cannot exert a torque around the
symmetry axes of the rod. Again, there is no problem with iterative solvers for (11)
if the applied force is in the appropriate range (e.g., one should not apply a torque
around the semiaxes of a minimally resolved cylinder).

2.2. Iterative mobility solver. For a small number of blobs, (11) can be solved by
direct inversion of M, as done in most prior works. For large systems, which are
the focus of our work, iterative methods are required. A standard approach used in
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the literature is to eliminate one of the variables λ or U . Eliminating λ leads to the
equation

(KTM−1K)U = F−KTM−1ŭ, (14)

which requires the action of M−1, which must itself be obtained inside a nested
iterative solver, increasing both the complexity and the cost of the method. Swan
and Wang [126] have recently used the conjugate gradient method to solve (14),
preconditioning using the block-diagonal matrix P = (6πηa)(KTK).

An alternative is to write a system equivalent to (11), for an arbitrary constant
c 6= 0, [

M −K
−KT (I + cM) c(KTK)

] [
λ

U

]
=

[
ŭ

−(F+ cKT ŭ)

]
, (15)

from which we can easily eliminate U to obtain an equation for λ only, in the form

[M(I −K(KTK)−1KT )− c−1K(KTK)−1KT
]λ= rhs, (16)

where we omit the full expression for the right-hand side for brevity. The system (16)
can now be solved using (preconditioned) conjugate gradients, and only requires
the inverse of the simpler matrix KTK. Note that, although not presented in this
way, this is the essence of the approach that is followed and recommended by Swan
et al. [125] (see the appendices of [125] and note that c is denoted by λ in that
paper); they recommend computing the action of (KTK)−1 with an iterative method
preconditioned by an incomplete Cholesky factorization. A similar approach is
followed in boundary integral formulations (which are usually formulated using
a double-layer density), where a continuum operator related to K(KTK)−1KT is
computed and then discretized using a quadrature rule [111; 77].

In contrast to the approaches taken by Swan et al. [125; 126], we have found
that numerically the best approach to solving for the unknown rigid-body motions
of the particles is to solve the extended saddle-point problem (11) for both U
and λ directly, using a preconditioned iterative Krylov method. In fact, as we will
demonstrate in the results section of this paper, such an approach has computational
complexity that is essentially linear in the number of blobs because the number of
iterations required to solve (11) is quite modest when an appropriate preconditioner,
described below, is used. This approach does not require computing (the action of)
(KTK)−1 and leads to a very simple implementation.

Matrix-vector product. A Krylov solver for (11) requires two components:

• an efficient algorithm for performing the matrix-vector product, which in our
case amounts to a fast method to multiply the dense but low-rank mobility
matrix M by a vector of blob forces λ, and

• a suitable preconditioner, which is an approximate solver for (11).
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How to efficiently compute Mλ depends very much on the boundary conditions and
thus the form of the Green’s function used to construct M. For unbounded domains,
in this work we use the fast multipole method (FMM) developed specifically for
the RPY tensor in [89]; alternative kernel-independent FMMs could also be used,
and have also been generalized to periodic domains [87]. The FMM method has
an essentially linear computational cost of O(Nb log Nb) for a single matrix-vector
multiplication. In the simulations presented here we use a fixed and rather tight
relative tolerance for the FMM ∼ 10−9 throughout the iterative solution process.
Krylov methods, however, allow one to lower the accuracy of the matrix-vector
product as the residual is reduced [14]; this has recently been used to lower the cost of
FMM-based boundary integral methods [133]. We will explore such optimizations
in future work.

For rigid particles sedimented near a single no-slip wall, we have implemented a
GPU-based direct-summation matrix-vector product based on the Rotne–Prager–
Blake tensor derived by Swan and Brady [122]. This has, asymptotically, a quadratic
computational cost of O(N 2

b ); however, the computation is trivially parallel so
the multiplication is remarkably fast even for one million blobs because of the
very large number of threads available on modern GPUs. Gimbutas et al. have
recently developed an FMM method for the Blake tensor by using a simple image
construction (image Stokeslet plus a harmonic scalar correction) and applying an
infinite-space FMM method to the extended system of singularities [51]. However,
this construction has not yet been generalized to the Rotne–Prager–Blake tensor,
and furthermore, the FMM will not be more efficient than the direct product on
GPUs in practice unless a large number of blobs is considered. For fully confined
domains, we will adopt an extended saddle-point formulation that will be described
in Section 6.

Preconditioner. In this work we demonstrate that a very efficient yet simple pre-
conditioner for (11) is obtained by neglecting hydrodynamic interactions between
different bodies, that is, setting the elements of M corresponding to pairs of blobs
on distinct bodies to zero in the preconditioner. This amounts to making a block-
diagonal approximation of the mobility M̃ defined by only keeping the diagonal
blocks corresponding to a single body interacting only with the boundaries of the
domain:

M̃(pq)
= δpqM(pp). (17)

We will demonstrate here that the indefinite block-diagonal preconditioner,

P =
[

M̃ −K
−KT 0

]
, (18)

is a very effective preconditioner for solving (11).
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Applying the preconditioner (18) amounts to solving the linear system[
M̃ −K
−KT 0

] [
λ

U

]
=

[
ŭ
−F

]
, (19)

which is quite easy to do since the approximate body mobility matrix (Schur
complement),

Ñ = (KTM̃−1K)−1,

is itself a block-diagonal matrix where each block on the diagonal refers to a single
body neglecting all hydrodynamic interactions with other bodies:

Ñpq = δpq((K(p))T (M(pp))−1K(p))−1.

Computing Ñpq requires a dense matrix inversion (e.g., Cholesky factorization) of
the much smaller mobility matrix M(pp), whose size is (d N (p)

b )× (d N (p)
b ), where

N (p)
b is the number of blobs on body p. In the case of an infinite domain, the

factorization of M(pp) can be precomputed once at the beginning of a dynamic
simulation and reused during the simulation due to the rotational and translational
invariance of the RPY tensor; one only needs to apply rotation matrices to the right-
hand side and the result to convert between the original reference configuration of
the body and the current configuration. Furthermore, particles of the same shape
and size discretized with the same number of blobs as body p can share a single
factorization of M(pp) and Ñpp. In cases where M(pp) depends in a nontrivial
way on the position of the body, as for (partially) confined domains, one needs to
factorize M(pp) for all bodies p at every time step; this factorization can still be
reused during the iterative solve in each application of the preconditioner.

Because our preconditioner is indefinite, one cannot use the preconditioned
conjugate gradient (PCG) Krylov method to solve (11) without modification. One
of the most robust iterative methods, which we use in this work, is the generalized
minimum residual method (GMRES). The key advantage of GMRES is that it is
guaranteed to reduce the residual from iteration to iteration. Its main downside
is that it requires storing a large number of intermediate vectors (i.e., the history
of the iterates). GMRES also can stall, although this can be corrected to some
extent by restarts. An alternative to GMRES is the (stabilized) biconjugate gradient
(BiCG(Stab)) method, which works for nonsymmetric matrices as well. In our
implementation we have relied on the PETSc library [5] for iterative solvers; this
library makes it very easy to experiment with different iterative solvers.

3. Rigid multiblobs in confined domains

The rigid multiblob method described in Section 2 requires a technique for mul-
tiplying the blob-blob mobility matrix with a vector. Therefore, this approach,
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like all other Green’s-function-based methods [24; 81; 82; 26; 123; 122; 119;
77; 96; 90; 88; 2; 75; 57], is very geometry-specific and does not generalize
easily to more complicated boundary conditions. To handle geometries for which
there is no simple analytical expression for the Green’s function, such as slit or
square channels, pretabulation of the Green’s function is necessary, and ensuring
a positive semidefinite mobility matrix is in general difficult. Another difficulty
with Green’s-function-based methods is that including a “background” flow is only
simple when this flow can be computed easily analytically, such as simple shear
flows. But for more complicated geometries, such as Poiseuille flow through a
square channel, computing the base flow is itself not trivial or requires evaluating
expensive infinite-series solutions.

An alternative approach is to use a traditional Stokes solver to solve the fluid
equations numerically [58]. This requires filling the domain with a grid, which can
increase the number of degrees of freedom considerably over just discretizing the
surface of the immersed bodies. However, the number of fluid degrees of freedom
can be held approximately constant as more bodies are included, so that the methods
typically scale very well with the number of particles and are well-suited to dense
particle suspensions. Previous work [33; 4; 3] has shown how to use an immersed
boundary (IB) method [107] to obtain the action of the Green’s function in complex
geometries. In this approach, spherical particles are minimally resolved using
only a single blob per particle. In subsequent work this approach was extended to
multiblob models [129], but the rigidity constraint was imposed only approximately
using stiff springs, leading to numerical stiffness. A class of related minimally
resolved methods based on the force coupling method (FCM) [97; 92; 73; 31] can
include also torques and stresslets, as well as particle activity [32], but a number of
these methods have relied strongly on periodic boundaries since they use the fast
Fourier transform (FFT) to solve the (fluctuating) Stokes equations.

In recent work [71], some of the authors have developed an IB method for rigid
bodies. This method applies to a broad range of Reynolds numbers. In the case
of zero Reynolds number it becomes equivalent to the rigid multiblob method
presented in Section 2, but with a blob-blob mobility that is computed by the fluid
solver. In [71] only rigid bodies with specified motion (kinematics) were considered;
here we extend the method to handle freely moving rigid bodies in Stokes flow.
We will present here the key ideas and focus on the new components necessary
to solve for the unknown motion of the particles; we refer the reader interested
in more technical details to [33; 71]. The key novel contribution of our work is
the preconditioner described in Section 3.3; the performance and scalability of
our preconditioned iterative solvers are studied numerically in Section 6.5. To
begin, we present a semicontinuum formulation where the relation to Section 2 is
most obvious, and then we discuss the fully discrete formulation used in the actual
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implementation. In Appendix C we demonstrate how to handle permeable bodies
using a small modification of the formulation. Numerical results obtained using the
method described here are given in Section 6.

3.1. Semicontinuum formulation. We consider here a semidiscrete model in which
the rigid body has already been discretized using blobs but a continuum description
is used for the fluid; that is, we consider a rigid multiblob model immersed in a
continuum Stokesian fluid. In the IB literature blobs are referred to as markers,
and are often thought of as “points” or “discrete delta functions”. We use the term
“blob”, however, to connect to Section 2 and to emphasize that the blobs have a
finite physical and hydrodynamic extent.

In the IB method [107] (and also the force coupling method [97]), the shape of
the blob and its effective interaction with the fluid is captured through a smooth
kernel function δa(r) that integrates to unity and whose support is localized in a
region of size comparable to the blob radius a. In our rigid multiblob IB method,
to obtain the fluid-blob interaction forces λ(t) that constrain the unknown rigid
motion of the Nb blobs, we need to solve a constrained Stokes problem [71] for
the fluid velocity field v(r, t), the fluid pressure field π(r, t), the blob constraint
forces λ(t), and the unknown rigid-body motions u(t) and ω(t):

∇π = η∇2v+

Nb∑
i=1

λiδa(ri − r),

∇ · v = 0,∫
δa(ri − r ′)v(r ′, t) d r ′ = up +ωp× (ri − qp)+ ŭi for all i ∈ Bp, (20)∑

i∈Bp

λi = fp for all p,

∑
i∈Bp

(ri − qp)×λi = τp for all p.

Note that here the velocity and pressure fields contain both the “background” and
the “perturbational” contributions to the flow. In the first equation in (20), the
kernel function is used to transfer (spread) the force exerted on the blob to the fluid,
and in the third equation the same kernel is used to average the fluid velocity in
the region covered by the blob and constrain it to follow the imposed rigid-body
motion plus additional slip or body deformation. The handling of the spreading
of constraint forces and averaging of the fluid velocity near physical boundaries
is discussed in Appendix D of [71]. We have implicitly assumed that appropriate
boundary conditions are specified for the fluid velocity and pressure. Notably,
we will apply the above formulation to cases where periodic or no-slip boundary
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conditions are applied along the boundaries of a cubic prism (recall that periodic
boundaries are not actual physical boundaries). This includes, for example, a slit
channel, a square channel, or a cubical container. It is also relatively straightforward
to handle stress-based boundary conditions such as free-slip or pressure valves [53].

It is not difficult to show that (20) is equivalent to the system (10) with the
mobility matrix between two blobs i and j identified with [3; 33; 71; 73; 92; 97]

Mi j (ri , r j )= η
−1
∫
δa(ri − r ′)G(r ′, r ′′)δa(r j − r ′′) d r ′ d r ′′, (21)

where we recall that G is the Green’s function for the Stokes problem with unit
viscosity and the specified boundary conditions. This expression can directly be
compared to (7) after realizing that for a smooth velocity field [92; 97]∫
δa(ri−r)v(r) d r≈

[
I+
(∫

x2

2
δa(x) dx

)
∇

2
]
v(r)

∣∣∣∣
r=ri

=(I+ 1
6a2

F∇
2)v(r)

∣∣
r=ri

,

where we assumed a spherical blob: δa(r) ≡ δa(r). We have defined here the
“Faxén” radius of the blob aF ≡ (3

∫
x2δa(x) dx)1/2 through the second moment of

the kernel function.
In multipole-expansion-based methods, the self-mobility of a body is treated

separately by solving the single-body problem exactly (this is only possible for
simple particle shapes). However, in the type of approach followed here the self-
mobility Mi i is also given by the same formula (21) with i = j and does not need
to be treated separately. In fact, the self-mobility of a particle in an unbounded
three-dimensional domain defines the effective hydrodynamic radius a of a blob:

Mi i =
1

6πηa
I = η−1

∫
δa(r ′)O(r ′− r ′′)δa(r ′′) d r ′ d r ′′,

where the Oseen tensor O is given in (8). In general, aF 6= a, but for a suitable
choice of the kernel one can accomplish aF ≈ a (for example, for a Gaussian
a/aF =

√
3/π [97]) and thus accurately obtain the Faxén correction for a rigid

sphere [33].
For an isotropic or tensor product kernel δa and an unbounded domain, the

pairwise blob-blob mobility (21) will take the form

Mi j = f (ri j )I + g(ri j )r̂i j ⊗ r̂i j , (22)

where ri j = ri− r j , and the hat denotes a unit vector. The functions of distance f (r)
and g(r) depend on the specific kernel (and in the fully discrete setting on the spatial
discretization of the Stokes equations) and will be different from those appearing in
the RPY tensor (9). Nevertheless, as we will show numerically in Section 6.1, the
functions f and g for our IB method are quite close in form to those appearing in
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the RPY tensor. We note that the RPY tensor itself can be seen as a realization of
(21) with the kernel being a surface delta function over a sphere of radius a [130].

We have demonstrated above that solving (20) is a way to apply the blob-blob
mobility for a confined domain. In the method of regularized Stokeslets [2; 88;
28; 27] the mobility is obtained analytically by averaging the analytical Green’s
function with a kernel or envelope function specifically chosen to make the resulting
integrals analytical. Note however that in that method the kernel δa appears only
once inside the integral in (21) because only the force spreading is regularized but
not the interpolation of the velocity; this leads to a nonsymmetric mobility matrix
inconsistent with the Faxén formula (7). By contrast, our approach is guaranteed
to lead to a symmetric-positive-semidefinite (SPD) mobility matrix M, which is
crucial when including thermal fluctuations [33; 3; 73].

3.2. Fully discrete formulation. To obtain a fully discrete formulation of the linear
system (20) we need to spatially discretize the Stokes equations on a grid. The
spatial discretization of the fluid equation used in this work uses a uniform Cartesian
grid with grid spacing h, and is based on a second-order-accurate staggered-grid
finite-volume (equivalently, finite-difference) discretization, in which vector-valued
quantities such as velocity are represented on the faces of the Cartesian grid cells,
while scalar-valued quantities such as pressure are represented at the centers of the
grid cells [54; 53; 7; 71]. The viscous terms are discretized using a standard 7-point
Laplacian (in three dimensions), accounting for boundary conditions using ghost
cell extrapolation [53; 71].

Spreading and interpolation. In the fully discrete formulation of the fluid-body
coupling, we replace spatial integrals in the semicontinuum formulation (20) by
sums over fluid grid points. The regularized delta function kernel is discretized using
a tensor product of one-dimensional immersed boundary kernels φa(x) of compact
support, following Peskin [107]. To maximize translational and rotational invariance
(i.e., improve grid-invariance) we use the smooth (three-times differentiable) 6-point
kernel recently described by Bao et al. [9]. This kernel is more expensive than the
traditional four-point kernel [107] because it increases the support of the kernel to
63
= 216 grid points in three dimensions; however, this cost is justified because the

new 6-point kernel improves the translational invariance by orders of magnitude
compared to other standard IB kernel functions [9].

The interaction between the fluid and the rigid body is mediated through two cru-
cial operations. The discrete velocity-interpolation operator J averages velocities
on the staggered grid in the neighborhood of blob i via

(J v)αi =
∑

k

vαk φa(ri − rαk ),
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where the sum is taken over faces k of the grid, α indexes coordinate directions
(x, y, z) as a superscript, and rαk is the position of the center of the grid face k in
the direction α. The discrete force-spreading operator S spreads forces from the
blobs to the faces of the staggered grid via

(Sλ)αk =1V−1
∑

i

λαi φa(ri − rαk ), (23)

where now the sum is over the blobs and 1V = h3 is the volume of a grid cell.
These operators are adjoint with respect to a suitably defined inner product, and
the discrete matrices satisfy J =1V ST , which ensures conservation of energy
[107]. Extensions of the basic interpolation and spreading operators to account for
the presence of physical boundary conditions are described in Appendix D of [71].

We note that it is possible to change the effective hydrodynamic and Faxén
radii of a blob by changing the kernel δa . Such flexibility in the kernel can be
accomplished without compromising the required kernel properties postulated by
Peskin [107] by using shifted or split kernels [7]:

φa,s(q− rk)=
1
2d

d∏
α=1

{
φa
[
qα − (rk)α −

1
2 s
]
+φa

[
qα − (rk)α +

1
2 s
]}
,

where s denotes a shift that parametrizes the kernel. By varying s in a certain range,
for example, 0 ≤ s ≤ h, one can smoothly increase the support of the kernel and
thus increase the hydrodynamic radius of the blob by as much as a factor of 2. We
do not use split kernels in this work but have found them to work as well as the
unshifted kernels, while allowing increased flexibility in varying the grid spacing
relative to the hydrodynamic radius of the particles.

Discrete constrained Stokes equations. Following spatial discretization, we obtain a
finite-dimensional linear system of equations for the discrete velocities and pressures
and the blob and body degrees of freedom. For the resistance problem, we obtain
the rigidly constrained discrete Stokes system [71] A G −S

−D 0 0
−J 0 −�

vπ
λ

=
 g = 0

h = 0
w =−ŭ

 , (24)

where G is the discrete (vector) gradient operator, D=−GT is the discrete (vector)
divergence operator, and A=−ηLv where Lv is a discrete (vector) Laplacian; these
finite-difference operators take into account the specified boundary conditions [53].
For impermeable bodies �= 0, which makes the linear system (24) a nested saddle-
point problem in both Lagrange multipliers π and λ. As explained in Appendix C,
for permeable bodies � is a diagonal matrix with �i i = κp/(η1Vi ) for blob i ∈ Bp,
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where κp is the permeability of body p and 1Vi is a volume associated with
blob i . The right-hand side could include any external fluid-forcing terms, slip,
inhomogeneous boundary conditions, etc. The system (24) can be made symmetric
by excluding the volume weighting 1V−1 in the spreading operator (23); this
makes λ have units of force density rather than total force.

This nested saddle-point structure continues if one considers impermeable rigid
bodies that are free to move, leading to the discrete mobility problem1

A G −S 0
−D 0 0 0
−J 0 0 K

0 0 KT 0



v

π

λ

U

=


g
h = 0
w =−ŭ
z = F

 . (25)

After eliminating the velocity and pressure from this system, we obtain the saddle-
point system (11) with the identification of the mobility with its discrete approxi-
mation

M=JL−1S =1V STL−1S, (26)

which is SPD. Here L−1 is a discrete Stokes solution operator

L−1
=A−1

−A−1G(DA−1G)−1DA−1, (27)

where we have assumed for now that A−1 is invertible; see [71] for the handling
of periodic systems, for which the Laplacian is not invertible. Unlike for Green’s-
function-based methods, we never explicitly compute or form L−1 or M; rather, we
solve the Stokes velocity-pressure subsystems iteratively using the preconditioners
described in [53; 20].

3.3. Preconditioning algorithm. In this subsection we describe how to solve the
system (25) using an iterative solver, as we have implemented in the Immersed
Boundary Adaptive Mesh Refinement software framework (IBAMR) [54]. Our
codes are integrated into the public release of the IBAMR library. Note that the
matrix-vector product is a straightforward and inexpensive application of finite-
difference stencils on the fluid grid and summations over blobs. The key to an
effective solver is the design of a good preconditioner, i.e., a good approximate solver
for (25). The basic idea is to combine a preconditioner for the Stokes problem [42;
53; 20] with the indefinite preconditioner (18) with a block-diagonal approximation
of the mobility M̃ constructed based on empirical fits of the blob-blob mobility, as
we now explain in detail.

1Note that in actual codes it is better to use an increment formulation of the linear system where
the unknowns are the changes of the unknowns from their values at the previous time step; this is
particularly important when there is a nontrivial background flow to ensure that the (small) perturbative
flows are resolved accurately.
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Approximate blob-blob mobility matrix. A preconditioner for solving the resistance
problem (24) was developed by some of the authors in [71]; readers interested in
additional details should refer to this work. The preconditioner is based on approx-
imating the blob-blob mobility with the functional form (22), where the functions
f (r) and g(r) are obtained by fitting numerical data for the blob-blob mobility in an
unbounded system (in practice, a large periodic system). This involves two important
approximations, the validity of which only affects the efficiency of the linear solver
but does not affect the accuracy of the method since the Krylov method will correct
for the approximations. The first approximation comes from the fact that the true
blob-blob mobility for the immersed boundary method is not perfectly translationally
and rotationally invariant, so that the form (22) does not hold exactly. The second
approximation is that the boundary conditions are not correctly taken into account
when constructing the approximation of the mobility M̃. This approximation is
crucial to the feasibility of our method and is much more severe, but as we will
demonstrate numerically in Section 6, the Krylov solver converges in a reasonable
number of iterations, correctly incorporating the boundary conditions in the solution.

The empirical fits of f (r) and g(r) are described in Appendix A of [71].2 As we
show in Section 6.1, these functions are quite similar to those appearing in the RPY
tensor (9), and in fact, it is possible to use the RPY functions fRPY(r) and gRPY(r)
in the preconditioner, with a value of the effective hydrodynamic radius a that
depends on the choice of the kernel. Nevertheless, somewhat better performance is
achieved by using the empirical fits for f (r) and g(r) developed in [71].

In [71], we considered general fluid-structure interaction problems over a range
of Reynolds numbers, and constructed M̃ as a dense matrix of size (d Nb)× (d Nb),
which was then factorized using dense linear algebra. This is infeasible for suspen-
sions of many rigid bodies. In this work, we use the block-diagonal approximation
(17) to the blob-blob mobility matrices, in which there is one block per rigid particle.
Once M̃ is constructed and its diagonal blocks are factorized, the corresponding
approximate body mobility matrix Ñ is easy to form, as discussed in more detail in
Section 2.2. Note that these matrices and their factorizations need to be constructed
only once at the beginning of the simulation, and can be reused throughout the
simulation.

Fluid solver. A key component of solving the constrained Stokes problems (24)
or (25) is an iterative solver for the unconstrained discrete Stokes subproblem[

A G
−D 0

] [
v

π

]
=

[
g
h

]
,

2Code to evaluate the empirical fits is publicly available for a number of kernels constructed by
Peskin and coworkers (3-, 4-, and 6-point) at http://cims.nyu.edu/~donev/src/MobilityFunctions.c.

http://cims.nyu.edu/~donev/src/MobilityFunctions.c
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for which a number of techniques have been developed in the finite-element context
[42]. To solve this system, we can use GMRES with a preconditioner P−1

S that
assumes periodic boundary conditions so that the various finite-difference operators
commute [41]. Specifically, the preconditioner for the Stokes system that we use in
this work is based on a projection preconditioner developed by Griffith [53; 20]:

P−1
S =

[
I h2GL̃−1

p
0 ηI

] [
I 0
−D −I

] [
η−1L̃−1

v 0
0 I

]
, (28)

where Lp = h2(DG) is the dimensionless pressure (scalar) Laplacian, and L̃−1
v ≈

(Lv)
−1 and L̃−1

p ≈ (Lp)
−1 denote approximate solvers obtained by a single V-cycle

of a geometric multigrid method, as performed using the hypre library [43] in our
IBAMR implementation. In this paper we will primarily report the options we have
found to be best without listing all of the different combinations we have tried.
For completeness, we note that we have tried the better-known lower- and upper-
triangular preconditioners [42; 20] for the Stokes problem. While these simpler
preconditioners are better when solving pure Stokes problems than the projection
preconditioner (28) since they avoid the pressure multigrid application L̃−1

p , we
have found them to perform much worse in the context of suspensions of rigid
bodies. A possible explanation is that the projection preconditioner P−1

S is the
only one that is exact for periodic systems if exact subsolvers for the velocity and
pressure subproblems are used.

Observe that one application of P−1
S is relatively inexpensive and involves only

(d+1) scalar multigrid V-cycles. The number of iterations required for convergence
depends strongly on the boundary conditions; fast convergence is obtained within
10–20 iterations for periodic systems, but as many as 100 GMRES iterations may
be required for highly confined systems [20]. We emphasize that the performance
of this preconditioner is highly dependent on the details of the staggered geometric
multigrid method, which is not highly optimized in the hypre library, especially for
domains of high aspect ratios such as narrow slit channels. For periodic boundary
conditions, one can use FFTs to solve the Stokes problem, and this is likely to be
more efficient than geometric multigrid especially because FFTs have been highly
optimized for common hardware architectures. However, such an approach would
require 3 scalar FFTs for each iteration of the iterative solver for the constrained
Stokes problem (24) or (25), and this will in general be substantially more expensive
than using only a few cycles of geometric multigrid as an approximate Stokes solver.

The use of an approximate Stokes solver instead of an exact one is an important
difference between implementing the rigid multiblob method for periodic systems
using the spectral Ewald method [90; 132] and our approach. The product of
the blob-blob mobility with a vector can be computed more accurately and faster
using the spectral Ewald method, in particular because one can adjust the cutoff
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for splitting the computation between real and Fourier space arbitrarily, unlike in
our method where the grid spacing is tied to the particle radius. However, for rigid
multiblobs, one must solve the system (11), which requires potentially many matrix-
vector products, i.e., many FFTs in the spectral Ewald approach. By contrast, in our
method we solve the extended problem (25), and only solve the Stokes problems
approximately using a few cycles of multigrid in each iteration. This will require
more iterations but each iteration can be substantially cheaper than performing
3 FFTs each Krylov iteration. For nonperiodic systems, there is no equivalent of
the spectral Ewald method, but see [58; 57] for some steps in this direction. Our
method computes the hydrodynamic interactions in a confined geometry “on the
fly” without ever actually computing the action of the Green’s function exactly;
rather, it is computed only approximately and the outer Krylov solver corrects for
any approximations made in the preconditioner.

Preconditioning algorithm. We now have the necessary ingredients to compose
a preconditioner for solving (25), i.e., to construct an approximate solver for this
linear system. Each application of our preconditioner involves the following steps.

(1) Approximately solve the fluid subproblem[
A G
−D 0

] [
ṽ

π̃

]
=

[
g
h

]
using N (1)

s iterations of an iterative method with the preconditioner (28).

(2) Interpolate ṽ to get the relative slip at each of the blobs, w̃ = J ṽ+w, and
rotate the corresponding component from the current frame to the reference
frame of each body.

(3) Approximately compute the unknown body kinematics U .

(a) Calculate λ̃ = M̃−1w̃ and rotate the result back to the fixed frame of
reference. Here M̃ is a block-diagonal approximation to the blob-blob
mobility matrix in the reference frame, as described on page 239; the
factorization of the blocks of M̃ is performed once at the beginning of
the simulation.

(b) Calculate F̃ = F +Kλ̃ and transform (rotate) F̃ to the body frame of
reference.

(c) Compute U = Ñ F̃ and transform it back to the fixed frame of reference,
where Ñ = (KM̃−1KT )−1.

(4) Calculate the updated relative slip velocity at each of the blobs,

1U =KT U − w̃,

and transform (rotate) it to reference body frame.
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(5) Compute λ= M̃−11U and transform λ back to the fixed frame of reference
if necessary.

(6) Solve the corrected fluid subproblem to obtain the fluid velocity and pressure[
A G
−D 0

] [
v

π

]
=

[
g+Sλ

h

]
,

using N (2)
s iterations of an iterative method with the preconditioner (28).

A few comments are in order. The above preconditioner is not SPD so the outer
Krylov solver should be a method such as GMRES or BiCGStab [116]. We prefer to
use right-preconditioned Krylov solvers because in this case the residual computed
by the iterative solver is the true residual (as opposed to the preconditioned residual
for left preconditioning), and therefore, termination criteria ensure that the original
system was solved to the desired target tolerance. We expect that the long-term
recurrence GMRES method will require a smaller number of iterations than the
short-term recurrence used in BiCGStab (but note that each iteration of BiCGStab
requires two applications of the preconditioner). However, observe that GMRES
can require substantially more memory since it requires storing a complete history
of the iterative process.3 This can be ameliorated by restarts at a cost of slowed
convergence. If the iterative solver used for the Stokes solver in Steps (1) and (6)
is a nonlinear method (most Krylov methods are nonlinear), then the outer solver
must be a flexible method such as FGMRES. This flexibility typically increases the
memory requirements of the iterative method (for example, it exactly doubles the
number of stored intermediate vectors for FGMRES versus GMRES), and so an
alternative is to use a linear method such as Richardson’s method.4 Note that when
a preconditioned Krylov method is used for the Stokes subsolver, one additional
application of the preconditioner is required to convert the system to preconditioned
form for both left and right preconditioning, making the total number of applications
of the Stokes preconditioner (28) N (1)

s + N (2)
s + 2 per Krylov iteration. By contrast,

if Richardson’s method is used in the Stokes subsolver, the number of preconditioner
applications is N (1)

s + N (2)
s . Since in many practical cases the cost is dominated by

the multigrid cycles, this difference can be important in the overall performance of
the preconditioner. We will explore the performance of the preconditioner and the
effect of the various choices in detail in Section 6.5.

3Each vector requires storing complete velocity and pressure fields, i.e., 4 floating-point numbers
per grid cell, which can make the memory requirements of a GMRES-based solver with a large restart
frequency quite high for large grid sizes.

4All of these iterative methods are available in the PETSc library [5] we use in our IBAMR
implementation [54] of the above preconditioner, making it simple to try different combinations and
study their effectiveness on any particular problem of interest.
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4. Results: unbounded domain

In this section we investigate the accuracy of rigid multiblob models of spheres
as a function of the number of blobs. We focus on spheres in an unbounded
domain because of the availability of analytical results to which to compare, and not
because the rigid multiblob method is particularly good for suspensions of spheres,
for which there already exist a number of well-developed multipole expansion
approaches. We also investigate the performance of the preconditioner developed
in Section 2.2 for solving (11), for suspensions of spheres in an unbounded domain
(e.g., clusters of colloids formed in a gel). For unbounded domains, we compute the
product of the blob-blob mobility matrix M with a vector using the fast multipole
method (FMM) developed specifically for the RPY tensor in [89]; this software
makes four calls to the Poisson FMM implemented in the FMMLIB3D library5 per
matrix-vector product. As we will demonstrate empirically, the asymptotic cost
of the rigid-multiblob method scales as Nb log Nb, where Nb is the total number
of blobs, with a coefficient that grows only weakly with density. We note that in
this paper we use relatively tight tolerances (∼ 10−9–10−8) when computing the
matrix-vector products solving the linear systems in order to test the robustness of
the preconditioners; in practical applications much lower tolerances (∼ 10−5–10−3)
would typically be employed, potentially lowering the overall computational effort
considerably from what is reported here.

In this work, each sphere is discretized with n blobs of hydrodynamic radius a
distributed on the surface of a sphere of geometric radius Rg. We discretize the
surface of a sphere as a shell of blobs constructed by a recursive procedure suggested
to us by Charles Peskin (private communication); the same procedure is used in
[126]. We start with 12 blobs placed at the vertices of an icosahedron [129], which
gives a uniform triangulation of a sphere by 20 triangular faces. Then, we place a
new blob at the center of each edge and recursively subdivide each triangle into
4 smaller triangles, projecting the vertices back to the surface of the sphere along
the way. Each subdivision approximately quadruples the number of vertices, with
the k-th subdivision producing a model with 10 · 4k−1

+ 2 blobs, leading to shells
with 12, 42, 162, or 642 blobs; see Figure 2 in [34] for an illustration. In this section
we study the optimal choice of a for a given resolution (number of blobs) and Rg.

An important concept that will be used heavily in the rest of this paper is that
of an effective hydrodynamic radius Rh ≈ Rg + a/2 of a blob model of a sphere
(more generally, effective hydrodynamic extent). If we approach the rigid multiblob
method from a boundary integral perspective, we would assign Rh = Rg as the
radius and treat the additional enlargement of the effective hydrodynamic radius as
a numerical (quadrature + regularization) error. This is more or less how results

5The code is available at http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html.

http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html
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are presented in the recent work of Swan and Wang [126] (see for example their
Figure 8), making the accuracy appear low even in the far field for a small number
of blobs per sphere. However, we instead think of a rigid multiblob as an effective
model of a sphere, whose hydrodynamic response mimics that of an equivalent
sphere. A similar effect appears in lattice Boltzmann simulations, with a being
related to the lattice spacing [84; 60]. To appreciate why it is imperative to use
an effective radius, observe that even a single blob acts as an approximation of a
sphere with radius a > 0. Similarly, one should not treat a line of blobs (see the
leftmost panel in Figure 1) as a zero-thickness object (line); rather, such a line of
rigidly connected blobs should be considered to model a rigid cylinder with finite
thickness proportional to a [18]. We compute the effective hydrodynamic radius of
our blob models of spheres next.

4.1. Effective hydrodynamic radii of rigid multiblob spheres. In this subsection
we consider an isolated rigid multiblob sphere in an unbounded domain, and
compute its response to an applied force f p, an applied torque τp, and an applied
linear shear flow with strain rate γ . Each of these defines an effective hydrodynamic
radius by comparing to the analytical results for a sphere; therefore, each model of
a sphere will have three distinct hydrodynamic radii.

The translational radius is measured from (see also [35])

Rh =
f p

6πηu p
,

where u p is the resulting sphere linear velocity, the rotational radius is (see also [35])

Rτ =
(

τp

8πηωp

)1/3

,

where ωp is the resulting angular velocity, and the effective stresslet radius is

Rs =

(
−

3s11

20πηγ

)1/3

.

Here we compute the stresslet s induced on the rigid multiblob under an applied
shear by setting an apparent slip ŭi =−v(ri )=−γ (x,−y, 0) on blob i , and then
solving the mobility problem to compute the constraint (rigidity) forces λ. The
stresslet s is the symmetric traceless component of the first moment of the constraint
forces

∑
i∈Bp

λi ⊗ ri . In this work, we use Rh as the effective hydrodynamic radius
when comparing to theory. This is because the translational mobility is controlled
by the most long-ranged 1/r hydrodynamic interactions, and therefore, the far-field
response of a rigid multiblob is controlled by Rh .

Observe that since we only account for translation of the blobs, only Rh is nonzero
for a single blob, while Rτ and Rs are zero. Therefore, the minimal model of a sphere
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Number a/s = 1
2 a/s = 1

4
of blobs Rh/Rg Rτ/Rg Rs/Rg Rh/Rg Rτ/Rg Rs/Rg

12 1.2625 1.2313 1.2461 1.0154 1.0292 0.9890
42 1.1220 1.1019 1.1316 1.0035 1.0147 0.9959

162 1.0530 1.0472 1.0567 0.9998 1.0073 0.9968
642 1.0239 1.0227 1.0250 0.9992 1.0036 0.9932

2562 1.0113 1.0111 1.0115 0.9994 1.0018 0.9986

Table 1. Effective translational, rotational, and stresslet hydrodynamic radii for rigid
multiblob models of a sphere, for two choices of the blob-blob relative spacing a/s.

that allows for nontrivial rotlets and stresslets is the icosahedral model (12 blobs)
[129]. Since the rigid multiblob models are able to exert a stress on the fluid they
can change the viscosity of a suspension [129], unlike the single-blob models, which
do not resist shear. It is important to note that the rigid multiblob models of a sphere
are not perfectly rotationally invariant, especially for low resolutions. Therefore,
the rigid multiblobs may exhibit a small translational velocity even in the absence
of an applied force, or they may exhibit a small rotation even in the absence of an
applied torque. In other words, the effective mobility matrix for a rigid multiblob
model of a sphere can exhibit small off-diagonal components. Similarly, there will
in general be small but nonzero components of the stresslet that would be identically
zero for a perfect sphere. In general, we find these spurious components to be very
small even for the minimally resolved icosahedral rigid multiblob.

A key parameter that we need to choose is how to relate the blob hydrodynamic
radius a with the typical spacing between the blobs. Since our multiblob models of
spheres are regular the minimal spacing between markers s is well-defined, and we
expect that there will be some optimal ratio a/s that will make the rigid multiblob
represent a true rigid sphere as best as possible. In a number of prior works the
intuitive choice a/s = 1

2 has been used, since this corresponds to the idea that
the blobs act as a sphere of radius a and we would like them to touch the other
blobs. However, as we explained above, it is not appropriate to think of blobs
as spheres with a well-defined surface, and it is therefore important to study the
optimal spacing more carefully.

In Table 1 we present the effective sphere radii obtained for different resolutions
for two choices of a/s (we have investigated a broad range of spacings, not shown).
The important observation we make is that even when the radii are far from geomet-
ric, such as for the 12-blob shell, the different radii are rather consistent with each
other. This means that even low-resolution rigid multiblobs act like spheres as far as
low-order moments (multipoles) are concerned. We note that the method developed
in [35], in which rotational degrees of freedom are added to the blob description,
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Figure 2. Hydrodynamic coupling between two identical spheres as a function of the
center-to-center distance d. Twice the standard deviation as the two spheres are rotated
relative to one another is shown as an error bar. Comparisons are made to Stokesian
dynamics without lubrication corrections, i.e., truncation at the FTS level, and to “exact”
theory [17; 67]; see legend. The top-left panel shows the average sphere velocity under
the action of external unit forces f1 =− f2 = f directed along the line of collision, for a
resolution of 162 blobs and for several values of a/s. The remaining three panels show
nontrivial components of the pairwise mobility for a fixed a/s= 1

2 and different resolutions
(number of blobs per sphere; see legend). One sphere, located at ((d2

− 4R2
h)

1/2, 0, 2Rh),
is subject to an external torque of magnitude 1 around the x-axis. The response of the
second sphere located at the origin is measured: the top-right panel shows the stresslet s
(i.e., the rotation-stresslet coupling), the bottom-left panel shows the linear velocity (i.e., the
rotation-translation coupling) v, and the bottom-right panel shows the angular velocity ω
(i.e., the rotation-rotation coupling) of the second sphere.

gives Rh ≈ Rτ to within a fraction of a percent even for only 12 blobs per sphere.
As the resolution is increased all hydrodynamic radii converge to the geometric
radius Rg linearly with a/Rg (data not shown). The table also suggests that a/s= 1

4
is better than a/s = 1

2 because for a/s = 1
4 all of the effective hydrodynamic radii

are remarkably close to Rg even for the 12-blob model. However, as we show in
the next subsection, the choice a/s = 1

2 is substantially better when looking at how
well lubrication forces are resolved between two spheres.

4.2. Mobility for a pair of spheres. To determine the best value of a/s in this
subsection we examine the hydrodynamic interaction between two spheres as
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Figure 3. Lubrication forces on two identical spheres pulled toward each other with equal
forces, for different resolutions (see legend). Twice the standard deviation as the two
spheres are rotated relative to one another is shown as an error bar. Left: dimensionless
normalized hydrodynamic resistance, i.e., the inverse of the hydrodynamic mobility shown
in the top-left panel in Figure 2. Right: velocity error for one sphere with respect the exact
theoretical result, normalized by the velocity at long distances ( f/6πηRh). The distance
d = 2(Rg+a) at which blobs start to overlap is marked as a vertical line of the same color
as the corresponding symbols.

they approach each other. Since pairwise lubrication corrections are not added in
our approach, it is important to investigate how well lubrication is resolved for
different resolutions. To assert the accuracy of the rigid multiblob models we will
examine several nontrivial components of the mobility between two spheres. Since
rigid multiblob models are not rotationally invariant the exact value for the pair
mobility depends on the relative orientation of the rigid multiblobs; here we report
the mean and (twice the) standard deviation of the particle velocity as error bars,
averaged over a sample of random orientations of the two particles. We note that
we have compared our results to those obtained with the method developed in [35],
where rotational DoFs are included in the blob description, and found only a small
difference (not shown). This means that the inclusion of blob torques does not lead
to an improvement in the accuracy with which pairwise hydrodynamic interactions
are computed.

In our first test, we pull two spheres toward each other with equal but opposite
forces directed along the line of collision. In the top-left panel of Figure 2 we
compare the numerical results for spheres with 162 markers and different blob
radii a with the exact result derived by Brenner [17]. One can see that for long
distances all sensible choices of a provide a good agreement with the exact theory
once the results have been scaled with the hydrodynamic radius Rh computed in
Section 4.1. However, the choice of a makes a big difference at short distances.
Specifically, for small a/s flow can “leak” in between the blobs and the lubrication
force is substantially lowered. For large a/s, we expect that the corrugation of
the effective hydrodynamic surface of the sphere will introduce deviations from a
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spherical shape. As the figure illustrates, the best agreement between theory and
numerical results is obtained for a/s = 1

2 . This intuitive choice has been used in
other related methods [125; 100; 104], while the IB community has favored shorter
distances between markers (but see the discussion in [71]). In the rest of the tests
in this subsection we use a/s = 1

2 and in the rest of the paper we will use a/s ≈ 1
2

unless otherwise noted.
We explore the “lubrication” forces between spheres at very close distances in

more detail in Figure 3. In the left panel we show how the hydrodynamic force
grows as the gap between the spheres decreases. The hydrodynamics of the low-
resolution models start to deviate from the theory for gaps ∼ Rh/2 or smaller, while
the highest-resolution model (2562 blobs) shows a good agreement with the theory
for gaps down to 0.1Rh . The right panel of Figure 3 shows the velocity error for
one of the spheres with respect the exact theoretical result. For all models the error
is below 10−3 until distances where the blobs forming the spherical shells start to
overlap, which is the intuitive distance above which we expect the rigid multiblob
to act as a good approximation to a sphere.

In our second test, we measure the velocity of one sphere located at the origin
when a second sphere, located at (x, 0, 2Rh), is subject to an external torque applied
around the x-axis. Since the Brenner theory is only valid for spheres approaching
along the line of collision we use the expansion of Jeffrey and Onishi accurate to
order O(r−100) [67] to compare with our mobility results; this expansion is also
used in Stokesian dynamics to compute near-field lubrication corrections for pairs
of spheres and can be computed using the libStokes library of Ichiki [65]. One
can see in the lower panels of Figure 2 that the low-resolution model (12 blobs) is
similar to a Stokesian dynamics model that includes monopole (forces) and dipole
(torques and stresslet) terms but no lubrication corrections. As the resolution of
the models is increased the results agree better with the theory, as expected. Note,
however, that the lack of lubrication corrections in our models prevents a perfect
agreement down to contact distances. In the top-right panel of Figure 2 we compare
the stresslet computed on the particle at the origin. Again, we observe that the
12-blob model is similar in accuracy (aside from the presence of nonzero error bars,
i.e., variance) to the Stokesian dynamics method without lubrication corrections,
while higher resolutions methods agree better with the theory, as expected.

4.3. Squirmer swimming speed. In this subsection we confirm the ability of our
method to model an active sphere “squirmer” [32] with a prescribed tangential
surface slip on the surface. This slip ŭi = ŭ(ri ) takes the following form in spherical
coordinates:

ŭr = 0, ŭφ = 0, ŭθ = B1 sin θ.
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Figure 4. Left: convergence of preconditioned GMRES for the resistance and mobility
problems for a finite subset of a cubic lattice of 42-blob spheres in an unbounded domain,
for different numbers of particles, keeping the lattice spacing (closest distance between
spheres) at 4Rg ∼ 3.6Rh (corresponding to φ = 0.09). Right: wall-clock time to solve
the mobility problem with a tolerance 10−8 versus the number of spherical shells for two
volume fractions φ, demonstrating the O(Nb log(Nb)) asymptotic complexity, where Nb
is the number of blobs. The matrix-vector product was computed with relative tolerance
0.5 · 10−9 using the FMM method developed in [89]. We compare the performance of a
parallel multipole-based FMMLIB3D code [51] with a more efficient but serial plane-wave
FMM currently under development by the group of Leslie Greengard. Parallel runs used
8 cores and serial runs used a single core of an Intel Xeon 2.40 GHz processor.

The active translational velocity of the squirmer is well-known to be the surface
average of the surface slip [121]

u =−〈ŭ〉 = 2
3 B1 ẑ.

We have numerically computed the swimming speed of a squirmer in an un-
bounded domain for different resolutions and compared to the theory. We obtain
that the relative error ε in the swimming speed is linear in a/Rg, which is expected.
However, the error has a large prefactor, ε ≈ 3.5 a/Rg, which is not small for the
low-resolution models. Furthermore, observe that linear convergence with the size
of the blobs implies only order- 1

2 convergence in the number of blobs since the
number of blobs required to cover the surface of the sphere grows quadratically
with the sphere radius.

These findings confirm that the rigid multiblob models converge to the correct
swimming speed but the accuracy is not very good. This is, in fact, not so surprising
because we did not include any adjustments to account for the (potentially large)
difference between the effective hydrodynamic radius Rh and the geometric radius.
That is, even though the effective no-slip surface has a radius Rh > Rg, we imposed
the slip (in a locally averaged way) at the surface of a sphere of radius Rg. We
will investigate these issues and potential ways to improve the accuracy with which
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Iterations
φ 12 blobs 42 blobs

0.0014 4 4
0.011 5 6
0.09 9 10
0.18 13 13
0.36 20 23

Table 2. Iterations to solve the mobility problem with tolerance 10−8 for 4096 spheres
discretized by 12 blobs, or for 512 spheres discretized by 42 blobs, arranged in a simple
cubic lattice at different volume fractions φ; see Section 4.4.

active slip is imposed in future work. Here we simply note that rigid multiblob
models are well-suited to qualitative studies of suspensions of many active particles.
If one wishes to accurately model one or a few active particles higher-order methods
such as boundary integral methods are preferable.

4.4. Suspension of spheres. In this subsection we study the convergence of the
preconditioned Krylov solver for suspensions of many spheres. Our primary goal
is to assess the effectiveness of our block-diagonal preconditioner for different
packing densities (particle-particle distances) and numbers of particles. In the tests
of this subsection we use spherical shells of 42 blobs subject to random forces,
torques, and slips. We form a finite cubic subset of a simple cubic lattice and place
it in an unbounded fluid domain. We use right-preconditioned GMRES without
restarts, implemented using the PETSc [5] library.

First, we test the robustness with increasing system size, keeping the particles
well-separated at a distance 4Rg ≈ 3.6Rh , which corresponds to volume fraction
φ ≈ 0.09. The left panel of Figure 4 shows that the convergence is uniform and
that the number of iterations to reduce the residual by a given factor depends
very weakly on the number of spheres. This demonstrates the effectiveness of
the block-diagonal preconditioner for the mobility problem. Next we investigate
the robustness with respect to packing density. Table 2 shows the number of
iterations to convergence for spheres arranged in a cubic simple lattice for several
packing densities. When particles are far apart the solver converges fast because
the hydrodynamic interactions between particles are weak and the preconditioner is
designed to be an exact solver for a single body. As the spheres come closer together
the preconditioner is not so effective and the Krylov solver needs to perform more
iterations, as expected. However, even when the particles are relatively close the
solver performs reasonably well. For example, when the spheres are at a distance
of 2.55Rg ≈ 2.3Rh (φ ≈ 0.36), the solver converges in 23 iterations. Of course,
as the particles come closer and closer, and in particular, as the blobs on disjoint
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spheres begin to overlap, we expect to see an increasing ill-conditioning of the linear
system (11) and an increasing numbers of iterations. However, the rigid multiblob
method should not be used in this regime, since it does not accurately resolve
lubrication forces at such short distances. In the right panel of Figure 4 we show
the wall-clock time to solve the mobility problem for different number of shells
and volume fractions. Since the number of iterations is essentially independent of
the system size we obtain a quasilinear scaling by using the FMM to compute the
product between the blob-blob mobility matrix and a vector.

However, for the resistance problem explained in Section 2, the left panel of
Figure 4 shows that the number of iterations to attain convergence increases with
the number of particles as N 1/3, i.e., with the linear extent of the system. This is
somewhat better than the O(N 1/2) iterations reported for Stokesian dynamics by
Ichiki [65], but still much worse than the mobility problem.

We believe that this difference between resistance and mobility problems is
physical rather than purely numerical. In particular, we expect that the same
behavior will be observed in essentially any other iterative method, regardless of the
specifics of the discretization of the problem (rigid multiblobs, boundary-integral
methods, multipole expansions, regularized Stokeslets, etc.). To appreciate the
difference between mobility and resistance problems, observe that it is possible to
obtain a low accurate solution to the mobility problem by approximating each sphere
by a single blob and then computing the matrix-vector product M f = u using an
FMM. On the other hand, to solve the resistance problem the linear system M f =u
has to be solved, which must account for the collective nature of hydrodynamic
interactions. The difference appears because there is an effective far-field two-body
approximation for the mobility N (equivalently for M) but not for the resistance
matrix N−1 (or M−1), which is essentially a multibody problem [40].

Mathematically, the difference appears because solving the saddle-point problem
(11) is similar to computing the motion for force- and torque-free particles [115],
even though forces and torques are applied on the particles. For force- and torque-
free particles, the hydrodynamic fields and thus interactions with other particles
decay faster than 1/r . Therefore, the effective interactions that need to be captured
by the iterative solver decay much faster for the mobility problem than for the
resistance problem, making the former much easier. To confirm this intuition, we
have studied (not shown) mixed resistance/mobility problems. When we fix the
angular velocities but leave the linear velocities as free, we expect to see rapid
convergence because the leading-order interactions that the Krylov method needs to
capture decay as 1/r3. Indeed, we observe numerically that in this case the solver
converges almost as well as for the pure mobility problem. However, when we fix
the linear velocities of the spheres but let them freely rotate, we find that the solver
converges almost as badly as for the pure resistance problem.
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5. Results: single wall

In this section we study the accuracy of rigid multiblob models and the effectiveness
of our block-diagonal preconditioner for particle suspensions sedimented near a
single no-slip boundary. This is an important and common occurrence in practice,
especially in the field of active matter, since many active particles have metallic
components and are not density-matched with the solvent, and thus sediment to the
bottom substrate. Some of the authors studied the diffusive dynamics of nonspherical
particles near a no-slip boundary using a rigid multiblob approach in [34]. However,
in that prior work, we only studied a single body, and therefore, all of the mobility
matrices were simply formed as dense matrices. Here we explore in more detail
the accuracy of rigid multiblob models and also demonstrate how to scale rigid
multiblob computations to suspensions of thousands of rigid bodies.

To compute the hydrodynamic interactions between blobs in the presence of a
single wall we use a pairwise approximation to the blobs’ mobility which includes
the effects of the wall in the Rotne–Prager tensor [122]. In our implementation, we
compute the product of the blob-blob mobility matrix M with a vector using a
direct O(N 2

b ) summation (here Nb is the number of blobs) implemented on a GPU
using PyCUDA [78] in double precision; single precision can be used for lower
accuracy requirements.6 This is an ideal problem for using GPUs as an accelerator
since the computation is trivially parallelized on shared memory. Furthermore, the
communication requirements between the CPU and GPU are minimal, since only
the positions of the blobs need to be communicated.7 It is possible to implement
a fast multipole method (FMM) for the RP(Y) tensor including wall corrections
by using a system of images together with an FMM for unbounded domains [89;
51]. However, it is important to note that the asymptotically optimal FMMs on a
CPU (even with multicore acceleration) will only be computationally more efficient
than a direct sum on a GPU for more than about 100 000 blobs (in our testing on
current hardware). Therefore, for many applications a simple GPU implementation
is sufficient or even preferable over an asymptotically scalable implementation.
Once a Rotne–Prager regularization of the construction of Gimbutas et al. [51]
is developed and combined with an FMM, the asymptotic cost will be reduced
to O(Nb log Nb) and our computations can be extended to millions of blobs.

In Section 5.1 we study the accuracy of rigid multiblob models for modeling a
sphere close to a boundary, and in Section 5.2 we extend this study to a rigid cylinder
(rod). In Section 5.3 we study the dynamics of a pair of active rods close to a no-slip
boundary. In Section 5.4 we study the performance of our iterative solver on a

6Our codes are publicly available at https://github.com/stochasticHydroTools/RigidMultiblobsWall.
7For suspensions of identical bodies only the positions and orientations of the rigid bodies (so only

up to 7 numbers per body) need to be communicated to the GPU.

https://github.com/stochasticHydroTools/RigidMultiblobsWall
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Figure 5. Selected components of the mobility µ matrix for a sphere close to a wall,
normalized by the corresponding bulk (unbounded domain) mobility µ0 where possible.
Comparison of the rigid multiblob results (symbols) is made to the best available theoretical
results (solid black lines) and the FTS approximation used in Stokesian dynamics [122]
(dashed and dashed-dotted lines). Empirical fits listed in Appendix D are shown with a
dotted line. Top left: translational mobility µ⊥t t for a force applied perpendicular to the
wall. Top right: translational mobility µ‖t t for a force parallel to the wall. Bottom left:
rotational mobility for a torque applied parallel (µ‖rr , filled symbols) or perpendicular
(µ⊥rr , empty symbols) to the wall. Bottom right: rotation-translation coupling mobility µ‖tr
for force or torque parallel to the wall.

suspension of many rods, and demonstrate that the number of GMRES iterations
is essentially independent of the number of particles just as for suspensions in an
unbounded domain (see Section 4.4).

5.1. Sphere. In this section the mobility µ≡N of a rigid multiblob sphere whose
center is at a distance H from a no-slip boundary is compared with some theoretical
results available in the literature. We use the shell models of spheres described in
Section 4, and show the mean and standard deviation of the computed mobility aver-
aged over a large number of random orientations of the rigid multiblob relative to the
boundary. To denote the specific component of the mobility matrix we use a subscript
t t for translational mobility, rr for rotational mobility, and tr for translation-rotation
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coupling mobility, and we use a superscript⊥ or ‖ to denote whether the direction of
the force, torque, velocity, or angular velocity is perpendicular or parallel to the wall.

The top-left panel of Figure 5 presents the translational mobility of the sphere
perpendicular to the wall together with the exact theory obtained by Brenner [17]
(see also (D2) in [34] for a simple but accurate approximation). We also compare
to the complete expression for the Rotne–Prager–Blake tensor derived by Swan
and Brady [122], including stresslet corrections, which corresponds to an FTS
truncation (plus degenerate quadrupole corrections) of the multipole hierarchy. It
is evident that a single-blob model of a sphere, just like the substantially more
complicated FTS truncation, does not recover the strong drop in the mobility (i.e.,
lubrication) at small distances to the wall. Rigid multiblob models do substantially
better than the FTS truncation even with only 12 blobs (icosahedral multiblob),
and as expected, the accuracy is improved with the addition of more blobs. As in
Section 4, the numerical mobility never goes exactly to zero since we do not add
lubrication corrections, and we expect the rigid multiblob model to only work well
when the blobs do not overlap the boundary itself. In fact, we recall here that the
RP tensor we use [122] does not include near-field corrections when blobs overlap
the wall, and therefore, repulsive forces or other mechanisms should be used to
ensure that the rigid multiblob is sufficiently far from the boundary. We empirically
observe that the rotational invariance gets violated strongly if the gap to the wall
is less than 2a/3, which corresponds to 7% of the sphere radius for 12 blobs, and
about 2% of the radius for the 642 blob model.

In the remaining panels of Figure 5 we investigate other components of the
mobility. There are no closed-form expressions (even as infinite sums) for these
components that are valid for all distances to the wall, so we use the best approxima-
tions available; see Appendix D in [34] for specific formulas. For the translational
mobility parallel to the wall, shown in the top-right panel of the figure, we use a
result based on lubrication theory [52] (see (D3) in [34]) when the sphere is very
close to the wall (H < 1.03Rh), and an approximation to order O((H/Rh)

5) for
larger distances [44; 56] (see (D4) in [34]). It is clear that the rigid multiblob
matches the theory for large distances but that the approximate theory is not very
accurate for H . 1.5Rh since the rigid multiblob results are clearly converging
to something slightly different. As for the perpendicular mobility, we see that the
icosahedral model (12 blobs) is substantially more accurate than an FTS truncation.

Our results for the rotational mobilities, for torque applied either perpendicular or
parallel to the wall, are shown in the bottom-left panel of the figure and agree with
the FTS results at large distances. We see slow but clear convergence of the rigid
multiblob results for the translation-rotation coupling, shown in the bottom-right
panel of the figure. This component of the mobility is therefore most difficult to
capture accurately, as is evident from the fact that the FTS truncation does pretty
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(µ0
t t )‖×4πηL (µ0

t t )⊥×4πηL (µ0
rr )⊥×πηL3/3 (µ0

rr )‖×πηL3/3

14 blobs 3.422 (−0.53%) 2.612 (−0.23%) 1.216 (−0.31%) n/a
86 blobs 3.324 (2.35%) 2.541 (2.48%) 1.240 (−2.34%) 11.564 (8.79%)

324 blobs 3.360 (1.29%) 2.588 (0.67%) 1.225 (−1.06%) 12.274 (3.19%)
∞ blobs 3.4040 2.6061 1.212 12.678

Table 3. Nontrivial elements of the bulk mobility matrix for empirically optimized rigid
multiblob models of a cylinder of aspect ratio 6.35, shown in the three left panels of
Figure 1. The value in the limit of infinite resolution is extrapolated numerically (see the
main text) and reported in the last row. The percentages in parentheses correspond to the
error relative to the infinite-resolution estimates.

poorly in this case. Since neither the FTS truncation nor the asymptotic lubrication
results [52] are sufficiently accurate for comparison to experimental measurements,
we have empirically fitted our highest-resolution results for the mobilities for which
there are no exact theoretical expressions. We show the fits in Figure 5 and give
details about the fits in Appendix D for the benefit of other researchers.

5.2. Cylinder. In this subsection, we consider a cylinder (rod) of length L = 2.12
and diameter D= 2R= 0.325 of aspect ratio α= L/D≈ 6.35, mimicking the metal-
lic rods studied in recent experiments [29], for three different levels of resolution.
The minimal-resolution rigid multiblob has blobs placed in a row along the axis
of the cylinder (a total of 14 blobs), while in the more resolved models, a hexagon
(86 blobs) or a dodecagon (324 blobs) of blobs is placed along the circumference
of the cylinder to better resolve it, as illustrated in Figure 1. We study different
components of the mobility matrix µ ≡N ; to specify the direction of the force,
torque, velocity, or angular velocity we use a subscript ⊥ or ‖ to denote whether the
direction is perpendicular or parallel to the axes of the cylinder, respectively, and a
superscript to denote whether the direction is perpendicular or parallel to the wall.

Bulk mobility. The first question that must be answered when constructing a rigid
multiblob model of a given body is where to place the blobs and how to choose
their hydrodynamic radius, to match the effective hydrodynamic response of the
actual rigid body. Here we generalize the approach taken in Section 4.1 for spheres
to a nonspherical body and show how to match the (passive) mobility of an actual
rigid cylinder with a rigid multiblob model. Based on the results for spheres, for
resolutions other than the minimally resolved model we cover the surface (similarly
for the ends) of a cylinder uniformly with spheres keeping the spacing between
blobs both around the circumference and the length of the cylinder uniform and
fixed at a/s = 1

2 .
Because there are no exact analytical results for the mobility of a cylinder even

in an unbounded domain, we estimate the true mobility of the cylinder µ0 in an
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unbounded domain numerically. Specifically, we place the blobs on the surface
of a cylinder of length L and radius R (i.e., the true geometric surface of the
actual rod we are modeling), and numerically compute the mobility for different
resolutions. We then extrapolate to the limit a→ 0 using the two finest resolutions
(86 and 324 blobs) based on our knowledge that the error is linear in a. For the
translation-translation mobility we obtain (µ0

t t)‖×4πηL = 3.404 (compare to 3.295
from slender-body theory [76]) and (µ0

t t)⊥ × 4πηL = 2.606 (compare to 2.619
from slender-body theory [76]), while for the rotation-rotation mobility we get
(µ0

rr )⊥×πηL3/3= 1.212 (compare to 1.211 from slender-body theory [18]) and
(µ0

rr )‖×πηL3/3= 12.678; see the last row in Table 3.
Our goal here is to match the bulk mobility µ0 of our rigid multiblob models to

that of a true cylinder as closely as possible. To do this, for the surface-resolved
models (86 and 324 blobs), we place the blobs on the surface of a cylinder of the
same aspect ratio α= 6.35 but with the geometric radius Rg of this cylinder allowed
to be smaller than the geometric radius of the actual particle, while keeping the
blob spacing a/s = 1

2 . We then numerically optimize the value of Rg to minimize
a measure of the error with respect to (extrapolated) mobility of a true cylinder, to
obtain Rg/R= 0.90 for the 86-blob model and Rg/R= 0.95 for the 324-blob model.
For the minimally resolved model, we empirically tune both the geometric length
(i.e., the distance between the centers of the two furthest blobs) to Lg = 0.914L
and the blob radius to a = 1.103R while keeping the number of blobs fixed at
Nb = L/R+ 1= 14 as suggested by Bringley and Peskin [18]. Table 3 shows the
resulting infinite-domain mobilities for each resolution along with the relative error
compared to the extrapolated values for infinite resolution. We see a relative error
always less than 2.5% even for the minimally resolved model, except for rotation
of the cylinder around its own axis; recall that the minimally resolved model cannot
support a torque around the axis of the cylinder.

Mobility for a sedimented rod. Having determined the geometric parameters for
the rigid multiblob models based on motion in an unbounded domain, we now
study the accuracy of the three different resolutions for a cylinder close to a no-slip
boundary. We assume that the cylinder is parallel to the wall with the centerline of
the rod at a distance H from the no-slip boundary.

Figure 6 compares the computed mobility coefficients to available theoretical
and experimental results. As could be expected, the decrease in mobility when
approaching the boundary is clearly underestimated with the minimally resolved
model. The left panel of the figure shows the translational mobilities. For µ⊥

⊥
, the

higher resolutions are in good agreement with the experimental measurements of
Trahan and Hussey for a sedimenting rod with aspect ratio α = 5.05 [128]. Our
numerical results also match well the theory of Jeffrey and Onishi [66] for an infinite
cylinder when H < 2R. It is important to emphasize that our model is significantly
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Figure 6. Mobility coefficients for a cylinder of aspect ratio α= L/(2R)= 6.35 when it is
parallel to the wall, as a function of the height of the rod centerline H/R. The superscript
of the mobility denotes the direction with respect to the wall, while the subscript denotes
the direction with respect to the rod axis. Left: translational mobility coefficients µt t
normalized by 4πηL as in [128]. The curves with circles correspond to the formulas from
Jeffrey and Onishi for an infinite cylinder near a wall [66]. The black squares correspond to
the experimental measurements of Trahan and Hussey for a rod with aspect ratio α = 5.05
[128]. Right: rotational mobility coefficients µrr normalized by the corresponding bulk
value. The curve with circles corresponds to an infinite cylinder near a wall [66].

more accurate than slender-body theory near boundaries; the slender-body theory
results from [72; 98; 76] (not shown here) are reasonably accurate only when
H/R > 3.5 for aspect ratios α > 9 [128]. The rotational mobilities of the rod
are shown in the right panel of Figure 6. For the rotational mobility µ‖

‖
, all three

resolutions are in good agreement with the theory of Jeffrey and Onishi [66] for an
infinite cylinder. For µ‖

⊥
and µ⊥

⊥
, the minimally resolved model shows substantial

errors near the wall, but the two higher-resolution models agree with each other
quite well over a broad range of distances.

5.3. Active rod pair. In this subsection we apply the rigid multiblob method to a
problem of recent experimental and theoretical interest: the dynamics of a pair of
active “nanorods” that exhibit a “pusher” or extensile dipolar flow at large distances.
Specifically, we compute the motion of a dimer of tripartite nanorods, as studied in
recent experiments by Davies Wykes et al. [29]. The rods have diameter 0.325µm
and length 2.12µm, and are in force and torque equilibrium (under the action of
gravity and van der Waals and electrostatic interaction forces with the boundary) at
some distance from the wall that has not been measured in the experiments. The
rods are constructed of three metal sections, in the arrangement gold-platinum-gold
and create a dipolar extensile (pusher) far-field flow. As such, they do not propel
themselves in isolation but experiments show the formation of dimers of rods that
actively rotate in a direction that is opposite of that predicted by recent simulations
[106], which neglect the presence of the bottom wall. In agreement with the
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Figure 7. Active flow around a pair of extensile nanorods composed of three segments
(shown with blue, green, and red) sedimented on top of a no-slip boundary (the plane of
the image) and viewed from above for the three different levels of resolution illustrated
in Figure 1: minimally resolved (left), marginally resolved (middle), and well-resolved
(right). The colored disks (red, blue, or green) are projections of the blobs, with no-slip
conditions on the green blobs and active slip of magnitude 20µm/s on the blue and red
blobs, directed away from the green segment. A cut through the flow field is shown in
the lab frame as a vector field along with streamlines, with the magnitude of the velocity
shown as a color scale plot.

experiments, our simulations show the formation of a stable rod pair that touch each
other tangentially and rotate (without exhibiting a significant translation) around
an axis perpendicular to the wall in a direction consistent with the experimental
measurements.

The exact details of the active flows near the surface of the rods have not been
measured experimentally and are difficult to predict analytically because this requires
resolving the thin slip boundary layer (of thickness related to the Debye length)
around the rods, as well as the knowledge of a number of material constants that
are not known accurately. To obtain a qualitative understanding of the dynamics
of the rods we impose an apparent tangential surface slip velocity on the two gold
sections, directed away from platinum center and having a magnitude of 20µm/s;
no slip is imposed on the platinum section. Note that both gravity and the active
slip pull the rods toward the wall, so we use an ad hoc repulsive force with the
wall to balance the distance between the cylinder centerline and the wall at one
cylinder diameter. Due to electrostatic interactions, a stacking of the two rods with
the gold end of one rod aligned with the platinum center of the other is observed
experimentally [29]; here we study the flow around such a pair of aligned rods.

In Figure 7 we show the instantaneous flow around a dimer of active rods, as
computed using the procedure described in Appendix B and seen from above, for
three different resolutions: a minimally resolved, a moderately resolved, and a
well-resolved model. The imposition of the slip at the surface of the blobs becomes
more and more accurate as the resolution is improved; however, we see a rather
good match between the three flow fields even relatively close to the rods and wall.
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Our simulations, which correctly take into account the physical boundary conditions,
estimate the angular frequency of rotation of the dimer to be approximately 0.64 Hz
in the counterclockwise direction, consistent with experimental observations [29].
The estimated angular velocities are 0.62, 0.67, and 0.63 Hz for each resolution,
respectively. We will study the dynamics of active nanorods near a no-slip surface in
more detail in the future; in the next subsection we demonstrate that the calculations
above can be scaled to suspensions of thousands of rods.

5.4. Suspension of rods near a boundary. In this subsection we test the efficiency
of the preconditioner outlined in Section 2.2 on a suspension of active rods sedi-
mented near a wall. We have already seen that the block-diagonal preconditioner is
able to account for the hydrodynamic interactions among the particles in a modest
number of iterations for unbounded flow. Here we show that this continues to hold
even when the wall strongly dominates the hydrodynamics, and investigate how
important it is for the preconditioner to know about the presence of the boundary.
Namely, recall that in the block-diagonal preconditioner the diagonal blocks of M̃
correspond to the blob-blob mobility for an individual rod in the presence of the
boundary. Since M̃ depends on the configuration of each rod relative to the wall,
unlike for an unbounded suspension, all diagonal blocks need to be factorized anew
for each new configuration. However, it is also possible to use an approximate
block-diagonal preconditioner that assumes an unbounded suspension, i.e., neglects
the presence of the boundary when computing a block-diagonal approximation of
the blob-blob mobility. This seems like a strong approximation to be made for
objects close to a no-slip wall; however, the investigations below will demonstrate
that the Krylov solver can account not only for the rod-rod interactions, but also for
the rod-wall interactions. This is an important finding because we recall that in the
Green’s-function-free method described for confined suspensions in Section 3, the
boundary conditions are completely ignored in the preconditioner.

In these tests we discretize cylinders of aspect ratio α = L/D ≈ 6.4 either by
placing 98 blobs on the surface of a cylinder of geometric length Lg = L and
geometric radius Rg = 0.863R, keeping a/s = 1

2 , or by placing 21 blobs of radius
a= 1.02R uniformly spaced along a line segment of length L . For testing purposes,
we generate random periodic packings of Nr rectangles at a surface packing density
φa using a molecular dynamics code [36]. We then use these hard-rectangle packings
to generate a configuration of nonoverlapping cylinders that are parallel to the wall
and at a constant distance H from the wall; we do not expect to see different results
if some randomness is added to the heights and orientations of the cylinders relative
to the wall, as long as their surfaces remain sufficiently far from the wall. In our
tests we vary the centerline height H from H = 0.75D to H = 2D, the area fraction
φa from 0.01 to 0.6, and the number of rods Nr from 10 to 104; the number of blobs
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φa Resolution Wall-corrected Unbounded

0.01
21 12 17
98 16 28

0.1
21 19 23
98 22 32

0.2
21 20 25
98 23 34

0.4
21 25 29
98 27 33

0.6
21 30 33
98 31 43

Table 4. Number of GMRES iterations required to reduce the residual by a factor of 108

for several surface packing fractions and two different resolutions (number of blobs per
rod), for H/D = 0.75 and Nr = 1000 rods. The full block-diagonal preconditioner, which
takes into account the wall corrections for each body, is compared to the approximate
preconditioner, in which all wall corrections are neglected.

varies in the range from Nb = 200 to about Nb = 106. For our implementation and
hardware (a Tesla K20 GPU) one GMRES iteration takes around 0.3 s for Nb = 104,
1 s for Nb≈ 2·104, 20 s for Nb≈ 105, and 220 s for Nb≈ 3·105; we emphasize again
that by using an FMM one can change the scaling from O(N 2

b ) to O(Nb log Nb)

and thus substantially reduce the computational times for large Nb; see the right
panel of Figure 4. To ensure a nontrivial right-hand side of the linear system when
testing the iterative solver, each blob is prescribed a random slip velocity and a
random force, producing a random force and torque on each cylinder.

Table 4 shows the scaling of the number of GMRES iterations with the area
fraction φa for a fixed number of rods Nr = 1000, and compares the efficiency of
the preconditioner using the full (wall-corrected) to that using the approximate (no
wall contributions) block-diagonal preconditioner. We observe that the number of
iterations increases slowly with the area fraction for both resolutions and reaches
a maximum of 31 iterations for φa = 0.6 with the wall-corrected preconditioner.
Therefore, as we already saw in Section 4.4, the performance of the preconditioner
is not highly sensitive to near-field interactions. When using the approximate block-
diagonal preconditioner without the wall corrections, the number of iterations is
increased, as expected. However, this increase never exceeds 50%, which means
that even a poor approximation of the mobility can be used in the preconditioner in
practice. Table 5 shows the scaling of the preconditioner with the number of rods Nr

for a fixed area fraction φa = 0.1. The number of iterations rapidly converges to
around 20 and becomes independent of the number of rods for both resolutions
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H/D = 0.75 H/D = 2
Nr Resolution Iterations Time (s) Iterations Time (s)

10
21 7 0.15 7 0.15
98 8 1.49 9 1.51

100
21 14 1.95 13 1.52
98 19 18.9 18 35.6

1 000
21 19 32.7 16 29.8
98 22 620 20 559

5 000
21 18 520 16 4 500
98 23 10 200 22 12 400

10 000
21 20 2 050 17 1 430
98 23 39 400 21 36 300

Table 5. Number of iterations and wall-clock time (using a direct GPU matrix-vector
product on a Tesla K20 GPU) to solve the mobility problem with tolerance 10−8 using the
wall-corrected preconditioner at φa = 0.1, for different numbers of rods and proximities of
the rods to the wall.

and heights. This confirms that the results obtained for a suspension of spheres
in Section 4.4 apply to confined suspensions as well. Note that for the largest
system sizes studied in Table 5 a linear-scaling FMM implementation would likely
be substantially more efficient than the quadratic-scaling GPU implementation
employed here.

6. Results: confined domains

In this section, we numerically explore the accuracy and efficiency of the rigid
multiblob immersed boundary (IB) method described in Section 3. This method
is suited to fully confined (bounded) domains, and here we model suspensions of
spheres in a periodic domain, a slit channel (i.e., two parallel walls), and a square
(duct) channel. As discussed in more detail in Section 3, for periodic suspensions it
is possible to use FFT-based methods [90; 132; 73; 31] to obtain the product of the
blob-blob mobility matrix with a vector. Future work should compare the method
developed here with such approaches, especially for Brownian suspensions.

The effective hydrodynamic radius of an IB blob (also called a “marker” or “IB
point” in the IB literature [107]) can be computed numerically by dragging a single
blob with a constant applied force through a large periodic grid with spacing h
and applying the Hasimoto periodic correction [7; 33]. When averaged over many
positions of the marker relative to the underlying grid, for the 6-point kernel [9] used
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here8 we obtain a≈ 1.47 h. The geometry of the rigid multiblob models of a sphere
used here is the same as in Sections 4 and 5. We also know from Section 4.2 that the
spacing between the blobs should be around s ≈ 2a ≈ 3h, which is somewhat larger
than the spacing s ≈ 2h used in [71], and leads to improved conditioning of the
blob-blob mobility matrix. In fact, we observe that when distinct blobs overlap, the
preconditioned GMRES solver described in Section 3.3 shows significantly worse
performance than when the blobs are not overlapping (or just touching). We therefore
recommend using s & 3h for rigid multiblob suspensions at zero Reynolds numbers.

Determining the exact spacing is somewhat of an art and is problem-specific. In
the IB approach developed here, the fast multipole method used in Section 4 and the
GPU matrix-vector product used in Section 5 are replaced by a geometric multigrid
method, which works best for grid sizes that are powers of 2. Once the exact
spacing is determined, the effective hydrodynamic radius of the rigid multiblob can
be determined numerically; we get very similar results for the IB method to those
for an unbounded domain in Section 4.1, after setting a = 1.47 h. For confined
suspensions, the ratio of the size of the particles to the domain size is typically fixed
to some experimental value, and this constrains the choice of the number of grid cells
and spacing between the blobs. In all of the tests presented here, we have empirically
optimized the appropriate value for the grid size and the spacing s in the interval
2h to 3h, and report the chosen values. As explained earlier, it is possible to use
split IB kernels to gain more flexibility in choosing the grid sizes and blob spacing.

In Section 6.1, we investigate in more detail the loss of perfect translational and
rotational invariance of the blob-blob mobility and the mobility of rigid multiblob
spheres, and demonstrate that by using the improved 6-point kernel [9] our method
is able to minimize the grid artifacts to a significant extent. Note, however, that
there is an additional loss of rotational invariance for rigid multiblob models that
comes from discretizing the bodies using blobs; this unphysical bias exists even in
the absence of a fluid grid. In Section 6.2 we explore in more detail the accuracy for
different resolutions for a periodic suspension of spheres by comparing to reference
results from multipole-based methods. In Section 6.3 we compute the mobility of a
sphere in a slit channel and compare to existing theories for a number of resolutions.
In Section 6.4 we compute the effective quasi-two-dimensional diffusion coefficient
of a boomerang colloid in a slit channel, and compare to recent experimental
measurements [21; 22; 23]. In Section 6.5 we optimize the convergence of the
iterative linear solver for suspensions of many bodies, and demonstrate that the
number of GMRES iterations is essentially independent of the number of particles,
even in confined domains such as slit channels. Finally, we study the sedimentation
velocities in a bidisperse suspension of spheres in Section 6.6, and compare to

8As summarized in [7; 33], a ≈ 1.25h for the widely used 4-point kernel [107], and a ≈ 0.91h for
the 3-point kernel [112].
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Figure 8. Translational and rotational invariance of the rigid multiblob IB method. Left:
empirical values of the blob-blob mobility functions f (r) and g(r) appearing in (22),
normalized by 8πηr so that they asymptote to unity. An empirical fit through the data
is compared to the RPY tensor for blob radius a = 1.47h. Note that the scatter around
the fit for r & 5a is dominated by periodic artifacts due to the finite size of the grid.
Right: standard deviations of the diagonal (translation-translation and rotation-rotation)
and cross-coupling (rotation-translation) components of the mobility matrix for spheres
discretized with 12, 42, 162, or 642 markers shells (i.e., for decreasing a/Rh ). Also shown
is the typical magnitude of the off-diagonal components of the translation-translation and
rotation-rotation mobility matrices, which should be zero for a perfect sphere.

recent Stokesian dynamics simulations [131; 132]. In Appendix C we study flows
around permeable rigid bodies.

6.1. Translational invariance. As explained in detail in Section 3, for sufficiently
large domains the blob-blob mobility computed by the IB method has the approx-
imate form (22). Deviations from this formula arise because of the imperfect
translational and rotational invariance due to grid artifacts. The two functions f (r)
and g(r) are expected to be similar to those appearing in the RPY tensor (9). We
obtain the actual form of the functions f (r) and g(r) empirically by fitting numerical
data for the parallel and perpendicular mobilities of a pair of blobs placed in a large
periodic domain; see [71] for more details. The results are shown in the left panel of
Figure 8, and are compared to the RPY tensor for spheres of radius a = 1.47h. We
have empirically fitted the numerical results for f (r) and g(r) with a fit that has the
proper asymptotic behavior at large and short distances; see Appendix A in [71] for
more details. This fit is used in the preconditioner as an analytical approximation
of the diagonal blocks of the blob-blob mobility matrix. We see that the differences
between the fits and the RPY tensor are rather small, and also confirm the improved
translational invariance of the 6-point kernel [9] as evidenced in the small scatter of
the points around the fits. This confirms our expectation that the rigid multiblob IB
method will behave similarly to an RPY-based method in terms of accuracy.

In the right panel of Figure 8 we investigate the translational and rotational
invariance of rigid multiblob models of spheres as a function of the resolution. We
randomly move and rotate a sphere relative to the underlying grid and compute the
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elements of the mobility matrix. The mean of these elements defines an effective
translational and rotational radius consistent with the results presented in Section 4.1
(not shown). In the figure we show the normalized standard deviation of the elements
of the mobility matrix as a function of the resolution (number of blobs). As expected,
the normalized standard deviation decreases linearly with the size of the blobs a
(equivalently, the inverse of the square root of Nb), and is below 10−4 for all mobility
elements even for the 12-blob (icosahedral) model [129].

6.2. Periodic suspension of spheres. In this section we apply our rigid multiblob
method to a benchmark resistance problem in a periodic suspension of 108 spheres
moving with random linear and angular velocities. This benchmark was developed
by Anthony Ladd, who supplied us with a random and a face-centered cubic (FCC)
configuration of spheres, at a low density of φ = 0.05, as well as a high density of
φ = 0.45. He also supplied us with the results for the resulting forces and torques
obtained using the HYDROMULTIPOLE code [24]. Note that pairwise lubrication
corrections have been included in the multipole expansion method used for these
calculations [24; 81; 82]; to our knowledge no method has accounted for three-body
lubrication corrections.

The rigid multiblob models used in this study have been chosen to give a blob
spacing close to s ≈ 2a ≈ 3h, while ensuring that the number of grid cells is integer
given the specified unit cell length in the benchmark configurations, and to have
a specified effective hydrodynamic radius Rh ≈ 1 for 5 different resolutions: a
single blob per sphere (similar to a truncation with only one monopole per sphere),
12 blobs (geometric radius Rg = 0.7896 and grid spacing h = 0.2778), 42 blobs
(Rg = 0.8899 and h = 0.1667), 162 blobs (Rg = 0.9502 and h = 0.08929), and 642
blobs (Rg = 0.9766 and h = 0.0463) per sphere. The results for the x component
of the computed forces on the spheres are illustrated in Figure 9; similar results are
observed for other components.

In the left panel of Figure 9, we focus on the low-density suspension (φ = 0.05)
and compare the forces computed by the rigid multigrid method with those computed
using L = 8 multipole moments, as well as the results of the Stokesian dynamics
(SD) code of Ichiki [65] (which roughly corresponds to L = 2 moments). The
overall agreement is quite good, but notice that even with 162 blobs per sphere we
do not resolve the lubrication force between particles numbered 48 and 103, marked
in the figure, since this pair of particles has a gap of only 0.024 radii between them.
This is not surprising given that we do not include pairwise lubrication corrections
in our method; such corrections are included in the reference results to which
we are comparing so they produce accurate forces for all particles. In the rigid
multiblob method, we resolve the near-field interactions more and more accurately
as we increase the number of blobs per sphere, but we cannot accurately resolve
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Figure 9. Results from the rigid multiblob method applied to Ladd’s benchmark resistance
problem (with specified random velocities) for a periodic suspension of 108 spheres. Left:
the x-component of the force on each sphere in a random suspension at a low volume
fraction φ = 0.05. For comparison, we show the results of Stokesian dynamics (SD) [65]
and the HYDROMULTIPOLE code [24] with L = 8 moments retained. Two particles that
happen to be at a distance closer than 2.02 radii from each other are marked by a black box
and a blue circle, and develop unresolved strong lubrication forces between them. Right:
the normalized error | fx − f (ref)

x |/〈| f (ref)
x |〉 in the x-component of the force for an FCC

lattice at the high volume fraction φ = 0.45. The HYDROMULTIPOLE code with L = 8
moments is used as a high-accuracy reference calculation.

the hydrodynamic interactions between pairs of particles with overlapping blobs
(see Figure 2).

At the high packing fraction φ = 0.45 there are many pairs of nearly touching
particles in a typical random suspension of hard spheres in the absence of (electro-
static) repulsive forces, and there is no hope that the rigid multiblob method can
accurately compute the interparticle forces.9 Therefore, at this density we focus on
an FCC lattice configuration, and compare to the multipole-based code with L = 8
moments. Here the closest particle distance is 2.36 radii and our method is able to
resolve the forces relatively well, especially with more than 12 blobs per sphere;
see the right panel in Figure 9. This is perhaps not surprising; however, the more
important point we wish to make is that the SD results are now not significantly
more accurate than the results obtained from using only a single blob per sphere.
The addition of stresslets and pairwise lubrication does not appear to help much in
resolving the many-body far-field hydrodynamic multiple scattering in this lattice
configuration. Using an icosahedral rigid multiblob already provides an order of
magnitude improvement in the typical error over an FTS truncation, and provides an
error comparable to keeping L = 3 moments in the HYDROMULTIPOLE method
(not shown), which is also the minimum number of moments necessary to keep

9The results from HYDROMULTIPOLE suggest that even with L = 15 moments, which is the
maximum that could be afforded with 32 GB of memory since the linear system to be solved is dense
and has about 7 · 104 unknowns, convergence is not achieved to sufficiently high accuracy for the
random suspension at φ = 0.45.
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to capture all long-ranged hydrodynamic interactions, as well as to model active
sphere suspensions [119; 50].

6.3. Sphere in a slit channel. In this section we compute the parallel and perpen-
dicular translational mobilities of a sphere in a slit channel of thickness 19.2Rh as a
function of the height H of the sphere center above one of the walls. This problem
is of relevance to a number of experiments involving spherical colloids confined
between two glass microscope slips, and has also been used as a benchmark problem
for boundary-integral calculations in [96]. Since the immersed boundary method
used here cannot be used for infinite domains, we take a domain of dimensions
(76.8, 19.2, 76.8)Rh and apply no-slip conditions on the y boundaries and periodic
conditions in the other two directions.

There are no manageable theoretical results accurate for all distances from the
wall and all channel dimensions [123]. For the parallel component of the mobility,
Faxén obtained exact series expansions for the mobility at the half- and quarter-
channel locations, which we use to benchmark our calculations, neglecting the
corrections coming from the use of periodic boundary conditions in the directions
parallel to the walls. For other positions of the sphere we employ the modified
coherent superposition assumption (MCSA) approximation given in (9) of [11],
with the mobility relative to a single wall given by the same theoretical lines shown
in Figure 5. The rigid multiblob models used in this study have been chosen to give
a blob spacing close to s ≈ 2a ≈ 3h, while ensuring that the number of grid cells is
integer given the target channel width relative to the effective hydrodynamic radius
of the sphere Rh for all of the resolutions studied: a single blob as a minimal model
of the sphere [33] (grid size 128× 28× 128), 12 blobs (grid size 256× 64× 256
and geometric radius Rg = 2.503h, giving spacing s/h = 2.63), and 42 blobs
(512× 128× 512 grid, Rg = 6.047h, and s/h = 3.30).

We have already confirmed that our results are in agreement with Faxén’s theory in
the (extrapolated) limit of an infinitely long channel in our prior work [71]. Here we
examine the mobility as the sphere moves through the channel, and in particular, as it
comes close to the wall. The results of our calculations are shown in Figure 10, and
are in good agreement with the approximate MCSA theory for the parallel mobility.
Note that the MCSA theory is approximate even far from the wall, as seen from the
fact that our results do not match it for the perpendicular mobility even at the center
of the channel. The boundary condition handling described in Appendix D of [71]
ensures that for a single blob the mobility vanishes at the boundary, i.e., for H = 0,
rather than for H = Rh as for a true sphere. The more resolved models, however, do
show a sharp drop in mobility when the sphere nearly touches the wall. The inset
shows that the lubrication interactions are not resolved very close to the wall, just as
we observed for a single wall in Section 5.1. Nevertheless, we note that unlike the
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Figure 10. Translational mobility of a sphere in a slit channel of width 19.2Rh relative
to the bulk, for several resolutions of the rigid multiblobs (see legend), for forces/motion
parallel (filled symbols) and perpendicular (empty symbols) to the wall. The numerical
results are in good agreement with the exact results of Faxén for distances H = L/4 and
H = L/2 (orange crosses). The inset shows that close to the wall the results for the 12-
and 42-blob shells are in reasonable agreement with the approximate MCSA theory (lines).

Rotne–Prager–Blake mobility tensor computed by Swan and Brady [122] and used in
Section 5.1, the mobility computed by the grid-based Stokes solver is physically real-
istic even when the blobs overlap the wall. This has two important implications. First,
the rigid multiblob IB method does not run into singularities for Hmin < H < Rh ,
where Hmin is the distance at which the center of some blob first leaves the physical
domain. This is particularly beneficial in Brownian simulations, where stochastic
motion can push the sphere to slightly overlap the wall [33; 34]. Furthermore,
the immersed boundary results in the inset of Figure 10 are substantially more
rotationally invariant as the sphere approaches the wall than the corresponding results
in the top two panels of Figure 5; the error bars in the mobility due to discretization
artifacts are very small for the immersed boundary method even for H < Rh .

6.4. Boomerang in a slit channel. In this section we study the diffusion of a
boomerang colloidal particle in a narrow slit channel, as recently studied experi-
mentally and theoretically [21; 22; 23]. The boomerangs are confined to essentially
remain in the plane parallel to the wall by the tight confinement, and thus perform
quasi-two-dimensional diffusion. We previously studied the diffusion of such a
boomerang colloid sedimented against a single no-slip boundary in [34], using a
strong gravitational force to keep the boomerang in quasi-two dimensions. However,
the colloids in the actual experiments are almost neutrally buoyant and a slit channel
is used to confine them to two dimensions. Here we use our rigid multiblob IB
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method to determine the effective two-dimensional diffusion coefficients of a single
boomerang in slit confinement.

As discussed in detail in [34], it is, in principle, necessary to perform long
Brownian simulations to determine the long-time diffusion tensor D of nonspherical
particles. However, if the mean square displacement (MSD) is linear in time, the
long- and short-time diffusion coefficients are equal and can be obtained from the
Stokes–Einstein relation

D = kB T 〈N 〉 = kB T µ̄, (29)

where µ̄ is the average mobility over configurations following the Gibbs–Boltzmann
(GB) distribution. Therefore, the diffusion coefficient can be computed by generat-
ing samples from the GB distribution of boomerang configurations, and then solving
a mobility problem for each configuration and averaging over the samples. For
quasi-two-dimensional diffusion the MSD can be made nearly linear by a careful
choice of the tracking point [34; 21; 22], which is the point whose translation is
measured and around which torques are expressed [47]. Chakrabarty et al. [21]
have shown that for particles diffusing in two dimensions, the optimal choice of
tracking point is the center of hydrodynamics stress (CoH), the location of which
can be computed from the bulk mobility tensor [34].

To compare with the experimental results of Chakrabarty et al., we compute the
diffusion coefficient of a single boomerang colloidal particle between two walls. In
the experiments [21], colloidal particles with boomerang shape diffuse in a channel
of width∼2µm. The boomerang particles, produced by photolithography, have two
arms of length 2.1µm, thickness 0.51µm, and width 0.55µm forming a right angle.
In our computations, we use no-slip boundary conditions on the walls of the channel
and periodic boundary conditions in the directions parallel to them. We construct two
rigid multiblob models of such boomerangs (see [34] for geometric details): a mini-
mally resolved model with 15 blobs (grid size 128×9×128 and blob spacing s/h=
1.36) that is essentially a bent version of the cylinder model shown in the leftmost
panel of Figure 1, and a moderately resolved model with 120 blobs (grid size 256×
18× 256 and blob spacing s/h = 2.22), shown in the rightmost panel of Figure 1.

We assume a hard-core potential between each of the blobs and the walls, and
average the mobility over 100 samples generated from the Gibbs–Boltzmann distri-
bution using an accept-reject Monte Carlo procedure [34]. In the experiments, there
is likely an additional electrostatic repulsion from the wall; we have checked that
adding a short-ranged Yukawa-type repulsion with the walls does not change our
results significantly.10 Following [21], we report the diffusion coefficients computed

10In fact, our computations (not shown) indicate that a rather accurate estimate of the average
mobility can be computed quickly by simply evaluating the mobility of a boomerang lying exactly on
the center plane of the channel.
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Ratio= (Experiment/Simulation)
Experiments 15 blobs 120 blobs

d 1.16 (µm) 1.06 1.06
D11 0.049 (µm2/s) 0.55 0.47
D22 0.058 (µm2/s) 0.50 0.46
Dθ 0.044 (rad2/s) 0.46 0.46

Table 6. Comparison of experimentally measured diffusion coefficients for a boomerang
particle in a slit channel to numerical estimates obtained from the rigid multiblob IB
method. The tracking point is chosen to be the CoH, which is a point on the boomerang
bisector line at a distance d (first row) from the crossing point of the two boomerang arms.
We report the translational diffusion coefficients D11 and D22 in the continuous body
frame (CBF) of reference as in [21], averaged over 100 samples from the Gibbs–Boltzmann
distribution of particle configurations, for two different resolutions.

using (29) in the continuous body frame (CoB) [21] attached to the colloidal particle,
such that the axis X1 goes along the line that bisects the boomerang angles and the
axis X2 is orthogonal to X1 (see Figure 1 in [21]). The diffusion coefficients for the
boomerang particle are given in Table 6. We see that the computed location of the
CoH is in good agreement with experimental estimates. However, both translational
and the rotational in-plane diffusion coefficients computed in the simulations are
twice as large as those measured experimentally, for both resolutions.

To investigate this large mismatch between simulations and experiments, we
explore further the difference between the right-angle boomerangs used in the two
distinct experiments [21] (arms of length 2.1µm and width 0.55µm) and [23] (arms
of length 2.33µm and width 0.7µm), both for a reported channel width of 2µm.
The boomerangs in [23] are reported to be about 10% larger than those used in [21];
however, the reported diffusion coefficients are reported to be about 25% larger. This
is inconsistent with a purely hydrodynamic model, since the larger particles should
have smaller bulk diffusion coefficients and are more confined. Therefore, the larger
particles must have a translational diffusion coefficient that is more than 1.1 times
smaller for translation, and more than 1.13

≈ 1.33 times smaller for rotation, if
particle size is the only difference between the two experiments. Indeed, in our
simulations the translational diffusion coefficient is about 1.25 times smaller for
the larger particles, and the rotational one is 1.57 times smaller. This suggests that
there are some unreported experimental effects that are not taken into account in the
simulations, such as a potentially nonuniform channel thickness or polydispersity
in the particles. More careful future investigations are required to understand the
origin of the difference between simulations and experiments reported in Table 6.

6.5. GMRES convergence. In this section we investigate the performance of the
preconditioner described in Section 3.3 and determine optimal values for N (1)

s
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and N (2)
s , the number of iterations in the first and second approximate Stokes

solves in the preconditioner. As a Krylov solver, here we use the restarted right-
preconditioned GMRES method, but we have also observed good performance with
the short-term recurrence BiCGStab method, which typically requires a few more
iterations than GMRES but has smaller memory requirements. It is important to
emphasize that the exact number of iterations depends strongly on the geometry
of the rigid multiblobs, notably, the spacing between the blobs. The performance
depends even more strongly on the efficacy of the geometric multigrid preconditioner
for the Poisson equation, which in the implementation used here is strongly degraded
for grids that have a nearly prime number of cells in each dimension, and for grids
of large aspect ratios (even if all directions are powers of 2). Our focus here is
on investigating the trends in the number of GMRES iterations with the various
parameters in the preconditioner and the system size.

The computational cost of the solver is dominated by the application of the
full preconditioner, whose complexity depends on nontrivial ways on its different
steps and on the parameters of the simulations. However, in most cases the cost is
dominated by the multigrid cycles for the Poisson equation, and each application of
the projection preconditioner for the Stokes equation (28) involves d+ 1= 4 scalar
V-cycles. Here we use preconditioned Richardson iteration as an iterative solver
for the (unconstrained) Stokes equations.11 Therefore, the total number of scalar
multigrid cycles per GMRES iteration is 4(N (1)

s +N (2)
s ) and we can use N (1)

s +N (2)
s

as a proxy for the computational cost. It should be noted, however, that this is only
an approximation and in practice it may be better to allow a small increase on the
total number of Stokes preconditioner applications if it reduces significantly the
number of outer GMRES iterations.

We study the solver convergence for a random bidisperse suspensions of hard
spheres with aspect ratio Rh,1/Rh,2 = 1/2 at different concentrations and system
sizes and geometries. The parameters of the rigid multiblob models are identical to
those reported in Section 6.3. We investigate a suspension at a moderate volume
fraction φ= 0.15 (φ1=φ2= 0.075 for the two components), as well as a suspension
at a high volume fraction φ= 0.45 (φ1=φ2= 0.225). We investigate three different
types of boundary conditions, a periodic suspension in a cubic domain, a suspension
in a slit channel with periodic boundaries in the directions parallel to the wall, and
a square channel with periodic boundaries in the direction of the channel axis.
The configurations of hard spheres were generated using a Monte Carlo algorithm
with hard core exclusion radius equal to the effective hydrodynamic radius of the
spheres.

11Richardson iteration is not effective as a stand-alone Stokes solver, but as already explained, it is
more efficient in this constrained context because we only need a rather approximate Stokes solver for
the unconstrained fluid equations.
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Figure 11. Convergence of GMRES with restart frequency of 60 iterations for a bidisperse
suspension of spheres in a cubic periodic domain (filled symbols, grid size 1283, and
Ns = 1014+127= 1141 spheres), and in a slit channel of dimensions 4L× L×4L (open
symbols, grid size 256× 64× 256, and Ns = 6083+ 760= 6843 spheres). All spheres
are subject to random forces, torques and slips. Left: normalized residual versus number
of iterations of the outer solver for different numbers of iterations in the first (N (1)s ) and
second (N (2)s ) Stokes subsolves inside the preconditioner. For comparison, we also solve
the Stokes subproblems to high accuracy using an inner iteration of GMRES, marked
N (1)s = N (2)s � 1 in the legend. Right: total computing time to solve the mobility problem
as a function of the number of spheres Ns = N1+ N2 using an implementation based on
the IBAMR library and 8 cores of an Intel Xeon (E5-2665 2.4 GHz) processor. The inset
shows the time to solve the linear system versus the total number of Stokes preconditioner
applications (N (1)s + N (2)s ) Niter.

In the left panel of Figure 11 we show the relative residual versus the number of
iterations of the outer solver for different values of N (1)

s and N (2)
s . Because of all of

the approximations in the analytical blob-blob mobility matrix, the convergence does
not improve with increasing N (1,2)

s beyond some point. Therefore, it is not necessary
to perform nearly exact Stokes solves (e.g., complete FFTs in periodic domains)
inside the preconditioner; a few (spectrally equivalent) cycles of multigrid are
sufficient. In the inset in the right panel of Figure 11 we show that the total number
of applications of the Stokes preconditioner Ns = (N

(1)
s +N (2)

s )Niter is a reasonable
proxy for the computational time, where Niter is the number of GMRES iterations.12

Table 7 shows the number of GMRES iterations13 required to reduce the residual
by a factor of 108 for a variety of system sizes, keeping N (1)

s = 2 and N (2)
s = 1. As

seen in the table, the convergence for periodic domains, just as for the methods
based on Green’s functions studied in Sections 4.4 and 5.4, is independent of the
system size and only depends weakly on the packing density. The largest system

12The actual cost has the form aNs+bNiter where b grows with the number of blobs; therefore, two
outliers are observed for N (1)s =1 and N (2)s =0 since these require a large number of GMRES iterations
to converge.

13GMRES is restarted every 60 iterations except for the largest system (5123 fluid cells and about
2 · 105 particles) which uses a restart frequency of 20 to reduce memory requirements.
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Periodic
φ Cells N1 N2 NG

128× 128× 128 1 014 127 28
0.15 256× 256× 256 8 111 1 014 29

512× 512× 512 64 885 8 111 29

128× 128× 128 3 041 380 42
0.45 256× 256× 256 24 332 3 041 43

512× 512× 512 194 656 24 332 44

Square channel Slit channel
φ Cells N1 N2 NG cells N1 N2 NG

128× 64× 64 283 32 37 128× 64× 128 507 63 34
0.15 256× 64× 64 507 63 47 256× 64× 256 2 028 253 42

512× 64× 64 1 014 127 65 512× 64× 512 8 111 1 014 63

128× 64× 64 760 95 58 128× 64× 128 1 521 190 52
0.45 256× 64× 64 1 521 190 76 256× 64× 256 6 083 760 62

512× 64× 64 3 041 380 119 512× 64× 512 24 332 3 041 96

Table 7. GMRES convergence results for a bidisperse suspension in periodic and confined
domains. A random configuration of N1 hard spheres of radius Rh = 1 (12 blobs) and N2
hard spheres of radius Rh = 2 (42 blobs) is generated, and random forces, torques, and
slips are applied to all of the particles. We report the number of GMRES iterations NG
needed to reduce the residual by a factor of 108 for the mobility problem for a variety of
system sizes and boundary conditions.

has a grid of 5123 cells and almost 3.4 million blobs on 2.2 · 105 spherical shells
packed to a rather high density φ = 0.45, yet the GMRES iteration converges
after only 44 iterations. For confined systems the solver requires more iterations,
as expected because the boundary conditions are not taken into account in either
the Stokes solver preconditioner or the block-diagonal mobility approximation.
At first sight, it may appear that the number of iterations grows with the system
size for nonperiodic domains. This increase, however, comes not because of the
increase in system size but rather because the aspect ratio of the domain grows
and the multigrid algorithm used in our implementation becomes less effective.
This can be confirmed by noting that the number of iterations grows very weakly
with system size if we keep the domain aspect ratio fixed; for a square channel
and φ = 0.45 we require 58 iterations for a grid with 128 × 64 × 64 cells, 60
iterations for 256× 128× 128 cells, and 65 iterations for 512× 256× 256 cells
(compared to 119 for 512×64×64 cells). This demonstrates that our preconditioner
robustly handles large system sizes even in the presence of physical boundaries.



HYDRODYNAMICS OF SUSPENSIONS OF PASSIVE AND ACTIVE RIGID PARTICLES 273

We believe the performance of the solver for high-aspect-ratio domains can be
greatly improved with a new multigrid implementation capable of dealing with
highly noncubic domains at the coarsest levels of the multigrid hierarchy. The right
panel of Figure 11 shows the total computing time as a function of system size and
demonstrates the near-linear scaling of the method at fixed computing power, at
least for cubic periodic domains, for which the multigrid implementation used in
the IBAMR library is nearly optimal.

6.6. Sedimentation velocity in a binary sphere suspension. In our last test we use
our rigid multiblob IB method to compute the mean and variance of the instantaneous
sedimentation velocity in a random binary suspension of hard spheres, as done using
Stokesian dynamics (SD) by Wang and Brady [131; 132]. The binary suspension
has two components, α = 1 and α = 2, with equal volume fractions φ1 = φ2 = φ/2
and size ratio R2/R1 = 2. The two types of particles are assumed to be much
denser than the solvent and to have the same density, so that the ratio of the
gravitational forces is set to F2/F1= 8. Here we average the sedimentation velocity
statistics over an ensemble of sphere packings that are sampled from the equilibrium
distribution in the absence of gravity. To generate configurations of spheres, we use
the Lubachevsky–Stillinger packing algorithm [37; 38] to create an initial packing of
spheres, and then use equilibrium event-driven hard-sphere molecular dynamics to
equilibrate the packings. We then apply gravitational forces on all spheres and solve
the mobility problem to compute the instantaneous sedimentation velocities Us,α

for each species. As described in more detail in [71], the total gravitational force
on the spheres must be balanced by an equal and opposite uniform force density in
the fluid because of the use of periodic boundary conditions.

The rigid multiblob models used in this study have either 12 blobs (Rg = 0.6643,
Rh ≈ 1, and s/h= 2.052) for the smaller species and 42 blobs for the larger species
(Rg = 1.7714, Rh ≈ 2, and s/h = 2.843) or, for improved resolution, 42 blobs for
the smaller species (Rg = 0.8692, Rh ≈ 1, and s/h = 2.553) and 162 blobs for the
larger species (Rg = 1.8935, Rh ≈ 2, and s/h = 2.808). To correct for finite system
size effects, for each volume fraction φ we run simulations for 3 grid resolutions;
specifically, we use grids of sizes 643, 1283, and 2563 cells for the smaller resolution
(12–42 blobs per sphere), and 1283, 2563, and 5123 for the higher resolution (42–
162 blobs). The average sedimentation velocity was extrapolated to the infinite
system size limit by assuming that the finite-size corrections scale as N−1/3, where
N is the total number of particles, instead of assuming a specific analytical form
for the corrections [131; 85]. The largest example in our simulations is for φ = 1

2
with a 5123 grid, for N1 = 51 200 and N2 = 6 400 spheres, corresponding to a total
of about 10 million Lagrangian (i.e., blob/body) degrees of freedom (DoFs), and
about half a billion Eulerian (i.e., fluid) DoFs.
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Figure 12. Instantaneous sedimentation rates of the two species, α = 1 (empty symbols)
and α = 2 (filled symbols), in a binary suspension of hard spheres, for two different
resolutions (see legend). Left: average vertical sedimentation velocity normalized by
U0,α = Fα/(6πηRα) as a function of the total volume fraction φ. The data from recent
Stokesian dynamics simulations [131] are shown as lines. Right: normalized variance
1U2

α = 〈δU
2
s,α〉/U2

0,α of the sedimentation velocity parallel and perpendicular to gravity
for φ ≈ 0.2. Linear fits to the data are shown as dashed lines.

The left panel of Figure 12 compares our results for the mean sedimentation
velocity of the different species with results obtained using traditional (i.e., non-
accelerated) SD without pairwise lubrication corrections [131]. It is well-known that
a standard FTS truncation is not particularly accurate for sedimentation because of
the importance of a nontrivial mean quadrupole [15]. Therefore, the SD simulations
include a mean-field estimate of the quadrupole contribution; see (2.29) in [16].
Such a correction is not included in the accelerated SD method developed in [132],
and this leads to a strong overestimation of the sedimentation velocity at larger
densities and even a reversal of the trend toward increasing sedimentation rate [132].
Our results show a consistently decreasing sedimentation rate with increasing
density, and are in good agreement between the two resolutions, except that the
agreement is only qualitative at the higher densities for the smaller spheres (thus
indicating a lack of convergence in our numerical results). Our results are consistent
with the SD results for the larger particles over the range of densities studied here.
However, for the smaller particles we find a smaller sedimentation rate and even
a negative rate, which arises due the strong backflow created around the larger
particles. As discussed in Section 6.2, lubrication forces can be very important at
densities as large as φ = 1

2 , although they are often assumed to play little role in
sedimentation due to lack of relative motion among the particles, and are therefore
not included in the SD simulations. Nevertheless, it may be that lubrication forces
play a role for dense binary suspensions due to the relative motion of the small
spheres around the large spheres. We therefore believe that the binary sedimentation
problem should be revisited by more accurate methods or experiments.

The right panel of Figure 12 shows the normalized variance of the instantaneous
sedimentation velocities for the two species at φ = 0.2 as a function of system size.
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Consistent with theory and simulation for random suspensions of monodisperse
suspensions [85], we find that the variance grows linearly with system size, consis-
tently between the two resolutions. This unphysical growth has been the subject of
a long-standing controversy in the literature, which cannot be resolved by our static
(i.e., instantaneous) computations. Namely, it has been noted that the structure of
the suspension changes during sedimentation [83], although not enough to suppress
the variance growth in existing lattice Boltzmann (LB) simulations [85]. More
recent LB studies have suggested that boundaries, polydispersity, and stratification
all play roles in the sedimentation of a realistic suspension [103].

7. Conclusions

In this paper we described a numerical method for simulating non-Brownian Stoke-
sian suspensions of passive and active rigid particles of essentially arbitrary shape
in either unconfined, partially confined, or fully confined geometries. Following a
number of prior works, we discretized rigid bodies using a collection of minimally
resolved spherical blobs to move as a rigid body. A key contribution of our work
was the development of preconditioned iterative solvers for the potentially large
linear system of equations for the unknown Lagrange multipliers λ and rigid-body
motions U . We demonstrated that an effective and scalable approach is to solve the
saddle-point problem for both λ and U using a block-diagonal preconditioner that
ignores hydrodynamic interactions of distinct bodies, or even interactions between
the bodies and the boundary.

The hydrodynamic interactions between the blobs are captured using the Rotne–
Prager–Yamakawa (RPY) tensor tailored to the specific geometry (boundary con-
ditions). For unbounded domains, we used a fast multipole method to compute
the product of the blob-blob mobility M and a force vector. For a single no-slip
boundary, we used a GPU to directly sum the Rotne–Prager–Blake tensor over
all pairs of blobs; FMM methods for half-space Stokes flow have recently been
developed [51] and could be used to scale these computations to millions of blobs.
We showed empirically that the number of GMRES iterations required to solve
for λ and U is bounded independent of the number of bodies, and grows only
weakly with increasing packing density. This paves the way for the development
of linear-scaling methods for solving the mobility problem in moderately dense
suspensions of hundreds of thousands of particles. At the same time, we find that
solving the resistance problem is substantially more difficult since the number of
iterations grows approximately linearly with the linear dimensions of the system.

For more complex boundary conditions such as fully confined domains, there is
no simple analytical approximation to the RPY tensor [99]. While it is possible
to construct fast methods for computing the product Mλ in specific geometries,
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e.g., using Ewald summation for periodic domains [126], this requires knowing
the Green’s function analytically, and more importantly, requires a new method
and code for each specific combination of boundary conditions. As an alternative,
in this work we developed a rigid multiblob method for periodic suspensions or
suspensions confined in slit and square channels that uses a grid-based Stokes solver
to compute the action of the (regularized) Green’s function “on the fly” [33; 58;
135]. Specifically, we extended a recently developed rigid-body immersed boundary
method [71] to suspensions of freely moving passive or active rigid particles at zero
Reynolds number. We demonstrate that GMRES applied to the coupled fluid plus
rigid body equations converges in a bounded number of iterations independent of
the system size, with a weak growth of the number of iterations with the packing
density, and a moderate growth with increased confinement. Unlike in methods
based on Green’s functions, each Krylov iteration in our approach only requires
a few cycles of a geometric multigrid solver for the Poisson equation, and an
application of the block-diagonal preconditioner for the blob-blob mobility.

We used our methods to compute the mobility of a cylinder near a no-slip
boundary and found good agreement with experimental measurements. We also
demonstrated that a pair of active pusher tripartite nanorods sedimented near a
boundary form dimers that rotate in a direction consistent with recent experimen-
tal measurements [29]. Our numerical results for the effective planar diffusion
coefficient of a boomerang colloid confined to a narrow slit channel were not in
agreement with recent experimental measurements [21; 23] by a factor of 2. In
the future we will carry out more careful and systematic quantitative comparisons
between simulations and experiments for confined passive and active colloids.

It is worthwhile to point out some specific differences between our approach
and existing methods. We focus in this comparison on methods based on Green’s
functions. For a confined domain, our Green’s-function-free method described in
Section 3 is quite different from most existing methods. The equations (10) appear,
perhaps in somewhat modified form, in a number of works [104; 48; 46; 62; 25;
80; 35]. The key distinguishing feature of our work is the use of iterative methods
as a way to scale these computations to suspensions of thousands of bodies. While
preconditioned iterative solvers have been used in the recent work of Swan and
Wang [126], we believe the preconditioned saddle-point approach developed here
is notably superior both in efficiency and simplicity.

The rigid multiblob approach is quite similar to the method of regularized
Stokeslets developed by Cortez et al. [28; 27; 2; 88]. This method is usually pre-
sented as a regularized first-kind boundary-integral formulation [28] for solving (A-
5). The method has been made more accurate by using higher-order quadratures
[120; 101], and has very recently been generalized to second-kind formulations that
account for active slip [101]. However, these works do not consider preconditioners
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and existing regularized Stokeslet methods do not scale well to many-body suspen-
sions. We note that a first-kind formulation preconditioned by a block-diagonal
preconditioner as we use in this work is spectrally equivalent to a second-kind
formulation for well-separated bodies.14 In [101] double-layer terms (i.e., second-
kind boundary integrals) are included to account for the active slip. As we argue in
Appendix A.1, this is not necessary if one is not interested in surface tractions, and
therefore, we prefer our simpler regularized first-kind formulation. Another key
difference between our approach and the method of regularized Stokeslets is that the
mobility used in regularized Stokeslets methods is different from the RPY tensor;
most importantly, it is not symmetric. Notably, Cortez et al. apply the regularization
on the forces (sources) but not also on the velocities (targets), which approximately
corresponds to omitting (I + a2/6 ∇

2
r) in (7). Using a nonsymmetric blob-blob

mobility is not physical; for example, incorporating thermal fluctuations becomes
impossible since this requires the square root of the mobility.

Our work is very closely related to that of Swan, Brady, et al. [122]. The
following are key differences. First, we use only the RPY form of the mobility
matrix; that is, we only have a force (monopole) degree of freedom at each blob,
as in more recent work by Swan and Wang [126]. This can be seen as a direct but
regularized discretization of (A-5), where the unknown is the surface “traction”.
By contrast, Swan et al. use Stokesian dynamics (SD) to represent the blobs as
“spheres”, more precisely, to associate with each blob a force, torque, and stresslet
(FTS);15 more multipoles have been included in other works based on multipole
expansions [25; 106; 95]. This makes the number of degrees of freedom (DoF)
per blob at least 3+ 3+ 5 = 11 in three dimensions, instead of just 3 as in our
formulation. In recent work [35], rotational degrees of freedom (angular velocity
and constraint torques) have been added to the blobs without including stresslets
(i.e., an FT truncation), which doubles the number of DoFs per blob relative to the
approach we follow (6 DoFs instead of 3). Our investigations have shown this to
lead to an insufficient improvement in accuracy to justify the doubling of the number
of DoFs. For active suspensions, in the formulation of [106; 119; 118], active slip
is imposed on the surface of the beads composing the rigid body; i.e., each bead is
active individually. By contrast, our blobs do not really have a well-defined surface,
and in our formulation active slip is imposed on the surface of the body and not
on blobs individually, consistent with a discretization of (A-5). Our approach only
requires a way to compute the (action of the) RPY blob-blob mobility matrix; it
is therefore much simpler to use in practice and it adapts to different boundary
conditions. As we explained in Section 3, the RPY tensor can be approximated

14We thank Leslie Greengard for sharing this observation with us.
15Note that a degenerate quadrupole correction corresponding to the Faxén operators in (7) is also

included in the RPY tensor even for “monopoles”.
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using grid-based solvers quite straightforwardly using immersed boundary methods,
but going to higher orders requires additional differentiability (smoothness) [92]
than afforded by simple immersed boundary methods.

Another key difference between the rigid multiblob method and traditional
Stokesian dynamics is that we do not include lubrication (near-field) corrections
in addition to the far-field RPY mobility. If it is necessary to resolve near-field
interactions between particles, for example, to study the rheology of concentrated
suspensions, one can increase the resolution by using more blobs per rigid body. For
sufficiently dense suspensions, very close contacts become numerous and in practice
lubrication forces need to be included as a correction to the FTS expansion. We
choose, however, not to include uncontrolled pairwise lubrication approximations for
several reasons. First, we believe that it is important to control the approximations so
that accuracy can be confirmed by comparing different levels of resolution. Second,
it is difficult to generalize pairwise lubrication corrections to dense suspensions of
rigid particles of arbitrary shape.

We carefully studied the accuracy of the rigid multiblob approach on a variety of
standard problems for spherical particles. We demonstrated that, once the effective
hydrodynamic radius of the rigid multiblobs is matched to the target sphere radius,
even a 12-blob (icosahedral) model of a sphere [129] provides a substantial improve-
ment over the widely used force-torque-stresslet (FTS) truncation of the multipole hi-
erarchy, especially near boundaries. However, we note that the rigid multiblob mod-
els are not rotationally invariant and this leads to notable discretization artifacts as
blobs on distinct bodies begin to overlap. Furthermore, our method does not include
pairwise lubrication corrections for nearby pairs of spheres (for reasons discussed in
the body of the paper), and can therefore only accurately resolve the hydrodynamic
interactions between objects if the blobs on the two bodies do not overlap each other.
It remains a grand challenge for future work to construct a scalable method that
applies to particles of complex shape with complex boundary conditions and resolves
lubrication interactions among nearly touching particles with controllable accuracy.

There are a number of possible extensions of the computational method described
here. An important direction of work is to compute a tractable formulation of the
RPY–Blake tensor for a single no-slip boundary that ensures an SPD mobility
matrix even when blobs overlap the wall, which is important for the inclusion
of thermal fluctuations (Brownian motion). While a general SPD formulation of
RPY in confined domains has been developed in [99], that formulation does not
apply a regularization when the blobs overlap the wall.16 Such a regularization is
important physically; in particular, we believe it is crucial that the velocity of a
blob go to zero smoothly as its position approaches the boundary. This prevents

16In fact, the overlapping correction derived in [99] is independent of the boundary conditions.
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unphysical motion of blobs along the no-slip boundary, or even worse, blobs leaving
the domain. Observe that the alternative formulation of the blob-blob mobility (21),
together with the modification near no-slip boundaries first proposed by Yeo and
Maxey [134] and generalized to other boundary conditions in Appendix D of [71],
is SPD for all configurations and vanishes as a blob approaches a boundary. If the
integral in (21) can be performed analytically for some choice of the kernel δa , this
would give a simple formula for a Rotne–Prager–Yamakawa–Blake tensor that can
be used in practical simulations. Another approach to constructing a regularization
is to use the simple image construction proposed recently by Gimbutas et al. [51]
and combine with the free-space RPY tensor.

The rigid multiblob formulation can be seen as a low-order regularized quadrature
rule for the first-kind integral equation (A-5). It is natural to consider using higher-
order quadrature rules. This has been done in the context of the method of regular-
ized Stokeslets in [120; 101], and has been done in the context of immersed boundary
methods in [55]. Specifically, Griffith and Luo have proposed an alternative IB
approach that models the deformations and stresses of an immersed elastic body
using a finite-element (FE) representation [55]. In their IB/FE approach, the degrees
of freedom associated with λ are represented in a finite-element basis set, and the
interaction between the fluid grid and body mesh is handled by placing IB markers
at the numerical quadrature points of the FE mesh. When such an approach is
generalized to rigid bodies, it simply amounts to filtering the mobility operator (26):

MFE =9(JL−1S)9T
=9M9T ,

where 9 is a matrix that contains quadrature weights as well as geometric informa-
tion about the FE mesh. Future work should explore whether this approach provides
a significant improvement in accuracy or efficiency over the simple rigid multiblob
approach presented here, and compare this to the methods described in [120; 101].

In the method used here, we used a regular (staggered) grid, and therefore, no-slip
boundary conditions can only be imposed on the boundaries of a rectangular prism.
Domains of complex shapes, such as (patterned) microfluidic channels, can be
handled in two ways. The first way is to construct the boundaries out of rigidly
fixed blobs [135]. While this is flexible and straightforward, it requires solving
a combined mobility-resistance problem that our investigations suggest cannot
be solved scalably using existing methodologies. An alternative and promising
approach is to use an FEM method to solve the Stokes equations on a boundary-fitted
unstructured tetrahedral grid [109], and combine this with the rigid-body immersed
boundary ideas presented here. Even if a rectangular grid is appropriate, our regular-
grid method requires very large grids for very low densities or inhomogeneous
suspensions, such as, for example, a suspension of particles sedimented near a
bottom wall in a slit channel where the top wall needs to be taken into account as
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well. A substantial challenge for future work is to develop a stable discretization
of the steady Stokes equations on an adaptively refined (e.g., block-structured)
staggered grid; this has been accomplished for unsteady flow [54] but the steady
Stokes equations pose several notable challenges.

We believe that a number of the preconditioning ideas developed in this work
can also be applied to other related methods, such as methods based on boundary-
integral formulations. Some of these methods can provide a notable improvement
in accuracy over the low-accuracy rigid multiblob method, and with a suitable
preconditioner they can potentially be scaled to suspensions of tens of thousands of
particles. For certain simple confined geometries, such as periodic boundaries or
semi-infinite slit channels, it is possible to develop fast methods for applying the RPY
and related tensors based on FMM or FFT methods. This may be preferable to the
immersed boundary approach followed here, which requires a dense grid of spacing
smaller than the hydrodynamic radius of the blobs a. By contrast, the spectral
Ewald method [90] completely decouples the spacing of the FFT grid from a, while
controlling the accuracy. We believe that is important for the community working
on Stokes suspensions to develop benchmark problems and compare different
methods in terms of both accuracy and efficiency, to identify which methods are
most appropriate under which conditions and accuracy requirements.

To account for thermal fluctuations (Brownian motion), one adds a fluctuating
component (kB Tη)1/2(Z(r, t)+ZT (r, t)) to the fluid stress σ in (A-1) [33; 73; 4;
31] in the spirit of fluctuating hydrodynamics [61; 114; 6], where Z(r, t) denotes a
white-noise random Gaussian tensor field with uncorrelated components. This adds
a fluctuating component to the rigid-body velocity and leads to the overdamped
Langevin equation[

u
ω

]
=

[
dq/dt
dθ/dt

]
=N

[
f
τ

]
−

(

N ŭ+ (2kB TN )1/2 �W(t), (30)

where W(t) denotes a collection of independent white-noise scalar processes and
� denotes a suitable (kinetic) stochastic product [64; 34]. In this work we did
not consider the generation of the fluctuating component of the rigid-body motion
(2kB TN )1/2W , where W is a collection of standard normal variates. This is
an important missing component for suspensions in an unbounded or half-space
domain. For the immersed boundary method described in Section 3, computing
the random motion of rigid multiblobs is straightforward and can be accomplished
at essentially no additional cost by simply including the stochastic stress on the
right-hand side in the fluid equations. The difficulty, which we will address in
future work, is to develop a temporal integration scheme for (30) that correctly
accounts for the stochastic drift terms without incurring significant additional costs
compared to non-Brownian suspensions [33; 31; 34].
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Appendix A: Continuum formulation

The basic problem we consider is the motion of a number of rigid bodies suspended
in a Stokesian fluid. For simplicity, consider a single body � rotating with angular
velocity ω around a tracking point (origin) that is translating with linear velocity u,
under the combined influence of an external force f and torque τ ; the generalization
to many bodies is straightforward. Without loss of generality let us assume that
the fixed (lab) and body coordinate frames are identical at the point in time under
consideration. Outside the body we have the steady Stokes equations for the fluid
velocity v(r) and the pressure π(r),

−∇ · σ =∇π − η∇2v = 0,

∇ · v = 0,
(A-1)

along with some suitable boundary conditions at infinity or the boundary of a
domain D ⊃�. The no-slip boundary condition on the surface of the body is

v(q)= u+ω× q+ ŭ(q) for all q ∈ ∂�, (A-2)

where ŭ is a specified apparent slip velocity due to active boundary layers on the
surface of the rigid body. Here u and ω are Lagrange multipliers for the force and
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torque balance conditions∫
∂�

λ(q) dq = f ,
∫
∂�

[q×λ(q)] dq = τ , (A-3)

where λ(q) is the normal component of the stress on the outside of the surface of
the body, i.e., the traction

λ(q)= σ · n(q),

where n is the surface normal and the fluid stress is

σ =−π I + η(∇v+∇
T v). (A-4)

The solution of the above system of equations is, by linearity, an affine mapping of
the form (1).

A.1. Boundary integral reformulation. Observe that in the Stokes regime, the
details of what happens inside the body do not actually matter for the motion of
the body and its hydrodynamic interactions with other bodies or boundaries. For
instance, a fluid-filled “bacterium” with a rigid membrane and a solid particle of
the same shape will move identically for the same surface slip and total force and
torque. Similarly, to an outside observer, a bacterium covered with a layer of cilia
on the outside will be indistinguishable from a bacterium that also has a layer of
cilia on the inside of its membrane. Therefore, it is possible to extend the fluid
equation (A-1) to the whole domain and pretend that there is fluid inside the body
moving with a velocity that is continuous across the boundary of the body. For a
strictly rigid body motion on the surface, the fluid inside will move as a rigid body
and thus be free of strain [28]. If there is slip on the surface, when we extend the
flow inside we are assuming that the velocity is continuous at the boundary so that
the same slip is present on the inside of the body surface. This will drive internal
active flows inside the body in addition to the external active flow outside. Once
we extend the fluid equation everywhere we can write down an equivalent first-kind
boundary-integral equation for Stokes flow [111; 28]

v(q)= u+ω× q+ ŭ(q)= η−1
∫
∂�

G(q, q ′)λ̃(q ′) dq ′ for all q ∈ ∂�, (A-5)

which along with the force and torque balance condition (A-3) defines a linear
system of equations to be solved for the single-layer potential λ̃(q) and the velocities
u and ω. Here G(q, q ′) is the Green’s function for steady Stokes flow with unit
viscosity and with the specified boundary conditions on the domain boundary ∂D.

In this work we will require that the total volume of fluid is preserved by the
slip, i.e., there is no source or sink for the flow inside the particle (as would be the
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case for swelling bodies): ∫
∂�

ŭ(q) · n(q) dq = 0, (A-6)

which is always true for tangential slip. This condition is required to be able to
extend the flow inside the body and still keep it incompressible everywhere in
the domain. This condition is related to a known issue with first-kind boundary-
integral formulations having a nontrivial null space or, equivalently, the single-layer
operator having an incomplete range [111]. Removing the restriction (A-6) requires
switching to a second-kind or a mixed first-second-kind integral equation [101; 119].

The single-layer potential λ̃≡ λ= σ ·n if there is no slip, i.e., if ŭ= 0, which is
a property that relies closely on the fact that the specified velocity on the surface of
the body is a rigid-body velocity; see the book of Pozrikidis [111] for details but also
[28] for a simple and relevant derivation using a regularized (nonsingular) Green’s
function. If there is slip, then λ does not have a direct physical interpretation as
a surface traction; rather, it is the jump in the stress when going across the body
surface from the “interior” flow to the “exterior” flow. If one wants to determine the
actual traction in the presence of nontrivial slip, a second-kind integral formulation
ought to be used, which includes an additional term on the right-hand side of
(A-5) involving ŭ [111; 74; 119]. The fact that the same force and torque balance
condition (A-3) applies even though λ is not the physical traction follows from
the fact that the fictitious fluid inside the body is not accelerating; equivalently,
one observes that a double-layer density does not contribute to the total force and
torque on the body since it is a dipole rather than a monopole density. As discussed
at length by Cortez et al. [28], both the method of regularized Stokeslets and the
rigid multiblob method presented here can be seen as a particularly straightforward
technique for solving a suitably regularized version of (A-5) [101; 120].

Appendix B: Computing flow fields

Observe that, unlike the immersed boundary method, the Green’s-function-based
rigid multiblob method described in Section 2 does not compute the actual flow
(velocity and pressure) around the bodies. Rendering flow fields is useful in a
number of applications for visualizing the flow around passive and active rigid
bodies. There are a number of different ways to define a flow field around a
multiblob; here we follow the following procedure that reuses existing code and
produces smooth nonsingular flow fields everywhere, including inside the blobs.
The input to the calculation is the constraint forces λ, and the output is a fluid
velocity v(r) evaluated at an arbitrary position in the domain.

The basic idea is to estimate the velocity that a freely moving tracer blob of
a given size a′ � a would have, where a′ is a desired resolution scale for the
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flow that could be chosen to match the size of actual tracer particles used in an
experiment. We replace each of the Nb blobs with N ′b smaller blobs of radius a′;
i.e., we treat each blob i as a sphere of radius a and discretize it using smaller
blobs. We divide the constraint force on blob i uniformly (this is consistent with
the approximation used to construct the RPY tensor [130]) among the small blobs:
λ′j = λi/N ′b, where j = 1, . . . , N ′b. The velocity field is then defined at an arbitrary
point in space via v(r)=

∑
j M′(r−r j )λ

′

j , where M′ is the blob-blob mobility for
blobs of radius a′. Observe that the above sum can be evaluated using the existing
matrix-vector product, but now applied to the collection of Nb N ′b small blobs.

Appendix C: Permeable bodies: Brinkman equations

When the suspended rigid bodies are made of a porous material and thus partially
permeable to the fluid, one can model the flow inside the particles using the (Debye–
Bueche–)Brinkman [19; 40] equation, as done for suspensions of permeable spheres
using multipole expansion methods in [1]. In this appendix we demonstrate analyti-
cally and numerically how a small change in the formulation can be used to allow
for a finite permeability of the particles with minimal changes to the algorithm and
implementation.

For particles with permeability (porosity) κ (possibly different for different
bodies), the velocity equation extends to the whole domain including the interior of
the bodies, and takes the form of Brinkman’s equation

∇π = η∇2v−
∑

p

η

κp
[v− (up +ωp× (r − qp))]1p, (C-1)

where 1p(r) is the characteristic function of body p, with the condition that both
the velocity and the stress are continuous across the particle-fluid interface. Note
that the rigid-body case corresponds to the limit κ→ 0 and is a singular limit in
which the stress becomes discontinuous.

For permeable bodies, we fill the interior of the bodies with blobs as well, rather
than just covering the surface with blobs as we did for impermeable bodies. Such
filled rigid multiblob models can be constructed, for example, by covering the body
with an unstructured tetrahedral grid with good uniformity properties and placing
blobs at the nodes (vertices) of the grid. One also needs to assign a volume 1Vi to
each blob; this can be done by assigning 1

4 of the volume of each tetrahedron to
each of its 4 vertices. Once a filled rigid multiblob model of the body is constructed,
the only change to the formulation (20) is to make the effective slip on blob i on
body p proportional to the fluid-blob force:

ŭi =−
κp

η1Vi
λi . (C-2)
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Note that this makes the system (20) strictly easier to solve than the case of im-
permeable bodies; the system is no longer a saddle-point problem for κ > 0. For
the Green’s-function-based methods described in Section 3, accounting for (C-2)
simply adds κp/(η1Vi ) to the diagonal elements Mi i . For the Stokes-solver-based
methods described in Section 3, all that is required is to set � to be a diagonal
matrix with �i i = κp/(η1Vi ) for blob i ∈ Bp in (24).

To demonstrate that (C-2) is consistent with the Brinkman equations (C-1), we
focus on the semicontinuum formulation (20). Solve the third equation in (20)
for λi (note that this is only possible for nonzero permeability) and substitute the
result into the first equation in (20) to obtain

∇π = η∇2v−
∑

p

η

κp

∑
i∈Bp

1Vi

×

[∫
δa(ri − r ′)v(r ′, t) d r ′− (up +ωp× (ri − qp))

]
δa(ri − r). (C-3)

In the limit in which the number of blobs goes to infinity and the regularized delta
function δa becomes a true delta function, the sum over i ∈ Bp converges to∫
�p

[∫
δ(r ′′− r ′)v(r ′, t) d r ′− (up +ωp× (r ′′− qp))

]
δ(r ′′− r) d r ′′

→ [v(r)− (up +ωp× (r − qp))]1p(r)

and therefore the fluid equation (C-3) is a regularized semidiscretization of the
Brinkman equation (C-1).

C.1. Numerical results. In this section we confirm the consistency of (C-2) with
the Brinkman equations by comparing to analytical results. We also assess the
accuracy of the method for different resolutions. Here we use the immersed boundary
formulation, but we expect similar results to apply to methods based on analytical
Green’s functions.

Permeable slab. First, we compute the flow through a permeable slab to numerically
estimate the effective permeability of a rigid multiblob for several spacings between
the blobs. We compose a slab of thickness 5s from blobs placed on a cubic lattice
with spacing s (i.e., the slab has 5 layers of blobs), and place the slab in the middle
of a cubic domain with side L . We impose no slip for the tangential stress (traction)
on all boundaries of the domain using the technique developed by Griffith [53].
For the normal component, on the sides of the domain perpendicular to the slab
we impose no slip, and we impose a pressure jump of magnitude 1π across the
boundaries parallel to the slab. We measure the velocity U of the resulting nearly
uniform flow (leak) through the slab as the velocity at the centerline of the slab a
quarter of the domain from the left boundary.
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Figure 13. Left: numerically measured permeability of a slab as a function of the input
permeability for different blob-blob spacings s. Right: measured drag (symbols) on a
permeable sphere moving inside a fixed impermeable sphere, as a function of the input
permeability, for 3 different resolutions, indicated as the number of blobs on the outer shell
(642, 2562, or 10242 blobs) and inner sphere (56, 239, or 1760 blobs, respectively); see
the legend. The theoretical result based on the geometric radii of the spheres is shown with
a dashed black line, while the theoretical result based on the effective hydrodynamic radii
in the impermeable limit (which vary with resolution) is shown with a solid line of the
same color as the corresponding symbols.

At steady state we expect a uniform flow inside the slab with magnitude deter-
mined from the Brinkmann equation

∇π =
1π

L
=−

η

κ
U, (C-4)

where κ is the permeability (porosity). In the left panel of Figure 13 we compare
this to the numerical observations. We see that for a variety of spacings between
the blobs we get the correct permeability for large target values of κ . However, as
we make the slab less and less permeable and approach the (singular) impermeable
limit, we start to see a small but measurable leak in the rigid multiblob results. This
leak is larger the larger the spacing between the blobs is, consistent with the intuition
that leaking occurs between the blobs. This suggests that for permeable bodies it is
better to reduce the spacing between the markers to s ≈ 2h as suggested in [71].
Note that the conditioning of the blob-blob mobility matrix is significantly improved
for permeable bodies compared to impermeable bodies, so that this reduction in the
spacing does not lead to conditioning problems except for very small values of κ .

Permeable sphere. Next we examine the translational mobility of a permeable
sphere of radius a. The drag force on a permeable sphere of radius R moving
through an unbounded domain with velocity U is given in [59; 45]:

(6πηU R)−1 F =
G

1+ 3G/(2σ 2)
= 1− 1

σ
+ O

( 1
σ 2

)
,
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where G = 1− σ−1 tanh σ and σ =
√

a2/κ . To eliminate finite-size effects, and
following our prior work [71] for impermeable spheres, we consider here a per-
meable sphere inside an impermeable spherical shell, that is, we impose a no-slip
boundary condition on a spherical shell of radius b = a/λ that is concentric to the
permeable sphere.

The equations we need to solve are the Stokes equations in the region between
the spherical shells and the Brinkman equation (C-1) inside the permeable sphere,
with no-slip boundary conditions on the outer shell and continuity of both velocity
and stress on the boundary of the permeable sphere. The drag force can be shown
to be

α(6πηU R)−1 F = 5λ5
+G(σ )

[
1− λ5

(
6+ 15

σ 2

)]
, (C-5)

where

α = 1− 5λ3
+ λ5

(
9+ 15

2σ 2

)
− 5λ6

+G(σ )
[ 3

2σ 2−
9
4
λ+

15
2
λ3
(

1+ 1
σ 2

)
−

9
2
λ5
(5

2
+

7
σ 2+

5
σ 4

)
+λ6

(
6+ 15

σ 2

)]
. (C-6)

The solution to this problem in the limit of an impermeable sphere has been
computed by Brenner [56] (see Appendix C in [71] for the full solution):

(6πηU R)−1 F =
1− λ5

1− 9
4λ+

5
2λ

3− 9
4λ

5+ λ6
. (C-7)

The outside impermeable fixed shell is constructed as a rigid multiblob using
the same recursive triangulation as before. Recall that the inner sphere has to be
uniformly filled with blobs for κ > 0; we construct a filled-sphere model with
typical spacing between nearest-neighbor blobs of s ≈ 2h using a tetrahedral mesh
generator, starting from a uniform surface triangulation. In the right panel of
Figure 13 we show the drag on the inner sphere compared to the theory (C-5), for
several different resolutions. We observe that for large permeabilities there is an
excellent agreement with the theory based on the geometric radii of the inner and
outer spheres, even for rather modest resolutions. But for small permeabilities, we
see deviations from the theory. This is not unexpected, since in the limit of zero
permeability we must converge back to the rigid-sphere case, and we know that in
this case the drag is determined by the larger effective hydrodynamic and not the
geometric radius. Of course, as the resolution is refined we get convergence of the
geometric and hydrodynamic radii, but convergence is very slow.

Our numerical observations are consistent with physical intuition. For large
permeability, the flow is smooth and there is no jump in the pressure (and velocity
derivatives) across the surface of the body, making the rigid multiblob models
relatively accurate even for modest resolutions. However, for impermeable bodies
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µ0 δ α fn,2 fn,1 fn,0 fd,1 fd,0 error

µ
‖

t t 6πηRh 1 1 − 9
16 0.826024 −0.311607 −1.4297 0.498974 5.6 · 10−3

µ
‖

rr 8πηR3
τ 1 3 − 5

16 0.15118 0.0830598 −0.443529 −0.406958 4.9 · 10−4

µ⊥rr 8πηR3
τ 1 3 − 1

8 0.122506 −0.0105777 −0.953632 0.0339739 7.2 · 10−5

µ
‖

r t 6πηR2
h 0 4 3

32 −0.142813 0.0508471 −0.528495 −0.454638 6.6 · 10−3

Table 8. Fitting parameters for the mobility of a sphere close to a wall obtained using the
numerical mobility of the 642-blob model. In the last column we report the maximum
relative error between the numerical mobility and the fit in the interval (1.03, 10)Rh .

the flow develops a boundary layer near the surface of the inner sphere and the
pressure and velocity are no longer sufficiently smooth and the accuracy is lowered.
We were able to account for the smearing of the no-slip condition for an impermeable
(passive) sphere by adjusting the hydrodynamic radius Rh > Rg, but this adjustment
cannot be made uniformly for all permeabilities. This is similar to the situation
for active spheres discussed in Section 4.3, and highlights the inherent accuracy
limitations of regularized methods, including both the rigid multiblob method and
the method of regularized Stokeslets.

Appendix D: Empirical mobility of a sphere near a wall

A number of theoretical predictions are available for the mobility of a sphere close
to a wall [56] (see Appendix D in [34] for a summary). However, except for the
translational mobility perpendicular to the wall, for which Brenner computed an
exact infinite sum [17] (see [63] for an approximate rational fit), the theoretical
results are based on asymptotic expansions and have a limited range of validity.
Since the dynamics of spherical colloids near a no-slip boundary is relevant to a
number of experimental studies, we give here empirical fits to the mobility computed
in Section 5.1 using a rigid multiblob with 642 blobs (our highest resolution).

We have fitted the mobilities shown in the panels of Figure 5 with a rational
function of the form

µ(x = H/Rh)

µ0 = δ+
(1

x

)α fn,2x2
+ fn,1x + fn,0

x2+ fd,1x + fd,0
,

where µ0 is the bulk mobility and δ, α, and fn,2 have been chosen to ensure the
correct leading-order asymptotic scaling for large distances to the wall H and the
rest of the constants are fitting parameters. The values of all the coefficients are
given in Table 8.



HYDRODYNAMICS OF SUSPENSIONS OF PASSIVE AND ACTIVE RIGID PARTICLES 289

References

[1] G. C. Abade, B. Cichocki, M. L. Ekiel-Jeżewska, G. Nägele, and E. Wajnryb, Short-time
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