
Communications in
Applied
Mathematics and
Computational
Science

vol. 12 no. 1 2017

msp

Communications in Applied Mathematics and Computational Science
msp.org/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/camcos for submission instructions.

The subscription price for 2017 is US $100/year for the electronic version, and $150/year (+$15, if shipping outside the US) for print
and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to
MSP.

Communications in Applied Mathematics and Computational Science (ISSN 2157-5452 electronic, 1559-3940 printed) at Mathematical
Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.
Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:production@msp.org
http://msp.org/camcos
http://msp.org/
http://msp.org/

COMM. APP. MATH. AND COMP. SCI.
Vol. 12, No. 1, 2017

dx.doi.org/10.2140/camcos.2017.12.1 msp

A SINGLE-STAGE FLUX-CORRECTED TRANSPORT
ALGORITHM FOR HIGH-ORDER FINITE-VOLUME METHODS

CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

We present a new limiter method for solving the advection equation using a
high-order, finite-volume discretization. The limiter is based on the flux-corrected
transport algorithm. We modify the classical algorithm by introducing a new
computation for solution bounds at smooth extrema, as well as improving the
preconstraint on the high-order fluxes. We compute the high-order fluxes via a
method-of-lines approach with fourth-order Runge–Kutta as the time integrator.
For computing low-order fluxes, we select the corner-transport upwind method
due to its improved stability over donor-cell upwind. Several spatial differencing
schemes are investigated for the high-order flux computation, including centered-
difference and upwind schemes. We show that the upwind schemes perform well
on account of the dissipation of high-wavenumber components. The new limiter
method retains high-order accuracy for smooth solutions and accurately captures
fronts in discontinuous solutions. Further, we need only apply the limiter once
per complete time step.

1. Introduction

We wish to solve hyperbolic conservation laws of the form

∂U
∂t
+∇ · (EF(U))= 0, (1)

where U represents a vector of conserved values and EF = (F1
· · · FD) the

corresponding D-dimensional fluxes. The discrete solution of these equations at a
given time tn+1 and spatial location i is given by

〈U 〉n+1
i = 〈U 〉ni −

1t
h

D∑
d=1

[
(Fd)

n+1/2
i+ed/2− (F

d)
n+1/2
i−ed/2

]
, (2)

where 〈U 〉ni approximates the average of U over a rectangular Cartesian control
volume at time tn and (Fd)n+1/2 approximates the average of EF(U) from time tn

to tn+1 over the faces of the same control volume. The parameters1t and h represent

MSC2010: 65M08.
Keywords: finite-volume method, high order, advection, limiter.

1

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2017.12-1
http://dx.doi.org/10.2140/camcos.2017.12.1
http://msp.org

2 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

the time-step size and grid spacing, respectively. Methods for accurately computing
the fluxes, (Fd)n+1/2, to obtain high-order accuracy for smooth solutions are well
understood. However, these high-order methods must be modified to selectively
introduce dissipation in the presence of discontinuities or underresolved gradients.
These modification methods are called limiter schemes. Modern limiter schemes
seek to achieve high-order accuracy for smooth solutions regardless of complexity
and to represent discontinuities well.

Many of the original second-order limiter schemes, such as monotonic upstream-
centered schemes for conservation laws (MUSCL) [25], total variation diminishing
(TVD) [11], piecewise parabolic method (PPM) [7], and flux-corrected transport
(FCT) [2], are still used in some form today. But these original schemes strug-
gled to achieve all of the aforementioned goals, particularly high-order accuracy
for solutions that are both complicated and smooth. The standard and weighted
essentially nonoscillatory (ENO/WENO) schemes were developed to address these
issues for TVD [12; 17; 22]. An extremum-preserving limiter has been added
to PPM [6]. For FCT, a nonclipping limiter was developed [28]. Finite-element
methods, in particular discontinuous Galerkin (DG) methods, have also been gaining
popularity for these problems. DG methods use a menagerie of technologies to
handle discontinuities [3]. Recent efforts have been made to combine aspects
of WENO limiting and the DG discretization [22]. FCT was also extended to
finite-element discretizations [18; 19], and many of the recent improvements to the
algorithm have been on these discretizations [16; 13; 15; 14]. Most of the limiter
methods mentioned so far use a semidiscrete, method-of-lines formulation, wherein
a standard ordinary differential equation (ODE) integrator is used to advance the
solution after the spatial differencing scheme has been applied. There are fully
discrete methods as well, such as arbitrary derivative in space and time (ADER)
[24; 23]. They offer an alternative to the method-of-lines approaches [1; 9].

The starting point for our approach is a method-of-lines, finite-volume formula-
tion. In all semidiscrete implementations mentioned above, the limiter algorithm is
applied every time a high-order flux evaluation occurs. This requires the limiter to
be applied several times during a single time-update procedure. For this study we
chose to only apply limiting once per time update, after the total high-order flux
was generated. This choice is motivated by both current and future performance
considerations [10; 26]. Moving limiting to a postprocessing procedure allows
for smaller stencils and less parallel communication. Limiters that are designed
to preserve high-order accuracy at smooth extrema typically make use of second-
or higher-order spatial derivative information to determine where the solution is
smooth enough to not require limiting. Computing these derivatives at each stage
in high-order ODE integration scheme requires a larger stencil than the standard
high-order flux stencil, at least up until ninth order. The other half of this is that,

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 3

typically because the limiter procedure is complicated and has a wide stencil, ghost
cells are synchronized at each stage computation. If one can fit all the data required
to complete the entire time update in local memory, then synchronization must only
occur once per time advance. These two hindrances, namely wider stencils and
repeated synchronization barriers, motivated the departure from the stage-by-stage
limiting approach.

We elected to use a version of flux-corrected transport (FCT) for our limiting
scheme [2; 28; 15]. FCT introduces dissipation through a nonlinear hybridization
of a high-order flux with a dissipative, low-order flux. To compute the high-order
flux, we used a method-of-lines approach with fourth-order Runge–Kutta (RK4)
as the time-integration scheme. For the spatial derivatives we looked at a family
of methods based on high-order centered- and one-point-upwinded linear finite-
volume interpolations. The low-order scheme was the corner-transport upwind
(CTU) method [4; 21]. We elected to use CTU for two reasons: CTU permits
the use of larger time steps than the standard donor-cell method, and CTU can
be constructed in such a way as to preserve positivity in the solution. In addition
to using these schemes for the high- and low-order fluxes, we modified the FCT
algorithm in three important ways. First we included an extremum-preserving
bound computation based on the approach used in [6; 20] for interpolation-based
limiting. We also designed a more restrictive condition on applying the typical
preconstraint for the high-order fluxes. Furthermore, we extended the product rule
to sixth-order accuracy. All of these features were required in order to maintain
high-order accuracy for complicated smooth solutions.

For this study, we restricted our attention to the scalar advection equation. This
allowed us to explore design space for this novel single-stage limiter in a simple
setting, but one that is still relatively unforgiving. These advective terms appear
directly in real applications including transport of scalars in the atmosphere, Vlasov
equations in phase space, and combustion.

Advection equation. We will consider the linear advection equation in the form

∂q
∂t
+∇ · (q Eu)= 0, (3)

∇ · Eu = 0, (4)

on a D-dimensional square domain � = [0, 1]D. In this case Eu is an advective
velocity and q is a scalar field. The partial differential equation above can also be
written as

dq
dt
= 0,

d Ex
dt
= Eu. (5)

Provided that an initial condition is specified (q0 = q(Ex(t0), t0)), this system of
ordinary differential equations yields a unique solution for any q(Ex(t), t) and Ex(t).

4 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

The solution arrived at by integrating the equations is that q is constant along
characteristic curves defined by Ex(t). Even though there is a simple solution to
this equation, the analysis is still quite useful since there is no diffusion or entropy
condition built into the equation: any numerical errors introduced are propagated
through the domain.

Finite-volume discretization. Our approach is to use a finite-volume method to
discretize the physical domain into a union of control volumes

Vi =
[(

i − 1
2

)
h,
(
i + 1

2

)
h
]
, i ∈ ZD, (6)

where h is the grid spacing and i is a D-dimensional index denoting location. The
origin in the physical domain occurs at the point (i − 1

2)h when i = 0.
Values of the conserved scalar quantity q are stored as cell averages 〈q〉 over

each Vi , and the fluxes Fd
= qud are stored as averages 〈Fd

〉i±ed/2 over the surface
faces A±d of each cell:

〈q〉i (t)=
1

hD

∫
Vi

q(x, t) dx, (7)

〈Fd
〉i±ed/2(t)=

1
hD−1

∫
A±d

Fd(x, t) dx. (8)

Applying the finite-volume discretization (6) to (3) yields a semidiscrete system of
ordinary differential equations (ODEs) in time

d〈q〉i
dt
=−

1
hD

∫
Vi

(∇ · (EF)) dx. (9)

The divergence theorem is then applied to (9):

d〈q〉i
dt
=−D · 〈 EF〉(t), (10)

=−
1
h

D∑
d=1

[
〈Fd
〉i+ed/2−〈Fd

〉i−ed/2
]
. (11)

The integration of the above system with respect to time from tn to tn+1 produces
the solution

〈q〉n+1
i = 〈q〉ni −

1t
h

D∑
d=1

[
〈Fd
〉

n+1/2
i+ed/2−〈F

d
〉

n+1/2
i−ed/2

]
, (12)

〈Fd
〉

n+1/2
i±ed/2 =

1
1t

∫ tn
+1t

tn
〈Fd
〉i±ed/2(t) dt. (13)

The resulting challenge is to accurately compute 〈Fd
〉

n+1/2
i±ed/2. It is important to

note that no approximations have been made at this point: (12) and (13) are exact

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 5

relationships. However, to obtain a full discrete approximation, we need quadrature
rules for the surface fluxes in (11) and for the time-averaged fluxes in (13). The
quadrature rules for computing these fluxes are defined following ideas from [20].
In that work, the high-order quadratures were computed using a method-of-lines
approach. The surface fluxes were computed using a high-order centered-difference
method, and the temporal integration was computed using the classic RK4 method.
We retained the use of RK4 in this study and investigated several high-order methods
for computing the surface fluxes.

Hybridization. Returning to the flux description in (13), we may now define the
hybridization

〈Fd
〉

n+1/2
i+ed/2 = (ηi+ed/2)〈Fd

H 〉i+ed/2+ (1− ηi+ed/2)〈Fd
L 〉i+ed/2, (14)

where the subscripts H and L refer to the high-order and low-order fluxes and
ηi+ed/2 is the hybridization coefficient.

In the following sections of the paper we will describe the design choices and pro-
cedures for computing the high-order flux, the low-order flux, and the hybridization
coefficient.

2. High-order flux computation

We compute the high-order fluxes using the method of lines. Two schemes must be
chosen: a scheme for integrating the solution in time and a scheme for computing the
spatial derivatives. High-order accuracy requires that both schemes be high-order
accurate.

High-order temporal integration scheme. We use the RK4 scheme to advance the
solution. Returning to the system of ODEs (10),

d〈q〉
dt
=−D · 〈 EF〉(t),

we want to integrate 〈q〉 from tn to tn+1. RK4 is a fourth-order integration scheme
that consists of computing a linear combination of stage-update variables ks . The
updates are defined as

〈q〉0 = 〈q〉(tn), k1 =−D · 〈 EF(〈q〉0)〉1t, (15)

〈q〉1 = 〈q〉0+ 1
2 k1, k2 =−D · 〈 EF(〈q〉1)〉1t, (16)

〈q〉2 = 〈q〉0+ 1
2 k2, k3 =−D · 〈 EF(〈q〉2)〉1t, (17)

〈q〉3 = 〈q〉0+ k3, k4 =−D · 〈 EF(〈q〉3)〉1t. (18)

6 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

Each update variable ks requires computing stage fluxes 〈Fd
〉

s
i±ed/2 = 〈qud

〉
s
i±ed/2.

The stage fluxes are functions of the stage values 〈q〉si and 〈ud
〉

s
i exclusively, and

the procedure for computing the fluxes will be described in the next section.
To perform the RK4 integration, we compute the appropriate linear combination

of stage updates

〈q〉(tn
+1t)= 〈q〉(tn)+ 1

6(k1+ 2k2+ 2k3+ k4)+O(h5). (19)

Using the conservation notation, this RK4 integration can also be described by

〈q〉n+1
i = 〈q〉ni −

1t
h

D∑
d=1

[
〈Fd

H 〉i+ed/2−〈Fd
H 〉i−ed/2

]
, (20)

〈Fd
H 〉i±ed/2 =

1
6

[
〈Fd
〉
(0)
i±ed/2+ 2〈Fd

〉
(1)
i±ed/2+ 2〈Fd

〉
(2)
i±ed/2+〈F

d
〉
(3)
i±ed/2

]
. (21)

High-order spatial difference schemes. We use high-order finite-difference meth-
ods to approximate the surface fluxes associated with the spatial derivatives. The
fluxes 〈qud

〉i±ed/2 for the spatial derivatives are functions only of the cell-averaged
〈q〉i and 〈ud

〉i at any time. Several methods were explored in this study for com-
puting 〈q〉i±ed/2, including high-order centered-difference schemes and upwind
schemes. The advantage of the upwind methods is that they have greater diffusion
especially in regimes where the phase error begins to rise. The upwind methods only
require a small additional computation, and the stability of similar-order centered-
difference and upwind methods is almost identical. Although not investigated in
this study, high-order centered-difference schemes with hyperdiffusive fluxes [28]
offer a possible alternative to the upwind ones used here.

The interpolation formulae corresponding to the spatial differencing schemes
used are presented below. For compactness, the following notation will be used:

〈q〉ni+ed/2 =

S∑
s=−S

as〈q〉ni+sed , (22)

where S is the width of the stencil and as are the coefficients. The odd-ordered
methods use the full range of coefficients, whereas the even-ordered methods have
no coefficient at s =−S.

• Fourth-order centered difference (S = 2):

{as : s =−S+ 1, . . . , S} = 1
12{−1, 7, 7,−1}. (23)

• Fifth-order upwind (S = 2):

{as : s =−S, . . . , S} = 1
60{2,−13, 47, 27,−3}. (24)

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 7

• Sixth-order centered difference (S = 3):

{as : s =−S+ 1, . . . , S} = 1
60{1,−8, 37, 37,−8, 1}. (25)

• Seventh-order upwind (S = 3):

{as : s =−S, . . . , S} = 1
420{−3, 25,−101, 319, 214,−38, 4}. (26)

• Ninth-order upwind (S = 4):

{as : s=−S, . . . , S}= 1
2520{4,−41, 199,−641, 1879, 1375,−305, 55,−5}. (27)

Product rule. To complete the flux computation, we must compute the average of
the product of the scalar variable and the velocity (〈qud

〉i+ed/2). The 2D product
rules for second-, fourth-, and sixth-order accuracy are

〈qud
〉i+ed/2 = 〈q〉i+ed/2〈ud

〉i+ed/2+O(h2), (28)

〈qud
〉i+ed/2 = 〈q〉i+ed/2〈ud

〉i+ed/2+
1
12 h2

∑
d ′ 6=d

∂q
∂xd ′

∂ud

∂xd ′ +O(h4), (29)

〈qud
〉i+ed/2 = 〈q〉i+ed/2〈ud

〉i+ed/2+
1
12 h2

∑
d ′ 6=d

(
∂q
∂xd ′

∂ud

∂xd ′

)

+
1

1440 h4
∑
d ′ 6=d

(
3
∂3q
∂x3

d ′

∂ud

∂xd ′
+ 3

∂3ud

∂x3
d ′

∂q
∂xd ′
+ 2

∂2ud

∂x2
d ′

∂2q
∂x2

d ′

)
+O(h6). (30)

The possible sources of error in the product formulae above are computing the
averages 〈q〉i+ed/2 and 〈ud

〉i+ed/2 and computing the partial-derivative sums. We
have already discussed several methods and their accuracy for computing 〈q〉i+ed/2.
The velocity fields are analytic for advection, so 〈ud

〉i+ed/2 introduces no error.
The derivative terms in the summations above were computed exclusively using
centered-difference approximations of appropriate accuracy. For example, the
derivatives in the fourth-order-accurate product formula were computed using a
second-order centered difference. The derivatives in the sixth-order formula were
computed to fourth order (for the term multiplied by h2) and to second order (for
the term multiplied by h4).

We note that the product rule has no contribution in a 1D problem or in any
multidimensional problem with constant velocity. To obtain an arbitrary O(hN)-
accurate solution for a multidimensional problem with varying velocity, we need to
ensure that the product rule along with the time integrator and the spatial differencing
scheme are all at least O(hN). In this study, our overall solution accuracy was
constrained by the use of RK4 for integration. However, lower spatial discretization
errors are produced using the sixth-order product rule, in place of the fourth-order
rule, with fifth- and higher-order-accurate spatial differencing schemes.

8 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

Method Stability constraint

4th center σ . 2.06/D
5th upwind σ . 1.73/D
6th center σ . 1.78/D
7th upwind σ . 1.69/D
9th upwind σ . 1.60/D

Table 1. Stability of methods for varying spatial difference operators and dimensionality D.

Stability. We compute the stability for each high-order scheme to determine the
allowable time-step size following the procedure in [5]. Stability for the method
of lines requires the eigenvalues of the right-hand side to lie within the stability
region of the time integrator. These eigenvalues are computed by diagonalizing the
semidiscrete system (10). For advection the eigenvalues are defined as the product
of the velocity and the spatial derivative operator:

d〈q〉
dt
= λ〈q〉, (31)

λ〈q〉 = −Eu
∂

∂x
〈q〉. (32)

The particular eigenvalues for each spatial differencing scheme will be presented
later.

These eigenvalues must lie within the stability region of the time integrator. The
stability region for RK4 is well known and can be described by its characteristic
polynomial

P(z)= 1+ z+ 1
2 z2
+

1
6 z3
+

1
24 z4, (33)

where z =1t λ. Stability for this problem requires that |P(z)| ≤ 1. The resulting
stability constraints for each spatial differencing scheme are presented in Table 1,
where σ = |u|1t/h.

Along with stability, the phase error and dissipation were computed (Figure 1).
The dissipation was defined as (1− |g|), where

|g| =
√

Re(g)2+ Im(g)2, (34)

Re(g)= (1+ x + 1
2 x2
+

1
6 x3
+

1
24 x4)− 1

2 y2(1+ x + 1
2 x2)+ 1

24 y4, (35)

Im(g)= y(1+ x + 1
2 x2
+

1
6 x3)− 1

6 y3(1+ x), (36)

and z = x + iy. The normalized phase error, |1−α|, is defined using

α =
α(β)

|u|
= −

1
σβ

Im(g)
Re(g)

, (37)

where β = 2πkh for k = 0,±1,±2, . . . ,±N/2.

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 9

0

0:25

0:5

0:75

1

0 �=4 �=2 3�=4 �

j1
�
˛
j

kh

4th order
5th order
6th order
7th order
9th order

0

0:25

0:5

0:75

1

0 �=4 �=2 3�=4 �

.1
�
jg
j/

kh

4th order
5th order
6th order
7th order
9th order

Figure 1. Normalized phase error (left) and dissipation (right) for the high-order methods
(σ = 0.8).

Spatial differencing eigenvalues. The eigenvalues for each of the different high-
order spatial differencing schemes are presented below. In each of the eigenvalue
descriptions, βd may range from −π to π and is defined as 2πkdh with kd =

0,±1,±2, . . . ,±N/2.

• Fourth-order centered difference:

λ4 =
i

12h

D∑
d=1

ud
[16 sin(βd)− 2 sin(2βd)]. (38)

• Fifth-order upwind:

λ5 =
1

60h

D∑
d=1

ud[(
−2 cos(3βd)+ 12 cos(2βd)− 30 cos(βd)+ 20

)
+ i
(
2 sin(3βd)− 18 sin(2βd)+ 90 sin(βd)

)]
. (39)

• Sixth-order centered difference:

λ6 =
i

60h

D∑
d=1

ud
[2 sin(3βd)− 18 sin(2βd)+ 90 sin(βd)]. (40)

• Seventh-order upwind:

λ7 =
1

420h

D∑
d=1

ud[(3 cos(4βd)− 24 cos(3βd)+ 84 cos(2βd)− 168 cos(βd)+ 105
)

+ i
(
−3 sin(4βd)+ 32 sin(3βd)− 168 sin(2βd)+ 672 sin(βd)

)]
. (41)

10 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

• Ninth-order upwind:

λ9 =
1

2520h

D∑
d=1

ud[(
−4 cos(5βd)+ 40 cos(4βd)− 180 cos(3βd)

+ 480 cos(2βd)− 840 cos(βd)+ 504
)

+ i
(
4 sin(5βd)− 50 sin(4βd)+ 300 sin(3βd)

− 1200 sin(2βd)+ 4200 sin(βd)
)]
. (42)

3. Low-order flux computation

The low-order fluxes are computed using the CTU method [4; 21]. CTU is a
first-order time-advancement scheme. The method is desirable over the simpler
donor-cell upwind method because its stability is independent of dimensionality.
However, this increased stability comes with a price. Instead of a single flux being
defined by a single upwind value, the CTU flux is dependent upon a set of upwinded
values. These values are determined by tracing the characteristic paths from the
nodes that define the flux surface. This process involves an increasing number of
Riemann solves as the dimensionality of the problem increases. In the 1D case,
CTU is identical to donor-cell upwind.

4. Computing the hybridization coefficient

We compute the hybridization coefficient η using a modified multidimensional
flux-corrected transport (FCT) algorithm. Note that the time superscript notation (n)
for fluxes is dropped for the remainder of the paper, but it is implied. Our algorithm
is based upon the method described first in [28]. Here is the generic FCT procedure:

(1) Compute the high-order fluxes 〈Fd
H 〉i±ed/2 over the cell volume Vi .

(2) Compute the low-order fluxes 〈Fd
L 〉i±ed/2 and the corresponding low-order

update

〈q〉tdi = 〈q〉
n
i −

1t
h

D∑
d=1

[
〈Fd

L 〉i+ed/2−〈Fd
L 〉i−ed/2

]
. (43)

(3) Compute the antidiffusive fluxes

〈Ad
〉i±ed/2 = 〈Fd

H 〉i±ed/2−〈Fd
L 〉i±ed/2. (44)

(4) Limit the antidiffusive fluxes:

〈Ad
η〉i±ed/2 = η

d
i±ed/2〈A

d
〉i±ed/2, 0≤ ηd

i±ed/2 ≤ 1. (45)

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 11

(5) Update the solution with the limited antidiffusive fluxes:

〈q〉n+1
i = 〈q〉tdi −

1t
h

D∑
d=1

[
〈Ad

η〉i+ed/2−〈A
d
η〉i−ed/2

]
. (46)

Limiting the antidiffusive flux. The primary challenge in the above formulation is
computing the hybridization coefficients (ηi±ed/2). Following the procedure in [28],
we compute the coefficients in the following manner.

Preconstrain the high-order fluxes 〈FH 〉i±ed/2. This is a prelimiting step that in
effect sets 〈Ad

〉i±ed/2 to zero when it would otherwise admit diffusion and flatten
the solution profile.

Compute the sum (P±i) of all the antidiffusive fluxes into and out of the cell and
a measure of the allowable flux into or out of the cell (Q±i):

P+i =
D∑

d=1

[max(〈Ad
〉i−ed/2, 0)−min(〈Ad

〉i+ed/2, 0)], (47)

Q+i = ((qmax)i −〈q〉tdi)
h
1t
, (48)

P−i =
D∑

d=1

[max(〈Ad
〉i+ed/2, 0)−min(〈Ad

〉i−ed/2, 0)], (49)

Q−i = (〈q〉
td
i − (qmin)i)

h
1t
. (50)

Compute the least upper bounds

R+i =
{

min(1.0, Q+i /P+i) if P+i > 0.0,
0.0 otherwise,

(51)

R−i =
{

min(1.0, Q−i /P−i) if P−i > 0.0,
0.0 otherwise.

(52)

Select the hybridization coefficient with the most restrictive upper bound:

ηi+ed/2 =

{
min(R+i+ed , R−i) if 〈Ad

〉i+ed/2 > 0.0,
min(R+i , R−i+ed) if 〈Ad

〉i+ed/2 ≤ 0.0.
(53)

In the above description the user is provided with two design choices: preconstraint
for the high-order flux and method of computing the solution bounds (qmax)i and
(qmin)i .

Computing the solution bounds. Compute initial estimates of the solution bounds,
(qmax)i and (qmin)i . First, compute the bounded solutions in a rectangular stencil
(Bi) that is [2si+1]D cells in size, where si is the stencil size. Following convention
the stencil size was fixed to be one cell.

12 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

After the stencil is determined, four bounds are computed: max based on 〈q〉n ,
min based on 〈q〉n , max based on 〈q〉td , and min based on 〈q〉td :

(qmax)
n
i =max(Bi (〈q〉n)), (54)

(qmin)
n
i =min(Bi (〈q〉n)), (55)

(qmax)
td
i =max(Bi (〈q〉td)), (56)

(qmin)
td
i =min(Bi (〈q〉td)). (57)

Then select the upper and lower bounds of the two estimates:

(qmax)i =max((qmax)
n
i , (qmax)

td
i), (58)

(qmin)i =min((qmin)
n
i , (qmin)

td
i). (59)

Accurate solution bounds at smooth extrema. For the vast majority of cells within
the domain, the previous bound computation is sufficiently accurate. However,
computing bounds at extrema is more complicated. Ideally the bounds need to
keep the solution monotonic and positive, but the bounds should also not “clip” the
solution. There are a few different methods for avoiding clipping, and we use a
geometric construction that is only applied at smoothly varying extrema. It is based
on the ideas in [6].

The first task is to detect a smooth extremum. The smooth-extremum criterion
in 1D is

(extd)i =min[(dq)i ·(dq)i+ed , (dq)i−ed ·(dq)i+2ed]≤0.0, 1.25·(dqtot)i <(tv)i ,
(60)

where

(dq)i = 〈q〉tdi −〈q〉
td
i−ed , (61)

(dqtot)i = |〈q〉tdi+2ed −〈q〉tdi−2ed |, (62)

(tv)i = |(dq)i+2ed | + |(dq)i+ed | + |(dq)i | + |(dq)i−ed |. (63)

This criterion has two parts. First, check for a sign change in the first derivative.
The sign change will indicate either an extremum or a discontinuity in the solution.
Second, ensure that the solution locally is not a perturbation of a discontinuity.

For a smooth multidimensional extremum, either (extd)i must be true in all
dimensions or it must be true for some d and the solution must remain constant
along the dimensions in which (extd)i is not true. We use this criterion to determine
if the solution is constant:

max(|(qd
max)

td
i −〈q〉

td
i |, |(q

d
min)

td
i −〈q〉

td
i |)≤ 10−14, (64)

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 13

where

(qd
max)

td
i =max

(
〈q〉tdi−ed , 〈q〉tdi , 〈q〉

td
i+ed

)
, (65)

(qd
min)

td
i =min

(
〈q〉tdi−ed , 〈q〉tdi , 〈q〉

td
i+ed

)
. (66)

Once we have determined that the solution at Vi is at a smooth extremum, we
compute new values of (qmax)i and (qmin)i . The first step is to construct a parabolic
function from the local values of 〈q〉n:

qd(x)= 1
2(d2q)ni x2

+
1
2(〈q〉

n
i+ed −〈q〉ni−ed)x +〈q〉ni , (67)

where

(d2q)ni = 〈q〉
n
i+ed +〈q〉ni−ed − 2〈q〉ni . (68)

The location of the vertex (xc) is given by the ratio −b/2a, where a and b are the
quadratic and linear coefficients from (67):

xc =−
〈q〉ni+ed −〈q〉ni−ed

2(d2q)ni
(69)

and −0.5 ≤ xc ≤ 0.5. Then, we evaluate the quadratic at the vertex to find the
extremum value as well as deconvolve to get an estimate of the point value:

(qd
ext)i =

1
2(d2q)ni x2

c +
1
2(〈q〉

n
i+ed −〈q〉ni−ed)xc+〈q〉ni −

1
24(d2q)ni . (70)

We select the largest (qd
ext)i or smallest (qd

ext)i depending on the sign of the second
derivative:

(qext)i =

{
maxd((qd

ext)i , (qmax)i) if sgn((d2q)ni)≤ 0.0,
mind((qd

ext)i , (qmin)i) otherwise.
(71)

Finally, we compute the appropriate extremum bound by augmenting the solution
value at the previous time by a scaled difference between the extremum value and
the solution value

(qmax)i =

{
〈q〉ni + 2.0[(qext)i −〈q〉ni] if sgn((d2q)ni)≤ 0.0,
(qmax)i otherwise,

(72)

(qmin)i =

{
〈q〉ni + 2.0[(qext)i −〈q〉ni] if sgn((d2q)ni) > 0.0,
(qmin)i otherwise.

(73)

Updating R±i at extrema. We flag the extrema at which the Laplacian is changing
sign. In most cases this flag should not be activated. However, if the Laplacian does
change sign at a smooth extremum, we turn the limiter on so that the low-order flux
is chosen. This is a protective measure we have included in the algorithm.

14 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

We compute the D-dimensional approximation to the Laplacian over a three-point
stencil

1qi =

D∑
d=1

∂2qi

∂x2
d
≈

D∑
d=1

(d2q)ni
h2 . (74)

If 1q changes sign anywhere in the three-point vicinity of i , then we flag that cell i .
We then update the least upper bound multiplier at the flagged cells:

R±i = 0 if i flagged. (75)

Preconstraining the high-order flux. We preconstrain the high-order flux where
the corresponding antidiffusive flux would admit diffusion and flatten the solution
profile. In practice, the value of the antidiffusive flux is edited instead of the high-
order flux directly. Following [28] we set the antidiffusive flux to zero in these
regions.

The baseline condition for applying the preconstraint is

〈Ad
〉i+ed/2(〈q〉

td
i+ed −〈q〉tdi)≤ 0.0. (76)

However, this condition was not sufficient for our algorithm. The condition was
occasionally satisfied at smooth areas in the solution. This manifested itself as
a drop in convergence rate. We noticed that the preconstraint was mainly being
applied near steep gradients and discontinuities. Moving forward, we only want to
apply the preconstraint at discontinuities.

We added the following requirements to make sure we only apply this condition
away from smooth areas:

min
[
(d2q)ni+ed · (d2q)ni , (d2q)ni · (d2q)ni−ed , (d2q)ni+ed · (d2q)ni+2ed

]
< 0.0, (77)

|〈Ad
〉i+ed/2| ≤

|(ud)i+ed/2|h
2

(1− σi+ed/2)
|(d2q)i + (d2q)i+ed |

2
, (78)

where σi+ed/2 = |(ud)i+ed/2|1t/h.
The first constraint above (77) attempts to detect a discontinuity in the solution.

However, there are smooth multidimensional solutions in which the second de-
rivative naturally changes sign. The second constraint (78) seeks to preclude this
case. The term on the right-hand side of the inequality (78) is the d-directional
dissipation term, scaled by the cell size, in the modified equation analysis of CTU
applied to the advection equation:

∂q
∂t
+

D∑
d=1

(
ud ∂q
∂xd

)
=

D∑
d=1

(
udh

2
(1− σd)

∂2q
∂x2

d

)
+O(h2). (79)

We are interested in comparing the magnitude of this dissipative term to the anti-
diffusive flux. The magnitude of the dissipative term is large in the neighborhood

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 15

of discontinuities. If this magnitude is large relative to the antidiffusive term, then
we assume we are near a discontinuity and allow the preconstraint.

Steepening. In the previous subsection, we stated that the antidiffusive flux is set to
zero in the regions where it would flatten the profile. As recognized in [8; 15], we
may alternatively reverse the sign of and scale the antidiffusive flux. This process,
known as steepening, seems to produce even sharper solution profiles at fronts.
However, steepening has led to robustness issues in the past, including producing
overshoots in the solution if the scaling factor is too large. For this reason we elected
to keep the scaling factor at zero for the vast majority of the tests in this study.

If steepening is deemed necessary, we make the following changes to the al-
gorithm: make the smoothness check more stringent and scale the antidiffusive
flux instead of zeroing it. We found that scaling the right-hand side of (78) by 0.5
worked well to ensure the solution was discontinuous. In addition, we found that
the best scaling factor for the tests in this study was 2.0.

5. Results

Results in one and two dimensions are presented. A total of four initial conditions
were investigated. Of the four, one initial condition was smooth and the others
contained a discontinuity. For the two-dimensional tests, we used a constant diagonal
velocity field and a solid-body-rotation velocity field:

u = [1, 1], (80)

u = 2π [y−0.5, 0.5−x]. (81)

The center for the constant-velocity initial condition was in the middle of the domain,
whereas it was offset by 0.25 of the grid height for the solid-body-rotation examples:

xconst
c = (0.5, 0.5),

xsolid
c = (0.5, 0.75).

Initial conditions. The smooth initial condition was constructed as a power of
cosines

qi (t0)=
{

cos8
(
π
2 (R/R0)

)
if R ≤ R0,

0 otherwise,
(82)

with
R =

√
(xi − xc)2, xi ∈ [0, 1], R0 = 0.15.

Three different discontinuous initial conditions were investigated. The first was a
square and is described as

qi (t0)=
{

1 if |x D
i − x D

c | ≤ 0.15 for each D,
0 otherwise.

(83)

16 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

0

0:2

0:4

0:6

0:8

1

0 0:2 0:4 0:6 0:8 1

hq
i

x

Exact
4th order
6th order

0 0:2 0:4 0:6 0:8 1

x

Exact
5th order
7th order
9th order

Figure 2. Centered (left) versus upwind (right) difference methods without limiting
(σ = 0.8, t = 1.0, and N = 128).

The next is a semiellipse

qi (t0)=
{√

1.0− (R/R0)2 if R ≤ R0,

0 otherwise,
with R0 = 0.25. (84)

The last test case is the classic slotted cylinder in two dimensions

qi (t0)=
{

1 if |x0
i − x0

c | ≥ 0.025 or x1
i ≥ 0.85 (provided R ≤ 0.15),

0 otherwise,
(85)

with R =
√
(xi − xsolid

c)2.

Effectiveness of design features. We seek to demonstrate the need for each of the
design choices made in the algorithm. The first feature is upwind methods for
high-order fluxes. To show the effectiveness of the upwind methods, we examined
the performance of the high-order fluxes with no limiting (Figure 2) on the square
initial condition (83) in 1D. In the presence of a discontinuity, upwind methods
produced much smaller magnitude oscillations than centered-difference methods.
This outcome is consistent with the amplitude and phase error analysis presented
earlier. When the limiter is turned on, the oscillations are clipped for both types of
fluxes but the dispersive errors remain in the centered-difference solutions. Figure 3
shows this remaining dispersive error on the semiellipse initial condition (84).

The second design feature is the extremum-preserving limiter. We simulated
advection with the smooth cosine initial condition (82) in 2D. This initial condition
has a smoothly varying extremum in the middle of the domain. Figure 4, left, shows
the excessive diffusion at this extremum that results from not using the extremum-
preserving limiter. Not only is there excess diffusion, but also the convergence rate
of the method suffers.

The preconstraint is another important feature of this algorithm. Figure 4, right,
shows the effectiveness of the preconstraint on the square initial condition running

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 17

0

0:2

0:4

0:6

0:8

1

0 0:2 0:4 0:6 0:8 1

hq
i

x

Exact
4th order
6th order

0 0:2 0:4 0:6 0:8 1

x

Exact
5th order
7th order
9th order

Figure 3. Centered (left) versus upwind (right) difference methods with limiting (σ = 0.8,
t = 1.0, and N = 128).

0

0:2

0:4

0:6

0:8

1

0 0:2 0:4 0:6 0:8 1

hq
i

x

Exact
E-P

No E-P

0:95

0:975

1

1:025

0:5

hq
i

x

Exact
No preconstraint

preconstraint
Steepening preconstraint

Figure 4. Effectiveness of extremum-preserving limiter at t = 5.0 (left) and preconstraint
and steepener in 2D at t = 1.0 (right) (σ = 0.8 and N = 128).

right at the stability limit of the method in 2D. The preconstraint sharpens the
solution profile near the front. The steepening preconstraint improves the solution
profile even further. However, for most of the tests in this study, our preconstraint
produced identical results with and without steepening. The remaining results do
not include steepening.

One-dimensional tests. The first requirement for the limiter method is that it re-
duces to the high-order scheme away from discontinuities. All of the high-order
schemes running at a large CFL number (σ = 0.8) achieved similar errors for
smooth solutions in 1D (Figure 5). At this CFL number, the rate of convergence for
each method was 4.0. We also computed the errors running at a lower CFL number
(σ = 0.2). The error-reduction rate for each scheme at the low CFL number roughly
matched the order of the spatial differencing scheme for the grid sizes displayed
here. These results demonstrate that the limiter is not being activated in smooth
regions, and hence, the first requirement is met.

18 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

101

E
rr

or

N �1

4th order
5th order
6th order
7th order
9th order

N �4

N �1

4th order
5th order
6th order
7th order
9th order

N �4

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

101

32 64 128 256 512

E
rr

or

N

N �1

4th order
5th order
6th order
7th order
9th order

N �4

32 64 128 256 512
N

N �1

4th order
5th order
6th order
7th order
9th order

N �4

Figure 5. L∞ errors in 1D. Left column: error without limiter. Right column: error with
limiter. Top row: σ = 0.8. Bottom row: σ = 0.2.

0

0:2

0:4

0:6

0:8

1

0 0:2 0:4 0:6 0:8 1

hq
i

x

Exact
5th order
7th order
9th order

0 0:2 0:4 0:6 0:8 1

x

Exact
5th order
7th order
9th order

Figure 6. Discontinuous solutions with limiting and square (left) and semiellipse (right)
initial conditions (σ = 0.8, t = 1.0, and N = 128).

The second requirement is that the limiter method accurately represent discon-
tinuities. Figure 6 shows how the limiter performs on the square and semiellipse
initial conditions in 1D. For both cases, the limiter method accurately captures the
front and keeps the solution bounded.

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 19

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

101

E
rr

or

N �1

4th order
5th order
6th order
7th order
9th order

N �4

N �1

4th order
5th order
6th order
7th order
9th order

N �4

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

101

32 64 128 256 512

E
rr

or

N

N �1

4th order
5th order
6th order
7th order
9th order

N �4

32 64 128 256 512
N

N �1

4th order
5th order
6th order
7th order
9th order

N �4

Figure 7. L∞ errors in 2D. Left column: without limiter. Right column: with limiter.
Top row: constant velocity. Bottom row: rotation velocity.

Two-dimensional tests. The errors for the smooth initial condition test in two di-
mensions are reported with and without the limiter for both velocity fields (Figure 7).
As in the one-dimensional case, the high-order solution accuracy requirement is
met. Interestingly, for the solid-body-rotation solution, the error reduction is greater
than fourth order for many of the spatial differencing schemes. Also the ninth-order
scheme is still convergent right at its theoretical stability limit (σ ≈ 0.8).

The limiter also performs quite well at representing discontinuities in two di-
mensions. Various solution plots for discontinuous initial conditions are presented
(Figures 8–10). All of the two-dimensional plots were generated using the ninth-
order scheme in space, running at σ = 0.8. The square solution under constant
velocity has few, if any, ripples and is nicely bounded (Figure 8). There is some
distortion of the corners, particularly at the top-left and bottom-right. The square
solution under solid-body rotation looks similar to the constant-velocity solution,
and the corner issue is mitigated.

The semiellipse solution is likewise well resolved (Figure 9). As with the one-
dimensional case there are some dispersive errors on the leading edge, but they
are small. The solutions under both velocity fields are accurately bounded. The

20 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

1.0
0.75
0.50
0.25
0.0

1.0

0.0
0.0 1.0

1.0
0.75
0.50
0.25
0.0

1.0

0.0
0.0 1.0

0

0:2

0:4

0:6

0:8

1

0 0:5 1

hq
i

x

Exact
9th order

0 0:5 1

x

Exact
9th order

Figure 8. Square solutions (σ = 0.8, t = 1.0, and N = 128). Top left: constant velocity.
Top right: solid-body rotation. Bottom row: centerline comparison.

semiellipse solution under solid-body rotation was centered at xsolid
c = (1.0, 1.5) to

keep the edge of the condition away from the domain boundary. The domain was
also expanded to xi ∈ [0, 2].

The final test was the slotted cylinder (Figure 10). The limiter method keeps the
solution bounded and resolves the fronts quite nicely. At lower grid resolutions, the
slot can fill in and the bounds may not be enforced. But as the grid is refined, both
of these issues are resolved.

6. Conclusions

We presented a new flux limiter based upon FCT that retains high-order accuracy
for smooth solutions and captures fronts well. Our algorithm presented here uses
CTU for low-order fluxes, upwind schemes for high-order fluxes, and RK4 for time
integration. Our additions to the previous FCT method included a new computation
for the extrema, an expanded preconstraint on the high-order fluxes, and a sixth-
order-accurate finite-volume product rule. Furthermore, the limiter was only applied
once per each time advance.

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 21

1.0
0.75
0.50
0.25
0.0

1.0

0.0
0.0 1.0

1.0
0.75
0.50
0.25
0.0

2.0

0.0
0.0 2.0

0

0:2

0:4

0:6

0:8

1

0 0:5 1

hq
i

x

Exact
9th order

0:5 1 1:5

x

Exact
9th order

Figure 9. Semiellipse solutions (σ = 0.8, t = 1.0, and N = 128). Top left: constant
velocity. Top right: solid-body rotation. Bottom row: centerline comparison.

2.0
1.5
1.0
0.50
0.0

1.0

0.0
0.0 1.0

0

0:4

0:8

1:2

1:6

2

0 0:5 1

hq
i

x

Exact
9th order

Figure 10. Slotted cylinder under solid-body rotation (σ = 0.8, t = 1.0, and N = 256).
Left: solution. Right: centerline comparison.

The convergence rates for the smooth initial-condition tests were extremely
similar in all three of the standard norms: L1, L2, and L∞. On account of this
only the L∞ errors were displayed. Each high-order spatial discretization achieved
fourth-order accuracy, at a minimum, for the smooth initial condition. In theory, we
could also have achieved a higher overall order of accuracy with a more accurate

22 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

temporal integration scheme. Fourth-order accuracy was expected since we used a
fourth-order-accurate time integrator (RK4) and a relatively large CFL number (0.8)
for the majority of the test cases presented. At this CFL number, the error from the
temporal discretization is much larger than the spatial discretization. To confirm
this we also ran simulations at a low CFL number (0.2). The algorithm achieved
higher convergence rates at this lower CFL number. We concluded that the errors
from the spatial differencing schemes dominate the solution when running at low
CFL numbers. The solid-body-rotation test also produced higher-order convergence
rates than expected. This is likely explained by the fact that the solution is being
advected at a range of CFL numbers tending toward zero as the solution approaches
the center of the domain. Another interesting feature is the large difference in
errors between the various spatial differencing schemes for the solid-body-rotation
example. At the higher CFL number there are nearly two orders of magnitude
difference in the max-norm error between the fourth- and ninth-order schemes. For
the same initial condition running at the lower CFL number, there are over three
orders of magnitude difference between these max-norm errors.

Potential extensions for this work are applying the limiter to systems of hyperbolic
conservation laws, developing new high-order upwind methods with corner coupling,
and further improving the preconstraint on the high-order fluxes. Applying the
limiter to hyperbolic systems is the most direct extension of this work. Implementing
this limiter for a compressible gas dynamics solver would be a good starting point.
Following [15] we would not apply the limiter directly to the conserved variables
but rather to the characteristic variables. The equations that govern the characteristic
variables in 1D look like a system of decoupled advection equations, and the ideas
presented here have clear applicability. Characteristic decomposition and limiting
become more difficult in multiple dimensions, but there is a road map to follow.
There are two general approaches available: either compute the fluxes and limiter
along each direction in a split manner, or compute the fluxes in a multidimensional
manner and limit the directional fluxes independently or sequentially. In previous
studies [15] there was no discernible difference between the two approaches for the
test cases analyzed, but it is important to consider both in general.

High-order, corner-coupled upwind methods for use with general multistage time
integrators could remove the dimensional dependence of the stability. However, no
upwind method of this nature currently exists. The preconstraint on the high-order
fluxes is another area where additional study could pay off. In this work we found
that the preconstraint affected a delicate balance between effectively representing
discontinuities and retaining high-order accuracy in smooth yet complex areas. It
was relatively simple to achieve one or the other. Ensuring both required testing
many versions of the preconstraint. Introducing a steepening coefficient with the
preconstraint improved discontinuity representation, but additional work must be

SINGLE-STAGE FLUX-CORRECTED TRANSPORT ALGORITHM 23

done to ensure robustness. The primary robustness concern with steepening is
avoiding overshoot in the solution; however, our restrictions of only applying
the preconstraint near fronts as well as limiting smooth extrema at which the
Laplacian changes sign should reduce the risk of overshoot. We could also use other
antidiffusive approaches for handling these types of contact discontinuities [27]. On
the other hand, several canonical hyperbolic systems of equations have steepening
mechanisms built into the physics, so steepening may only be useful in certain
limited contexts.

Acknowledgements

This research was supported at the Lawrence Berkeley National Laboratory by
the Office of Advanced Scientific Computing Research of the U.S. Department of
Energy under Contract Number DE-AC02-05CH11231.

References

[1] D. S. Balsara, C. Meyer, M. Dumbser, H. Du, and Z. Xu, Efficient implementation of ADER
schemes for Euler and magnetohydrodynamical flows on structured meshes — speed comparisons
with Runge–Kutta methods, J. Comput. Phys. 235 (2013), 934–969.

[2] J. P. Boris and D. L. Book, Flux-corrected transport, I: SHASTA, a fluid transport algorithm
that works, J. Comput. Phys. 11 (1973), no. 1, 38–69.

[3] E. Casoni, J. Peraire, and A. Huerta, One-dimensional shock-capturing for high-order discontin-
uous Galerkin methods, Internat. J. Numer. Methods Fluids 71 (2013), no. 6, 737–755.

[4] P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys.
87 (1990), no. 1, 171–200.

[5] P. Colella, M. R. Dorr, J. A. F. Hittinger, and D. F. Martin, High-order, finite-volume methods in
mapped coordinates, J. Comput. Phys. 230 (2011), no. 8, 2952–2976.

[6] P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema, J.
Comput. Phys. 227 (2008), no. 15, 7069–7076.

[7] P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM) for gas-dynamical
simulations, J. Comput. Phys. 54 (1984), no. 1, 174–201.

[8] C. R. DeVore, An improved limiter for multidimensional flux-corrected transport, technical
report NRL/MR/6440-98-8330, Naval Research Laboratory, Washington, DC, 1998.

[9] M. Dumbser, O. Zanotti, A. Hidalgo, and D. S. Balsara, ADER-WENO finite volume schemes
with space-time adaptive mesh refinement, J. Comput. Phys. 248 (2013), 257–286.

[10] S. H. Fuller and L. I. Millett (eds.), The future of computing performance: game over or next
level?, National Academies, Washington, DC, 2011.

[11] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49
(1983), no. 3, 357–393.

[12] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high-order accurate
essentially nonoscillatory schemes, III, J. Comput. Phys. 71 (1987), no. 2, 231–303.

[13] D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin
methods, J. Comput. Appl. Math. 233 (2010), no. 12, 3077–3085.

http://dx.doi.org/10.1016/j.jcp.2012.04.051
http://dx.doi.org/10.1016/j.jcp.2012.04.051
http://dx.doi.org/10.1016/j.jcp.2012.04.051
http://dx.doi.org/10.1016/0021-9991(73)90147-2
http://dx.doi.org/10.1016/0021-9991(73)90147-2
http://dx.doi.org/10.1002/fld.3682
http://dx.doi.org/10.1002/fld.3682
http://dx.doi.org/10.1016/0021-9991(90)90233-Q
http://dx.doi.org/10.1016/j.jcp.2010.12.044
http://dx.doi.org/10.1016/j.jcp.2010.12.044
http://dx.doi.org/10.1016/j.jcp.2008.03.034
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA360122
http://dx.doi.org/10.1016/j.jcp.2013.04.017
http://dx.doi.org/10.1016/j.jcp.2013.04.017
http://dx.doi.org/10.17226/12980
http://dx.doi.org/10.17226/12980
http://dx.doi.org/10.1016/0021-9991(83)90136-5
http://dx.doi.org/10.1016/0021-9991(87)90031-3
http://dx.doi.org/10.1016/0021-9991(87)90031-3
http://dx.doi.org/10.1016/j.cam.2009.05.028
http://dx.doi.org/10.1016/j.cam.2009.05.028

24 CHRISTOPHER CHAPLIN AND PHILLIP COLELLA

[14] , Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods, J.
Comput. Phys. 257B (2014), 1140–1162.

[15] D. Kuzmin, R. Löhner, and S. Turek (eds.), Flux-corrected transport: principles, algorithms,
and applications, 2nd ed., Springer, Dordrecht, 2012.

[16] D. Kuzmin, M. Möller, and S. Turek, High-resolution FEM-FCT schemes for multidimensional
conservation laws, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 45–47, 4915–4946.

[17] X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.
Phys. 115 (1994), no. 1, 200–212.

[18] R. Löhner, K. Morgan, J. Peraire, and M. Vahdati, Finite element flux-corrected transport (FEM-
FCT) for the Euler and Navier–Stokes equations, Internat. J. Numer. Methods Fluids 7 (1987),
no. 10, 1093–1109.

[19] R. Löhner, K. Morgan, M. Vahdati, J. P. Boris, and D. L. Book, FEM-FCT: combining unstruc-
tured grids with high resolution, Comm. Appl. Numer. Methods 4 (1988), no. 6, 717–729.

[20] P. McCorquodale and P. Colella, A high-order finite-volume method for conservation laws on
locally refined grids, Commun. Appl. Math. Comput. Sci. 6 (2011), no. 1, 1–25.

[21] J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys.
115 (1994), no. 1, 153–168.

[22] C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated
problems, SIAM Rev. 51 (2009), no. 1, 82–126.

[23] V. A. Titarev and E. F. Toro, ADER schemes for three-dimensional non-linear hyperbolic systems,
J. Comput. Phys. 204 (2005), no. 2, 715–736.

[24] E. F. Toro and V. A. Titarev, Solution of the generalized Riemann problem for advection-reaction
equations, R. Soc. Lond. Proc. A 458 (2002), no. 2018, 271–281.

[25] B. van Leer, Towards the ultimate conservative difference scheme, V: A second-order sequel to
Godunov’s method, J. Comput. Phys. 32 (1979), no. 1, 101–136.

[26] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance model
for multicore architectures, Commun. ACM 52 (2009), no. 4, 65–76.

[27] Z. Xu and C.-W. Shu, Anti-diffusive flux corrections for high order finite difference WENO
schemes, J. Comput. Phys. 205 (2005), no. 2, 458–485.

[28] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput.
Phys. 31 (1979), no. 3, 335–362.

Received May 4, 2015. Revised January 13, 2017.

CHRISTOPHER CHAPLIN: CChaplin@lbl.gov
Applied Numerical Algorithms Group, Computational Research Division,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-3111, Berkeley, CA 94720,
United States

PHILLIP COLELLA: PColella@lbl.gov
Applied Numerical Algorithms Group, Computational Research Division,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-3111, Berkeley, CA 94720,
United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.jcp.2013.04.032
http://dx.doi.org/10.1007/978-94-007-4038-9
http://dx.doi.org/10.1007/978-94-007-4038-9
http://dx.doi.org/10.1016/j.cma.2004.05.009
http://dx.doi.org/10.1016/j.cma.2004.05.009
http://dx.doi.org/10.1006/jcph.1994.1187
http://dx.doi.org/10.1002/fld.1650071007
http://dx.doi.org/10.1002/fld.1650071007
http://dx.doi.org/10.1002/cnm.1630040605
http://dx.doi.org/10.1002/cnm.1630040605
http://dx.doi.org/10.2140/camcos.2011.6.1
http://dx.doi.org/10.2140/camcos.2011.6.1
http://dx.doi.org/10.1006/jcph.1994.1184
http://dx.doi.org/10.1137/070679065
http://dx.doi.org/10.1137/070679065
http://dx.doi.org/10.1016/j.jcp.2004.10.028
http://dx.doi.org/10.1098/rspa.2001.0926
http://dx.doi.org/10.1098/rspa.2001.0926
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1016/j.jcp.2004.11.014
http://dx.doi.org/10.1016/j.jcp.2004.11.014
http://dx.doi.org/10.1016/0021-9991(79)90051-2
mailto:CChaplin@lbl.gov
mailto:PColella@lbl.gov
http://msp.org

COMM. APP. MATH. AND COMP. SCI.
Vol. 12, No. 1, 2017

dx.doi.org/10.2140/camcos.2017.12.25 msp

ACHIEVING ALGORITHMIC RESILIENCE
FOR TEMPORAL INTEGRATION

THROUGH SPECTRAL DEFERRED CORRECTIONS

RAY W. GROUT, HEMANTH KOLLA,
MICHAEL L. MINION AND JOHN B. BELL

Spectral deferred corrections (SDC) is an iterative approach for constructing
higher-order-accurate numerical approximations of ordinary differential equations.
SDC starts with an initial approximation of the solution defined at a set of
Gaussian or spectral collocation nodes over a time interval and uses an iterative
application of lower-order time discretizations applied to a correction equation to
improve the solution at these nodes. Each deferred correction sweep increases the
formal order of accuracy of the method up to the limit inherent in the accuracy
defined by the collocation points. In this paper, we demonstrate that SDC is well
suited to recovering from soft (transient) hardware faults in the data. A strategy
where extra correction iterations are used to recover from soft errors and provide
algorithmic resilience is proposed. Specifically, in this approach the iteration
is continued until the residual (a measure of the error in the approximation) is
small relative to the residual of the first correction iteration and changes slowly
between successive iterations. We demonstrate the effectiveness of this strategy
for both canonical test problems and a comprehensive situation involving a mature
scientific application code that solves the reacting Navier–Stokes equations for
combustion research.

1. Introduction

Since its introduction by Dutt et al. [12], the iterative nature of spectral deferred
corrections (SDC) has been leveraged extensively to create efficient, high-accuracy
methods for temporal integration tailored to specific types of problems. For example,
in multi-implicit spectral deferred correction methods [3; 27], the terms in an
advection-diffusion-reaction system are integrated separately with different time
steps but coupled together using the SDC approach to achieve higher-order temporal
accuracy than is achievable with traditional operator-splitting schemes. A similar
approach is used to reduce splitting errors in a low-Mach combustion code by
Nonaka et al. [32], where the SDC iterates are used to couple together interacting

MSC2010: primary 65D30, 65M12, 65M22, 80A25, 94B99; secondary 65M20.
Keywords: SDC, deferred correction, resilience, time integration, combustion.

25

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2017.12-1
http://dx.doi.org/10.2140/camcos.2017.12.25
http://msp.org

26 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

physical processes. In this case, a significant advantage is realized in that the
reduction in splitting error reduces nonphysical excursions into a chemical state
space that artificially excites the intrinsic stiffness in the system. SDC has also been
used to construct efficient time-parallel methods for partial differential equations
(PDEs) [15]. Such desirable features that are not readily available in classical
methods such as linear multistep or Runge–Kutta (RK) methods can make SDC
an attractive choice for time integration despite the fact that SDC often requires
relatively more function evaluations per time step.

There is growing concern about the impact of hardware errors — especially
those that can lead to successful completion with erroneous results known as silent
data corruption. This concern is driven by trends towards increasing concurrency
as well as operation near design limits. Reducing voltage to improve energy
efficiency has long been known to increase susceptibility to soft errors (e.g., [2;
10]). Further, modern designs tend to have elevated operating temperatures, which
also increases the soft error rate [38; 9]. Wei et al. [41] define error resilience
eloquently as the ability of a program to prevent an error from becoming a silent
data corruption. We will look to leverage the iterative nature of SDC to provide
algorithmic error resilience for temporal integration in the face of soft errors in
the arithmetic operations and scratch variables used to update the solution. We
expect that the iterative nature will be well suited to recover from transient errors.
Chen et al. [7] note that an adaptive RK scheme, where the solution update is
computed for two different time steps, should be able to detect soft faults as the two
evaluations will be dramatically different if a soft fault has occurred. Benson et al. [1]
constructed an error detector by evaluating an alternative time integration scheme
(tailored for speed rather than stability, such as an embedded RK scheme of lower
order, an explicit counterpart to a linear multistep method, or simple extrapolation)
and examining the norm of the difference between the base and alternative schemes
for anomalies in the context of a window of time steps. Benson et al. used the
window of time steps because they noted that a hard threshold on the difference
norm is meaningless because the expected norm of the difference changes with
the solution. We use similar logic when inspecting the convergence rate between
successive correction iterations to determine if the solution is acceptable.

The primary contributions of this paper are, firstly, to show that monitoring the
residual in SDC correction sweeps can be used to detect soft (transient) errors
resulting from hardware faults that could lead to silent data corruption using a
reference integration algorithm and, secondly, to demonstrate the feasibility of
recovering from soft errors by continuing SDC correction iterations. The intent of
this paper is not to look at the details of low-level fault injection but rather at how a
time integration algorithm can recover from those faults that migrate up the call
tree through the return values of kernels. Here we use the term kernel to refer to

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 27

routines at the application level that compute terms in the governing differential
equations being integrated. For example, the kernels from the application discussed
in Section 2.4 are operations that compute advective or diffusive terms for the
method-of-lines formulation or evaluate transport coefficients.

The remainder of this paper is organized as follows. In the next section, we
present a brief outline of the SDC algorithm, relevant aspects of the state of research
on fault injection and algorithmic resilience, and an overview of the combustion
code used as an application benchmark later in the paper. We then turn in Section 3
to the behavior of the application in the context of single-occurrence synthetic errors,
using the explicit Runge–Kutta integrator traditionally employed in the application
code as a baseline to assess susceptibility to silent data corruption. We also examine
the ability of the SDC algorithm to recover from such errors in an application
test case and in a linear problem to demonstrate how the damping proceeds in
a controlled setting. Finally, in Section 3.4, we look at a comprehensive error
injection test case where we inject errors at an elevated rate into many runs of the
application test case to see how our SDC iteration strategy narrows the distribution
of the simulation output in a challenging scenario.

2. Preliminaries and related work

2.1. SDC formulation. Spectral deferred correction schemes were proposed by
Dutt et al. [12] and subsequently developed significantly by Minion and colleagues
(e.g., [31; 3; 28]). The basic approach is briefly recapped in this subsection
before we consider additional aspects of its performance relevant to use in practical
applications.

SDC schemes are based on recasting the ordinary differential equation (ODE)

ψ ′ = F(ψ, t), ψ(tn)= ψn (1)

over the time interval tn
≤ t ≤ tn+1 in integral form as

ψ(t)= ψn +

∫ t

tn
F(ψ, τ) dτ. (2)

Subdividing the interval [tn, tn+1] by choosing M + 1 Gauss–Lobatto quadrature
nodes tm (tn

= t0 and tn+1
= tM), for each node we can write the approximation

φm = ψn +1t
M∑

j=0

qm, j F(φ j , t j). (3)

This integral provides an approximation to the solution ψn+1≈φM at tn+1; however,
it effectively couples the solution at all of the quadrature nodes in the interval.
Equation (3) is referred to as the collocation formulation (see, e.g., [20]) and

28 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

is equivalent to a fully implicit Runge–Kutta method with stages given by the
quadrature nodes and coefficients in the Butcher tableau corresponding to the qm, j .
SDC can be thought of as providing an efficient iterative approach for computing
the solution to this coupled system by iterative substepping over the nodes.

The basic idea is, given an approximate continuous solution φk(t), one can define
a residual that measures the error in the approximation φk as

R(φk, t)= φn +

∫ t

tn
F(φk(τ), τ) dτ −φk(t). (4)

If we define ck(t)= φ(t)−φk(t), then by substituting the definition of the residual
into the integral form of the original equation, we obtain

ck(t)=
∫ t

tn
[F(φk(τ)+ ck(τ), τ)− F(φk(τ), τ)] dτ + R(φk(t), t). (5)

We then discretize this equation using the approximate residual

Rm(φ
k)= φn +1t

M∑
j=0

qm, j F(φk
j , t j)−φ

k
m . (6)

An explicit Euler-type method to discretize (5) gives the resulting update formula
for the k-th iterate

ck
m+1 = ck

m +1tm[F(φk+1
m , tm)− F(φk

m, tm)] + Rm+1(φ
k)− Rm(φ

k) (7)

or, in a direct update form for φk+1
m = φk

m + ck
m ,

φk+1
m+1 = φ

k+1
m +1tm[F(φk+1

m , tm)− F(φk
m, tm)] + I m+1

m (φk), (8)

where

I m+1
m (φk)=1t

M∑
j=1

(qm+1, j − qm, j)F(φk(tl), tl)≈
∫ tm+1

tm
F(φk(τ), τ) dτ. (9)

I m+1
m is the equivalent to the integral of the polynomial interpolant of φk over the

interval [tm, tm+1]. Each such iteration can improve by one the formal order of
accuracy of the approximate solution up to the order of the underlying quadrature.
In the case of M + 1 Lobatto nodes, the method achieves order 2M of convergence.

In the numerical results, we focus on SDC methods using three Lobatto nodes.
If the initial value at all three nodes is taken to be the value at tn and four correction
iterations as described by (8) are performed, then the resulting method is formally
fourth-order accurate. This is the same order of accuracy as the collocation or fully
implicit Runge–Kutta method using the same three nodes, but the two schemes are
not identical. In fact, the fourth-order method with four iterations can be considered

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 29

an explicit Runge–Kutta method with eight stages (see, e.g., [8]). Additional SDC
iterations will not raise the formal order of accuracy but will drive the numerical
solution to that from the collocation formulation with linear convergence with a
rate proportional to the time step.

2.2. Soft error fault injection. For the purpose of this study, we follow the tax-
onomy of Bridges et al. [4], wherein hard faults are those that cause program
interruptions and clearly denote an incomplete program execution while soft faults
are typically observed as random bit flips, where one or more bits of memory are
reversed. These faults are transient and do not indicate hardware damage, as opposed
to persistent faults such as bits that are immutable due to a physical defect (“stuck bit”
errors). Depending on where in the memory hierarchy they occur and the robustness
of the algorithm, soft faults may not always lead to a solution failure but might
result in an erroneous solution despite completely evading detection [14]. It might
be acceptably inexpensive to provide soft fault detection and correction mechanisms
for some, but not all, memory levels. For instance, error correction codes have been
shown to correct a majority of soft faults in main memory [38] while processor
registers are difficult to protect from soft faults [24]. Many factors such as altitude,
age, temperature, and utilization are thought to affect error rates in real machines
with a significant variability observed across various DRAM vendors. Recent studies
have attempted to characterize and quantify error rates by surveying hardware logs
from real machines, although a consensus is far from apparent. Schroeder et al. [35]
study error rates from commodity clusters in Google’s server fleet and observe that a
majority of the errors are hard errors and soft errors are far less probable (a soft error
probability of ∼ 2% for every hard error). On the other hand, Sridharan et al. [39]
find the opposite to be the case from a survey of data from two high-performance
computing systems: Cielo at Los Alamos National Laboratory and Jaguar at Oak
Ridge National Laboratory. Nonetheless, the most dominant mode seems to be
single-bit errors (60%) with hard and soft errors being approximately equiprobable.

Considering the various enmeshed layers of software and hardware, the propaga-
tion of soft faults from one layer to another can be complicated to model. Strictly
speaking, a bit flip at the level of hardware instructions is unlikely to migrate up to
the application level as a single bit flip after several operations have been performed
on the data. Even near the hardware level, a single bit flip in an instruction input
might result in multiple bit flips in the destination register [14]. Despite this, there is
some evidence that injecting single bit flips at higher levels produces similar effects
from an application perspective as injecting errors near the hardware level. We
choose this approach because it allows us to reason about the algorithmic sensitivity
to the errors while eliminating the potentially confounding effects of interaction of
the errors before reaching the application level.

30 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

Wei et al. compare the behavior of high-level fault injection (implemented at the
LLVM intermediate representation (IR) level) to low-level fault injection (using Intel
Pin tools) and find that, while there were significant differences in the number of
program crashes between the two techniques, the IR-level fault injection is effective
for assessing the impact of soft faults that result in silent data corruption. Wei et
al. [41] also note that it is an established de facto standard that single bit flips [16]
are an appropriate approach. In a related issue, Fang et al. [16] look at the effect of
fault injection on multithreaded programs implemented using OpenMP and consider
the sensitivity of the thread where the faults are injected due to the emphasis of the
master thread on problem setup/teardown (phases of their chosen benchmarks that
are particularly prone to resulting in ultimate silent data corruption in the output
from fault injection). In our present application of interest, the setup/teardown
phases are a very small portion of the overall run time, and otherwise the application
follows a bulk-synchronous model.

Since our focus here is on the algorithmic robustness of SDC, we adopt a simple
fault injection model. Considering that processor registers and arithmetic lookup
units (ALUs) and floating point units (FPUs) are the most vulnerable to soft faults
[41], we model soft faults as single bit flips in processor registers. However, we
inject errors at the level of the application rather than at or very near the hardware
level. We adopt an approach similar to, but even closer to the application level than,
that of Wei et al. [41] and inject faults as if they manifest as single bit flips in register
work arrays of the application level kernels that evaluate the terms contributing to
the time derivative (F) of our system of ODEs.

2.3. Algorithmic approaches to resilience. Since a large number of scientific ap-
plications employ linear system solvers, methods to incorporate resilience in iterative
linear solver algorithms have received wide attention. For example, Heroux and
Bridges et al. [23; 4] propose a fault-tolerant version of the generalized minimal
residual method (FT-GMRES) whereby the inner iteration that corresponds to
the preconditioning step for the outer iteration is allowed to be unreliable. Rank
deficiency of the subsequent upper-Hessenberg matrix could signal a potentially
faulty execution of the inner iteration that would require some recovery strategy. The
decision about whether a fault has occurred, and the subsequent recovery, is a global
operation and involves agreement and hence global communication. Sloan et al. [36]
suggest that error detection and recovery should instead be localized near the fault
occurrence. The most expensive computational kernel in linear solver algorithms
such as GMRES, the quasiminimal residual method (QMR), and conjugate gradient
(CG) is usually a matrix-vector multiplication. Sloan et al. [36] contend that a soft
error is most probable in this kernel and suggest an identity check that involves
projecting the result of the matrix-vector multiplication onto a test vector. The

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 31

projection can be computed two different ways, so the results should agree if there
were no faults in the original matrix-vector multiplication. By choosing the test
vector to initially have all elements set to unity, they suggest a recursive hierarchical
algorithm to hone in on the exact locations of faulty execution. Stoyanov and
Webster [40] consider Jacobi and Gauss–Seidel fixed point iteration algorithms and
leverage the identity that the norm of the difference between successive iterates
should reduce at the same rate as the convergence of the algorithm. They suggest
that checking this identity can be used as a method to identify errors due to soft
faults and propose rejecting iterations that fail this test as a means to incorporate
resilience.

Alternative approaches have also been proposed for explicit PDE schemes that
are not iterative in nature. Mayo et al. [30] suggest combining two extremes in
the tradeoff space for resilient explicit PDE algorithms: artificial viscosity, the
physical mechanism that damps perturbations, and triple modular redundancy,
the strategy of performing computations three times and accepting a result that
was reproducible at least twice. They propose using multiple finite difference
schemes over stencils of different widths at each grid point of the same formal
order of accuracy to identify and discard outliers that might have been corrupted
due to soft faults. Donzis and Aditya [11] propose asynchronous explicit finite
difference schemes for PDEs that could be viewed as a potential resilience strategy.
Typically, the explicit scheme for spatial derivatives requires the solution from
neighboring grid points, which involves communication of ghost regions across
processing elements (PEs). In the conventional implementation of such schemes,
the communication and the calculation of spatial derivatives are completed by all
PEs before the next time step is begun; i.e., all portions of the domain advance
the solution in a time-step-synchronized fashion. However, one might envision
that soft faults cause some portions of the domain to take longer to execute an
iteration, introducing an asynchrony between PEs. Donzis and Aditya [11] propose
asynchronous schemes whereby neighboring PEs could be at different time steps
but still perform spatial derivatives to an intended order of accuracy. They model
the asynchrony between neighboring PEs as a random process and show that while
such schemes can be stable the accuracy in both time and space might be degraded.
However, the desired order of accuracy severely limits the maximum asynchrony
allowable between any pair of PEs.

2.4. S3D reacting flow solver and ignition benchmark problem. S3D is a solver
for compressible reacting flows developed by Chen et al. [6]. S3D uses eighth-
order finite-difference approximations of spatial derivatives with a method-of-
lines discretization integrated temporally using a six-stage, fourth-order compact
Runge–Kutta integrator from the family developed by Kennedy et al. [26]. Second

32 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

derivatives are obtained by repeated application of the discrete first-derivative
operator. The code has been used to produce direct numerical simulations (e.g.,
sufficiently resolved to capture all relevant continuum scales for turbulence, chemical
reaction, and turbulence-chemistry interaction) of a variety of turbulent combustion
problems. Past problems include premixed flames [21; 33; 19], nonpremixed
flames [22; 42; 18; 17], and autoignition problems [13; 34]. The code solves the
compressible Navier–Stokes equations along with transport of the mass fractions
of K chemically reacting species using a mixture-averaged transport model. The
species density, momentum, and energy equations of hydrodynamics are given by

∂

∂t
(ρk)+∇ · (ρkv)+∇ ·Fk = Ṡk, (10)

∂

∂t
(ρv)+∇ · [ρvvT

+ p I] +∇ · τ = 0, (11)

∂

∂t
(ρE)+∇ · [(ρE + p)v] +∇ · [Q+ τ · v] = 0, (12)

where ρk , v, p, E , and Ṡk denote, respectively, the mass density for species k, fluid
velocity, pressure, total specific energy, and chemical source term for species k for
a mixture with K species (k = 1, . . . , K). We note that

∑
k Fk = 0 and

∑
k Ṡk = 0

so that summing the species equations gives conservation of mass with
∑

k ρk = ρ,
the total fluid density. Note that vvT is a (tensor) outer product with T indicating
transpose and I is the identity tensor (i.e., ∇ · p I =∇ p). Transport properties are
given in terms of the species diffusion flux F , viscous stress tensor τ , and heat
flux Q. The viscous stress tensor is

τ =−η(∇v+ (∇v)T)+ 2
3η(∇ · v)I, (13)

where η is the shear viscosity. The heat flux is

Q=
∑

k

hkFk − λ∇T, (14)

where hk is the enthalpy of the k-th species and λ is the thermal conductivity.
The diffusion velocity of the k-th species is modeled with a mixture-average

formulation for k− 1 species:

Fk =−Dk

[
∇Yk + Yk W∇Wk + (1−Mk W)

1
p
∇ p

]
, (15)

where Yk = ρk/ρ is the mass fraction of species k, Dk is the mixture-averaged
diffusion of species k, Wk is molecular weight of species k, and W is the mean
molecular weight. The final species diffusion velocity is computed so as to enforce

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 33

conservation of mass:

FK =

K−1∑
k=1

−Fk, (16)

where K is the dominant species, typically N2. Thermodynamic properties are
temperature-dependent; the temperature is related to the energy by

E = es +
1
2 ukuk, es =

∫ T

T0

Cv dT −
RT0

W
, (17)

where Cv is the mixture constant volume specific heat and R is the ideal gas constant.
The chemical source terms appearing in the species equations are computed by

evaluating a chemical reaction network

Ṡk =Wk

Nr∑
j=1

νk j R j , (18)

where νk j are the stoichiometric coefficients for reaction j and the rates of the Nr

reactions are given by expressions of the Arrhenius form used by [25]. For example,
for a reaction where reactants A and B are converted into products C and D,

A+ B⇔ C + D, (19)

the forward rate is given by

R f = [A][B]k f , k f = A f j T β j exp
(
−Taj

T

)
, (20)

where A f j , β j , and Taj are coefficients describing the j -th reaction with the reverse
rate given by

Rb = [C][D]kb, kb =
k f

keq
, keq =

(
p

RT

)∑N
n=1 νnj

exp
(
1S0

j

R
−
1H 0

j

RT

)
, (21)

where 1S0
j and 1H 0

j are the entropy and enthalpy of formation differences across
the reaction, respectively.

The ideal gas equation of state (p = ρRT/W) completes the description of
the system. To solve (10)–(12), a method-of-lines approach is used where spatial
derivatives are replaced by a finite difference operator of the form[

∂φ

∂x

]
i
≈

4∑
m=1

(αmφi−m +αmφi+m). (22)

In the course of evaluating the time derivatives, S3D computes the various terms
much as written here where various kernels (e.g., compute operand, apply derivative

34 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
900

1000

1100

1200

1300

1400

1500

T
 [

k]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [mm]

0

1

2

3

4

5

M
a
ss

 f
ra

ct
io

n

1e 7

HO2

H2O2

0.00

0.05

0.10

0.15

0.20

0.25

M
a
ss

 f
ra

ct
io

n

H2

O2

H2O

0.000

0.005

0.010

0.015

0.020

0.025

M
a
ss

 f
ra

ct
io

n

O

OH

H

0.0 0.5 1.0 1.5 2.0 2.5 3.0
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

T
 [

k]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [mm]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

M
a
ss

 f
ra

ct
io

n

HO2

H2O2

0.00

0.05

0.10

0.15

0.20

0.25

M
a
ss

 f
ra

ct
io

n

H2

O2

H2O

0.000

0.005

0.010

0.015

0.020

0.025

M
a
ss

 f
ra

ct
io

n

O

OH

H

Figure 1. Spatial profiles of temperature and species mass fractions at t = 5.5µs (top)
and t = 30µs (bottom) from reference solution obtained with 6,4-RK integrator.

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 35

0 5 10 15 20 25 30 35
1300

1400

1500

1600

1700

1800
T
 [

k]

0 5 10 15 20 25 30 35
time [µs]

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

M
a
ss

 f
ra

ct
io

n

HO2

H2O2

0.00

0.05

0.10

0.15

0.20

0.25

M
a
ss

 f
ra

ct
io

n

H2

O2

H2O

0.000

0.005

0.010

0.015

0.020

0.025

M
a
ss

 f
ra

ct
io

n

O

OH

H

Figure 2. Temporal evolution of maximum temperature and species mass fractions at
grid point coinciding with maximum temperature from reference solution obtained with
6,4-RK integrator.

operator, and compute diffusion velocity) operate on the entire solution grid until
all of the time derivatives are completely assembled.

In the tests that follow, we will use a fixed time step and tolerate the extra
computational cost as a necessary expense to remove one aspect that would make
the results more difficult to interpret; in future work we plan to study the combination
of SDC and adaptive time step control. The canonical problem is a one-dimensional
simulation of a homogeneous mixture composed of hydrogen and air mixed in a
stoichiometric ratio with a Gaussian temperature hot spot placed in the center of
the domain according to

T (x)= T0+ (T ∗− T0)
1

σ
√

2π
e−(x−x∗)2/(2σ 2). (23)

Solutions for this problem obtained using S3D and the native integrator used
historically in S3D (the 6,4-RK algorithm) are shown in Figures 1 and 2. The
problem is one-dimensional; 120 grid points are used to spatially resolve the ignition
process, and a fixed time step of 5 ns is used in all cases. Figure 1 shows that the
initial spatial temperature profile drives formation of a broad pool of hot radicals,
led by HO2 that is eventually consumed as the mixture proceeds towards ignition

36 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

and takes the first steps towards the formation of a front. In the time histories
shown in Figure 2, the peak temperature decreases due to diffusive processes along
with the slow buildup in HO2 followed by an increase in H2O2, OH, and O and
finally a rapid rise in temperature. The chemical mechanism is that of Li et al. [29];
CHEMKIN’s [25] tranlib is used to evaluate transport coefficients for a mixture-
averaged diffusion formulation. This test case has a relatively long “soaking” period,
requiring approximately 5000 time steps before the onset of thermal runaway at
20µs. This provides ample opportunity for small errors to compound into a large
effect on the solution yet is relatively manageable for experimentation. A similar
test case, a zero-dimensional ethylene-air ignition problem, is used by Spafford et
al. [37] to study the effects of single precision on chemical reaction rate evaluation
in the context of porting S3D kernels to a graphics coprocessor, where the test case
proved sufficiently sensitive to the accuracy of the function evaluation that evaluating
the reaction rates in single precision is insufficient to achieve an acceptable solution.

3. Soft error injection response

In this section we look at injecting two types of soft errors into major work arrays
(those of the dimension of the solution grid) during the computation of the solution:

(A) scaling a single value within a work array by a large factor (i.e., multiplying
by 104) and

(B) reversing the value of a bit at any position within the array (i.e., the value at
any grid point could have any bit within it flipped, including the sign bit, the
mantissa, and the exponent positions).

We use the type-A errors to explore the sensitivity of the solution to various inter-
mediate values and to study how continued SDC sweeps can correct for such errors.
Type-A errors produce a moderate response in that they typically produce a perturbed
state that is incorrect but still physically plausible — the circumstance where silent
data corruption is intuitively likely. Type-B errors are more realistic but can result
in perturbed states that are physically inconsistent (e.g., negative temperatures). We
use the bit flip approach, described in Section 2.2, for a comprehensive assessment
of the technique integrated into the application code at the end of this section. In
all cases, we limit our study to the work arrays that form return values of basic
“simulation kernels” (which will be described in the following subsection). In other
words, we leave persistent variables (e.g., stencil coefficients), control flow and
instruction logic, and the solution vector at the start of the time step unperturbed.

3.1. Work array sensitivity. The S3D algorithm computes several quantities that
are stored in work arrays during the evaluation of the right-hand-side function, and
the sensitivity of the solution to perturbations varies widely between quantities.

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 37

To demonstrate this, we modified the code that evaluates the temporal derivatives
of given quantities so that the results of kernel functions are perturbed. That is,
evaluation of the time derivative involves application of several kernels called as
functions that manipulate a set of work arrays:

Rk(EW)← kernelk(Ik(EW), Eq, . . .), (24)

where EW is the vector of multidimensional work arrays, Rk(EW) is the subset of the
work arrays altered by the k-th kernel, Ik(EW) is the subset of the work arrays used
as input to the k-th kernel, Eq is the vector of conservative state variables at the start
of the time step, and the (. . .) represents the constants that complete the closure
for the kernel. In this nomenclature we apply a perturbation function P that applies
a single bit error (as discussed near the end of Section 2.2) to the return values of
each kernel immediately after each kernel completes:

R̂k(EW)← P[Rk(EW)]. (25)

The scratch/work arrays to which the error injection was applied have dimension
8 · (nx, ny, nz), (nx, ny, nz, 3, 3), (nx, ny, nz, ns, 3), and (nx, ny, nz, ns) whereas
the carryover arrays with dimension (nx, ny, nz, ns, 2) and the various setup arrays
of smaller dimension as well as executable code have not been made vulnerable.
Comparing perturbed runs to the baseline calculation described in Section 2.4 (again
with a fixed 5 ns time step and the 6,4-RK time integration method), we obtain a
sensitivity profile for the various work arrays. Figure 3 indicates the difference in the
maximum temperature in the simulation domain at a fixed time near the end of the
ignition delay when the various quantities are subjected individually to a one-time
perturbation. The perturbation is applied to the output work array at the grid point
where the temperature is maximum by multiplying the value by 104 immediately
after the value is calculated during the first substage function evaluation for the
time step beginning at t = 5.5µs. We observe, as many others have previously
(e.g., [16]), that such error injection can result in different categories of behavior:

(1) The simulation fails in a detectable manner before completion, frequently as
soon as the perturbation is injected. This is typically due to an unrealizable
condition (e.g., temperature outside physical bounds or the sum of the species
mass fractions becoming much larger than unity).

(2) There is no detectable effect on the calculated ignition delay.

(3) The calculation proceeds without apparent error to completion, and the calcu-
lated ignition delay is altered, with the size of the error depending on the size
of the perturbation earlier in the calculation.

While the first type may slow scientific progress due to frequent restarts, it is the
final type — the silent, undetectable errors that alter the result of the calculation —

38 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

Figure 3. Difference in maximum temperature in domain from baseline at fixed time
near end of ignition delay resulting from one-time perturbation of work arrays during
calculation using traditional (6,4-RK) integration algorithm. Derivative of density is
highlighted in green crosshatch. Work arrays where perturbation resulted in simulation
crash are not shown. Variable groups are as follows: Group I, primaries (u, γ, cp, Yα);
Group II, enthalpies (hα); Group III, gradients (∇u,∇T,∇Yα); Group IV, diffusive
fluxes (τi j , Jα, JT); Group V, second derivative operands and results (momentum, energy,
species); and Group VI, reactions (Sα).

that are the most serious. Of the 93 kernel return values perturbed individually, for
74 of those variables the calculation proceeds to completion. The remainder result
in simulation crashes (e.g., from out-of-bounds temperature extremes) and are not
shown in Figure 3. The error in the temperature at the end of the solution ranged
from 70 K below the correct temperature to 93 K above the correct temperature;
this corresponds to impacting the calculated ignition delay by more than 5%. While
it is difficult to make generalizations, perturbations that increased the reaction rate
involving known ignition promoters for this mechanism (O, OH, and H) resulted
in a significant temperature increase (hence, shorter ignition delay). Conversely,
perturbations that increased the transport rates and hence hindered the buildup
of radicals led to a decrease in temperature (hence, longer ignition delay). The
perturbation that increased the source term for the continuity equation led to a
decrease in temperature and is indicated in green in Figure 3 and will be considered
in detail in the following subsection as representative of the error injections that led
to silent data corruption.

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 39

0 5 10 15 20 25 30 35
1300

1400

1500

1600

1700

1800
T
 [

k]

T

Baseline

-64erk

SDC

0 5 10 15 20 25 30 35
time [µs]

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

H
O

2
 M

a
ss

 f
ra

ct
io

n

HO2

Baseline

-64erk

SDC

0.00

0.05

0.10

0.15

0.20

0.25

O
2
 M

a
ss

 f
ra

ct
io

n

O2

0.000

0.005

0.010

0.015

0.020

0.025

O
H

,
H

 M
a
ss

 f
ra

ct
io

n

H

OH

Figure 4. The effect of perturbation of the continuity equation source term on solution
temporal evolution using 6,4-RK and SDC integration schemes; temporal plots were
extracted at a fixed spatial location where error is injected. Notably, the SDC solution is
indistinguishable from the baseline solution while the Runge–Kutta solution is silently and
significantly corrupted.

3.2. Solution after injection of perturbation. Modifying the term that forms the
density time derivative in the RHS evaluation, that is,

∂ρ

∂t
=
∂(−ρu)
∂x

, (26)

results in a greater than 5% increase in the eventual predicted ignition delay and a
significant change in the temperature at the end of the baseline ignition delay as
highlighted in Figure 3 using the 6,4-RK integration method. Figure 4 shows the
temporal evolution of the solution for temperature and key species for the baseline,
unperturbed case, for the 6,4-RK integration and for SDC integration. The SDC
integration is performed using three Gauss–Lobatto quadrature nodes and four
correction sweeps. Figure 5 compares the spatial profiles at two different times:
the time step after the error is injected and the time step when the baseline case
reaches the ignition criterion. The perturbation grows over time after the injection
(at t = 5.5µs). In keeping with the silent nature of the corruption, by inspection
of the portion of the time history after the fault injection, it is difficult to tell that
an error has occurred. Similarly, while it is obvious from looking at the spatial

40 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10-4

10-3

10-2

10-1

100

101

102

103

|T
−
T
ba
se
li
n
e|

[K
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [mm]

900
1000
1100
1200
1300
1400
1500
1600
1700
1800

T
[K

]

10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3

|H
O

2
−
H
O

2,
ba
se
li
n
e|

HO2

HO2

0.0004

0.0002

0.0000

0.0002

0.0004

H
O

2
 M

a
ss

 f
ra

ct
io

n

HO2

Figure 5. Effect of perturbation of continuity equation source term on solution using
6,4-RK and SDC integration schemes at time of baseline case ignition. Solid lines are the
6,4-RK solution, and dashed lines are the SDC solution for temperature (red) and HO2
mass fraction (green). The upper plot shows the difference between the computed solution
and the baseline while the lower plot shows the computed solution alongside the baseline
(in solid black).

profiles at later times in Figure 5 that the solution is contaminated by ringing, it
is not clear how to distinguish this from under-resolved physics [5]. Conversely,
the solution traces obtained when using SDC with a fixed number of iterations
are indistinguishable from the baseline, unperturbed case. This is an empirical
demonstration of the tendency of the SDC iterations to recover from soft errors that
result in silently corrupted data when using the traditional integration algorithm.

In Figure 6, the residual as given in (4) is shown over time; the curves shown for
|Rk | are the magnitude of the residual for the k-th correction iteration. There is one
value per time step plotted obtained at the end of the time step; the lower portion
of the figure is an enlargement of the upper portion. We observe that the error
injection can be detected by monitoring the residual, which increases sharply when
the error is injected. In this experiment the number of SDC correction iterations is
held constant. While this is sufficient to damp the error injected to the point where
the solution is not qualitatively deteriorated, the residual at the final iteration has

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 41

10−3

10−7

10−11

10−15

R
es

id
ua

l

0 5 10 15 20 25 30

|R1| |R2| |R3| |R4|

10−3

10−7

10−11

10−15

R
es

id
ua

l

5.40 5.45 5.50 5.55 5.60

|R1| |R2| |R3| |R4|

Time [µs]

Figure 6. SDC residual response to soft perturbation for four correction sweeps given by
R1–R4. The lower plot is a zoom in on the region of the fault injection; note that the fault
is clearly evident by examining the residual.

not reached its final value prior to the error injection. It is several time steps later
that the residual after the final time step reaches approximately the same magnitude
as the final residual prior to the error injection. In the next subsection we will look
at the response of a linear problem to shed more light on how further SDC iterations
reduce the error in a contaminated solution.

3.3. Response of linear problem to perturbation. In Figures 7 and 8, a similar
experiment is performed on the linear test problem

y′(t)= y(t), y(0)= 1 (27)

over the interval [0, 1]. Three quadrature nodes are used, and four correction sweeps,
including the initial explicit Euler predictor, are performed, giving a formally fourth-
order method. The baseline behavior is shown in Figure 7 for comparison to the
perturbed solution in Figure 8. A perturbation to the solution is introduced by
using y′ = (1.5)y for the derivative evaluation during the third SDC sweep at the
second quadrature node. For the unperturbed case, the solution error decreases
monotonically with iteration count as seen in Figure 7. However, when the error is

42 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

0.0 0.2 0.4 0.6 0.8 1.0

t

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

y

Analytic solution

Exp. Euler Predictor

Sweep 2

Sweep 3

Sweep 4

0.0 0.2 0.4 0.6 0.8 1.0

t

10-3

10-2

10-1

100

|y
−
y a
n
a
ly
ti
c|

Exp. Euler Predictor

Sweep 2

Sweep 3

Sweep 4

Figure 7. SDC iteration behavior for the linear problem (y′ = Ay).

injected during the third sweep, we see the error jump up again to near the error in
the initial predictor (Sweep 4 in Figure 8). After subsequent sweeps the error is
reduced until after Sweep 7 the error in the solution is less than before the error
is injected. Figure 9 demonstrates that the error damping is geometric for a wide
range of perturbation magnitudes. The horizontal axis in Figure 9 corresponds to
the size of the multiplicative perturbation to the derivative computation y′ = sy.
We find that across a wide range of s, both larger and smaller than unity, the error
is damped with a consistent ratio. Also of note in Figure 9, we look at continuing
the SDC iterations beyond the number of passes necessary for convergence of the
reference solution. Even for large perturbations that result in errors several orders
of magnitude larger than the reference solution converged error, the converged
solution remains the same. This feature of SDC — the ability to recover from such
large excursions from the true solution — leads to its natural resilience.

3.4. Response to multiple errors. In this subsection we conduct an experiment to
assess the potential of the SDC iterations to recover from soft errors in a more
realistic scenario. We use the baseline test case described above, running the
simulation until a fixed time tign. We then extract the maximum temperature in

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 43

0.0 0.2 0.4 0.6 0.8 1.0

t

1.0

1.5

2.0

2.5

3.0
y

Analytic solution

Exp. Euler Predictor

Sweep 2

Sweep 3

Sweep 4

Sweep 5

Sweep 6

Sweep 7

0.0 0.2 0.4 0.6 0.8 1.0

t

10-4

10-3

10-2

10-1

100

|y
−
y a
n
a
ly
ti
c|

Exp. Euler Predictor

Sweep 2

Sweep 3

Sweep 4

Sweep 5

Sweep 6

Sweep 7

Figure 8. Effect of perturbation of the linear problem on SDC iteration convergence. Error
is injected during Sweep 3 which results in an error larger than the initial predictor but is
then damped by Sweeps 5 and 6.

the domain as a global measure of the simulation result. We set up our fault
injection framework to inject bit flips into random bits in the return values of
randomly selected kernels at random times, as discussed in Section 3. Specifically,
we injected one fault every 5580 calls to the error injection callback per rank; this
corresponds to approximately one fault every 10 time steps using the baseline RK
time-advancement algorithm without error injection. Within this window, each
process (MPI rank) chooses a random location where the fault will be injected.
At the start of the fault injection window, each rank initializes a counter zero and
chooses a random number in the range (0, 5580) to be the fault call. The counter is
incremented each time the error injection callback is executed, and when it equals
the fault call, a random bit within the valid range of the argument pointer is flipped.
The counter continues to increment with successive calls, but without error injection,
until it reaches the window size when it is reset and a new fault call count is chosen
for the next window. For this one-dimensional calculation five MPI ranks were
used.

44 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

10-1 100 101 102 103 104

Multiplicative perturbation s

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

|y
-y

re
f|

Sweep 2

Sweep 3

Sweep 10

Sweep 20

Figure 9. Effect of perturbation magnitude on SDC convergence rate. Reference solution
yref is the analytic solution with s = 1.

When faults are injected randomly across the variable array, there is the potential
that some faults will result in immediate crashes of the program as identified as the
first type in Section 3.1, i.e., flipping the sign bit of major variables or changing
the most significant bit in the exponent. These types of faults will cause the
program to experience an unrecoverable error that is easily detectable. The test
code solves a transport equation for total energy and computes temperature by using
a Newton search to solve (17). Hence, a bounds check on the temperature is likely
to pick up out-of-bounds issues on any of the variables that participate in (17). The
code historically monitors the temperature range during the solution of (17) and
terminates if it goes out of bounds. In order to allow the simulation to continue
without a full restart, we cache the solution vector at the start of every outer time
step and allow the simulation to restart from that point rather than terminating and
restarting from a save file.

Furthermore, to deal with the final type of error (those leading to silent corruption),
we modified the SDC algorithm to monitor its convergence through the reduction in
the residual. We propose a strategy for mitigating soft errors — hardware-introduced
faults that are stochastic and transient in nature — based on monitoring the behavior
of the SDC correction through the residual to identify when a soft error has occurred
and continuing iteration until the residual drops to the prescribed tolerance. In the
case of nonrecoverable errors detected during the correction iterations, we restart

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 45

Mean Minimum Maximum Span Variance
RK 1737.32 1728.92 1758.82 29.90 0.95
SDC 1737.30 1736.70 1743.69 7.00 0.04

Table 1. Variance in temperature at the end of calculation with error injection using
baseline Runge–Kutta integration and the SDC approach of the same order. The result
from both methods without error injection is 1737.25.

the time step. For each correction iteration (after the first) we compute

R1 =
max| ERn|

max| ER1|
, (28)

Rn−1 =
max| ERn|

max| ERn−1|
(29)

and continue the correction sweeps until R1 < 10−5 and Rn−1 > 0.9, that is, until
the residual is small compared to the residual from the first correction pass and is
also not changing significantly between successive correction passes. The tolerance
values for R1 and Rn−1 were chosen to be consistent with the ratios found in the
baseline case without fault injection at the end of the SDC iterations. The maximum
number of correction passes is limited to eight, after which the time step is accepted.
In practice, only a few time steps encountered this limit.

We conducted 1500 independent runs using both the baseline RK time integration
and the proposed SDC method; the distribution of the temperature at the end of the
calculation is shown in Figure 10 and Table 1. The data in the table demonstrates
that the temperature values using SDC are significantly more clustered near the
reference value than those computed using RK. There are some occurrences where
the error introduced is sufficiently large that maximum SDC iteration limit is reached
before without fully damping the error, which accounts for the nonzero variance in
the sample of the SDC solutions. Despite this, the width of the distribution is far
narrower than the corresponding baseline distribution. In a production environment,
two alternatives to narrow the distribution further are available: more SDC iterations
could be allowed, or the time step could be restarted if the iteration limit is reached.
For this test, the rate of error injection is significantly magnified from realistic error
rates, so either option is likely acceptable with minimal computational cost under
realistic error rates for a target platform. This is meant to be illustrative: given
the uncertainty in the error rates for future architectures, we demonstrate that the
simulation can make progress and the effect of those errors are mitigated, but it is
difficult to assess computational cost without knowing what the error rates are. This
is left for future work as more realistic predictions and measurements of soft error
rates on extreme-scale architectures become available. Satisfyingly, the resilient

46 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

1730 1733 1736 1739 1742 1745 1748 1751 1754 1757
T ∗

10-4

10-3

10-2

10-1

100

p
(T
| t ig

n
=
T
∗
)

RK baseline (−64)

SDC

Figure 10. Distribution of temperature at end of calculation with error injection using
baseline Runge–Kutta integration and SDC approach of same the order.

form of SDC does not add extra cost beyond a general formulation when there are
no hardware faults. In the presence of extreme error rates, the algorithm still makes
progress, with the vast majority of runs resulting in no silent data corruption and a
clear path to including the remaining outliers available.

4. Conclusion

Natural extensions to a generic SDC algorithm have been proposed that are demon-
strated to provide improved algorithmic resilience. It is shown that, in the face of
a single transient error, continued SDC iterations beyond those normally required
provide a viable approach to error recovery. In the case of elevated rates of stochastic
errors, the algorithm can still make progress. In addition, although it is not explored
here, the method provides a mechanism for detecting stuck bit errors that could
potentially be used to trigger restarting the affected time step using different memory
for the work arrays. When no errors are introduced, the suggested formulation
reverts to a generic SDC algorithm, so there is no significant cost penalty for
the modifications. The formulation is predicated on the ability to protect the
integrity of the solution state between successive time steps as well as the program
control flow. However, the work arrays used by the application code during a time
step that typically comprise the majority of the memory usage can be exposed to
significant error rates. This provides an opportunity for savings, where the need

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 47

for error correction is potentially reduced without resorting to measures such as
redundant calculation that increase computational cost irrespective of the actual
error rate realized. As such, the method is a way for application developers to
design for potential increased soft error rates on future hardware without the penalty
of degraded performance on less error-prone architectures.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy
(DOE), Office of Science, Office of Advanced Scientific Computing Research.
Work at Lawrence Berkeley National Laboratory was supported by the Co-Design
Program of the U.S. DOE Office of Advanced Scientific Computing Research under
contract DE-AC02005CH11231.

References

[1] A. R. Benson, S. Schmit, and R. Schreiber, Silent error detection in numerical time-stepping
schemes, Int. J. High Perform. C. 29 (2015), no. 4, 403–421.

[2] S. Borkar, Design challenges of technology scaling, IEEE Micro 19 (1999), no. 4, 23–29.

[3] A. Bourlioux, A. T. Layton, and M. L. Minion, High-order multi-implicit spectral deferred
correction methods for problems of reactive flow, J. Comput. Phys. 189 (2003), no. 2, 651–675.

[4] P. G. Bridges, M. Hoemmen, K. B. Ferreira, M. A. Heroux, P. Soltero, and R. Brightwell,
Cooperative application/OS DRAM fault recovery, Euro-Par 2011: parallel processing workshops
(Bordeaux, 2011), vol. II, Lecture Notes in Computer Science, no. 7156, Springer, Berlin, 2012,
pp. 241–250.

[5] D. L. Brown and M. L. Minion, Performance of under-resolved two-dimensional incompressible
flow simulations, J. Comput. Phys. 122 (1995), no. 1, 165–183.

[6] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao,
K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo, Terascale
direct numerical simulations of turbulent combustion using S3D, Comput. Sci. Disc. 2 (2009),
no. 1, 015001.

[7] S. Chen, G. Bronevetsky, M. Casas-Guix, and L. Peng, Comprehensive algorithmic resilience
for numeric applications, technical note LLNL-CONF-618412, Lawrence Livermore National
Laboratory, Livermore, CA, 2013.

[8] A. Christlieb, B. Ong, and J.-M. Qiu, Comments on high-order integrators embedded within
integral deferred correction methods, Commun. Appl. Math. Comput. Sci. 4 (2009), 27–56.

[9] C. Constantinescu, Impact of deep submicron technology on dependability of VLSI circuits,
International Conference on Dependable Systems and Networks (Washington, DC, 2002), IEEE,
Los Alamitos, CA, 2002, pp. 205–209.

[10] V. Degalahal, R. Ramanarayanan, N. Vijaykrishnan, Y. Xie, and M. J. Irwin, The effect of
threshold voltages on the soft error rate, 5th International Symposium on Quality Electronic
Design (San Jose, 2004), IEEE, Los Alamitos, CA, 2004, pp. 503–508.

[11] D. A. Donzis and K. Aditya, Asynchronous finite-difference schemes for partial differential
equations, J. Comput. Phys. 274 (2014), 370–392.

http://dx.doi.org/10.1177/1094342014532297
http://dx.doi.org/10.1177/1094342014532297
http://dx.doi.org/10.1109/40.782564
http://dx.doi.org/10.1016/S0021-9991(03)00251-1
http://dx.doi.org/10.1016/S0021-9991(03)00251-1
http://dx.doi.org/10.1007/978-3-642-29740-3_28
http://dx.doi.org/10.1006/jcph.1995.1205
http://dx.doi.org/10.1006/jcph.1995.1205
http://dx.doi.org/10.1088/1749-4699/2/1/015001
http://dx.doi.org/10.1088/1749-4699/2/1/015001
https://e-reports-ext.llnl.gov/pdf/724412.pdf
https://e-reports-ext.llnl.gov/pdf/724412.pdf
http://dx.doi.org/10.2140/camcos.2009.4.27
http://dx.doi.org/10.2140/camcos.2009.4.27
http://dx.doi.org/10.1109/DSN.2002.1028901
http://dx.doi.org/10.1109/ISQED.2004.1283723
http://dx.doi.org/10.1109/ISQED.2004.1283723
http://dx.doi.org/10.1016/j.jcp.2014.06.017
http://dx.doi.org/10.1016/j.jcp.2014.06.017

48 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

[12] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
differential equations, BIT 40 (2000), no. 2, 241–266.

[13] T. Echekki and J. H. Chen, Direct numerical simulation of autoignition in non-homogeneous
hydrogen-air mixtures, Combust. Flame 134 (2003), no. 3, 169–191.

[14] J. Elliott, F. Mueller, M. Stoyanov, and C. Webster, Quantifying the impact of single bit flips on
floating point arithmetic, technical note ORNL/TM-2013/282, Oak Ridge National Laboratory,
Oak Ridge, TN, 2013.

[15] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential
equations, Commun. Appl. Math. Comput. Sci. 7 (2012), no. 1, 105–132.

[16] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, Evaluating the error resilience of
parallel programs, 44th annual IEEE/IFIP International Conference on Dependable Systems
and Networks (Atlanta, 2014), IEEE, Los Alamitos, CA, 2014, pp. 720–725.

[17] R. W. Grout, A. Gruber, H. Kolla, P.-T. Bremer, J. C. Bennett, A. Gyulassy, and J. H. Chen, A
direct numerical simulation study of turbulence and flame structure in transverse jets analysed
in jet-trajectory based coordinates, J. Fluid Mech. 706 (2012), 351–383.

[18] R. W. Grout, A. Gruber, C. S. Yoo, and J. H. Chen, Direct numerical simulation of flame
stabilization downstream of a transverse fuel jet in cross-flow, P. Combust. Inst. 33 (2011), no. 1,
1629–1637.

[19] A. Gruber, R. Sankaran, E. R. Hawkes, and J. H. Chen, Turbulent flame–wall interaction: a
direct numerical simulation study, J. Fluid Mech. 658 (2010), 5–32.

[20] E. Hairer and G. Wanner, Solving ordinary differential equations, II: stiff and differential-
algebraic problems, 2nd ed., Springer Series in Computational Mathematics, no. 14, Springer,
1996.

[21] E. R. Hawkes and J. H. Chen, Evaluation of models for flame stretch due to curvature in the thin
reaction zones regime, P. Combust. Inst. 30 (2005), no. 1, 647–655.

[22] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen, Scalar mixing in direct numerical
simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics, P. Combust.
Inst. 31 (2007), no. 1, 1633–1640.

[23] M. A. Heroux, Scalable computing challenges: an overview, presentation at 2009 SIAM Annual
Meeting, Sandia National Laboratories, Livermore, CA, 2009.

[24] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, Cosmic rays don’t strike twice: understanding
the nature of DRAM errors and the implications for system design, Seventeenth International
Conference on Architectural Support for Programming Languages and Operating Systems
(London, 2012), ACM, New York, 2012, pp. 111–122.

[25] R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, CHEMKIN-III: A FORTRAN chemical
kinetics package for the analysis of gas-phase chemical and plasma kinetics, technical note
SAND96-8216, Sandia National Laboratories, Livermore, CA, 1996.

[26] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit Runge–Kutta schemes
for the compressible Navier–Stokes equations, Appl. Numer. Math. 35 (2000), no. 3, 177–219.

[27] A. T. Layton and M. L. Minion, Conservative multi-implicit spectral deferred correction methods
for reacting gas dynamics, J. Comput. Phys. 194 (2004), no. 2, 697–715.

[28] , Implications of the choice of quadrature nodes for Picard integral deferred corrections
methods for ordinary differential equations, BIT 45 (2005), no. 2, 341–373.

[29] J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, An updated comprehensive kinetic model of hydrogen
combustion, Int. J. Chem. Kinet. 36 (2004), no. 10, 566–575.

http://dx.doi.org/10.1023/A:1022338906936
http://dx.doi.org/10.1023/A:1022338906936
http://dx.doi.org/10.1016/S0010-2180(03)00088-9
http://dx.doi.org/10.1016/S0010-2180(03)00088-9
https://info.ornl.gov/sites/publications/Files/Pub44838.pdf
https://info.ornl.gov/sites/publications/Files/Pub44838.pdf
http://dx.doi.org/10.2140/camcos.2012.7.105
http://dx.doi.org/10.2140/camcos.2012.7.105
http://dx.doi.org/10.1109/DSN.2014.73
http://dx.doi.org/10.1109/DSN.2014.73
http://dx.doi.org/10.1017/jfm.2012.257
http://dx.doi.org/10.1017/jfm.2012.257
http://dx.doi.org/10.1017/jfm.2012.257
http://dx.doi.org/10.1016/j.proci.2010.06.013
http://dx.doi.org/10.1016/j.proci.2010.06.013
http://dx.doi.org/10.1017/S0022112010001278
http://dx.doi.org/10.1017/S0022112010001278
http://dx.doi.org/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1016/j.proci.2004.08.106
http://dx.doi.org/10.1016/j.proci.2004.08.106
http://dx.doi.org/10.1016/j.proci.2006.08.079
http://dx.doi.org/10.1016/j.proci.2006.08.079
http://www.cs.sandia.gov/~maherou/docs/HerouxSIAMAN2009.pdf
http://dx.doi.org/10.1145/2150976.2150989
http://dx.doi.org/10.1145/2150976.2150989
http://dx.doi.org/10.2172/481621
http://dx.doi.org/10.2172/481621
http://dx.doi.org/10.1016/S0168-9274(99)00141-5
http://dx.doi.org/10.1016/S0168-9274(99)00141-5
http://dx.doi.org/10.1016/j.jcp.2003.09.010
http://dx.doi.org/10.1016/j.jcp.2003.09.010
http://dx.doi.org/10.1007/s10543-005-0016-1
http://dx.doi.org/10.1007/s10543-005-0016-1
http://dx.doi.org/10.1002/kin.20026
http://dx.doi.org/10.1002/kin.20026

ACHIEVING ALGORITHMIC RESILIENCE FOR TEMPORAL INTEGRATION 49

[30] J. Mayo, R. Armstrong, and J. Ray, Efficient, broadly applicable silent-error tolerance for
extreme-scale resilience, technical note SAND2012-8131, Sandia National Laboratories, Liver-
more, CA, 2012.

[31] M. L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential
equations, Commun. Math. Sci. 1 (2003), no. 3, 471–500.

[32] A. Nonaka, J. B. Bell, M. S. Day, C. Gilet, A. S. Almgren, and M. L. Minion, A deferred
correction coupling strategy for low Mach number flow with complex chemistry, Combust. Theor.
Model. 16 (2012), no. 6, 1053–1088.

[33] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law, Structure of a spatially developing
turbulent lean methane–air Bunsen flame, P. Combust. Inst. 31 (2007), no. 1, 1291–1298.

[34] R. Sankaran, H. G. Im, E. R. Hawkes, and J. H. Chen, The effects of non-uniform temperature
distribution on the ignition of a lean homogeneous hydrogen–air mixture, P. Combust. Inst. 30
(2005), no. 1, 875–882.

[35] B. Schroeder, E. Pinheiro, and W.-D. Weber, DRAM errors in the wild: a large-scale field study,
Commun. ACM 54 (2011), no. 2, 100–107.

[36] J. Sloan, R. Kumar, and G. Bronevetsky, An algorithmic approach to error localization and
partial recomputation for low-overhead fault tolerance, 43rd annual IEEE/IFIP International
Conference on Dependable Systems and Networks (Budapest, 2013), IEEE, Los Alamitos, CA,
2013.

[37] K. Spafford, J. Meredith, J. Vetter, J. Chen, R. Grout, and R. Sankaran, Accelerating S3D: a
GPGPU case study, Euro-Par 2009: parallel processing workshops (Delft, Netherlands, 2009),
Lecture Notes in Computer Science, no. 6043, Springer, Berlin, 2010, pp. 122–131.

[38] V. Sridharan and D. Liberty, A study of DRAM failures in the field, SC ’12: International
Conference on High Performance Computing, Networking, Storage and Analysis (Salt Lake
City, 2012), IEEE, Los Alamitos, CA, 2012.

[39] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi, Feng Shui of
supercomputer memory positional effects in DRAM and SRAM faults, SC ’13: International
Conference on High Performance Computing, Networking, Storage and Analysis (Denver, 2013),
IEEE, Los Alamitos, CA, 2013.

[40] M. Stoyanov and C. Webster, Numerical analysis of fixed point algorithms in the presence of
hardware faults, SIAM J. Sci. Comput. 37 (2015), no. 5, C532–C553.

[41] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, Quantifying the accuracy of high-level fault
injection techniques for hardware faults, 44th annual IEEE/IFIP International Conference on
Dependable Systems and Networks (Atlanta, 2014), IEEE, Los Alamitos, CA, 2014, pp. 375–
382.

[42] C. S. Yoo, R. Sankaran, and J. H. Chen, Three-dimensional direct numerical simulation of a
turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure, J. Fluid
Mech. 640 (2009), 453–481.

Received March 3, 2016. Revised September 9, 2016.

RAY W. GROUT: ray.grout@nrel.gov
Computational Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway,
Golden, CO 80401, United States

HEMANTH KOLLA: hnkolla@sandia.gov
Sandia National Laboratories, P.O. Box 969, M.S. 9158, 7011 East Ave, Livermore, CA 94551-0969,
United States

http://dx.doi.org/10.4310/CMS.2003.v1.n3.a6
http://dx.doi.org/10.4310/CMS.2003.v1.n3.a6
http://dx.doi.org/10.1080/13647830.2012.701019
http://dx.doi.org/10.1080/13647830.2012.701019
http://dx.doi.org/10.1016/j.proci.2006.08.025
http://dx.doi.org/10.1016/j.proci.2006.08.025
http://dx.doi.org/10.1016/j.proci.2004.08.176
http://dx.doi.org/10.1016/j.proci.2004.08.176
http://dx.doi.org/10.1145/1897816.1897844
http://dx.doi.org/10.1109/DSN.2013.6575309
http://dx.doi.org/10.1109/DSN.2013.6575309
http://dx.doi.org/10.1007/978-3-642-14122-5_16
http://dx.doi.org/10.1007/978-3-642-14122-5_16
http://dx.doi.org/10.1109/SC.2012.13
http://ieeexplore.ieee.org/document/6877455/
http://ieeexplore.ieee.org/document/6877455/
http://dx.doi.org/10.1137/140991406
http://dx.doi.org/10.1137/140991406
http://dx.doi.org/10.1109/DSN.2014.2
http://dx.doi.org/10.1109/DSN.2014.2
http://dx.doi.org/10.1017/S0022112009991388
http://dx.doi.org/10.1017/S0022112009991388
mailto:ray.grout@nrel.gov
mailto:hnkolla@sandia.gov

50 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

MICHAEL L. MINION: mlminion@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
MS 50A-3141, 1 Cyclotron Road, Berkeley, CA 94720, United States

JOHN B. BELL: jbbell@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
MS 50A-3141, 1 Cyclotron Road, Berkeley, CA 94720, United States

mathematical sciences publishers msp

mailto:mlminion@lbl.gov
mailto:jbbell@lbl.gov
http://msp.org

COMM. APP. MATH. AND COMP. SCI.
Vol. 12, No. 1, 2017

dx.doi.org/10.2140/camcos.2017.12.51 msp

A FOURTH-ORDER CARTESIAN GRID
EMBEDDED BOUNDARY METHOD

FOR POISSON’S EQUATION

DHARSHI DEVENDRAN, DANIEL T. GRAVES,
HANS JOHANSEN AND TERRY LIGOCKI

In this paper, we present a fourth-order algorithm to solve Poisson’s equation in
two and three dimensions. We use a Cartesian grid, embedded boundary method
to resolve complex boundaries. We use a weighted least squares algorithm to
solve for our stencils. We use convergence tests to demonstrate accuracy and
we show the eigenvalues of the operator to demonstrate stability. We compare
accuracy and performance with an established second-order algorithm. We also
discuss in depth strategies for retaining higher-order accuracy in the presence of
nonsmooth geometries.

1. Introduction

There are many numerical approaches to solve Poisson’s equation in complex
geometries. Green function approaches [26; 16; 8], such as the fast multipole
method, are fast and near-optimal in complexity, but they are not conservative. Also,
they cannot be easily extended to variable and tensor coefficient Poisson operators,
which are important in the earth sciences and multimaterial problems.

Another popular approach is to use the finite element method, which has a number
of advantages. These advantages include negative-definite discrete operators, higher-
order accuracy, and ease of extension to variable coefficients. The conditioning and
accuracy of the discrete finite element operator can be strongly mesh-dependent,
however [6]. Unfortunately, generating meshes with higher-order conforming
elements for complex three-dimensional domains is still an expensive, globally
coupled computation, and an open area of research [30].

This motivates the need for simpler grid generation. Cut cells are a simple way of
addressing this. In a cut cell (or embedded boundary) method, the discrete domain
is the intersection of the complex geometry with a regular Cartesian grid. Such

Research at LBNL was supported financially by the Office of Advanced Scientific Computing Research
of the US Department of Energy under contract number DE-AC02-05CH11231.
MSC2010: 65M08, 65M50.
Keywords: Poisson equation, finite volume methods, high order, embedded boundary.

51

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2017.12-1
http://dx.doi.org/10.2140/camcos.2017.12.51
http://msp.org

52 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

intersections are local, and can be calculated very efficiently in parallel, enabling
fast computation of solution-dependent moving boundaries [1; 33; 27]. Cut cells
have been used successfully to solve Poisson’s equation in finite volume [19; 32]
and finite difference [14; 24] discretizations.

For many problems, such as heat and mass transfer, discrete conservation is im-
portant. Finite volume methods are discretely conservative by construction because
they are in discrete flux-divergence form [22]. Previous finite volume methods for
Poisson’s equation are first order in truncation error near the embedded boundary
and second order in solution error [19; 32]. Our finite volume discretization of
Poisson’s equation is third order in truncation error and fourth order in solution error.
The discretization is in flux-divergence form and therefore strongly conservative.

The second-order, finite volume, strongly conservative Schwartz et al. algorithm
[32] has been used in many larger applications, including incompressible Navier–
Stokes with moving boundaries [27], compressible Navier–Stokes [15] and a DNA-
transport application [37]. We compare our algorithm to the Schwartz et al. algorithm
by comparing both eigenvalue spectrums and the number of degrees of freedom
that are required to achieve a given degree of accuracy.

Realistic boundaries can have discontinuities in their derivatives. For example,
it is common to make a geometric description out of the intersection of several
simpler geometries. We show that these discontinuities can have profound effects
upon accuracy. We provide a strategy for maintaining higher-order accuracy in
the presence of geometric discontinuities using geometric regularization with a
smoothing length which can be controlled. We show that the rate at which this
smoothing length converges with grid refinement matters greatly.

2. Algorithm

The algorithm is described in several steps. First, we introduce the embedded
boundary finite volume discretization for Poisson’s equation. Then we obtain a
Taylor-series-based interpolant of the solution and operator that is compatible with
cell- and face-averaged quantities, and achieves the desired order of accuracy. Lastly,
we introduce a weighted least-squares approach that uses nearest neighbor values
to stably interpolate the quantities needed by the finite volume operator.

2.1. Finite volume discretization. Given a charge density ρ, Poisson’s equation
for the potential φ can be written as

∇ · (∇φ)= ρ. (1)

Integrating this over a control volume V and applying the divergence theorem yields∫
∂V
∇φ · n̂ dA =

∫
V
ρ dV, (2)

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 53

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

n̂(i, j)

V(i, j)

AB,(i, j)

A(i, j− 1
2)

A(i− 1
2 , j)

Figure 1. Illustration of cut cell notation. The shaded region is outside the solution
domain. The volume Vi = V(i, j) is connected to other volumes via the faces aligned with
the coordinate planes. The EB face is formed by the intersection of the embedded boundary
and the cell.

where n̂ is the outward-facing unit normal to the surface.
Our volumes are rectangular control volumes on a Cartesian mesh, cut by an

embedded boundary. Formally, the underlying description of space is given by

ϒi =
[
(i − 1

2 u)h, (i + 1
2 u)h

]
, i ∈ ZD,

where D is the dimensionality of the problem, h is the mesh spacing, and u is the
vector whose entries are all one. Note we use bold font u= (u1, . . . , ud , . . . , uD) to
indicate a vector quantity. Given an irregular domain �, we obtain control volumes
Vi =ϒi ∩� and faces Ai± 1

2 ed
, which are the intersection of the boundary of ∂Vi

with the coordinate planes
{

x : xd =
(
id ±

1
2

)
h
}

(ed is the unit vector in the d
direction). We also define AB,i to be the intersection of the boundary of the irregular
domain with the Cartesian control volume: AB,i = ∂�

⋂
ϒi . Figure 1 illustrates

a volume cut by an embedded boundary.
We define a flux function to be the gradient of the potential (F ≡∇φ). Given a

volume Vi we can rewrite the integral form of Poisson’s equation (2) as a sum of
integrals over each face in the volume,∫

Vi

∇ · (∇φ) dV =
D∑

d=1

(∫
Ai+ 1

2 ed

Fd dA −
∫

Ai− 1
2 ed

Fd dA +
∫

AB,i

Fd n̂d dA
)
. (3)

We use the following notation to denote the averages of φ over a computational
volume:

〈φ〉i =
1
|Vi |

∫
Vi

φ dV . (4)

54 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

The average flux over a coordinate face is defined as

〈Fd〉i± 1
2 ed
=

1
|Ai± 1

2 ed
|

∫
Ai± 1

2 ed

Fd dA,

and the average flux at the irregular face is given by

〈Fd n̂d〉B,i =
1
|AB,i |

∫
AB,i

Fd n̂d dA.

To create a conservative divergence operator, we discretize our divergence operator
as a sum of average fluxes. We define the volume fraction κ to be the fraction of
the volume of the cell inside the solution domain, so that

κ = h−D|Vi |. (5)

Given a flux function F, the κ-weighted divergence of the flux is defined to be the
volume average of the divergence multiplied by κ:

κL(φ)i = κ〈∇·F〉i

=
1

hD

∫
Vi

∇·F dV

=
1

hD

D∑
d=1

(
|Ai+ 1

2 ed
|〈Fd〉i+ 1

2 ed
−|Ai− 1

2 ed
|〈Fd〉i− 1

2 ed
+|AB,i |〈Fd n̂d〉B,i

)
. (6)

We weigh the conservative divergence this way to avoid small-κ numerical insta-
bilities. Implicit algorithms for Poisson’s equation (1) solve the discrete system

κ〈∇ ·∇φ〉i = κ〈ρ〉i (7)

for φ [19; 32], which avoids very large negative eigenvalues from terms with κ−1.
Up to this point, no approximations have been made.

The accuracy of the method is dependent only upon the accuracy of the dis-
cretization of the average fluxes. Previous conservative algorithms for embedded
boundaries compute fluxes that are second order [29; 27; 32; 13; 15; 28; 11]. In
those algorithms, the face-averages of ∇φ are approximated to second order by
pointwise values at the centroids of faces. These fluxes are constructed by pointwise
differencing those cell-centered values of φ.

2.2. Taylor series expansions for average quantities. In our discretization, we
use the cell-averages of φ directly in the local polynomial expansion of φ that
matches the boundary conditions to some order of accuracy. We use this polynomial
expansion to construct a more accurate approximation to the face-averaged flux.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 55

Throughout this paper, we use the following compact “multi-index” notation:

(x− x̄) p
=

D∏
d=1

(xd − x̄d)
pd , p! =

D∏
d=1

pd ! .

Given a point in space x̄, and a D-dimensional integer vector p, we define m p
i (x̄)

to be the p-th moment of the volume Vi relative to the point x̄:

m p
i (x̄)=

∫
Vi

(x− x̄) p dV. (8)

The volume of the cut cell Vi is |Vi | = m z
i , where z is the zero vector. We define

the face moments m p
i± 1

2 ed
(x̄) to be the p-th moments (relative to the point x̄) of

the faces Ai± 1
2 ed

:

m p
i± 1

2 ed
(x̄)=

∫
Ai± 1

2 ed

(x− x̄) p dA. (9)

We define two moments corresponding to the embedded boundary face AB,i ,

m p
B,i (x̄)=

∫
AB,i

(x− x̄) p dA (10)

and

m p
B,i,d(x̄)=

∫
AB,i

(x− x̄) p n̂d(x) dA, (11)

where n̂d is the d-th component of the outward-facing unit normal to the EB face.
For some integer Q, suppose we want an O(hQ) approximation to the flux

F = ∇φ. Given a sufficiently smooth function φ, we can approximate φ in the
neighborhood of x̄ using a multidimensional Taylor expansion:

φ(x)=
∑
|q|<=Q

1
q!
φ(q)(x̄)(x− x̄)q + O(hQ+1), (12)

where we use the multi-index partial derivative notation

φ(q) = ∂qφ =
∂q1

∂xq1
1
· · ·

∂qD

∂xqD
D
φ. (13)

56 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

If we put the expansion (12) into one of the integrals in (3) over a coordinate-aligned
face and set cq =

1
q!φ

(q)(x̄), we get∫
Ai± 1

2 ed

∂φ

∂xd
dA =

∑
|q|<=Q

qdcq

∫
Ai± 1

2 ed

(x− x̄)q−ed dA+ O(hQ) (14)

=

∑
|q|<=Q

qdcqmq−ed

i± 1
2 ed
(x̄)+ O(hQ). (15)

The flux equation at the irregular boundary becomes∫
AB,i

∂φ

∂xd
n̂d dA =

∑
|q|<=Q

qdcq

∫
AB,i

(x− x̄)q−ed n̂d dA+ O(hQ) (16)

=

∑
|q|<=Q

qdcqmq−ed
B,i,d(x̄)+ O(hQ). (17)

All the moments can be generated to any order as shown in Schwartz, et al. [33].
Therefore, generating an O(hQ) algorithm for Poisson’s equation reduces to finding
the coefficients cq .

2.3. Weighted least-squares interpolants. We define Ni+ 1
2 ed

to be the set of vol-
umes in the neighborhood of face i + 1

2 ed . Our neighborhood algorithm is described
in Section 2.3.3. We put the expansion (12) into (4) for every volume Vj ∈Ni+ 1

2 ed
:

〈φ〉 j =
1
|Vj |

∑
|q|<=Q

cq

∫
Vj

(x− x̄i+ 1
2 ed
)q dV (18)

=
1
|Vj |

∑
|q|<=Q

cqmq
j (x̄i+ 1

2 ed
), (19)

where x̄i+1
2 ed
= h

(
i + 1

2 ed
)

is the center of the target face. This forms a system of
equations for the coefficients cq .

Define C to be a column vector composed of the Taylor coefficients cq . In C ,
the powers of q are listed in lexicographical order. For example, in two dimensions,
for Q = 2,

C =

c(0,0)

c(1,0)

c(2,0)

c(0,1)

c(1,1)

c(0,2)

. (20)

Define 8 to be the column vector of all 〈φ〉 j such that Vj ∈ Ni+ 1
2 ed

. Define
M to be the matrix of the volume moments of the neighbors normalized by their

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 57

volumes. Each row of M corresponds to a particular neighbor. In particular, suppose
Ni+ 1

2 ed
= {V j1, . . . , V jN }. Then the l-th row of M are the moments for neighbor V jl .

Each column of M corresponds to a particular power q. Because the volume of Vj
is m z

j , the first column consists of ones.
For example, in two dimensions, with Q = 2, the moment matrix M takes the

form

M =

1

m(1,0)
j1

m(0,0)
j1

m(2,0)
j1

m(0,0)
j1

m(0,1)
j1

m(0,0)
j1

m(1,1)
j1

m(0,0)
j1

m(0,2)
j1

m(0,0)
j1

...
...

...
...

...
...

1
m(1,0)

jN

m(0,0)
jN

m(2,0)
jN

m(0,0)
jN

m(0,1)
jN

m(0,0)
jN

m(1,1)
jN

m(0,0)
jN

m(0,2)
jN

m(0,0)
jN

. (21)

Extending both C and M to Q = 4 simply requires adding the extra moments in
Pascal’s triangle in lexicographical order. All moments in the system of equations
are centered around the target face at x̄i+ 1

2 ed
= h

(
i + 1

2 ed
)
. The system of equations

formed by (19) over the neighborhood Ni+ 1
2 ed

takes the form

8= MC. (22)

Say there are P coefficients we need and N neighbors in Ni+ 1
2 ed

. If N > P , we
have an over-determined system that we can solve by weighted least squares. We
define a weighting matrix W and use it to multiply both sides of our system

W8=W MC.

The choice of weighting matrix is discussed in Section 2.3.2. Taking the Moore–
Penrose pseudoinverse, we solve for the Taylor coefficients

C = (W M)†W8,

and use these coefficients to compute the flux at the face. Recall from (15) that
we need to shift and transform the coefficients to compute the average gradient at
the face. Define G to be the row vector G = [· · · qdmq−ed

i+ 1
2 ed
· · ·], where |q|<= Q.

Then, (15) becomes
|Ai+ 1

2 ed
|〈Fd〉i+ 1

2 ed
= GC.

We express this flux calculation as a stencil. Because these are all linear operators,
we know we can express the flux as a column vector Si+ 1

2 ed
acting on the solution,

|Ai+ 1
2 ed
|〈Fd〉i+ 1

2 ed
= ST

i+ 1
2 ed
8, where

Si+ 1
2 ed
= G(W M)†W. (23)

At every face in the domain, we solve for the stencil Si+ 1
2 ed

. For faces near the
domain boundaries and the embedded boundary we add boundary equations to the

58 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

system (22). This is discussed in Section 2.3.1. We solve for our stencils using the
singular value decomposition framework from LAPACK [5].

Putting the flux stencils from (23) into (6), we get the stencil for our operator κL:

κL i =
1

hD

(D∑
d=1

(Si+ 1
2 ed
− Si− 1

2 ed
)+ SEB

i

)
, (24)

where SEB
i , the stencil for the embedded boundary flux, is discussed in Section 2.3.1.

2.3.1. Boundary conditions. Boundary conditions for this algorithm are used in
two ways. First, we need to calculate the fluxes at the boundary to complete our
finite volume discretization (see (24)). Second, including the boundary conditions
in the interpolant (22) provides additional rows in the matrix that can compensate
for ill-conditioned rows from small cells.

To calculate boundary fluxes, we need different procedures for different types of
boundary conditions. For Neumann boundary conditions, the flux is the specified
boundary condition. For Dirichlet boundary conditions, on the other hand, we need
to compute a stencil to calculate the flux. For Dirichlet domain boundary faces, we
solve for the flux stencil as we would for any other face. For Dirichlet boundary
conditions on embedded boundary faces, we follow the same procedure except that
we use the polynomial expansion from (17), where the derivatives of the normal to
the boundary are included.

We add equations that contain boundary condition information to the system (19)
used to compute polynomial coefficients. This is done for two reasons: first, it
increases the rank of the interpolation matrix if there are small cells. Second, in
combination with the weighting matrix described in Section 2.3.2, it “smoothly”
incorporates boundary conditions into interior cells that are near the embedded
boundary, so the interpolants at nearby faces are more consistent with each other.
We have found that this greatly improves the spectrum of the resulting operator.

Specifically, suppose a volume Vj in the neighbor set Ni+ 1
2 ed

contains a domain
face j + 1

2 ed which has a Dirichlet boundary condition 〈φ〉 j+ 1
2 ed
= φDB. We add

the equation

φDB =
1

|A j+ 1
2 ed
|

∫
A j+ 1

2 ed

φ dA (25)

=
1

|A j+ 1
2 ed
|

∑
|q|<=Q

cq

∫
A j+ 1

2 ed

(x− x̄i+ 1
2 ed
)q dA (26)

=
1

|A j+ 1
2 ed
|

∑
|q|<=Q

cqmq
i+ 1

2 ed
(x̄i+ 1

2 ed
) (27)

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 59

to the system (19). If Vj contains an embedded boundary face with a Dirichlet
boundary condition 〈φ〉EB

i = φEB we add the appropriate form of (17):

φEB =
1
|ABi |

∑
|q|<=Q

cq

∫
ABi

(x− x̄)qnd dA (28)

=
1
|ABi |

∑
|q|<=Q

cqmq
Bi ,d(x̄) (29)

to our equation set (19). The extension of this process to Neumann boundary
conditions is straightforward.

2.3.2. Weighting matrix. Using weighted least squares adds a great deal of flexibil-
ity to the least-squares system solver, in that we do not need to carefully choose
neighbor sets that are both optimally minimal, and produce a well-conditioned
interpolation. As the simplest choice, we use a diagonal weighting matrix W in
(23), which amounts to assigning relative importance to the various equations in the
system: larger weights mean that equation will more heavily influence the solution
to the system [35]. If the volume being weighted is j and the target face is i + 1

2 ed ,
the weight value W j ,i+ 1

2 ed
is chosen to be

W j ,i+ 1
2 ed
= (D j ,i+ 1

2 ed
)−5,

where D j ,i+ 1
2 ed is the Euclidean distance between the volume center and the target

face center. We have found that the choice of weighting function strongly influences
the locality of the resulting stencil, and thus the eigenvalues and stability of the
resulting operator. Using this weighting, we find that our stencil values in the
interior appear to be a perturbation off of a standard second-order stencil, while
operator eigenvalues are stable despite small or missing neighboring cells near the
embedded boundary.

To understand the effect of the weighting matrix power, we can apply discrete
Fourier analysis [23] to the Poisson problem in a one-dimensional periodic domain.
For an eigenmode φ = eiβx , the exact differential operator is ∂xxφ = λφ, where
λ=−β2. Our discrete operator based on (23) can be written as:

L8= 1
h
(Si+ 1

2 ed
− Si− 1

2 ed
)8, L8≡

N/2∑
i=−N/2

siφi . (30)

From this it is straightforward to calculate the eigenvalues λL of our discrete operator,
which we have plotted in Figure 2 for N = 14. Note that the weight power p in
W = D p has a dramatic effect for p ≥−4, and relatively little effect for p <−4.
We believe this is because the entries of Vandermonde-like matrix M in (22), which
increase like O(D4), can be counteracted with W = D−5 or greater. This allows us

60 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

0 0.5 1 1.5 2 2.5 3 3.5
−10

−8

−6

−4

−2

0

2

−5, −8, −12

−1

−2

−4

0, no weight

Figure 2. Discrete Fourier analysis of the effect of the weighting matrix power in one
dimension, plotting wave number β ∈ [0, π) versus operator eigenvalue λ for mode
φ = eiβx . The dotted line is the exact differential operator, λ = −β2. The solid lines
represent the discrete operator (30) with N = 14 points in the stencil, and different weight
powers p, for W = D p .

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 3. Neighbors of faces cut by the embedded boundary. Geometric constraints can
greatly alter the number of neighbors available within a given radius.

to not be concerned with how many neighbors are in our stencil, and maintains the
desired accuracy and stability properties of the differential operator. This analysis
can be extended to two or more dimensions, and for other operators, which will be
the focus of a future paper.

2.3.3. Neighborhood algorithm. We define the neighborhood of the face to be the
set of valid cells within a discrete radius R = 3 cells of either cell of the face:

Ni+ 1
2 ed
=
{

j : id − jd < R or jd − (id + 1) < R for any 1≤ d ≤ D
}
. (31)

We use this many cells because we need enough cells in the system (22) so that
the system will be over-determined even in the case where the embedded boundary
cuts out half of the cells in the neighborhood. Figure 3 illustrates how the number
of neighbor volumes can vary due to geometric constraints. We detect if there are
not enough cells for any given face and, for that face, we use a larger R.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 61

2.4. Multigrid algorithm. Once our stencils are calculated, we use the Chombo
infrastructure [9; 10], which uses the Martin and Cartwright multigrid algorithm
[25], to solve the system. The bottom solver for our multigrid algorithm is the
PETSc algebraic multigrid solver [4; 2; 3]. For eigenvalue calculations, we use the
SLEPc infrastructure [18; 17; 7]. For details of our adaptive multigrid algorithm,
see Devendran et al. [12].

3. Convergence tests

To validate our algorithm, we present convergence tests to show that our algorithm
is converging at expected rates. We test both truncation error T and solution error ε.
We evaluate convergence using the L1, L2, and L∞ norms. Given an error field Eh,
whose resolution is h, defined on volumes Vi in �, and a norm operator ‖ · ‖, the
rate of convergence $ is defined as

$ = log2

(
‖E2h
‖

‖Eh‖

)
.

Given a computational domain �, we define the L∞ norm of a field to be the
maximum value of that field while the L1 and L2 norms are integral norms. These
take the form

‖E‖∞ =max
i∈�
|E i |,

‖E‖1 =
1
|V�|

∫
�

|E i | dV = 1
|V�|

∑
i∈�

|E i ||Vi |,

‖E‖2 =
(

1
|V�|

∫
�

|E i |
2 dV

)1
2

=

(
1
|V�|

∑
i∈�

|E i |
2
|Vi |

)1
2

,

where |V�| is the volume of the whole domain.
Given a smooth input potential φe, we compute the truncation error T by com-

paring the discrete operator L with the exact average Poisson operator Le:

T = κ(L(φe)− Le(φe)), (32)

where κL(φ) is given in (6) and

Le(φe)i =

∫
i

∇ · (∇φe) dV. (33)

We weight the operator this way because the volume fraction κ can be arbitrarily
small and because this is the form of the operator that is used in the solution process
(see (7)). The solution error ε is given by comparing the computed solution φ to

62 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

D norm ‖ε2h
‖ $ ‖εh

‖

2 L∞ 1.290 ·10−4 2.60 2.130 ·10−5

2 L1 5.336 ·10−6 3.99 3.358 ·10−7

2 L2 1.200 ·10−5 3.55 1.022 ·10−6

3 L∞ 9.222 ·10−4 3.86 6.334 ·10−5

3 L1 1.071 ·10−5 4.00 6.687 ·10−7

3 L2 2.507 ·10−5 3.66 1.984 ·10−6

Table 1. Truncation error convergence rates with Dirichlet boundary conditions on the
embedded boundary and Neumann boundary conditions on the domain. The geometry is
the exterior of the ellipse shown in Figure 6, and h = 1/128.

the exact solution φe:
ε = φ−φe. (34)

We expect the truncation error to be larger at the embedded boundary since the
operator is formally third order in the cut cells. Potential theory tells us that these
truncation errors at the boundary should be smoothed out in solution error. We
therefore expect solution error to be uniformly fourth order in all norms.

For these tests, we need a smooth geometry and preferably one whose curvature
varies. Our computational domain is the unit cube. Given a center point x0, we use
the exterior of an ellipse of the form

D∑
d=1

x2
d − x2

0,d

r2
d

= 0, (35)

where r = (0.25, 0.5, 0.75) and x0 = (0.5, 0.5, 0.5). A picture of this ellipse is
given in Figure 6. We generate our geometric moments to O(h6) so that our results
would only reflect the accuracy of our Poisson discretization. In these tests our
finest grid spacing is 128D (h = 1/128), and the exact potential field is given by

φe
=

D∏
d=1

cos(πxd). (36)

3.1. Truncation error. In Table 1, we present truncation error rates for the case
where the domain has Neumann boundary conditions and the irregular boundary
has Dirichlet boundary conditions (φ|∂� = φe). In Table 2, we present truncation
error rates for the case where the domain has Dirichlet boundary conditions and the
irregular boundary has Neumann boundary conditions (∇φ · n̂=∇φe

· n̂). For the
two examples, we present convergence rates for both two and three dimensions. The
third-order truncation error at the embedded boundary dominates the error on the do-
main, and the L∞ error reflects this. The truncation error in the L1 norm, on the other
hand, is fourth-order because the embedded boundary only has codimension one.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 63

D norm ‖ε2h
‖ $ ‖εh

‖

2 L∞ 1.979·10−4 2.99 2.485·10−5

2 L1 1.423·10−5 3.95 9.184·10−7

2 L2 3.897·10−5 3.46 3.530·10−6

3 L∞ 4.490·10−4 2.22 9.645·10−5

3 L1 2.698·10−5 3.95 1.747·10−6

3 L2 6.697·10−5 3.44 6.161·10−6

Table 2. Truncation error convergence rates with Neumann boundary conditions on the
embedded boundary and Dirichlet boundary conditions on the domain. The geometry is
the exterior of the ellipse shown in Figure 6, and h = 1/128.

D norm ‖ε2h
‖ $ ‖εh

‖

2 L∞ 1.626·10−7 3.94 1.060·10−8

2 L1 8.934·10−8 3.91 5.952·10−9

2 L2 1.032·10−7 3.93 6.783·10−9

3 L∞ 3.060·10−7 3.97 1.954·10−8

3 L1 1.955·10−7 3.95 1.265·10−8

3 L2 2.154·10−7 3.96 1.386·10−8

Table 3. Solution error convergence rates with Dirichlet boundary conditions on the
embedded boundary and Neumann boundary conditions on the domain. The geometry is
the exterior of an ellipse and h = 1/128.

3.2. Solution error. In [19; 20], the authors show that a method can have a lower-
order truncation error on the embedded boundary (which is a codimension one set)
than in the interior and still maintain the proper order for the solution error. We solve
κLφ = κL(φe) and compute the solution error. For this test φe is given by (36). In
Table 3 we present solution error rates for the case where the domain has Neumann
boundary conditions and the irregular boundary has Dirichlet boundary conditions
(φ|∂� = φe). We present solution error rates for the case where the domain and
the irregular boundary have Neumann boundary conditions (∇φ · n̂=∇φe

· n̂) in
Table 4. In both cases, we show uniform fourth-order convergence rates in all norms.
We also run this test at much higher resolutions in Section 5.1.

4. Operator eigenvalues

In this section, we compare the spectrum of our algorithm to the widely used,
second-order algorithm presented by Schwartz et al. [32].

The eigenvalues of the Poisson operator will depend upon the geometry and
resolution of the problem as well as the operator boundary conditions. Due to
limitations in computational resources, we are only able to show the spectrum for

64 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

D norm ‖ε2h
‖ $ ‖εh

‖

2 L∞ 1.835 ·10−7 3.96 1.176 ·10−8

2 L1 6.904 ·10−8 3.95 4.459 ·10−9

2 L2 8.678 ·10−8 3.96 5.558 ·10−9

3 L∞ 3.879 ·10−7 3.86 2.669 ·10−8

3 L1 9.325 ·10−8 3.92 6.175 ·10−9

3 L2 1.315 ·10−7 3.94 8.559 ·10−9

Table 4. Solution error convergence rates with Neumann boundary conditions the em-
bedded boundary and Dirichlet boundary conditions on the domain. The geometry is the
exterior of an ellipse and h = 1/128.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0

-3

-2

-1

 0

 1

 2

 3

-10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0

Second-order operator from [32]. Fourth-order operator.

Figure 4. Plots of eigenvalues for the two-dimensional Poisson operators with Neumann
boundary conditions on the embedded boundary and Dirichlet boundary conditions on
the domain boundary. Real and imaginary parts on the x- and y-axes, respectively, with
similar scales for each operator. The geometry implicit function is described by (35) and
the resolution is 322.

coarse two-dimensional problems (our resolution is 322). We use the Krylov–Schur
module in SLEPc [18] to compute the eigenvalues.

We present the spectrum for our fourth-order operator with Neumann boundary
conditions on the embedded boundary and Dirichlet boundary conditions on the
domain in Figure 4, right, We present the spectrum for the second-order operator with
identical conditions in Figure 4, left. We also present the fourth-order spectrum for
Dirichlet boundary conditions on the embedded boundary and Neumann boundary
conditions on the domain in Figure 5, right. and the second-order spectrum in
Figure 5, left. In both cases, Dirichlet boundary conditions on the embedded
boundary introduce more complex eigenvalues. In both cases, all the eigenvalues
have negative real components and are therefore stable.

5. Effect on accuracy of geometric differentiability

Fundamentally, the appeal of a higher-order method is that one can achieve higher
accuracy with fewer degrees of freedom. To reliably achieve this rate of convergence,

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 65

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

-9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0

-5000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

-25000 -20000 -15000 -10000 -5000 0

Second-order operator from [32]. Fourth-order operator.

Figure 5. Plots of eigenvalues for the two-dimensional Poisson operators with Dirichlet
boundary conditions on the embedded boundary and Neumann boundary conditions on
the domain boundary. Real and imaginary parts on the x- and y-axes, respectively, with
different scales for each operator. The fourth-order operator is very similar to second-order
one, but with a few eigenvalues with significantly larger real or imaginary components.
The geometry implicit function is described by (35) and the resolution is 322.

however, one needs a sufficiently smooth description of the geometry. To achieve
O(h P) accurate fluxes, Schwartz, Percelay et al. [33] show that all geometric
moments in the calculation must also converge at O(h P).

Unfortunately, geometric descriptions are not always sufficiently smooth. This
is not necessarily catastrophic. In [20], it is shown that large truncation errors can
be ameliorated under certain circumstances; specifically, O(1) truncation errors
at a Dirichlet boundary condition will not prevent second-order solution error
convergence. Similarly, O(h) truncation errors at a Neumann boundary will not
prevent second-order solution error convergence.

These competing effects present a bit of a complex picture. To see how our algo-
rithm fits into this picture, we compare our algorithm to the widely used Schwartz
et al. [32] algorithm for Poisson’s equation. We compare the two algorithms using
both a smooth and a nonsmooth geometric description. These comparisons are done
for both Dirichlet and Neumann boundary conditions at the embedded boundary. Be-
cause some of the techniques used in this section are resource-intensive, we restrict
our comparisons to two dimensions so we can achieve much higher resolutions.

All of these tests are done with an exact potential

φe =

D∏
d=1

sin(πxd),

and a charge distribution ρ = ∇ ·∇φe. The calculation domain is the unit square
and there are Dirichlet boundary conditions on the domain boundary. In all of
these results we present both the resolution and the number points in � at that

66 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

0

1.26

2.52

3.78

5.04

×10−11

1.09

0.82

0.55

0.27

0
×10−11

Figure 6. Solution error for the ellipse geometry in two dimensions using the current fourth-
order algorithm with a resolution of 5122. Left, using Neumann boundary conditions on
the embedded boundary and Dirichlet boundary conditions on the domain boundary. Right,
using Dirichlet boundary conditions both on the embedded and on the domain boundary.

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 952 1.419·10−3 3.354·10−4 4.144·10−4 —
Schwartz 642 3752 3.511·10−4 8.645·10−5 1.070·10−4 1.95
Schwartz 1282 14884 8.639·10−5 2.186·10−5 2.709·10−5 1.98
Schwartz 2562 59312 2.083·10−5 5.443·10−6 6.741·10−6 2.00
Schwartz 5122 236832 5.167·10−6 1.354·10−6 1.677·10−6 2.00
Schwartz 10242 946432 1.272·10−6 3.380·10−7 4.185·10−7 2.00

current 322 952 2.786·10−6 1.041·10−6 1.316·10−6 —
current 642 3752 1.833 ·10−7 6.897·10−8 8.670·10−8 3.91
current 1282 14884 1.176 ·10−8 4.459·10−9 5.557·10−9 3.95
current 2562 59312 7.431·10−10 2.833·10−10 3.512·10−10 3.97
current 5122 236832 5.045·10−11 1.941·10−11 2.396·10−11 3.86

Table 5. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
with the elliptical geometry. This uses Neumann boundary conditions on the embedded
boundary and Dirichlet boundary conditions on the domain boundary. The convergence
rates $ are calculated using L1.

resolution This number of points represents the number of degrees of freedom in
the calculation.

5.1. Accuracy vs. resolution for a smooth geometry. First we compare our algo-
rithm to the Schwartz et al. algorithm with a smooth geometry. Here, our geometry
is the exterior of the ellipse whose implicit function is described by (35). Figure 6,
left, shows a solution error plot with Neumann boundary conditions at the embedded
boundary. Figure 6, right, shows a solution error plot with Dirichlet boundary condi-
tions. Both cases show that the solution error is distributed throughout the domain.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 67

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 952 5.415 ·10−3 1.322·10−3 1.715·10−3 —
Schwartz 642 3752 1.590 ·10−3 3.592·10−4 4.665·10−4 1.87
Schwartz 1282 14884 4.581·10−4 9.569·10−5 1.243·10−4 1.90
Schwartz 2562 59312 1.259·10−4 2.498·10−5 3.247·10−5 1.93
Schwartz 5122 236832 3.430 ·10−5 6.449·10−6 8.381·10−6 1.95
Schwartz 10242 946432 9.289 ·10−6 1.647·10−6 2.142·10−6 1.96

current 322 952 7.190·10−7 3.169·10−7 3.841·10−7 —
current 642 3752 4.146·10−8 1.907·10−8 2.300·10−8 4.05
current 1282 14884 2.527·10−9 1.173·10−9 1.400·10−9 4.02
current 2562 59312 1.564·10−10 7.370·10−11 8.717 ·10−11 3.99
current 5122 236832 1.093·10−11 5.195·10−12 6.109 ·10−12 3.82

Table 6. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
with the elliptical geometry. This uses Dirichlet boundary conditions everywhere. The
convergence rates $ are calculated using L1.

Tables 5 and 6 show norms of our solution error at many resolutions for Neumann
and Dirichlet boundary conditions, respectively, for both algorithms. For both
Neumann and Dirichlet boundary conditions, we show the expected convergence
rate of 4 for both Neumann and Dirichlet boundary conditions at the irregular faces.

We also get much smaller errors even with greatly reduced resolution. For
example, in the Neumann case, we get an order of magnitude smaller errors at 642

(less than one thousand degrees of freedom) than Schwartz et al. get at 10242 (over
one million degrees of freedom). We expect a different cross-over point depending
on both resolution and the complexity of the boundary. Although our approach
requires significantly more computation and memory, both due to setup (SVD-based
solvers) and solution (using larger stencils), this impact is on a smaller-dimension
domain (codimension 2 and 1 when D is 3 and 2, respectively) only near the
embedded boundary. For a given size problem, there is likely a cross-over point
where our algorithm delivers the same accuracy with many fewer total points.

5.2. Accuracy vs. resolution for a nonsmooth geometry. Now we compare our
algorithm to the Schwartz et al. algorithm with a geometry that is only piecewise
smooth. The geometry is given by the exterior of four or circles as shown in Figure 7.
The implicit function is C1 discontinuous. Figure 8, left, shows a solution error plot
with Neumann boundary conditions. Figure 8, right, shows a solution error plot
with Dirichlet boundary conditions. In both cases, the solution error is concentrated
near the discontinuities in the geometry; in the Dirichlet case, it is concentrated in
a very small area.

For Neumann boundary conditions at the embedded boundary, Tables 7 and 8
compare our solution errors with the Schwartz et al. algorithm for Dirichlet boundary

68 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

R1

R2

R3 R4
P1

P2

P3 P4

Figure 7. Diagram for our four circle geometry. The computational geometry is the region
not covered by these four circles in the unit square, with centers P1 = (0.5, 0.5, 0.5),
P2 = (0.5, 0.735, 0.5), P3 = (0.2965, 0.3825, 0.5), P4 = (0.7035, 0.3825, 0.5), and radii
R1 = 0.2, R2 = R3 = R4 = 0.1.

0
−0.38

−0.76

−1.14

−1.52

×10−2

1.19
−0.74

−2.66

−4.58

−6.50
×10−4

Figure 8. Solution error for the four circle geometry in two dimensions using the current
fourth-order algorithm with a resolution of 5122. Left, using Neumann boundary conditions
on the embedded boundary and Dirichlet boundary conditions on the domain boundary.
Right, using Dirichlet boundary conditions both on the embedded and on the domain
boundary; the error is concentrated very near the cusps in the geometry.

conditions. The errors for the two algorithms are comparable for Neumann boundary
conditions, though the higher-order algorithm does show better results with Dirichlet
boundary conditions. For Neumann boundary conditions on the irregular faces, we
do not even converge at second order. For Dirichlet boundary conditions, we show
better convergence but it is generally less than fourth order.

5.3. Singular solutions and error characteristics. One might be tempted to as-
cribe this loss in accuracy to a poor approximation of geometric moments. After all,
the implicit function from which the moments are generated is not smooth near the
corner. To test this theory, we use the refinement algorithm described in [33] to refine
the cells near circle intersections by a factor of 10242 in each direction. Since we

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 69

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 862 3.525·10−2 3.006 ·10−3 4.625·10−3 —
Schwartz 642 3370 2.231·10−2 9.703 ·10−4 1.585·10−3 1.63
Schwartz 1282 13318 1.291·10−2 5.649 ·10−4 1.134·10−3 0.78
Schwartz 2562 52930 1.776·10−3 8.885 ·10−5 1.325·10−4 2.66
Schwartz 5122 211136 3.576·10−3 1.403 ·10−4 2.192·10−4 -0.66
Schwartz 10242 843316 3.033·10−3 1.417 ·10−4 2.089·10−4 -0.01

current 322 862 5.751·10−2 4.869 ·10−3 7.208·10−3 —
current 642 3370 3.096·10−2 1.420 ·10−3 2.721·10−3 1.77
current 1282 13318 2.817·10−2 2.132 ·10−3 3.204·10−3 -0.58
current 2562 52930 1.969·10−2 1.383 ·10−3 2.020·10−3 0.62
current 5122 211136 1.517·10−2 6.754 ·10−4 1.042·10−3 1.03

Table 7. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
for the four circle geometry. This uses Neumann boundary conditions on the embedded
boundary and Dirichlet boundary conditions on the domain boundary. The convergence
rates $ are calculated using L1.

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 862 2.191 ·10−2 1.333·10−3 1.750·10−3 —
Schwartz 642 3370 1.026 ·10−2 3.717·10−4 4.908·10−4 1.84
Schwartz 1282 13318 2.850 ·10−3 9.703·10−5 1.300·10−4 1.93
Schwartz 2562 52930 5.719 ·10−4 2.654·10−5 3.491·10−5 1.87
Schwartz 5122 211136 8.178 ·10−4 6.686·10−6 9.117·10−6 1.98
Schwartz 10242 843316 8.979 ·10−4 1.620·10−6 2.330·10−6 2.04

current 322 862 1.818 ·10−2 1.604·10−4 5.435·10−4 —
current 642 3370 2.797 ·10−3 3.228·10−5 1.089·10−4 2.31
current 1282 13318 2.317 ·10−2 4.557·10−6 7.391·10−5 2.82
current 2562 52930 2.705 ·10−3 2.014·10−7 4.966·10−6 4.49
current 5122 211136 6.502 ·10−4 5.940·10−8 2.263·10−6 1.76

Table 8. Error vs. refinement comparison with the second-order Schwartz et al. algorithm
with the four circle geometry. This uses Dirichlet boundary conditions everywhere.The
convergence rates $ are calculated using L1.

know the geometric moments of the uncut subcells exactly and only one subcell con-
tains the discontinuity, this increases the accuracy of the geometric moments dramat-
ically. When we run this test, the solution errors do not change. The reason that our
accuracy degrades for the four circle geometry is that the solution to the error equa-
tion is singular at these points. With homogeneous boundary conditions, the solution
of the Poisson equation is singular near corners whose angle is greater than π/2 [21].

70 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

Given a truncation error T (defined in (32)) and the solution error ε (defined in
(34)), the error equation can be written

L(ε)= T . (37)

The boundary conditions for ε are homogeneous analogs of the boundary conditions
for φ (if φ’s boundary conditions are inhomogeneous Dirichlet, ε’s boundary
conditions are homogeneous Dirichlet). Because our equation is linear, we can
separate the truncation error into two parts. We define T s to be the truncation error
in cells within the stencil width w of the singular points. We define the nonsingular
component of the truncation error to be T ns

= T − T s. We then compute the
convergence rate of the solution error εns in the absence of the singular points of
the truncation error by solving

Lεns
= T ns (38)

with the appropriate homogeneous boundary conditions.
We are given a set of M circles {C1, . . . ,CM}, which intersect at the set of

volumes Vs
={P1, . . . , PM}. The singular part of the truncation error T s is given by

T s
v =

{
T if v ∈ Vs,

0 otherwise.
(39)

We solve (38) using both the current fourth-order algorithm and the second-order
Schwartz et al. algorithm. The comparisons with the Schwartz et al. algorithm are
given in Tables 9 and 10. Again, we show that the current algorithm has comparable
errors at 322 resolution to the Schwartz et al. algorithm at 10242 resolution. Once
we remove the singular part of the truncation error, we once again show consistent
fourth-order accuracy with both Dirichlet and Neumann boundary conditions on
the irregular faces.

6. Geometric regularization and accuracy

We recognize that the technique of removing the singular parts of the truncation
error is not generally useful to larger applications. The tests presented in Section 5.3
are predicated upon knowing a priori the singular points and the exact solution. For
high-order methods to be more generally useful, they must produce much better
accuracy than lower-order methods in the presence of geometric discontinuities
without this prior knowledge. In this section, we present a method to smooth the
geometric description over a controlled length scale. We then show that, if one is
careful about how this length scale converges with grid refinement, she can retain
superior accuracy compared to lower-order methods even when the input implicit
function is only C0.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 71

algorithm resolution # points L∞(εns) L1(ε
ns) L2(ε

ns) $

Schwartz 322 862 1.329 ·10−3 3.557·10−4 4.370·10−4 —
Schwartz 642 3370 2.881 ·10−4 8.740·10−5 1.073·10−4 2.02
Schwartz 1282 13320 7.068·10−5 2.084·10−5 2.552·10−5 2.06
Schwartz 2562 52930 1.777·10−5 5.171·10−6 6.327·10−6 2.01
Schwartz 5122 211136 4.382 ·10−6 1.278·10−6 1.564·10−6 2.01
Schwartz 10242 843316 1.033 ·10−6 3.222·10−7 3.946·10−7 1.98

current 322 862 2.353·10−6 7.242·10−7 8.939·10−7 —
current 642 3370 1.864·10−7 5.838·10−8 7.354·10−8 3.63
current 1282 13318 1.133·10−8 3.783·10−9 4.735·10−9 3.94
current 2562 52930 7.215·10−10 2.405·10−10 2.993 ·10−10 3.97
current 5122 211136 5.392·10−11 1.649·10−11 2.046 ·10−11 3.86

Table 9. Convergence of the nonsingular part of the solution error vs. refinement for the
current algorithm and for the Schwartz et al. algorithm. This uses Dirichlet boundary
conditions on the domain boundary and Neumann boundary conditions on the embedded
boundary.The convergence rates $ are calculated using L1.

algorithm resolution # points L∞(εns) L1(ε
ns) L2(ε

ns) $

Schwartz 322 862 6.121 ·10−3 1.440·10−3 1.875·10−3 —
Schwartz 642 3370 1.552 ·10−3 3.911·10−4 5.066·10−4 1.88
Schwartz 1282 13320 4.119·10−4 1.002·10−4 1.321·10−4 1.96
Schwartz 2562 52930 1.355·10−4 2.669·10−5 3.515·10−5 1.90
Schwartz 5122 211136 3.215 ·10−5 6.797·10−6 8.913·10−6 1.97
Schwartz 10242 843316 9.172 ·10−6 1.640·10−6 2.152·10−6 2.05

current 322 862 5.126·10−7 1.741·10−7 2.236·10−7 —
current 642 3370 2.684·10−8 1.080·10−8 1.338·10−8 4.01
current 1282 13318 1.586·10−9 6.380·10−10 7.764 ·10−10 4.08
current 2562 52930 9.650·10−11 3.882·10−11 4.683 ·10−11 4.03
current 5122 211136 6.676·10−12 2.693·10−12 3.232 ·10−12 3.84

Table 10. Convergence of the nonsingular part of the solution error vs. refinement for
both the current algorithm and the Schwartz et al. algorithm. This uses Dirichlet boundary
conditions everywhere.The convergence rates $ are calculated using L1.

6.1. Smoothing the geometric description. Recall that, to generate our geometric
moments using the algorithm described in [33], we must start with an implicit func-
tion I(x) whose zero surface (or contour, in two dimensions) forms the embedded
boundary. Consider the geometry described in Figure 7. The implicit function for
each circle Ci , with radius ri and center yi is given by

Ci (x)= r2
i −

D∑
d=1

(xd − yi,d)
2.

72 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

The overall implicit function at any point is given by taking the maximum of the
four functions:

I(x)= max
1<=d<=4

Ci (x). (40)

Since our geometry is smooth away from specific intersection locations, we wish
to only smooth within a length scale δ from the intersections of implicit function
zero surfaces. To smooth this description we could use a mollifying function and
integrate the convolution directly as in [36]. This has the advantage that the length
scale over which the smoothing happens is well defined. These functions can be
delicate, however, to integrate numerically. Shapiro [34] presents an alternative
approach called R-functions (named for V. L. Rvačev, the originator of the concept
[31]), in which logical functions such as maxima, minima and absolute values are
replaced by differentiable functions. Though this method is far more numerically
tractable, the functions that Shapiro presents do not have a well-defined length scale
over which they smooth. The smoothing method described here provides both a
well-defined smoothing length and is numerically tractable.

One way to write the maxima function used in (40) is by using an absolute value:

max(a, b)= 1
2(a+ b+ |a− b|).

Let us define a function maxδ which smooths the function max over a length scale δ,

maxδ(a, b)= 1
2(a+ b+ Aδ(a− b)),

where Aδ is the convolution of the absolute value function with a sufficiently smooth
function ψδ(x) with compact support in contained within x ∈ [−δ, δ]:

Aδ(x)=

∞∫
−∞

ψδ(x − y)|y| dy =

∞∫
0

ψδ(x − y)y dy −

0∫
−∞

ψδ(x − y)y dy.

Since our algorithm is fourth order in fluxes, we use geometric moments to fourth
order. The algorithm in [33] requires that the implicit function have derivatives to
fourth order. This implies that the mollifier ψδ needs to be C4 and these derivatives
must also have compact support. We also require

∞∫
−∞

ψ(y) dy = 1.

Our choice of ψδ is

ψδ(x)=

{ 4
3δ

cos4
(
πx
2δ

)
if − δ ≤ x ≤ δ,

0 otherwise.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 73

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 862 1.989 ·10−2 2.026·10−3 3.003·10−3 —
Schwartz 642 3368 2.593 ·10−3 2.686·10−4 3.564·10−4 2.91
Schwartz 1282 13316 1.171 ·10−3 1.207·10−4 1.657·10−4 1.15
Schwartz 2562 52916 2.522 ·10−4 3.012·10−5 4.093·10−5 2.00
Schwartz 5122 211062 6.144 ·10−5 7.472·10−6 1.014·10−5 2.01
Schwartz 10242 843004 1.417 ·10−5 1.798·10−6 2.436·10−6 2.05

current 322 862 1.525 ·10−1 1.166·10−2 1.905·10−2 —
current 642 3368 1.739 ·10−3 5.812·10−5 1.102·10−4 7.64
current 1282 13316 7.054 ·10−5 3.077·10−6 5.886·10−6 4.23
current 2562 52916 3.593 ·10−6 4.053·10−8 8.884·10−8 6.24
current 5122 211062 1.425 ·10−7 9.227·10−9 1.473·10−8 2.13

Table 11. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the domain
boundary and Neumann on the embedded boundary. Here we set the geometric regularization
length to a constant δ = 0.01. The convergence rates $ are calculated using L1.

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 862 1.184·10−2 1.869·10−3 2.522 ·10−3 —
Schwartz 642 3368 1.715·10−3 4.142·10−4 5.414 ·10−4 2.17
Schwartz 1282 13316 5.922·10−4 1.023·10−4 1.356 ·10−4 2.01
Schwartz 2562 52916 1.355·10−4 2.676·10−5 3.527 ·10−5 1.93
Schwartz 5122 211062 3.215·10−5 6.784·10−6 8.892 ·10−6 1.97
Schwartz 10242 843004 8.063·10−6 1.644·10−6 2.159 ·10−6 2.04

current 322 862 7.904·10−3 4.768·10−5 2.992 ·10−4 —
current 642 3368 9.380·10−5 1.418·10−6 4.421 ·10−6 5.07
current 1282 13316 2.921 ·10−6 9.434·10−9 5.098 ·10−8 7.23
current 2562 52916 2.745 ·10−7 2.839·10−10 2.146·10−9 5.05
current 5122 211062 3.223 ·10−9 3.365·10−12 3.125·10−11 6.39

Table 12. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet everywhere.
Here we set the geometric regularization length to a constant δ = 0.01. The convergence
rates $ are calculated using L1.

which fulfills these requirements. We need to integrate only where the mollifier is
nonzero. If a and b are signed distance functions, then δ is the length scale over
which Aδ(a, b) represents a smoothing of the absolute value function.

6.2. Regularization length scale and grid refinement. Now we investigate how
one picks the length scale δ. For the piecewise-smooth geometric description
presented in Section 5.2, we present four different choices for δ and see how the
accuracy changes with grid refinement. First we use a constant δ = 0.01. Second,

74 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 828 6.864·10−3 1.503 ·10−3 1.960·10−3 —
Schwartz 642 3238 1.628·10−3 3.894 ·10−4 5.070·10−4 1.94
Schwartz 1282 12810 5.351·10−4 1.014 ·10−4 1.345·10−4 1.94
Schwartz 2562 50918 1.404·10−4 2.669 ·10−5 3.516·10−5 1.92
Schwartz 5122 203052 4.085·10−5 6.808·10−6 8.933·10−6 1.97
Schwartz 10242 810964 9.834 ·10−6 1.640·10−6 2.153·10−6 2.05

current 322 828 9.448·10−5 1.965·10−6 5.407·10−6 —
current 642 3326 9.659·10−7 1.622·10−8 4.080·10−8 6.92
current 1282 13266 2.179·10−8 8.458·10−10 1.295·10−9 4.26
current 2562 52886 2.110·10−8 9.797·10−11 2.689·10−10 3.10
current 5122 211088 1.028·10−8 2.417·10−11 1.331·10−10 2.01

Table 13. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet everywhere.
Here we set the geometric regularization length to δ = 4h. The convergence rates $ are
calculated using L1.

we choose delta to vary linearly with h (δ = 4h). Third, we choose δ =
√

R1h,
where R1 = 0.2 is the radius of the largest circle in Figure 7. Finally, we choose

δ = 0.1
4
√

R3
1h.

The convergence rates for the four choices are quite different.
First, we set our geometric regularization length to a constant δ = 0.01. Tables

11 and 12 show error rates for Neumann and Dirichlet boundary conditions at the
cut faces, respectively. With this fixed δ, the current algorithm shows much smaller
errors than Schwartz et al. In the L1 norm, we get better error rates at 322 than
Schwartz, et al. gets at 10242. We also show excellent convergence rates with both
Neumann and Dirichlet boundary conditions at the irregular faces.

Next, we set our geometric regularization length to δ = 4h. Tables 13 and 14
show the error rates for Dirichlet and Neumann boundary conditions at the cut faces,
respectively. With δ converging linearly with grid refinement, the improvement over
Schwartz et al. is far more modest, especially with Neumann boundary conditions
at the cut faces. Our convergence rates in this case (again, especially with Neumann
boundary conditions), are erratic.

Next, we set our geometric regularization length to δ =
√

R1h. Tables 15 and 16
show the error rates for Neumann and Dirichlet boundary conditions at the cut faces,
respectively. With this formulation of δ, we once again get much better error rates
than Schwartz et al. Here again, in the L1 norm, we get better error rates at 322 than
Schwartz, et al. gets at 10242. Our convergence rates here for Dirichlet boundary
conditions at the embedded boundary are fourth order. For Neumann boundary
conditions at the irregular faces, our convergence rates here are more erratic.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 75

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 828 1.232·10−3 3.357·10−4 4.141 ·10−4 —
Schwartz 642 3238 4.626·10−4 1.379·10−4 1.736 ·10−4 1.28
Schwartz 1282 12810 2.328·10−4 5.009·10−5 6.474 ·10−5 1.46
Schwartz 2562 50918 1.477·10−4 2.196·10−5 2.940 ·10−5 1.19
Schwartz 5122 203052 8.893·10−5 9.725·10−6 1.335 ·10−5 1.17
Schwartz 10242 810964 4.877·10−5 4.166·10−6 5.785 ·10−6 1.22

current 322 828 1.683·10−3 1.122·10−4 2.043 ·10−4 —
current 642 3326 6.971·10−6 5.483·10−7 9.162 ·10−7 7.67
current 1282 13266 6.512·10−7 6.887·10−8 9.896 ·10−8 2.99
current 2562 52886 8.852·10−7 7.875·10−8 1.125 ·10−7 -0.193
current 5122 211088 4.898·10−7 3.394·10−8 5.000 ·10−8 1.21

Table 14. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the
domain boundary and Neumann on the embedded boundary. Here we set the geometric
regularization length to δ = 4h. The convergence rates $ are calculated using L1.

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 846 1.578·10−3 5.115·10−4 6.401·10−4 —
Schwartz 642 3312 5.006·10−4 1.460·10−4 1.845·10−4 1.80
Schwartz 1282 13088 2.112·10−4 4.692·10−5 6.028·10−5 1.63
Schwartz 2562 52022 8.354·10−5 1.484·10−5 1.940·10−5 1.66
Schwartz 5122 20751 3.258·10−5 4.992·10−6 6.646·10−6 1.57
Schwartz 10242 82879 1.000·10−5 1.449·10−6 1.944·10−6 1.78

current 322 846 6.139·10−5 4.725·10−6 8.113·10−6 —
current 642 3330 1.274·10−6 8.435·10−8 1.691·10−7 5.80
current 1282 13252 4.698·10−7 4.297·10−8 6.226·10−8 0.973
current 2562 52794 8.422·10−8 7.356·10−9 1.057·10−8 2.54
current 5122 210856 2.127·10−8 1.846·10−9 2.645·10−9 1.99

Table 15. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the
domain boundary and Neumann on the embedded boundary. Here we set the geometric
regularization length to δ =

√
R1h. The convergence rates $ are calculated using L1.

Finally we set geometric regularization length to δ = 0.1
4√

R3
1h. Tables 17 and

18 show the error rates for Dirichlet and Neumann boundary conditions at the cut
faces, respectively. We see excellent convergence rates and error values for both
types of boundary condition.

Clearly, how the regularization length varies with grid refinement is an important
concern. We suspect that the optimal formulation will depend upon the nature of
the partial differential equation as well as its boundary conditions.

76 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 846 6.581·10−3 1.496·10−3 1.993·10−3 —
Schwartz 642 3312 1.890·10−3 4.014·10−4 5.254·10−4 1.89
Schwartz 1282 13088 4.148·10−4 9.815·10−5 1.295·10−4 2.03
Schwartz 2562 52022 1.355·10−4 2.626·10−5 3.447·10−5 1.90
Schwartz 5122 207510 3.214·10−5 6.751·10−6 8.842·10−6 1.95
Schwartz 10242 828794 8.573·10−6 1.643·10−6 2.157·10−6 2.03

current 322 846 5.402·10−6 2.143·10−7 3.879·10−7 —
current 642 3330 2.792 ·10−7 1.039·10−8 1.807·10−8 4.36
current 1282 13252 1.421 ·10−8 5.089·10−10 7.016·10−10 4.35
current 2562 52794 2.260 ·10−9 3.414·10−11 7.429·10−11 3.89
current 5122 210856 4.074·10−10 2.406·10−12 5.238·10−12 3.82

Table 16. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet everywhere.
Here we set the geometric regularization length to δ =

√
R1h. The convergence rates $

are calculated using L1.

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 846 8.863·10−3 1.775 ·10−3 2.356·10−3 —
Schwartz 642 3312 1.700·10−3 4.134 ·10−4 5.400·10−4 2.10
Schwartz 1282 13088 6.486·10−4 1.026 ·10−4 1.361·10−4 2.01
Schwartz 2562 52022 1.753·10−4 2.692 ·10−5 3.557·10−5 1.93
Schwartz 5122 207510 3.698·10−5 6.802·10−6 8.921·10−6 1.98
Schwartz 10242 828794 1.002 ·10−5 1.640·10−6 2.152·10−6 2.05

current 322 846 2.322·10−3 1.896·10−5 9.508·10−5 —
current 642 3330 8.003·10−5 1.197·10−6 3.742·10−6 3.98
current 1282 13252 3.913·10−6 7.621 ·10−9 6.239·10−8 7.29
current 2562 52794 6.676·10−7 7.522·10−10 6.327·10−9 3.34
current 5122 210856 5.136·10−8 5.920·10−11 4.836·10−10 3.66

Table 17. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet everywhere.
Here we set the geometric regularization length to δ = 0.1

4
√

R3
1h. The convergence rates

$ are calculated using L1.

7. Conclusions

We present a fourth-order, conservative discretization of Poisson’s equation in
the presence of complex geometry. We show that our algorithm converges at the
expected rate for smooth solutions and geometries. We show that our algorithm
has a similar eigenvalue spectrum to the a widely used second-order algorithm
but is much more accurate with a sufficiently smooth geometric description. We
show that the effect of geometric discontinuities on error rates can be profound.

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 77

algorithm resolution # points L∞(ε) L1(ε) L2(ε) $

Schwartz 322 846 9.291 ·10−3 1.131·10−3 1.540·10−3 —
Schwartz 642 3312 2.222 ·10−3 2.422·10−4 3.190·10−4 2.22
Schwartz 1282 13088 1.348 ·10−3 1.408·10−4 1.940·10−4 7.82
Schwartz 2562 52022 3.738 ·10−4 4.130·10−5 5.694·10−5 1.76
Schwartz 5122 207510 1.141 ·10−4 1.087·10−5 1.500·10−5 1.92
Schwartz 10242 828794 3.202 ·10−5 3.167·10−6 4.370·10−6 1.77

current 322 846 4.085 ·10−2 3.202·10−3 5.722·10−3 —
current 642 3330 1.254 ·10−3 3.802·10−5 7.107·10−5 6.39
current 1282 13252 1.189 ·10−4 6.829·10−6 1.186·10−5 2.47
current 2562 52794 1.318 ·10−5 6.356·10−7 1.223·10−6 3.42
current 5122 210856 1.134 ·10−6 5.400·10−8 8.949·10−8 3.55

Table 18. Comparison of error rates with the four-circle geometry for the current algorithm
and for the Schwartz et al. algorithm. The boundary conditions are Dirichlet on the
domain boundary and Neumann on the embedded boundary. Here we set the geometric
regularization length to δ = 0.1

4
√

R3
1h. The convergence rates $ are calculated using L1.

Even in the presence of these discontinuities, however, higher-order convergence
can be recovered if one removes the singular parts of the solution or smooths the
geometric description. To retain higher-order accuracy, how the smoothing length
scale varies with grid refinement is an important concern. We present one such
refinement scheme which performs quite well for both Neumann and Dirichlet
boundary conditions at cut faces.

Acknowledgment

The authors would like to thank Dr. Phillip Colella for his technical advice and
insight.

References

[1] M. J. Aftosmis, M. J. Berger, and J. E. Melton, Robust and efficient cartesian mesh generation
for component-based geometry, AIAA Journal 36 (1998), no. 6, 952–960.

[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang, PETSc
users manual, Tech. Report ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014.

[3] , PETSc Web page, 2014.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism in
object oriented numerical software libraries, Modern software tools in scientific computing (E.
Arge, A. M. Bruaset, and H. P. Langtangen, eds.), Birkhäuser, 1997, pp. 163–202. Zbl

[5] V. A. Barker, L. S. Blackford, J. Dongarra, J. Du Croz, S. Hammarling, M. Marinova, J.
Waśniewski, and P. Yalamov, LAPACK95 users’ guide, Software, Environments, and Tools,
no. 13, SIAM, Philadelphia, PA, 2001. MR Zbl

http://dx.doi.org/10.2514/2.464
http://dx.doi.org/10.2514/2.464
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://msp.org/idx/zbl/0882.65154
http://dx.doi.org/10.1137/1.9780898718201
http://msp.org/idx/mr/1875834
http://msp.org/idx/zbl/0992.65013

78 D. DEVENDRAN, D. T. GRAVES, H. JOHANSEN AND T. LIGOCKI

[6] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 3rd ed., Texts
in Applied Mathematics, no. 15, Springer, New York, 2008. MR Zbl

[7] C. Campos, J. E. Roman, E. Romero, and A. Tomas, SLEPc users manual, Tech. Report
DSIC-II/24/02 - Revision 3.3, D. Sistemes Informàtics i Computació, Universitat Politècnica de
València, 2012.

[8] H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions,
J. Comput. Phys. 155 (1999), no. 2, 468–498. MR Zbl

[9] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini, and B. V.
Straalen, Chombo software package for AMR applications: design document, Tech. Report
LBNL-6616E, LBNL, July 2014.

[10] P. Colella, D. T. Graves, T. J. Ligocki, G. Miller, D. Modiano, P. Schwartz, B. V. Straalen, J.
Pillod, D. Trebotich, and M. Barad, EBChombo software package for Cartesian grid, embedded
boundary application, Tech. Report LBNL-6615E, LBNL, 2014.

[11] P. Colella, D. T. Graves, B. J. Keen, and D. Modiano, A Cartesian grid embedded boundary
method for hyperbolic conservation laws, J. Comput. Phys. 211 (2006), no. 1, 347–366. MR
Zbl

[12] D. Devendran, D. T. Graves, and H. Johansen, A hybrid multigrid algorithm for Poisson’s
equation using an adaptive, fourth order treatment of cut cells, Tech. Report LBNL-1004329,
LBNL, 2014.

[13] Z. Dragojlovic, F. Najmabadi, and M. Day, An embedded boundary method for viscous, conduct-
ing compressible flow, J. Comput. Phys. 216 (2006), no. 1, 37–51. MR Zbl

[14] F. Gibou and R. Fedkiw, A fourth order accurate discretization for the Laplace and heat
equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys. 202
(2005), no. 2, 577–601. MR Zbl

[15] D. T. Graves, P. Colella, D. Modiano, J. Johnson, B. Sjogreen, and X. Gao, A Cartesian grid
embedded boundary method for the compressible Navier–Stokes equations, Commun. Appl.
Math. Comput. Sci. 8 (2013), no. 1, 99–122. MR Zbl

[16] L. Greengard and J.-Y. Lee, A direct adaptive Poisson solver of arbitrary order accuracy, J.
Comput. Phys. 125 (1996), no. 2, 415–424. MR Zbl

[17] V. Hernández, J. E. Román, and V. Vidal, SLEPc: scalable library for eigenvalue problem
computations, High performance computing for computational science (Berlin) (J. M. L. M.
Palma, A. A. Sousa, J. Dongarra, and V. Hernández, eds.), Lecture Notes in Computer Science,
no. 2565, Springer, 2003, pp. 377–391. Zbl

[18] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: a scalable and flexible toolkit for the solution
of eigenvalue problems, ACM Trans. Math. Software 31 (2005), no. 3, 351–362. MR

[19] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation
on irregular domains, J. Comput. Phys. 147 (1998), no. 1, 60–85. MR Zbl

[20] H. S. Johansen, Cartesian grid embedded boundary finite difference methods for elliptic and par-
abolic partial differential equations on irregular domains, Ph.D. thesis, University of California,
Berkeley, 1997.

[21] L. D. Landau and E. M. Lifshitz, Fluid mechanics, 2nd ed., Course of Theoretical Physics, no. 6,
Pergamon, Oxford, 1987. MR

[22] R. J. LeVeque, Numerical methods for conservation laws, Birkhäuser, Basel, 1990. MR Zbl
[23] , Finite difference methods for ordinary and partial differential equations: steady-state

and time-dependent problems, SIAM, Philadelphia, 2007. MR Zbl
[24] R. J. LeVeque and Z. L. Li, The immersed interface method for elliptic equations with discon-

tinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), no. 4, 1019–1044.
MR Zbl

http://dx.doi.org/10.1007/978-0-387-75934-0
http://msp.org/idx/mr/2373954
http://msp.org/idx/zbl/1135.65042
http://dx.doi.org/10.1006/jcph.1999.6355
http://msp.org/idx/mr/1723309
http://msp.org/idx/zbl/0937.65126
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://dx.doi.org/10.1016/j.jcp.2005.05.026
http://msp.org/idx/mr/2168881
http://msp.org/idx/zbl/1120.65324
http://dx.doi.org/10.1016/j.jcp.2005.11.025
http://dx.doi.org/10.1016/j.jcp.2005.11.025
http://msp.org/idx/mr/2223435
http://msp.org/idx/zbl/1173.76372
http://dx.doi.org/10.1016/j.jcp.2004.07.018
http://dx.doi.org/10.1016/j.jcp.2004.07.018
http://msp.org/idx/mr/2145393
http://msp.org/idx/zbl/1061.65079
http://dx.doi.org/10.2140/camcos.2013.8.99
http://dx.doi.org/10.2140/camcos.2013.8.99
http://msp.org/idx/mr/3143820
http://msp.org/idx/zbl/1282.76006
http://dx.doi.org/10.1006/jcph.1996.0103
http://msp.org/idx/mr/1388155
http://msp.org/idx/zbl/0851.65090
http://dx.doi.org/10.1007/3-540-36569-9_25
http://dx.doi.org/10.1007/3-540-36569-9_25
http://msp.org/idx/zbl/1027.65504
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://msp.org/idx/mr/2266798
http://dx.doi.org/10.1006/jcph.1998.5965
http://dx.doi.org/10.1006/jcph.1998.5965
http://msp.org/idx/mr/1657761
http://msp.org/idx/zbl/0923.65079
http://search.proquest.com/docview/304345266
http://search.proquest.com/docview/304345266
http://msp.org/idx/mr/0120782
http://dx.doi.org/10.1007/978-3-0348-5116-9
http://msp.org/idx/mr/1077828
http://msp.org/idx/zbl/0723.65067
http://dx.doi.org/10.1137/1.9780898717839
http://dx.doi.org/10.1137/1.9780898717839
http://msp.org/idx/mr/2378550
http://msp.org/idx/zbl/1127.65080
http://dx.doi.org/10.1137/0731054
http://dx.doi.org/10.1137/0731054
http://msp.org/idx/mr/1286215
http://msp.org/idx/zbl/0811.65083

A FOURTH-ORDER EMBEDDED BOUNDARY METHOD FOR POISSON’S EQUATION 79

[25] D. F. Martin and K. L. Cartwright, Solving Poisson’s equation using adaptive mesh refinement,
Tech. Report UCB/ERI M96/66, University of California, Berkeley, 1996.

[26] A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geometries, J.
Comput. Phys. 118 (1995), no. 2, 348–355. MR Zbl

[27] G. H. Miller and D. Trebotich, An embedded boundary method for the Navier–Stokes equations
on a time-dependent domain, Commun. Appl. Math. Comput. Sci. 7 (2012), no. 1, 1–31. MR
Zbl

[28] A. Nonaka, D. Trebotich, G. Miller, D. Graves, and P. Colella, A higher-order upwind method
for viscoelastic flow, Commun. Appl. Math. Comput. Sci. 4 (2009), 57–83. MR Zbl

[29] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome, An adaptive Cartesian
grid method for unsteady compressible flow in irregular regions, J. Comput. Phys. 120 (1995),
no. 2, 278–304. MR Zbl

[30] S. Z. Pirzadeh, Advanced unstructured grid generation for complex aerodynamic applications,
AIAA Journal 48 (2010), no. 5, 904–915.

[31] V. L. Rvačev, An analytic description of certain geometric objects, Dokl. Akad. Nauk SSSR 153
(1963), 765–767, In Russian; translated in Soviet Math. Dokl. 4 (1963), 1750–1753. MR Zbl

[32] P. Schwartz, M. Barad, P. Colella, and T. Ligocki, A Cartesian grid embedded boundary method
for the heat equation and Poisson’s equation in three dimensions, J. Comput. Phys. 211 (2006),
no. 2, 531–550. MR Zbl

[33] P. Schwartz, J. Percelay, T. J. Ligocki, H. Johansen, D. T. Graves, D. Devendran, P. Colella, and
E. Ateljevich, High-accuracy embedded boundary grid generation using the divergence theorem,
Commun. Appl. Math. Comput. Sci. 10 (2015), no. 1, 83–96. MR Zbl

[34] V. Shapiro, Semi-analytic geometry with R-functions, Acta Numer. 16 (2007), 239–303. MR
Zbl

[35] G. Strang, Linear algebra and its applications, Academic, New York, 1976. MR Zbl
[36] E. Tadmor and J. Tanner, Adaptive mollifiers for high resolution recovery of piecewise smooth

data from its spectral information, Found. Comput. Math. 2 (2002), no. 2, 155–189. MR Zbl
[37] D. Trebotich, G. H. Miller, and M. D. Bybee, A penalty method to model particle interactions in

DNA-laden flows, Journal of Nanoscience and Nanotechnology 8 (2008), no. 7, 3749–3756.

Received March 25, 2016. Revised December 19, 2016.

DHARSHI DEVENDRAN: pdevendran@gmail.com
Applied Numerical Algorithms Group (ANAG), Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, United States

DANIEL T. GRAVES: DTGraves@lbl.gov
Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
Berkeley, CA 94720, United States

HANS JOHANSEN: hjohansen@lbl.gov
Applied Numerical Algorithms Group (ANAG), Computational Research Division,
Lawrence Berkeley National Laboratory, MS 50A1148, One Cyclotron Road, Berkeley, CA 94720,
United States

TERRY LIGOCKI: TJLigocki@lbl.gov
Applied Numerical Algorithms Group (ANAG), Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, United States

mathematical sciences publishers msp

https://crd.lbl.gov/assets/pubs_presos/AMCS/ANAG/MartinCartwright.pdf
http://dx.doi.org/10.1006/jcph.1995.1104
http://msp.org/idx/mr/1329638
http://msp.org/idx/zbl/0823.65115
http://dx.doi.org/10.2140/camcos.2012.7.1
http://dx.doi.org/10.2140/camcos.2012.7.1
http://msp.org/idx/mr/2893419
http://msp.org/idx/zbl/1273.35215
http://dx.doi.org/10.2140/camcos.2009.4.57
http://dx.doi.org/10.2140/camcos.2009.4.57
http://msp.org/idx/mr/2516214
http://msp.org/idx/zbl/1166.76039
http://dx.doi.org/10.1006/jcph.1995.1165
http://dx.doi.org/10.1006/jcph.1995.1165
http://msp.org/idx/mr/1349463
http://msp.org/idx/zbl/0842.76056
http://dx.doi.org/10.2514/1.41355
http://msp.org/idx/mr/0162638
http://msp.org/idx/zbl/0161.39004
http://dx.doi.org/10.1016/j.jcp.2005.06.010
http://dx.doi.org/10.1016/j.jcp.2005.06.010
http://msp.org/idx/mr/2173396
http://msp.org/idx/zbl/1086.65532
http://dx.doi.org/10.2140/camcos.2015.10.83
http://msp.org/idx/mr/3327728
http://msp.org/idx/zbl/1312.65204
http://dx.doi.org/10.1017/S096249290631001X
http://msp.org/idx/mr/2417930
http://msp.org/idx/zbl/1123.65012
http://msp.org/idx/mr/0384823
http://msp.org/idx/zbl/0338.15001
http://dx.doi.org/10.1007/s102080010019
http://dx.doi.org/10.1007/s102080010019
http://msp.org/idx/mr/1894374
http://msp.org/idx/zbl/1056.42002
http://www.ingentaconnect.com/content/asp/jnn/2008/00000008/00000007/art00060
http://www.ingentaconnect.com/content/asp/jnn/2008/00000008/00000007/art00060
mailto:pdevendran@gmail.com
mailto:DTGraves@lbl.gov
mailto:hjohansen@lbl.gov
mailto:TJLigocki@lbl.gov
http://msp.org

COMM. APP. MATH. AND COMP. SCI.
Vol. 12, No. 1, 2017

dx.doi.org/10.2140/camcos.2017.12.81 msp

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD
FOR HYPERBOLIC CONSERVATION LAWS ON THE SPHERE

ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

We introduce a second-order, central-upwind finite volume method for the dis-
cretization of nonlinear hyperbolic conservation laws on the two-dimensional
sphere. The semidiscrete version of the proposed method is based on a technique
of local propagation speeds, and the method is free of any Riemann solver. The
main advantages of our scheme are its high resolution of discontinuous solutions,
its low numerical dissipation, and its simplicity of implementation. We do not
use any splitting approach, which is often applied to upwind schemes in order
to simplify the resolution of Riemann problems. The semidiscrete form of our
scheme is strongly built upon the analytical properties of nonlinear conservation
laws and the geometry of the sphere. The curved geometry is treated here in an
analytical way so that the semidiscrete form of the proposed scheme is consistent
with a geometric compatibility property. Furthermore, the time evolution is carried
out by using a total-variation diminishing Runge–Kutta method. A rich family
of (discontinuous) stationary solutions is available for the conservation laws
under consideration when the flux is nonlinear and foliated (in a suitable sense).
We present a series of numerical tests, encompassing various nontrivial steady
state solutions and therefore providing a good validation of the accuracy and
efficiency of the proposed central-upwind finite volume scheme. Our numerical
tests confirm that the scheme is stable and succeeds in accurately capturing
discontinuous steady state solutions to conservation laws posed on the sphere.

1. Introduction

Nonlinear hyperbolic problems involving conservation laws, or more generally
balance laws, arise in continuum physics and in many engineering applications.
One of the most important partial differential equations (PDEs) is Burgers’ equation,
which plays a crucial role in designing numerical methods and arises in a variety
of applications. For instance, it arises in the modeling of water infiltration in
unsaturated soil and fluid flows through porous media, which are significant in
petroleum and environmental engineering problems and in traffic flow problems [11;

MSC2010: primary 35L65, 65M08; secondary 76L05.
Keywords: hyperbolic conservation law, shock wave, geometry-compatible flux, central-upwind

scheme.

81

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2017.12-1
http://dx.doi.org/10.2140/camcos.2017.12.81
http://msp.org

82 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

37; 31]. In general, the solutions to hyperbolic PDEs can develop sharp gradients
(or discontinuities) in finite time, even when starting from smooth initial conditions.
For example, in multiphase flow in unsaturated porous media, the wetting front can
be very sharp [28; 29]. High-resolution shock-capturing techniques are required
since they have the ability to capture sharp gradients within a few computational
cells with low levels of numerical diffusion and oscillation.

Various classes of so-called shock-capturing schemes have been proposed. In
particular, upwind and central schemes have been used to numerically solve hy-
perbolic conservation laws. Generally, it can be stated that the difference between
these schemes is that upwind methods use characteristic-related information, while
central methods do not. The use of characteristic information in upwind schemes
can improve the results but renders these schemes, in some cases, computationally
expensive. Central schemes are widely used (see, e.g., [32]) after the pioneering
work of Nessyahu and Tadmor [34], where a second-order finite volume central
method on a staggered grid in spacetime was first proposed. This strategy leads to
high resolution and the simplicity of the Riemann-solver free method. As observed
by Kurganov and Tadmor [20], this scheme suffers from excessive numerical
viscosity when a small time step is considered.

In order to improve the performance of central schemes, some characteristic
information can still be used. Kurganov et al. [16] proposed the central-upwind
schemes which are based on information obtained from the local speeds of wave
propagation. The central-upwind schemes can be considered as a generalization
of central schemes originally developed by Kurganov and Tadmor [20; 21] and
Kurganov and Levy [14]. The central-upwind schemes are simple, since they use
no Riemann solvers, and they have proven their effectiveness in multiple studies,
as shown in [18; 19; 15]. Kurganov and Petrova [17] extended the central-upwind
schemes to triangular grids for solving two-dimensional Cartesian systems of con-
servation laws. Next, Beljadid et al. [4] proposed a two-dimensional well-balanced
and positivity-preserving cell-vertex central-upwind scheme for the computation of
shallow water equations with source terms due to bottom topography.

Several studies have been recently done for hyperbolic conservation laws posed
on curved manifolds. The solutions of conservation laws including the systems on
manifolds and on spacetimes were studied in [35; 33] and by LeFloch and coauthors
[1; 2; 5; 6; 23; 26; 27]. More recently, hyperbolic conservation laws for an evolving
surface were investigated by Dziuk, Kröner, and Müller [10], Giesselman [12], and
Dziuk and Elliott [9]. Earlier on, for such problems, Ben-Artzi and LeFloch [6]
and LeFloch and Okutmustur [27] established a general well-posedness theory
for conservation laws on manifolds. In fact, several physically relevant classes of
conservation laws in curved spaces were extensively investigated in recent years
and we refer the interested reader to [8; 13; 22; 24; 25].

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 83

Burgers’ equation provides a simple, yet challenging, equation which admits dis-
continuous solutions, and it provides a simplified setup for the design and validation
of shock-capturing numerical methods. Burgers’ equation and its generalizations to
a curved manifold have been widely used in the physical and mathematical literature.
In [3], we have used a class of Burgers-type equations on the sphere and adopted the
methodology first proposed by Ben-Artzi, Falcovitz, and LeFloch [5], which uses
second-order approximations based on generalized Riemann problems. In [3], a
scheme was proposed which uses piecewise linear reconstructions based on solution
values at the centers of the computational cells and on values of Riemann solutions at
the cell interfaces. A second-order approximation based on a generalized Riemann
solver was then proposed, together with a total-variation diminishing Runge–Kutta
method (TVDRK3) with operator splitting for the temporal integration.

The finite volume method developed in [5] is strongly linked to the structure of
the governing equation on the sphere. The geometric dimensions are considered
in an analytical way which leads to discrete forms of schemes that respect exactly
the geometric compatibility property. The splitting approach which is used in these
schemes simplifies the resolution of the Riemann problem, but it increases the
computational cost.

In the present study, we propose a new finite volume method which is less
expensive in terms of computational cost. This scheme is free of any Riemann
solver and does not use any splitting approach, while such a splitting is widely used
in upwind schemes when one needs to simplify the resolution of Riemann problems.
The present paper provides the first study of geometry-preserving, central-upwind
schemes for conservation laws on a curved geometry.

Burgers’ equation and its generalizations will be used in the present paper in
order to develop and validate the new finite volume method. We design in full detail
a geometry-compatible central-upwind scheme for scalar nonlinear hyperbolic
conservation laws on the sphere. This system has a simple appearance, but it
generates solutions that have a very rich wave structure (due to the curved geometry),
and its solutions provide an effective framework for assessing numerical methods.
Our goal is to develop and validate a finite volume method which is free of any
Riemann problem and is consistent with the geometric compatibility (or divergence-
free) condition, at the discrete level. As we prove, the proposed scheme is efficient
and accurate for discontinuous solutions and implies only negligible geometric
distortions on the solutions.

An outline of the paper is as follows. In Section 2, the governing equations
related to this study are presented. Section 3 is devoted to the derivation of the
semidiscrete version of our scheme. In Section 4, the coordinate system and the
nonoscillatory reconstruction are described. In Section 5, we present the geometry-
compatible flux vectors and some particular steady state solutions as well as confined

84 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

solutions, which will be used to validate the performance of the proposed method.
In Section 6, we demonstrate the high-resolution of the proposed central-upwind
scheme thanks to a series of numerical experiments. Finally, some concluding
remarks are provided.

2. Governing equations

We consider nonlinear hyperbolic equations posed on the sphere S2 and based
on the flux vector F = F(x, u), depending on the function u(t, x) and the space
variable x . This flux is assumed to satisfy the following geometric compatibility
condition: for any arbitrary constant value u ∈ R,

∇ · (F(· , u))= 0. (2-1)

We also assume that the flux takes the form

F(x, u)= n(x)∧8(x, u), (2-2)

where n(x) is the unit normal vector to the sphere and the function 8(x, u) is a
vector field in R3, restricted to S2 and defined by

8(x, u)=∇h(x, u). (2-3)

Here, h = h(x, u) is a smooth function depending on the space variable x and the
state variable u(t, x). Observe that (for instance by Claim 2.2 in [5]) the conditions
(2-2) and (2-3) for the flux vector are sufficient to ensure the validity of the geometric
compatibility condition (2-1).

Here we are going to develop and validate a new geometry-preserving central-
upwind scheme which approximates solutions to the hyperbolic conservation law

∂t u+∇ · F(x, u)= 0, (x, t) ∈ S2
×R+, (2-4)

where ∇ · F is the divergence of the vector field F . Given any data u0 prescribed
on the sphere, we consider the following initial condition for the unknown function
u = u(t, x):

u(0, x)= u0(x), x ∈ S2. (2-5)

Equation (2-4) can be rewritten, using general local coordinates and the index of
summation j , in the form

∂t u+
1
√
|g|
∂ j (
√
|g|F j (x, u))= 0, (2-6)

or
∂t(
√
|g|u)+ ∂ j (

√
|g|F j (x, u))= 0, (2-7)

where in local coordinates x = (x j), the derivatives are denoted by ∂ j =
∂
∂x j , F j

are the components of the flux vector, and g is the metric.

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 85

The conservation law (2-4) becomes

∂tv+ ∂ j (
√
|g|F j (x, v/

√
|g|))= 0, (2-8)

where v = u
√
|g|. This form will be used in the derivation of the semidiscrete

form of the proposed scheme. For the latitude-longitude grid on the sphere, the
divergence operator of the flux vector is

∇ · F =
1

cosφ

(
∂

∂φ
(Fφ cosφ)+

∂Fλ
∂λ

)
, (2-9)

where Fφ and Fλ are the flux components in the latitude (φ) and longitude (λ)
directions on the sphere, respectively.

3. Derivation of the proposed method

Discretization of the divergence operator. We will describe the derivation of the
new central-upwind scheme in detail for the three steps: reconstruction, evolution,
and projection. We will develop and give a semidiscrete form of the proposed
method for a general computational grid used to discretize the sphere. We assume
the discretization of the sphere S2

=
⋃ j=N

j=1 C j , where C j are the computational
cells with areas |C j |. We denote by m j the number of cell sides of C j and by
C j1,C j2, . . . ,C jm j the neighboring computational cells that share with C j the
common sides (∂C j)1, (∂C j)2, . . . , (∂C j)m j , respectively. The length of each cell
interface (∂C j)k is denoted by l jk . The discrete value of the state variable u(t, x)
inside the computational cell C j at a point G j ∈ C j is denoted by un

j at step n.
The longitude and latitude coordinates of the suitable point G j to use inside each
computational cell C j are presented on page 97. These coordinates should be chosen
according to the reconstruction of the state variable u(t, x) over the computational
cells used on the sphere. Finally, we use the notations 1t and tn = n1t for the
time step and the time at step n, respectively. To obtain the semidiscrete form of
the proposed scheme, a first-order explicit development in time will be used. The
resulting ODE can be numerically solved using a higher-order SSP ODE solver
such as Runge–Kutta of the multistep methods. In the numerical experiments, the
third-order TVD Runge–Kutta method proposed by Shu and Osher [36] is used.

In this section, we will present a general form of the discretization of the diver-
gence operator for a general computational grid on the sphere. The approximation
of the flux divergence can be written using the divergence theorem as

[∇ · F(x, u)]approx
=

I j

|C j |
, I j =

[∮
∂C j

F(x, u) · ν(x) ds
]approx

, (3-1)

where ν(x) is the unit normal vector to the boundary ∂C j of the computational cell C j

and ds is the infinitesimal length along ∂C j .

86 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

The scalar potential function h is used to obtain the following approximation
along each side of the computational cell C j .

Claim 3.1. For a three-dimensional flux 8(x, u) given by (2-3), where h = h(x, u)
is a smooth function in the neighborhood of the sphere S2, the total approximate
flux through the cell interface e is given by∮ e2

e1
F(x, u) · ν(x) ds =−(h(e2, u j)− h(e1, u j)), (3-2)

where e1 and e2 are the initial and final endpoints of the side e in the sense of
integration and u j is the estimate value of the variable u along the side e.

Namely, the flux vector is written in the form F(x, u)= n(x)∧8(x, u) and we
can derive the approximation of the integral along each cell side of C j∮ e2

e1
F(x, u) · ν(x) ds =

∮ e2

e1
(n(x)∧8(x, u)) · ν(x) ds

=−

∮ e2

e1
8(x, u) · (n(x)∧ ν(x)) ds =−

∮ e2

e1
∇h(x, u) · τ(x) ds

=−

∮ e2

e1
∇∂C j h(x, u) ds =−(h(e2, u j)− h(e1, u j)), (3-3)

where τ(x) is the unit vector tangent to the boundary ∂C j .

Remark 3.2. Using the discrete approximations based on Claim 3.1, if a constant
value of the state variable u(t, x)= u j = u is considered, one obtains

[∇ · F(x, u)]approx
=

1
|C j |

[∮
∂C j

F(x, u) · ν(x) ds
]approx

=−

∑
e∈∂C j

(h(e2, u)− h(e1, u))= 0. (3-4)

This confirms that the discrete approximation of the divergence operator respects
the divergence-free condition which is the geometric requirement that the proposed
scheme should satisfy.

Reconstruction method and approximation of the one-sided local speeds of prop-
agation of the waves. In the following, we will present the reconstruction of the
proposed central-upwind scheme and the approximation used to obtain the maximum
of the directional local speeds of propagation of the waves at cell interfaces inward
and outward of computational cells. The semidiscrete form of the proposed scheme
for (2-4) will be derived by using the approximation of the cell averages of the

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 87

solution. At each time t = tn , the computed solution is

un
j ≈

1
|C j |

∫
C j

u(x, tn) dVg, (3-5)

where dVg =
√

g dx1 dx2.
The discrete values un

j of the solution at time t = tn are used to construct a
conservative piecewise polynomial function with possible discontinuities at the
interfaces of the computational cells C j :

ũn(x)=
∑

j

wn
j (x)χ j (x), (3-6)

where wn
j (x) is a polynomial in two variables (λ and φ) and χ j is the characteristic

function which is defined using the Kronecker symbol δ jk and, for any point of
spatial coordinate x inside the computational cell Ck , we consider χ j (x)= δ jk .

To prevent oscillations, minmod-type reconstruction can be used to obtain the
polynomial function wn

j (x) for each computational cell. Page 97 describes the
reconstruction method used for the proposed central-upwind scheme on the sphere.

The maximum of the directional local speeds of propagation of the waves at
the k-th interface inward and outward of the computational cell C j are denoted
by ain

jk and aout
jk , respectively. When the solution evolves over a time step 1t , the

discontinuities move inward and outward at the k-th interface of the computational
cell C j with maximum distances ain

jk1t and aout
jk 1t , respectively. These distances

of propagation are used at the computational cells to delimit different areas in which
the solution is still smooth and the areas in which the solution may not be smooth
when it evolves from the time level tn to tn+1.

We define the domain D j as the part inside the cell C j in which the solution is
still smooth; see Figure 1. Two other types of domains are defined: the first type
includes the “rectangular” domains D jk , k = 1, 2, . . . ,m j , along each side of C j

of width (aout
jk + ain

jk)1t and length l jk + O(1t), and the second type includes the
domains denoted by E jk , k=1, 2, . . . ,m j , around the cell vertices of computational
cells. These domains are decomposed into two subdomains D jk = D+jk ∪ D−jk and
E jk = E+jk ∪ E−jk , where the subdomains with the superscript plus signs “+” and
minus signs “−” are the domains inside and outside of the cell C j , respectively.
For purely geometrical reasons, the areas of the three types of subdomains are of
orders |D j | = O(1), |D jk | = O(1t), and |E jk | = O(1t2).

We consider the projection of the flux vector F̃ according to the normal to the
k-th cell interface (∂C j)k :

f jk = N jk · F̃, (3-7)

88 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

E jk

D j D+jk D−jk

Figure 1. Schematic view of the decomposition of the control volume. The thick black
lines are the limits of computational cells, and the thin gray lines are used for the decom-
position of control volumes.

where N jk is the unit normal vector to the cell interface (∂C j)k and F̃ has the
components

√
gF j (x, v/

√
g) which are used in (2-8).

The one-sided local speeds of propagation of the waves at the k-th cell interface
(∂C j)k , inward and outward of the computational cell C j , are estimated by

aout
jk = max

{
∂ f jk

∂v
(M jk, u j (M jk)),

∂ f jk

∂v
(M jk, u jk(M jk)), 0

}
,

ain
jk =−min

{
∂ f jk

∂v
(M jk, u j (M jk)),

∂ f jk

∂v
(M jk, u jk(M jk)), 0

}
,

(3-8)

where u j (M jk) is the value of the state variable u at the midpoint M jk of (∂C j)k ,
which is obtained from the nonoscillatory reconstruction for the computational
cell C j and u jk(M jk) is the value of u at the same point M jk using the nonoscillatory
reconstruction for the neighboring cell C jk .

Evolution and projection steps. In this section, the techniques used for the hyper-
bolic conservation laws and shallow water systems in a Cartesian framework [16;
18; 19; 15; 17; 4] will be extended to the case of hyperbolic conservation laws
on the sphere. The computed cell averages un+1

j of the numerical solution at time
step tn+1 over the computational cells C j are used to obtain the piecewise linear
reconstruction w̃n+1 which should satisfy the conservative requirement

un+1
j =

1
|C j |

∫
C j

w̃n+1(x) dVg. (3-9)

The average of the function w̃n+1 over the domain D j is denoted by

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 89

wn+1(D j)=
1
|D j |

∫
D j

w̃n+1(x) dVg. (3-10)

Note that it is possible to derive the fully discrete form of the proposed scheme
but it is impractical to use and, for simplicity, we will develop the semidiscrete form
of the scheme. The ODE for approximating the cell averages of the solutions is
derived by letting the time step 1t go to zero. This eliminates some terms because
of their orders, and we keep the more consistent terms:

du j

dt
(tn)= lim

1t→0

un+1
j − un

j

1t

= lim
1t→0

1
1t

[
1
|C j |

∫
D j

w̃n+1(x) dVg +
1
|C j |

m j∑
k=1

∫
D+jk

w̃n+1(x) dVg

+
1
|C j |

m j∑
k=1

∫
E+jk

w̃n+1(x) dVg − un
j

]
. (3-11)

Since the areas of domains E jk with k = 1, 2, . . . ,m j are of order 1t2, we
obtain ∫

E+jk

w̃n+1(x) dVg = O(1t2). (3-12)

This approximation allows us to deduce that the third term on the right-hand side of
(3-11) is of order 1t2 and the result for the limit of this term vanishes for the ODE.

The second term in (3-11), in which we use the “rectangular” domains D+jk ,
will be estimated by using the assumption that the spatial derivatives of w̃n+1 are
bounded independently of 1t . Under this assumption, the following claim gives an
estimation of this term with an error of order 1t2 for each k ∈ [1,m j].

Claim 3.3. Consider the reconstruction given by (3-6), its evolution w̃n+1 over the
global domain, and the definitions given at the bottom of page 86 for the domains
D jk and D+jk . If we assume that the spatial derivatives of w̃n+1 are bounded
independently of 1t , then∫

D+jk

w̃n+1(x) dVg = |D+jk |w
n+1(D jk)+ O(1t2). (3-13)

Proof. It is obvious that, for the cases |D+jk | = 0 or |D−jk | = 0, (3-13) is valid. We
assume that |D+jk ||D

−

jk | 6= 0, and we consider

R =
∫

D+jk

w̃n+1(x) dVg − |D+jk |w
n+1(D jk).

90 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

We have

R =
∫

D+jk

w̃n+1(x) dVg −
|D+jk |

|D jk |

(∫
D+jk

w̃n+1(x) dVg +

∫
D−jk

w̃n+1(x) dVg

)

=
|D+jk |

|D jk |

[
|D−jk |

|D+jk |

∫
D+jk

w̃n+1(x) dVg −

∫
D−jk

w̃n+1(x) dVg

]

=
|D+jk |

|D jk |

[aout
jk

ain
jk

∫ 0

−ain
jk1t

w̃n+1(s)l̃ jk ds−
∫ aout

jk 1t

0
w̃n+1(s)l̃ jk ds

]
, (3-14)

where l̃ jk is the length of the domain D jk and s is a variable along the outward axis
orthogonal to the k-th cell interface; see Figures 1 and 3.

One obtains after the change of variable in the first integral of the last equality
in (3-14)

R =
|D+jk |

|D jk |
l̃ jk

∫ aout
jk 1t

0

(
w̃n+1

(
−

ain
jk

aout
jk

s
)
− w̃n+1(s)

)
ds.

Using the mean value theorem on the function w̃n+1, we obtain

R =−
|D+jk |

|D jk |
l̃ jk

∫ aout
jk 1t

0

ain
+ aout

aout s
∂w̃n+1

∂s
(cs) ds,

where cs ∈ [min(s,−sain
jk/a

out
jk),max(s,−sain

jk/a
out
jk)].

We denote by M the upper bound of the spatial derivative of the function w̃n+1

over the domain D jk . Therefore,

|R| ≤ Ml
|D+jk |

|D−jk |

∫ aout
jk 1t

0
s ds =

Ml
2
|D+jk ||D

−

jk |.

Since l̃ jk = l jk + O(1t) and both the areas |D+jk | and |D−jk | are of order 1t , we
obtain R = O(1t2). �

Using (3-13) in Claim 3.3,

1
|C j |

m j∑
k=1

∫
D+jk

w̃n+1(x) dVg =
1
|C j |

m j∑
k=1

|D+jk |w
n+1(D jk)+ O(1t2)

=
1t
|C j |

m j∑
k=1

ain
jk(l jk + O(1t))wn+1(D jk)+ O(1t2). (3-15)

Therefore, (3-11) can be written as

du j

dt
(tn)= lim

1t→0

1
1t

[
|D j |

|C j |
wn+1(D j)−un

j

]
+

m j∑
k=1

lim
1t→0

|D+jk |

1t |C j |
wn+1(D jk), (3-16)

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 91

where

wn+1(D jk)=
1
|D jk |

∫
D jk

w̃n+1(x) dVg. (3-17)

In order to derive the semidiscrete form of the proposed scheme from (3-16),
one needs to compute the average values wn+1(D jk) and wn+1(D j). To compute
wn+1(D jk), (2-4) is integrated over the spacetime control volume D jk ×[tn, tn+1].
After integration by parts and applying the divergence theorem to transform the
surface integral of the divergence operator to the boundary integral and using the
approximation (3-2) of the flux through the cell interfaces, we obtain

wn+1(D jk)=
1
|D jk |

[∫
D+jk

wn
j (x)dVg +

∫
D−jk

wn
jk(x)dVg

]
−

1
|D jk |

∫ tn+1

tn

∫
D jk

∇ · F(x, u) dVg, (3-18)

and∫
D jk

∇ ·F(x, u) dVg

=

[∫
∂D jk

F(x, u) · ν(x) ds
]approx

=

i=4∑
i=1

∫
(∂D jk)i

F(x, u) · ν(x) ds

=−
[
−h(e2

jk,u j (M jk))+h(e1
jk,u j (M jk))+h(e2

jk,u jk(M jk))− h(e1
jk,u jk(M jk))

]
+ O(1t), (3-19)

where (∂D jk)i , i = 1, 2, 3, 4, are the four edges of the domain D jk , e2
jk and e1

jk are
the initial and final endpoints of the cell interface (∂C j)k , and as mentioned before
wn

j and wn
jk are the piecewise polynomial reconstructions in the computational cells

C j and C jk at time tn , respectively.
The term on the right-hand side of (3-19) of order O(1t) corresponds to the

global result of the integration along the two edges of the domain D jk having the
length (ain

jk + aout
jk)1t and the rest of the integration due to the difference between

the length of the domain D jk and the length of the cell interface (∂C j)k .
In order to compute the spatial integrals in (3-18), Gaussian quadrature can be

applied. In our case, the midpoint rule is used for simplicity:∫
D+jk

wn
jk dVg +

∫
D−jk

wn
jk dVg ≈ l jk1t[ain

jku j (M jk)+ aout
jk u jk(M jk)]. (3-20)

92 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

Equations (3-18), (3-19), and (3-20) lead to

lim
1t→0

wn+1(D jk)=
l jk

ain
jk + aout

jk
[ain

jku j (M jk)+ aout
jk u jk(M jk)]

+
1

ain
jk + aout

jk

[
−h(e2

jk, u j (M jk))+ h(e1
jk, u j (M jk))

+ h(e2
jk, u jk(M jk))− h(e1

jk, u jk(M jk))
]
. (3-21)

Therefore, we find

lim
1t→0

m j∑
k=1

|D+jk |

1t |C j |
wn+1(D jk)

=

m j∑
k=1

ain
jkl jk

|C j |(ain
jk + aout

jk)
[ain

jku j (M jk)+ aout
jk u jk(M jk)]

+

m j∑
k=1

ain
jk

|C j |(ain
jk + aout

jk)

[
−h(e2

jk, u j (M jk))+ h(e1
jk, u j (M jk))

+ h(e2
jk, u jk(M jk))− h(e1

jk, u jk(M jk))
]
. (3-22)

Now the average value wn+1(D j) will be computed. Equation (2-4) is integrated
over the spacetime control volume D j × [tn, tn+1], and after integration by parts
and using the divergence theorem to transform the surface integral to a boundary
integral and using (3-2), one obtains

wn+1(D j)=
1
|D j |

∫
D j

wn
j dVg −

1
|D j |

∫ tn+1

tn

∫
D j

∇ · F(x, u) dVg

=
1
|D j |

∫
D j

wn
j dVg −

1t
|D j |

(m j∑
k=1

[−h(e2
jk, u j (M jk))

+ h(e1
jk, u j (M jk))] + O(1t)

)
. (3-23)

The last term in (3-23) includes O(1t) since e1
jk and e2

jk are corners of C j , not D j .
Using the previous equality,

1
1t

[
|D j |

|C j |
wn+1(D j)−un

j

]
=

1
1t

{
1
|C j |

∫
D j

wn
j dVg−

1t
|C j |

(m j∑
k=1

[
−h(e2

jk, u j (M jk))

+ h(e1
jk, u j (M jk))

]
+ O(1t)

)
− un

j

}
, (3-24)

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 93

which leads to

lim
1t→0

1
1t

[
|D j |

|C j |
wn+1(D j)− un

j

]
=−

1
|C j |

m j∑
k=1

ain
jkl jku j (M jk)

−
1
|C j |

m j∑
k=1

[−h(e2
jk, u j (M jk))+ h(e1

jk, u j (M jk))]. (3-25)

Equations (3-22) and (3-25) are used together to obtain the semidiscrete form

du j

dt
=−

1
|C j |

m j∑
k=1

ain
jkl jku j (M jk)−

1
|C j |

m j∑
k=1

[−h(e2
jk, u j (M jk))+h(e1

jk, u j (M jk))]

+

m j∑
k=1

ain
jkl jk

|C j |(ain
jk + aout

jk)
[ain

jku j (M jk)+ aout
jk u jk(M jk)]

+

m j∑
k=1

ain
jk

|C j |(ain
jk + aout

jk)

[
−h(e2

jk, u j (M jk))+ h(e1
jk, u j (M jk))

+ h(e2
jk, u jk(M jk))− h(e1

jk, u jk(M jk))
]
. (3-26)

This equation can be rewritten in the form

du j

dt
=

1
|C j |

m j∑
k=1

ain
jkaout

jk l jk

ain
jk + aout

jk
(u jk(M jk)− u j (M jk))

+
ain

jkaout
jk

|C j |(ain
jk + aout

jk)

{
ain

jk[h(e
2
jk, u j (M jk))− h(e1

jk, u j (M jk))]

+ aout
jk [h(e

2
jk, u jk(M jk))− h(e1

jk, u jk(M jk))]
}
, (3-27)

which can be rewritten as

du j

dt
=−

1
|C j |

m j∑
k=1

ain
jk H(u jk(M jk))+ aout

jk H(u j (M jk))

ain
jk + aout

jk

+
1
|C j |

m j∑
k=1

ain
jkaout

jk l jk

ain
jk + aout

jk
[u jk(M jk)− u j (M jk)], (3-28)

where H(u j (M jk)) and H(u jk(M jk)) are given by

H(u j (M jk))=−[h(e2
jk, u j (M jk))− h(e1

jk, u j (M jk))],

H(u jk(M jk))=−[h(e2
jk, u jk(M jk))− h(e1

jk, u jk(M jk))].
(3-29)

The function H is defined in the form (3-29) in order to be consistent with the
total approximate flux through the cell interface as presented by (3-2) in Claim 3.1.

94 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

Remark 3.4. If the value of ain
jk + aout

jk in (3-28) is zero or very close to zero (smaller
than 10−8 in our numerical experiments), we avoid division by zero or by a very
small number using the following approximations

ain
jk H(u jk(M jk))+ aout

jk H(u j (M jk))

ain
jk + aout

jk
≈

1
2

[m j∑
k=1

H(u j (M jk))+

m j∑
k=1

H(u jk(M jk))

]
,

ain
jkaout

jk

|C j |(ain
jk + aout

jk)

m j∑
k=1

l jk[u jk(M jk)− u j (M jk)] ≈ 0. (3-30)

These approximations are obtained using similar extreme distances of the propaga-
tion of the waves at the cell interface inward and outward of the computational cell
to define the domains D j , D jk , and E jk . The semidiscretization (3-28) and (3-29)
is a system of ODEs which has to be integrated in time using an accurate and stable
temporal scheme. In our numerical examples reported in Section 6, we used the
third-order total-variation diminishing Runge–Kutta method.

The geometry-compatible condition. In the semidiscrete form (3-28) and (3-29)
of the proposed scheme, if we consider a constant value of the function u ≡ u, the
second term in the right-hand side of (3-28) vanishes. For this constant function,
we obtain for each interface cell k

u j (M jk)= u jk(M jk)= u (3-31)
and

H(u j (M jk))= H(u jk(M jk)). (3-32)

The first term in the right-hand side of (3-28) becomes

−
1
|C j |

m j∑
k=1

ain
jk H(u jk(M jk))+ aout

jk H(u j (M jk))

ain
jk + aout

jk
=−

1
|C j |

m j∑
k=1

H(u j (M jk)).

(3-33)
Since we have

m j∑
k=1

H(u j (M jk))=

m j∑
k=1

H(u jk(M jk))=−

m j∑
k=1

[h(e2
jk, u)−h(e1

jk, u)] = 0, (3-34)

we conclude that the first term on the right-hand side of (3-28) will be canceled,
which confirms that the proposed scheme respects the geometry-compatibility
condition.

Remark 3.5. In the formulation of the proposed central-upwind finite volume
method, the midpoint rule is used to compute the spatial integrals. The proposed
scheme is second-order accurate, and we obtain the error in the form E ∼ C(1x)2

where the magnitude of the constant C is also important as well as the order of

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 95

x y

z

Figure 2. Type of grid used on the sphere.

accuracy of the scheme [30]. For the same second-order accuracy of the proposed
schemes using Gaussian quadrature and the midpoint rule, the parameter C obtained
using Gaussian quadrature is small in comparison to the value obtained for the case
using the midpoint rule. The use of Gaussian quadrature will improve the accuracy
of the scheme compared to the midpoint rule. Gaussian quadrature will not have
any impact on the geometry-compatibility condition of the proposed scheme.

4. Formulation using the latitude-longitude grid on the sphere

Computational grid on the sphere. The geometry-compatible scheme was devel-
oped in the previous section for scalar nonlinear hyperbolic conservation laws
using a general grid on the sphere. However, in order to prevent oscillations, an
appropriate piecewise linear reconstruction should be proposed according to the
computational grid used in the proposed method. In the following, we will describe
the computational grid and the nonoscillatory piecewise linear reconstruction used
in our numerical experiments. The position of each point on the sphere can be
represented by its longitude λ ∈ [0, 2π] and its latitude φ ∈ [−π/2, π/2]. The grid
considered in our numerical examples is shown in Figure 2. The coordinates are
singular at the south and north poles, corresponding to φ = −π/2 and φ = π/2,
respectively. The Cartesian coordinates are denoted by x = (x1, x2, x3)

T
∈ R3 for

standard orthonormal basis vectors i1, i2, and i3.
The unit tangent vectors in the directions of longitude and latitude at each point x

on the sphere with coordinates (λ, φ) are given by

iλ =−(sin λ)i1+ (cos λ)i2,

iφ =−(sinφ)(cos λ)i1− (sinφ)(sin λ)i2+ (cosφ)i3.
(4-1)

96 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

� �

��

�

� � �

� � �

�

� � � � � �

j + 1/2
φ2
φ

e4 e3

iλ

en
λ
λ2

i + 1/2

eiφ
(λm , φm)

i

e1φ1j − 1/2
λ1

i − 1/2

j (λ′m , φ
′
m)

e′

Grid �

�

�

��

� � �

� � �

�

�

�

� � � � �

φ3
φ λ3

e3

iλ

e2
λ

λ2
i + 1/2

eiφ
(λm , φm)

i

e1φ1
λ1

i − 1/2

j − 1/2

j (λ′m , φ
′
m)

e′
e4

φ2j + 1/2

Grid �

� �

�

�

� � �

� � �

� �

�

� � � � �

j + 1/2
φ2 =±π/2

e3

iλ

λ
λ2

i + 1/2

e2eiφ
(λm , φm)

i

e1φ1j − 1/2
λ1

i − 1/2

j (λ′m , φ
′
m)

e′

Grid �

�s

D−jk

D+jk

aout
jk 1t

ain
jk1t

Figure 3. Types of grids used on the sphere. Bottom right: the domain D jk = D+jk ∪ D−jk .

The unit normal vector to the sphere at the same point x ∈ S2 is given by

n(x)= (cosφ)(cos λ)i1+ (cosφ)(sin λ)i2+ (sinφ)i3. (4-2)

In spherical coordinates, for any vector field F represented by F = Fλ iλ+ Fφ iφ ,
the equation of conservation law (2-4) can be rewritten as

∂t u+
1

cosφ

(
∂

∂φ
(Fφ cosφ)+

∂Fλ
∂λ

)
= 0. (4-3)

The three general structures of the computational cells used as part of the dis-
cretization grid on the sphere are shown in Figure 3. When we go from the equator
to the north or south poles, the cells are changed by a ratio of 2 at some special
latitude circles to reduce the number of cells in order to satisfy the stability condition
and to ensure consistency of precision in the entire domain of the sphere. For the
stability condition, the CFL number defined as the maximum of the ratio ν j1t/L j

is used. The parameter ν j = maxk(aout
jk , ain

jk) is the maximum of the directional
local speeds of propagation of the waves, and L j is the minimum length of the
computational cell C j in the longitude and latitude directions. The domain of each
cell � is defined as � = {(λ, φ) : λ1 ≤ λ ≤ λ2, φ1 ≤ φ ≤ φ2}. Near the north or
south poles, a “triangular” cell is considered which is a special case of the standard
“rectangular” cell shown in Figure 3 with zero length for the side located on the pole.

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 97

A nonoscillatory piecewise linear reconstruction. In this section, we describe the
piecewise linear reconstruction used in the proposed scheme. For simplicity, in the
notations, we will use the indices i and j for the cell centers along the longitude
and latitude, respectively (see Figure 3). At each time step tn , data cell average
values un

i, j in each cell of center (λi , φ j) are locally replaced by a piecewise linear
function. The obtained reconstruction is

un
i, j (λ, φ)= un

i, j + (λ− λi)µ
n
i, j + (φ−φ j)σ

n
i, j , (4-4)

where µn
i, j and σ n

i, j are the slopes in the directions of longitude and latitude,
respectively. To prevent oscillations, we propose the following minmod-type
reconstruction to obtain the slopes in the longitude and latitude directions:

µn
i, j =minmod

[un
i+1, j − un

i, j

λi+1− λi
,

un
i+1, j − un

i−1, j

λi+1− λi−1
,

un
i, j − un

i−1, j

λi − λi−1

]
,

σ n
i, j =minmod

[un
i, j+1− un

i, j

φ j+1−φ j
,

un
i, j+1− un

i, j−1

φ j+1−φ j−1
,

un
i, j − un

i, j−1

φ j −φ j−1

]
,

(4-5)

where the minmod function is defined as

minmod(κ1, κ2, κ3)

=

{
κ min(|κ1|, |κ2|, |κ3|) if κ = sign(κ1)= sign(κ2)= sign(κ3),

0 otherwise.
(4-6)

At each step, we compute the average values of the state variable u in the
computational cells. The same values are used as the values of u at the cell centers
of coordinates (λi , φ j). The suitable points, inside the cells which respect these
conditions for the linear reconstruction used in this study, should have the spherical
coordinates

λi =
λ1+ λ2

2
,

φ j =
φ2 sin(φ2)−φ1 sin(φ1)+ cosφ2− cosφ1

sinφ2− sinφ1
,

(4-7)

where λ1, λ2, φ1, and φ2 correspond to the longitude and latitude coordinates of
the cell nodes as shown in Figure 3.

5. Geometry-compatible flux vectors and particular solutions of interest

Classes of geometry-compatible flux vectors. We have introduced, in [3], two
classes of flux vector fields for (2-9). In this classification, the structure of the
potential function h(x, u) was used to distinguish between foliated and generic
fluxes. In the proposed classification, the parametrized level sets defined by 0C,u =

{x ∈ R3
: h(x, u) = C}, where C ∈ R, are used for the flux vector F(x, u) =

98 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

n(x)∧∇h(x, u) associated to the potential function h. The flux F is called a foliated
flux field if the associated family of level sets {0C,u}C∈R in R3 is independent of
the state variable u. In other words, for any two parameters u1 and u2, one can find
two real numbers C1 and C2 such that 0C1,u1 = 0C2,u2 . For the generic flux field,
the potential function h = h(x, u) does not have this structure.

The dependency of the potential function on the space variable x generates the
propagation of the waves, while the dependency on the state variable u leads to the
formation of shocks in the solutions. The foliated flux with linear behavior generates
the spatially periodic solutions while the foliated flux with nonlinear behavior can
generate nontrivial stationary solutions. In our analysis in [3], we have concluded
that the new classification introduced and the character of linearity of the flux are
sufficient to predict the late-time asymptotic behavior of the solutions. For a linear
foliated flux, the solutions are simply transported along the level sets. The generic
flux generates large variations in solutions, which converge to constant values within
independent domains on the sphere. For the nonlinear foliated flux, the solution
converges to its constant average in each level set. For this flux, any steady state
solution should be constant along each level set. This type of nontrivial stationary
solutions are used in our numerical experiments to demonstrate the performance of
the proposed central-upwind finite volume method.

Particular solutions of interest. The nontrivial steady state solutions which will
be used in our numerical experiments are obtained using nonlinear foliated fluxes.
We are particularly interested in nonlinear foliated fluxes based on a scalar potential
function of the form

h(x, u)= ϕ(x · a) f (u), (5-1)

where x · a denotes the scalar product of the vector x and some constant vector
a = (a1, a2, a3)

T
∈ R3, while f is a function of the state variable u and ϕ is a

function of one variable. This scalar potential function leads to the gradient-type flux
vector field 8(x, u)= ϕ′(x · a) f (u)a, where ϕ′ is the derivative of the function ϕ.
The flux is obtained using (2-2) as

F(x, u)= ϕ′(x · a) f (u)n(x)∧ a. (5-2)

For this foliated flux vector and any function ũ which depends on one variable,
the function defined as u0(x)= ũ(x · a)= ũ(a1x1+ a2x2+ a3x3) is a steady state
solution to the conservation law (2-9) associated to the flux vector F(x, u). Arbitrary
functions ϕ and values of the vector a are used to construct nonlinear foliated fluxes
and the corresponding nontrivial stationary solutions. In the following, ∇ will be
used as the standard gradient operator defined using the variable x and, if other
variables are used, they will be specified in the notation by ∇y for the gradient
operator using any other variable y.

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 99

In order to prove that the function u0(x) is a steady state solution of (2-9), the
Claim 3.2 in [5] will be used. This claim states that, for any smooth function h(x, u)
defined on S2 with the associated gradient8=∇h, if the function u0 defined on S2

satisfies the condition ∇yh(y, u0(x))|y=x =∇H(x), where H is a smooth function
defined in a neighborhood of S2, then the function u0 is a steady state solution of the
conservation law (2-9) associated to the flux vector F(x, u)= n(x)∧8(x, u). This
result will be used to prove the following corollary related to nontrivial stationary
solutions which are obtained using the nonlinear foliated flux vectors.

Claim 5.1 (a family of steady state solutions). Consider the foliated flux vector
F(x, u) = n(x)∧8(x, u) with 8 = ∇h and h(x, u) = ϕ(x · a) f (u), where a =
(a1, a2, a3)

T
∈R3, f is a function of the state variable u, and the function ϕ depends

on one variable. For any function ũ which depends on one variable, the function
defined as u0(x)= ũ(x ·a)= ũ(a1x1+a2x2+a3x3) is a steady state solution to the
conservation law (2-9) associated to the flux F(x, u).

Proof. We consider the function

H(x)= H0(a1x1+ a2x2+ a3x3), (5-3)
where H0 is defined by

H0(µ)=

∫ µ

µ0

ϕ′(µ) f (ũ(µ)) dµ, (5-4)

for some reference value µ0.
The function h(x, u)= ϕ(x · a) f (u) is smooth in R3, and one obtains

∇yh(y, u0(x))|y=x = ϕ
′(x · a) f (ũ(x · a))

k=3∑
k=1

akik, (5-5)

which leads to
∇yh(y, u0(x))|y=x =∇H(x). (5-6)

As mentioned before, according to Claim 3.2 in [5], the condition (5-6) is sufficient
to conclude that the function u0(x) is a steady state solution of the conservation
law (2-9). �

We will consider the nonlinear foliated flux vectors based on the scalar potential
functions of the form h(x, u)= ϕ(x1) f (u), where the function ϕ is not constant.
For this flux, any nonconstant function which depends on x1 only is a nontrivial
steady state solution of (2-9). Another form of nonlinear foliated flux is used in our
numerical tests which is obtained by using the scalar potential function of the form
h(x, u)= ϕ(x1+ x2+ x3) f (u). This case leads to steady state solutions of the form
u0(x)= ũ(x1+ x2+ x3). In this paper we will consider discontinuous steady state
solutions to test the performance of the proposed central-upwind method. Claim 5.1

100 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

will be used to obtain discontinuous steady state solutions for some particular flux
vector fields. We will use the nonlinear foliated flux vectors which are obtained
by using the scalar potential function of the form h(x, u) = ϕ(x · a) f (u), where
f (u)= u2/2. For these flux vectors, the function defined as u0(x)=χ(x ·a)ũ(x ·a)
is a discontinuous stationary solution of (2-9), where χ(x · a)=±1.

In Tests 7 and 8, the proposed central-upwind scheme is employed to compute
confined solutions of the conservation law (2-9). In these cases, we consider the
flux vector F(x, u) which vanishes outside a domain 2 in the sphere S2. If the
initial condition u0(x) vanishes outside of 2, then the solution should vanish
outside the domain 2 for all time. However, the solution can evolve inside the
domain 2 depending on the type of flux and the initial condition considered inside
of 2. This case is observed in Test 7 presented in Section 6, where we choose the
initial condition which is not stationary inside the domain 2 but vanishes outside
this domain. In Test 8, we will consider the flux vector F(x, u) which vanishes
outside 2 and is defined inside this domain using the scalar potential function
h(x, u)= ϕ(x ·a) f (u). This leads to a flux vector F which satisfies the conditions
mentioned in Claim 5.1. For this case, we will consider an initial condition of the
form u0(x) = ũ(x · a) inside a domain 2 and that vanishes outside this domain.
The solution should be stationary inside 2 and should vanish outside this domain.

6. Numerical experiments

In this section, we demonstrate the performance of the proposed central-upwind
scheme on a variety of numerical examples. Different types of nonlinear foli-
ated fluxes are used to construct some particular and interesting solutions. In
Example 6.1, four numerical tests are performed using different discontinuous
steady state solutions of the conservation law (2-9) with the nonlinear foliated flux
vectors based on the scalar potential functions of the form h(x, u) = ϕ(x1) f (u).
In Example 6.2, two numerical tests are performed using different discontinuous
steady state solutions in the spherical cap of (2-9) which are obtained by using the
nonlinear foliated flux corresponding to the scalar potential function of the form
h(x, u)= ϕ(x1+ x2+ x3) f (u). In Example 6.3, two numerical tests are performed
where the proposed scheme is employed to compute confined solutions.

Example 6.1 (discontinuous steady state solutions). First, we consider the potential
function h(x, u)= x1 f (u), where f (u)=u2/2, which leads to the nonlinear foliated
flux vector F(x, u)= f (u)n(x)∧ i1. We take the following discontinuous steady
state solution of (2-9) as initial condition (Test 1):

u2(x)=
{
γ x3

1 if −1≤ x1 ≤ 0.5,
−γ x2

1/(2x1+ 1) if 0.5≤ x1 ≤ 1,
(6-1)

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 101

1.0

0.0

−1.0

x3

1.0
0.0

−1.0x1
1.0

0.0

−1.0

x2

−0.08

−0.06

−0.04

−0.02

0.00

1.0

0.0

−1.0

x3

1.0
0.0

−1.0x1
1.0

0.0

−1.0

x2

−0.44

−0.33

−0.22

−0.11

0.00

Figure 4. Solutions on the entire sphere at time t = 5 for Test 1 (left) and Test 2 (right).

where γ is an arbitrary constant which controls the amplitude and shocks of the
solution. This solution has a single closed curve of discontinuity on the sphere.

The numerical solution is computed using a grid with an equatorial longitude
step 1λ = π/96 and a latitude step 1φ = π/96 and CFL = 0.1. Figure 4, left,
shows the numerical solution with γ = 0.1 which is computed using the proposed
scheme at a global time t = 5. The numerical solution remains nearly unchanged in
time using the proposed scheme. The numerical solution error defined by using the
L2 norm is computed by summation over all grid cells on the sphere. For Test 1,
the error is uerror = 1.5× 10−4 at time t = 5, which is small compared to the full
range of the numerical solution umax− umin = 0.1.

Another test is performed using the steady state solution (6-1) as the initial
condition with γ = 0.5 (Test 2) and the same computational grid used in Test 1 and
CFL= 0.6. As shown in Figure 4, right, the solution remains nearly unchanged up
to a global time t = 5. The error using the L2 norm is uerror = 2.7× 10−3, which is
small compared to the full range of the solution umax− umin = 0.5.

Now we consider a new test (Test 3) using the following steady state solution,
with more discontinuities, which is defined in three domains separated by two
closed curves on the sphere:

u2(x)=

γ x4

1 if − 1≤ x1 ≤−0.5,
0.5γ x3

1 if −0.5< x1 < 0.5,
−0.25γ x2

1 if 0.5≤ x1 ≤ 1.
(6-2)

The numerical solution is computed using CFL = 0.1 and the same grid on
the sphere used in the previous tests. As shown in Figure 5, left, the numerical
solution which is obtained at time t = 5 using the proposed method based on
the initial condition (6-2) with γ = 0.1 remains nearly unchanged. The error is
uerror = 9.6× 10−5, which is small compared to the full range umax− umin = 0.1.

102 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

1.0

0.0

−1.0

x3

1.0
0.0

−1.0x1
1.0

0.0

−1.0

x2

−0.02

0.00

0.02
0.04

0.06
0.08

1.0

0.0

−1.0

x3

1.0 0.0 −1.0x1
1.0

0.0

−1.0
x2

−0.10
0.00

0.10

0.20

0.30

0.40

Figure 5. Solutions on the entire sphere at time t = 5 for Test 3 (left) and Test 4 (right).

For γ = 0.5 (Test 4), we used the same computational grid and CFL= 0.6. As is
shown in Figure 5, right, again for this test the numerical solution at time t = 5
remains nearly unchanged. The error using the L2 norm is uerror = 1.9× 10−3,
which is small compared to the full range of the solution umax− umin = 0.6.

Example 6.2 (discontinuous steady state solutions in a spherical cap). In the fol-
lowing, the performance of the proposed finite volume method will be analyzed
using some particular steady state solutions in a spherical cap. The scalar potential
function h(x, u)= (x1+ x2+ x3) f (u) is considered with f (u)= u2/2. This leads
to the nonlinear foliated flux F(x, u)= f (u)n(x)∧ (i1+ i2+ i3). The function of
the form u(x)= χ(θ)ũ(θ) is a steady state solution of (2-9), where ũ is an arbitrary
real function depending on one variable and θ = x1+ x2+ x3. In this numerical
example (Test 5), the following discontinuous steady state solution is considered as
the initial condition:

u(0, x)=
{

0.1/(θ + 2) if 0≤ θ,
−0.1/(θ − 2) otherwise.

(6-3)

The numerical solution is computed by using a grid with an equatorial longitude
step 1λ = π/96 and a latitude step 1φ = π/96 and CFL = 0.1. Figure 6, left,
shows the numerical solution, which remains nearly unchanged in time after being
subjected to integration up to a global time t = 5 by the proposed scheme. The
numerical solution error defined by using the L2 norm is uerror = 1.3×10−3, which
is small compared to the full range umax− umin = 0.1. The following numerical
example (Test 6) is performed using the same nonlinear foliated flux considered in
Test 5 and the steady state solution with more discontinuities defined by

u(0, x)=

0.2θ3 if 0.5≤ θ,
0.1θ2 if θ ≤−0.5,
−0.025 otherwise.

(6-4)

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 103

1.0

0.0

−1.0

x3

1.0
0.0

−1.0x1
1.0

0.0

−1.0

x2

−0.04

−0.02

0.00

0.02

0.04 1.0

0.0

−1.0

x3

−1.0

0.0

1.0
x1 −1.0

0.0
1.0

x2

−0.02

0.18

0.39

0.59

0.80

1.00

Figure 6. Solutions on the entire sphere at time t = 5 for Test 5 (left) and Test 6 (right).

The numerical solution is computed using the same grid used in Test 5 and
CFL = 0.9. Figure 6, right, shows the numerical solution at time t = 5, which
remains stationary with the error uerror = 1.8× 10−3, negligible compared to the
full range of the solution umax− umin = 1.06.

Example 6.3 (confined solutions). In this part, two numerical tests are performed
using confined solutions of the conservation law (2-9) based on the flux vector
which is obtained using the potential function

h(x, u)=
{

x2
1 f1(u) if x1 ≤ 0,

0 otherwise.
(6-5)

In Test 7, we consider the function

u(x, 0)=
{

0.1(1+ x2
2)x1 if x1 ≤ 0,

0 otherwise.
(6-6)

The solution of the conservation law (2-9), which is obtained using the function (6-6)
as the initial condition, is confined, and it vanishes outside the domain x1 ≤ 0. The
numerical solution is computed using the proposed scheme with an equatorial
longitude step 1λ= π/96, a latitude step 1φ = π/96, and CFL= 0.1. Figure 7,
left, shows the numerical solution at time t = 5. The solution evolves in time inside
the domain x1 ≤ 0, but it vanishes outside this domain, which is in good agreement
with the evolution of the analytical solution.

In the second numerical test (Test 8), we consider an initial condition which is a
confined solution and steady state inside the domain x1 ≤ 0. The following initial
condition is considered:

u(x, 0)=
{

0.1x1 if x1 ≤ 0,
0 otherwise.

(6-7)

104 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

1.0

0.0

−1.0

x3

1.0
0.0

−1.0x1
1.0

0.0

−1.0

x2

−0.10
−0.08
−0.06
−0.04
−0.02

1.0

0.0

−1.0

x3

1.0
0.0

−1.0x1
1.0

0.0

−1.0
x2

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Figure 7. Solutions on the entire sphere at time t = 5 for Test 7 (left) and Test 8 (right)

The numerical solution is computed using the proposed central-upwind scheme
with the same grid and CFL number which are used in Test 7. Figure 7, right,
shows the numerical solution at time t = 5. The solution remains steady state in the
domain x1 ≤ 0, and it vanishes outside this domain for all time as does the initial
condition, which is in good agreement with the evolution of the analytical solution.
The L2 error of the numerical solution over the sphere is uerror = 9.6×10−5 at time
t = 5, which is small compared to the full range of the solution umax− umin = 0.1.

7. Concluding remarks

We have introduced a new geometry-preserving, central-upwind scheme for the
discretization of hyperbolic conservation laws posed on the sphere. The main
advantage of the proposed scheme is its simplicity since it does not use any Riemann
solver and, moreover, the semidiscrete form of our scheme is strongly connected
to the geometry of the sphere. The use of Gaussian quadrature will improve the
accuracy of the proposed method compared to the midpoint rule using the same
computational grid. The Gaussian quadrature does not have an impact on the
geometry-compatibility condition of the scheme.

A nonoscillatory reconstruction is used in which the gradient of each variable
is computed using a minmod function in order to ensure stability. Our numerical
experiments demonstrate the ability of the proposed scheme to avoid oscillations.
The performance of the second-order version was tested using relevant numerical
examples, and the results clearly demonstrated the scheme’s potential and its ability
to resolve discontinuous solutions to conservation laws posed on a curved geometry.

We observe that the formulation of the semidiscrete formulation is based on some
approximations and assumptions. The scheme is more suitable for discontinuous
solutions with shocks of average amplitude. However, the proposed method has the
advantage of simplicity compared to the class of upwind schemes. As previously

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 105

mentioned, the first advantage is that the proposed scheme is free of any Riemann
solver. The second advantage is related to the resolution: we do not use the splitting
approach which is often applied in upwind schemes as a simplification technique in
order to be able to solve the Riemann problems. This again renders the proposed
numerical scheme less expensive compared to upwind methods.

The scheme we have developed here for nonlinear hyperbolic conservation laws
could be extended to multidimensional hyperbolic conservation laws and to shallow
water models posed on the sphere by extending the methodology in [4; 7] in which
central-upwind schemes for solving two-dimensional Cartesian systems for shallow
water models were designed. For shallow water systems, instead of the geometric
compatibility condition used in the present study, the so-called C-property related
to stationary solutions and introduced in [38] should be used in designing a well-
balanced central-upwind scheme.

Acknowledgments

The second author was partially supported by the Innovative Training Networks
grant 642768 ModCompShock.

References

[1] P. Amorim, M. Ben-Artzi, and P. G. LeFloch, Hyperbolic conservation laws on manifolds:
total variation estimates and the finite volume method, Methods Appl. Anal. 12 (2005), no. 3,
291–323.

[2] P. Amorim, P. G. LeFloch, and B. Okutmustur, Finite volume schemes on Lorentzian manifolds,
Commun. Math. Sci. 6 (2008), no. 4, 1059–1086.

[3] A. Beljadid, P. G. LeFloch, and A. Mohammadian, A geometry-preserving finite volume method
for conservation laws on curved geometries, preprint, 2013.

[4] A. Beljadid, A. Mohammadian, and A. Kurganov, Well-balanced positivity preserving cell-vertex
central-upwind scheme for shallow water flows, Comput. Fluids 136 (2016), 193–206.

[5] M. Ben-Artzi, J. Falcovitz, and P. G. LeFloch, Hyperbolic conservation laws on the sphere: a
geometry-compatible finite volume scheme, J. Comput. Phys. 228 (2009), no. 16, 5650–5668.

[6] M. Ben-Artzi and P. G. LeFloch, Well-posedness theory for geometry-compatible hyperbolic
conservation laws on manifolds, Ann. Inst. H. Poincaré (C) 24 (2007), no. 6, 989–1008.

[7] S. Bryson, Y. Epshteyn, A. Kurganov, and G. Petrova, Well-balanced positivity preserving
central-upwind scheme on triangular grids for the Saint-Venant system, ESAIM Math. Model.
Numer. Anal. 45 (2011), no. 3, 423–446.

[8] T. Ceylan, P. G. LeFloch, and B. Okutmustur, The relativistic Burgers equation on a FLRW
background and its finite volume approximation, preprint, 2015. arXiv

[9] G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007),
no. 2, 262–292.

[10] G. Dziuk, D. Kröner, and T. Müller, Scalar conservation laws on moving hypersurfaces, Inter-
faces Free Bound. 15 (2013), no. 2, 203–236.

http://dx.doi.org/10.4310/MAA.2005.v12.n3.a6
http://dx.doi.org/10.4310/MAA.2005.v12.n3.a6
http://projecteuclid.org/euclid.cms/1229619683
http://hal.upmc.fr/hal-00922214
http://hal.upmc.fr/hal-00922214
http://dx.doi.org/10.1016/j.compfluid.2016.06.005
http://dx.doi.org/10.1016/j.compfluid.2016.06.005
http://dx.doi.org/10.1016/j.jcp.2009.04.032
http://dx.doi.org/10.1016/j.jcp.2009.04.032
http://dx.doi.org/10.1016/j.anihpc.2006.10.004
http://dx.doi.org/10.1016/j.anihpc.2006.10.004
http://dx.doi.org/10.1051/m2an/2010060
http://dx.doi.org/10.1051/m2an/2010060
http://msp.org/idx/arx/1512.08142v1
http://dx.doi.org/10.1093/imanum/drl023
http://dx.doi.org/10.4171/IFB/301

106 ABDELAZIZ BELJADID AND PHILIPPE G. LEFLOCH

[11] M. Espedal, A. Fasano, and A. Mikelić, Filtration in porous media and industrial application:
lectures given at the 4th session of the Centro Internazionale Matematico Estivo, Lect. Notes
Math., no. 1734, Springer, Berlin, 2000.

[12] J. Giesselmann, A convergence result for finite volume schemes on Riemannian manifolds,
M2AN Math. Model. Numer. Anal. 43 (2009), no. 5, 929–955.

[13] J. Giesselmann and P. G. LeFloch, Formulation and convergence of the finite volume method for
conservation laws on spacetimes with boundary, preprint, 2016. arXiv

[14] A. Kurganov and D. Levy, A third-order semidiscrete central scheme for conservation laws and
convection-diffusion equations, SIAM J. Sci. Comput. 22 (2000), no. 4, 1461–1488.

[15] , Central-upwind schemes for the Saint-Venant system, M2AN Math. Model. Numer.
Anal. 36 (2002), no. 3, 397–425.

[16] A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic
conservation laws and Hamilton–Jacobi equations, SIAM J. Sci. Comput. 23 (2001), no. 3,
707–740.

[17] A. Kurganov and G. Petrova, Central-upwind schemes on triangular grids for hyperbolic systems
of conservation laws, Numer. Methods Partial Differential Equations 21 (2005), no. 3, 536–552.

[18] , A second-order well-balanced positivity preserving central-upwind scheme for the
Saint-Venant system, Commun. Math. Sci. 5 (2007), no. 1, 133–160.

[19] A. Kurganov, G. Petrova, and B. Popov, Adaptive semidiscrete central-upwind schemes for
nonconvex hyperbolic conservation laws, SIAM J. Sci. Comput. 29 (2007), no. 6, 2381–2401.

[20] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation
laws and convection-diffusion equations, J. Comput. Phys. 160 (2000), no. 1, 241–282.

[21] , New high-resolution semi-discrete central schemes for Hamilton–Jacobi equations, J.
Comput. Phys. 160 (2000), no. 2, 720–742.

[22] P. G. LeFloch, Hyperbolic systems of conservation laws: the theory of classical and nonclassical
shock waves, Birkhäuser, Basel, 2002.

[23] , Hyperbolic conservation laws on spacetimes, Nonlinear conservation laws and applica-
tions (A. Bressan, G.-Q. G. Chen, M. Lewicka, and D. Wang, eds.), IMA Vol. Math. Appl., no.
153, Springer, New York, 2011, pp. 379–391.

[24] , Structure-preserving shock-capturing methods: late-time asymptotics, curved geometry,
small-scale dissipation, and nonconservative products, Advances in numerical simulation in
physics and engineering: lecture notes of the XV ‘Jacques-Louis Lions’ Spanish–French School
(C. Parés, C. Vázquez, and F. Coquel, eds.), SEMA SIMAI, no. 3, Springer, Cham, 2014,
pp. 179–222.

[25] P. G. LeFloch and H. Makhlof, A geometry-preserving finite volume method for compressible
fluids on Schwarzschild spacetime, Commun. Comput. Phys. 15 (2014), no. 3, 827–852.

[26] P. G. LeFloch, H. Makhlof, and B. Okutmustur, Relativistic Burgers equations on curved
spacetimes: derivation and finite volume approximation, SIAM J. Numer. Anal. 50 (2012), no. 4,
2136–2158.

[27] P. G. LeFloch and B. Okutmustur, Hyperbolic conservation laws on spacetimes: a finite volume
scheme based on differential forms, Far East J. Math. Sci. 31 (2008), no. 1, 49–83.

[28] R. Lenormand, Pattern growth and fluid displacements through porous media, Physica A 140
(1986), no. 1–2, 114–123.

[29] R. Lenormand and C. Zarcone, Role of roughness and edges during imbibition in square
capillaries, conference paper SPE-13264-MS, Society of Petroleum Engineers, 1984.

http://dx.doi.org/10.1007/BFb0103973
http://dx.doi.org/10.1007/BFb0103973
http://dx.doi.org/10.1051/m2an/2009013
http://msp.org/idx/arx/1607.03944v1
http://dx.doi.org/10.1137/S1064827599360236
http://dx.doi.org/10.1137/S1064827599360236
http://dx.doi.org/10.1051/m2an:2002019
http://dx.doi.org/10.1137/S1064827500373413
http://dx.doi.org/10.1137/S1064827500373413
http://dx.doi.org/10.1002/num.20049
http://dx.doi.org/10.1002/num.20049
http://projecteuclid.org/euclid.cms/1175797625
http://projecteuclid.org/euclid.cms/1175797625
http://dx.doi.org/10.1137/040614189
http://dx.doi.org/10.1137/040614189
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.1006/jcph.2000.6459
http://dx.doi.org/10.1006/jcph.2000.6485
http://dx.doi.org/10.1007/978-3-0348-8150-0
http://dx.doi.org/10.1007/978-3-0348-8150-0
http://dx.doi.org/10.1007/978-1-4419-9554-4_21
http://dx.doi.org/10.1007/978-3-319-02839-2_4
http://dx.doi.org/10.1007/978-3-319-02839-2_4
http://dx.doi.org/10.4208/cicp.291212.160913a
http://dx.doi.org/10.4208/cicp.291212.160913a
http://dx.doi.org/10.1137/110857775
http://dx.doi.org/10.1137/110857775
http://www.pphmj.com/abstract/3632.htm
http://www.pphmj.com/abstract/3632.htm
http://dx.doi.org/10.1016/0378-4371(86)90211-6
http://dx.doi.org/10.2118/13264-MS
http://dx.doi.org/10.2118/13264-MS

A CENTRAL-UPWIND GEOMETRY-PRESERVING METHOD ON THE SPHERE 107

[30] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University, 2002.

[31] J. D. Logan, An introduction to nonlinear partial differential equations, Wiley, New York, 1994.

[32] A. Meister and J. Struckmeier, Central schemes and systems of balance laws, Hyperbolic
partial differential equations: theory, numerics and applications, Vieweg, Braunschweig, 2002,
pp. 59–114.

[33] K. W. Morton and T. Sonar, Finite volume methods for hyperbolic conservation laws, Acta
Numer. 16 (2007), 155–238.

[34] H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation
laws, J. Comput. Phys. 87 (1990), no. 2, 408–463.

[35] J. A. Rossmanith, D. S. Bale, and R. J. LeVeque, A wave propagation algorithm for hyperbolic
systems on curved manifolds, J. Comput. Phys. 199 (2004), no. 2, 631–662.

[36] C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing
schemes, J. Comput. Phys. 77 (1988), no. 2, 439–471.

[37] N. Su, J. P. C. Watt, K. W. Vincent, M. E. Close, and R. Mao, Analysis of turbulent flow patterns
of soil water under field conditions using burgers equation and porous suction-cup samplers,
Aust. J. Soil Res. 42 (2004), no. 1, 9–16.

[38] M. E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow
water equations in channels with irregular geometry, J. Comput. Phys. 148 (1999), no. 2,
497–526.

Received March 28, 2016. Revised December 31, 2016.

ABDELAZIZ BELJADID: beljadid@mit.edu
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, United States

PHILIPPE G. LEFLOCH: contact@philippelefloch.org
Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique,
Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75258 Paris, France

mathematical sciences publishers msp

http://dx.doi.org/10.1017/CBO9780511791253
http://dx.doi.org/10.1002/9780470287095
http://dx.doi.org/10.1007/978-3-322-80227-9_2
http://dx.doi.org/10.1017/S0962492906300013
http://dx.doi.org/10.1016/0021-9991(90)90260-8
http://dx.doi.org/10.1016/0021-9991(90)90260-8
http://dx.doi.org/10.1016/j.jcp.2004.03.002
http://dx.doi.org/10.1016/j.jcp.2004.03.002
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1071/SR02142
http://dx.doi.org/10.1071/SR02142
http://dx.doi.org/10.1006/jcph.1998.6127
http://dx.doi.org/10.1006/jcph.1998.6127
mailto:beljadid@mit.edu
mailto:contact@philippelefloch.org
http://msp.org

COMM. APP. MATH. AND COMP. SCI.
Vol. 12, No. 1, 2017

dx.doi.org/10.2140/camcos.2017.12.109 msp

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION

ANDREAS KREIENBUEHL, PIETRO BENEDUSI,
DANIEL RUPRECHT AND ROLF KRAUSE

This article demonstrates the applicability of the parallel-in-time method Parareal
to the numerical solution of the Einstein gravity equations for the spherical
collapse of a massless scalar field. To account for the shrinking of the spatial
domain in time, a tailored load balancing scheme is proposed and compared to
load balancing based on number of time steps alone. The performance of Parareal
is studied for both the subcritical and black hole case; our experiments show
that Parareal generates substantial speedup and, in the supercritical regime, can
reproduce Choptuik’s black hole mass scaling law.

1. Introduction

Einstein’s field equations of general relativity (GR) consist of ten coupled, nonlinear,
hyperbolic-elliptic partial differential equations (PDEs). Because gravity couples to
all forms of energy, there is an enormous dynamic range of spatiotemporal scales
in GR. Hence, usually only the application of advanced numerical methods can
provide solutions and in numerical relativity [1; 3] extensive use of high-performance
computing (HPC) is made [32; 26].

Today, almost all HPC architectures are massively parallel systems connecting
large numbers of compute nodes by a high-speed interconnect. In numerical simula-
tions, the power of these systems can only be harnessed by algorithms that feature
a high degree of concurrency; every algorithm with strong serial dependencies can
only provide inferior performance on massively parallel computers. For the solution
of PDEs, parallelization strategies have been developed mainly for spatial solvers.
However, in light of the rapid increase in the number of cores in supercomputers,
methods that offer additional concurrency along the temporal axis have recently
begun to receive more attention.

The idea of parallelization in time was introduced in 1964 [35]. In the 1980s
and 1990s, time and spacetime multigrid methods were studied [22; 23; 24]. More
recently, the now widely used time-parallel method Parareal was proposed [31].

MSC2010: 35Q76, 65M25, 65Y05, 83C57.
Keywords: Einstein–Klein–Gordon gravitational collapse, Choptuik scaling, Parareal, spatial

coarsening, load balancing, speedup.

109

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2017.12-1
http://dx.doi.org/10.2140/camcos.2017.12.109
http://msp.org

110 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

Other recently introduced parallel-in-time methods are PFASST [33; 12], RIDC
[9], or MGRIT [13]. A historical overview is offered in [17].

Given the demonstrated potential of parallel-in-time integration methods for
large-scale parallel simulations [42], these methods could be beneficial for the
numerical relativity community. However, their application is not straightforward
and often it is unclear a priori if good performance can be achieved. In this article,
we therefore investigate the principal applicability of the time-parallel Parareal
method to solving Einstein’s equations describing spherical, gravitational collapse
of a massless scalar field. The system is also referred to as an Einstein–Klein–
Gordon system because it is equivalent to a Klein–Gordon equation expressed in
the context of GR, i.e., on a back-reacting, curved geometry. It defines a basic
gravitational field theory and is of interest therefore not only in numerical relativity
but also in, e.g., quantum gravity [25; 44; 29]. A summary of numerically derived
results is given in [21]; the work by Choptuik [7] brought forward novel, physical
results and is of particular interest here because we will show that Parareal correctly
reproduces the expected mass scaling law.

Mathematical theory shows that Parareal performs well for diffusive problems
with constant coefficients [19]. For diffusive problems with space- or time-dependent
coefficients, numerical experiments show that Parareal can converge quickly too
[30]. However, given the theory for basic constant-coefficient hyperbolic PDEs
[19], it can be expected that Parareal applied to convection-dominated problems
converges too slowly for meaningful speedup to be possible. Special cases with
reasonable performance are discussed in [16], and for certain hyperbolic PDEs
it was found that some form of stabilization is required for Parareal to provide
speedup [18; 40; 11; 6]. Surprisingly, no stabilization is required for the equations
describing gravitational collapse; we demonstrate that plain Parareal can achieve
significant speedup. A detailed analytical investigation of why this is the case would
definitely be of interest but is left out for future work. One reason could be that we
solve in characteristic coordinates for which the discretization is aligned with the
directions of propagation [16; 28].

In Section 2 we define the system of Einstein field equations that we solve using
Parareal. In addition, we give details on the numerical approach and discuss the
interplay between Parareal and the particular structure of the spatial mesh. In
Section 3 we discuss the Parareal method. Then, in Section 4 numerical results are
presented. Finally, in Section 5 we conclude with a summary and discussion.

2. Equations

2.1. Gravitational collapse. The Einstein field equations in Planck units normal-
ized to 4πG/c4

= 1 are
Gµν = 2Tµν, (2.1.1)

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 111

where µ, ν ∈ {0, 1, 2, 3} index time (via 0) and space (via 1, 2, and 3).1 Once the
nongravitational matter content is specified by a definition of the energy-momentum
tensor Tµν , possibly along with equations of state that together satisfy the continuity
equations ∇µTµν = 0, (2.1.1) defines a set of ten partial differential equations for
ten unknown metric tensor field components gµν .2 In all generality, the equations
are coupled, nonlinear, and hyperbolic-elliptic in nature. Six of the ten equations
are hyperbolic evolution equations, while the remaining four are elliptic constraints
on the initial data; they represent the freedom to choose spacetime coordinates. For
the matter content, we consider a minimally coupled massless scalar field φ with
energy-momentum tensor

Tµν =∇µφ ∇νφ− 1
2 gµνgαβ ∇αφ ∇βφ. (2.1.2)

For the metric tensor field gµν in spherical symmetry, it is natural to introduce a
parametrization in terms of Schwarzschild coordinates (t, r). Here, t is the time
coordinate of a stationary observer at infinite radius r , which measures the size of
spheres centered at r = 0. In [7] the resulting Einstein field equations are analyzed
numerically. In particular, adaptive mesh refinement [4] is used to resolve the black
hole formation physics. In [20] the same investigation is carried out in double null or
characteristic coordinates (τ, ρ) without mesh refinement (see, however, [39; 43]).
Finally, in [29] the effect of quantum gravity modifications on the collapse is studied
in adjusted characteristic coordinates. Here we use characteristic coordinates (τ, ρ)
as well but exclude quantum gravity modifications. Also, for simplicity, we will
refer to τ as a time coordinate and to ρ as a space coordinate.

Making the ansatz

gµν dxµ dxν =−2∂ρr H dτ dρ+ r2(dϑ2
+ [sin(ϑ) dϕ]2) (2.1.3)

for the metric tensor field and using an auxiliary field h for the spacetime geometry
along with an auxiliary field 8 for the matter content, the complete field equations
are

∂τr =− 1
2 h, ∂τ8=

(H − h)(8−φ)
2r

(2.1.4)

for r and 8 and

∂ρφ =
∂ρr
r
(8−φ), ∂ρH =

∂ρr
r

H(8−φ)2, ∂ρh =
∂ρr
r
(H−h) (2.1.5)

for φ, H , and h [20]. Overall the system can be seen as a wave equation for the
massless scalar field φ on a back-reacting, curved geometry. Boundary conditions

1We omit the addition of the cosmological constant term 3gµν on the left-hand side in (2.1.1)
because observations suggest 0<3� 1 (see, e.g., [27]); the term’s impact on black hole formation
as studied here can be neglected.

2We use the Einstein summation convention.

112 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

at (τ, ρ = τ) are r = 0 and regularity of 8, φ, H , and h, which implies 8= φ and
H = h at the boundary [10; 28]. Consistent initial data at (τ = 0, ρ) are

r = 1
2ρ, 8= (1+ ρ ∂ρ)φ, (2.1.6)

where we choose for φ the Gaussian wave packet

φ(0, ρ)= φ0
ρ3

1+ ρ3 exp
(
−

[
ρ− ρ0

δ0

]2)
. (2.1.7)

We also performed tests for initial data similar in shape to the hyperbolic tangent
function much like Choptuik did in [7] for purely serial time stepping. Since in
this case we found Parareal’s performance to resemble strongly that for the case of
the Gaussian wave packet, we do not include these results here. The initial scalar
field configuration is thus characterized by an amplitude φ0, mean position ρ0,
and width δ0. Depending on the value of these parameters, the solution to (2.1.4)
and (2.1.5) can describe a bounce of the wave packet or black hole formation near
the boundary at r = 0. A black hole appears when the outward null expansion

2+ =
1
r

√
2h
H
, (2.1.8)

which measures the relative rate of change of a cross-sectional area element of a
congruence of outgoing null curves, approaches zero [36]. The black hole mass is

M = 1
2r, (2.1.9)

evaluated at the point (τ+, ρ+) toward which 2+ vanishes.

2.2. Numerical solution. The numerical grid is depicted in Figure 1, left. It is
parametrized by the characteristic coordinates τ and ρ, which are used for numerical
integration; τ is used as the coordinate representing time and ρ as the coordinate
representing space. Integration thus takes place on a right triangle with initial
data defined along the lower right-hand leg. Clearly, the spatial domain becomes
smaller as the solution is advanced in τ . Note that the domain is not exactly a
right triangle because at the upper-most corner a small subtriangle is missing. This
“buffer” zone of extent λ is needed for the spatial part of the numerical stencil to fit.
The computational domain thus consists of all points (τ, ρ) ∈ [0, L − λ] × [0, L]
with L = 80, λ= 0.625, and ρ ≥ τ .

As a time-stepping method for the solution of the equations in (2.1.4), we use
a second-order Lax–Wendroff Richtmyer two-step method on a fine spacetime grid
[28]. To employ the time-parallel method Parareal (see Section 3), we need a second,
computationally cheap, time-integration method. Here, we choose the explicit first-
order Euler method on a coarse spacetime mesh. For Parareal to be efficient, the cost
of the coarse method has to be small compared to that of the fine one: by choosing

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 113

r

t

ρ

τ

0 20 40 60 80

−0.6

−0.4

−0.2

0

0.2

Coordinate ρ

F
ie

ld
φ

τ ≈ 45.352
τ = 20
τ ≈ 16.758
τ = 0

Figure 1. Left: the numerical domain. It is parametrized by the characteristic coordinates
τ and ρ. Right: subcritical gravitational scalar field evolution and scalar field solution
snapshots for a black-hole-free setting. The peak of the Gaussian evolves along the constant
coordinate value ρ ≈ 20, which is also when the bounce occurs in τ .

a simple first-order method on the coarse grid for C, we obtain a good coarse-to-
fine ratio (see Section 3.4). For optimal speedup, the right balance between the
difference in accuracy and difference in cost between C and F has to be found.

For the integration in space of the equations in (2.1.5), we use a second-order
Runge–Kutta method [28]. Snapshots of scalar field evolution resulting from the
chosen fine grid discretization are shown in Figure 1, right, where φ evolves along
constant lines of ρ until a bounce occurs at r = 0. The figure also shows how the
size of the domain decreases during the evolution: for τ = 0 the left boundary is at
ρ = 0 while for τ = 20 it is at ρ = 20.

2.3. Mass scaling. In practice, the simulation terminates when a black hole forms
because H grows without bound in this case (see [10] for details). Figure 2, left,
provides a simplified illustration of a black hole region (dotted portion) and shows
where the simulation comes to a halt (dashed line). Thus, to determine the black hole
mass M , we record minimal expansion values via the scalar (r2+)mi=minρ{r2+}
derived from (2.1.8). The last such recorded minimal value before the termination of
the simulation defines a characteristic coordinate (τ+, ρ+) (see again Figure 2, left),
which we can use to define an r and M via (2.1.9). The scalar (r2+)mi approaches 0
when (τ, ρ) nears (τ+, ρ+), as is shown in the lower portion of Figure 2, right.

Based on numerical experiments, Choptuik presents, among other things, a
relation between the amplitude φ0 of the Gaussian in (2.1.7) and the black hole
mass M [7]. He shows that there is a critical value φ?0 such that for φ0<φ

?
0 there is a

bounce (subcritical case), while for φ0>φ
?
0 there is a black hole (supercritical case).

114 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

r

t

ρ

τ

•

(τ
+ ,
ρ
+)

0

0.5

1

1.5

Sc
al

ar
(r

Θ
+

) m
i

0 20 40 60 80

0

0.5

1

1.5

Coordinate τ

Sc
al

ar
(r

Θ
+

) m
i

Figure 2. Illustrations to clarify supercritical gravitational collapse. Left: the simulation
terminates at τ+, when a black hole forms at ρ+. Right: minimal weighted outward null
expansion indicating a bounce (top) and black hole formation (bottom) are shown.

Based thereon, he demonstrates that the black hole mass scales with φ0−φ
?
0 > 0

according to the law M ∝ (φ0−φ
?
0)
γ with γ being a positive constant of the same

value for various initial data profiles. We demonstrate that Parareal can correctly
capture this black hole mass scaling law although our coarse-level Euler method
alone cannot. Also, Parareal requires less wall-clock time than F, which can be
beneficial for the investigation of the high-accuracy-demanding critical solution
[7; 21] that requires the simulation of numerous black holes [20]. This analysis
however is omitted in this article and left for future work.

3. Parareal

3.1. Algorithm. Parareal [31] is a method for the solution of initial value problems

∂τu(τ)= f (τ, u(τ)), u(0)= u0, 0≤ τ ≤ T . (3.1.1)

Here, as is outlined in the previous section, f comes from discretizing (2.1.4) and
(2.1.5), and T = L −λ marks the end time. Parareal starts with a decomposition of
the time domain into Npr temporal subintervals (TSs) defined in terms of times τ p

such that
[τ 1, τ 2

] ∪ · · · ∪ [τ Npr−1, τ Npr] = [0, L − λ]. (3.1.2)

Now denote by F some serial time-integration method of high accuracy and cost
(in our case this is the second-order Lax–Wendroff Richtmyer two-step method)
and by C a cheap and possibly much less accurate method (in our case this is the
explicit first-order Euler method). Instead of running the fine method subinterval

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 115

by subinterval serially in time, Parareal performs the iteration

u p+1
[i+1] = C(u p

[i+1])−C(u p
[i])+F(u p

[i]), (3.1.3)

where superscripts index time or process number p ∈ {1, . . . , Npr} and subscripts
iterations i ∈ {1, . . . , Nit}. The advantage is that the expensive computation of the
fine method can be performed in parallel over all TSs at once. Here, we assume
that the number of TSs is equal to the number Npr of cores (or processes) used for
the time direction. Good speedup can be obtained if C is fast in comparison to F

but still accurate enough for Parareal to converge rapidly. See Section 3.4 for a
more detailed discussion of Parareal’s speedup.

In Section 2.2 we hinted at the interchangeability of the characteristic coordinates
τ and ρ for the numerical integration. Therefore, theoretically, Parareal could also
be used for the spatial integration to simultaneously parallelize both time and space.
However, such an interweaving of two Parareal iterations is not discussed in this
article; it is put aside for future work.

3.2. Spatial coarsening in Parareal. In order to make C cheaper and improve
speedup, we not only use a less accurate time stepper for C but also employ a
coarsened spatial discretization with a reduced number of degrees of freedom.
Therefore, we need a spatial interpolation I and restriction R operator. In this case
(see, e.g., [14]), the Parareal algorithm is given by

u p+1
[i+1] = IC(Ru p

[i+1])− IC(Ru p
[i])+F(u p

[i]). (3.2.1)

As the restriction operator R, we use point injection. For the interpolation operator I ,
we use polynomial (i.e., Lagrangian) interpolation of order 3, 5, and 7.3 It has been
shown that, even for simple toy problems, convergence of Parareal can deteriorate
if spatial coarsening with low-order interpolation is used. As demonstrated in
Section 4.1, this also holds true for the problem studied here.

3.3. Implementation. We have implemented two different realizations of Parareal.
In a “standard” version Pst (see Listing 1, left), the Parareal correction is computed
on each TS up to a uniformly prescribed iteration number. In contrast, in the
“modified” implementation Pmo (see Listing 1, right), Parareal corrections are only
performed on TSs where the solution may not yet have converged. Because Parareal
always converges at a rate of at least one TS per iteration, we only iterate on a TS
if its assigned MPI rank is greater than or equal to the current Parareal iteration
number (see line 8 in Listing 1, right). Otherwise, no further iterations are needed or
performed, and the process remains idle. Thus, as the iteration progresses, more and

3We also tested barycentric interpolation [5; 15] but found the performance in terms of runtimes
and speedup (see Sections 3.4 and 4) to be inferior.

116 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

1 i f p > 1 then // Initialization
2 Coarse (co ; τ1

→ τ p)
3 I n t e r p (co 7→ f i [0])
4 i f p < Npr then // Prediction
5 Coarse (co ; τ p

→ τ p+1)
6 I n t e r p (co 7→ f i [2])
7 f o r i = 1 : Nit do // Iteration
8 i f p < Npr then
9 Fine (f i [0] ; τ p

→ τ p+1)
10 f i [1] = f i [0]
11 f i [1] −= f i [2]
12 i f p > 1 then
13 MPI_Recv (f i [0] ; p⇐ p− 1)
14 e l s e
15 I n i t (f i [0])
16 R e s t r i c t (f i [0] 7→ co)
17 i f p < Npr then
18 Coarse (co ; τ p

→ τ p+1)
19 I n t e r p (co 7→ f i [2])
20 f i [1] += f i [2]
21 i f p < Npr then
22 MPI_Send (f i [1] ; p⇒ p+ 1)

1 i f p > 1 then // Initialization
2 Coarse (co ; τ1

→ τ p)
3 I n t e r p (co 7→ f i [0])
4 i f p < Npr then // Prediction
5 Coarse (co ; τ p

→ τ p+1)
6 I n t e r p (co 7→ f i [2])
7 f o r i = 1 : Nit do // Iteration
8 i f p >= i then
9 j = (i +1) % 2

10 k = i % 2
11 i f p < Npr then
12 Fine (f i [j] ; τ p

→ τ p+1)
13 i f p > i then
14 MPI_Recv (f i [k] ; p⇐ p− 1)
15 f i [j] −= f i [2]
16 R e s t r i c t (f i [k] 7→ co)
17 i f p < Npr then
18 Coarse (co ; τ p

→ τ p+1)
19 I n t e r p (co 7→ f i [2])
20 f i [j] += f i [2]
21 i f p < Npr then
22 MPI_Send (f i [j] ; p⇒ p+ 1)

Listing 1. Pseudocode for the standard and modified Parareal implementations. Variable
“co” denotes the coarse grid solution and “fi” an array of three fine grid buffers. Left: the
standard Parareal implementation Pst. Right: the modified Parareal implementation Pmo.

more processes enter an idle state. In an implementation to be realized in future work,
the criterion for convergence used here will be replaced by a check for some residual
tolerance [2]. This could negatively affect the observed performance since it requires
essentially one more iteration to compute the residual.4 It also bears mentioning
that it has very recently been demonstrated that parallel-in-time integration methods
are good candidates to provide algorithm-based fault tolerance [34; 41].

Another difference between the standard and modified implementations is that in
the former, after each time-parallel fine evolution, a copy of the fine-grid solution
has to be created (see line 10 in Listing 1, left). In the modified Listing 1, right, this
copying is circumvented by the use of two alternating indices “j” and “k” in lines 9
and 10, respectively. The iteration number determines their values, which in turn
determines the fine-grid solution buffer that is used to send or receive data by means
of the corresponding MPI routines (see lines 14 and 22 in Listing 1, right). The
two implementations also have slightly different requirements in terms of storage.

4In [2] a version of Parareal is discussed that can be used to proceed the integration beyond a
given end time. It is based on an optimized scheduling of those tasks which become idle in our
implementation.

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 117

As can be seen in line 15 in Listing 1, left, in Pst on the first TS or, equivalently,
for the first MPI rank, the fine-grid solution has to be assigned initial data at the
beginning of each iteration. This requires one additional buffer to be held in storage.
Other than that both implementations need one coarse-grid solution buffer and three
fine-grid buffers for each TS.

3.4. Speedup. We denote by Rco the coarse and by Rfi the fine time stepper’s
runtime. Recalling that Nit denotes the number of iterations required for Parareal
to converge given Npr processes, Parareal’s theoretically achievable speedup is

S =
[(

1+
Nit

Npr

)
Rco

Rfi
+

Nit

Npr

]−1

≤min
{

Npr

Nit
,

Rfi

Rco

}
, (3.4.1)

as is discussed, e.g., in [33]. The estimate is valid only for the ideal case, where
runtimes across subintervals are perfectly balanced. In the presence of load im-
balances in time, however, i.e., differences in the runtimes of C and F across TSs,
maximum speedup is reduced [30]. Because the spatial domain we consider is
shrinking in time, a tailored decomposition of the time axis has to be used to provide
well balanced computational load, as is discussed in the next section.

3.5. Load balancing. Because we integrate over a triangular computational space-
time domain (see Figure 1, left), a straightforward, uniform partitioning of the time
axis results in imbalanced computational load in time. The first load balancing (LB)
strategy, to which henceforth we will refer as LB1, is based on this straightforward,
basic decomposition of the time axis. It assigns to each TS the same number of time
steps without regard to their computational cost. Because of the shrinking domain,
TSs at later times carry fewer spatial degrees of freedom so that the per-process
runtimes R p

co and R p
fi of the coarse and fine time steppers, respectively, are larger

for the earlier TSs than for the later ones. Figure 3, left, shows how this partition
leads to an imbalanced computational load in time because the portion extending
across the “early-middle” TS [e,m] covers a larger area and thus a larger number
of grid points than the portion over the “middle-late” TS [m, l].

Figure 3 suggests that early-in-time TSs should have a shorter extent in time
than later ones. Thus, in the second strategy, to which in the following we will
refer as LB2, we also consider the cost of time steps in order to balance the runtime
R p

co + R p
fi over all processes p. We use a decomposition of the time axis in TSs

such that the sum of the total coarse and fine runtime is balanced over all TSs,
i.e., such that Rco + Rfi = Npr(R

p
co + R p

fi) for any process p. This is done by a
bisection approach, making use of the fact the we use explicit rather than implicit
time integrators (see the discussion in [30]) and thus that the cost of a time step
from τ to τ+1τ is directly proportional to the number of spatial degrees of freedom
at τ . Therefore, the total spacetime domain is first divided into two parts of roughly

118 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

r

t

ρ

τ

τ = e

τ
=
m

τ = l

r

t

ρ

τ

τ = e

τ
=
m

τ = l

Figure 3. Illustration of two different approaches for the decomposition of the time
domain. Left: imbalanced load in time from load balancing LB1. Right: balanced load in
time from load balancing LB2.

Figure 4. Vampir traces for the implementation Pmo with (Npr, Nit) = (8, 3) for two
different load balancing strategies. Top: Vampir trace for LB1. The Parareal runtime is
Rpa = 7.964 s. Bottom: Vampir trace for LB2. The Parareal runtime is Rpa = 5.436 s.

equal number of grid points as is sketched in Figure 3, right. Then, each part is
divided again and again until the required number of TSs is reached. Note that this
limits the possible numbers of TSs to powers of 2.

Figure 4 shows Vampir5 traces for one simulation featuring LB1 (Figure 4, top)
and one LB2 (Figure 4, bottom). The horizontal axes correspond to runtime, while
the vertical axes depict MPI rank numbers from 1 (lower) to 8 (upper). In each
case, three Parareal iterations are performed. Green regions indicate the coarse and
fine integrators carrying out work. Time spent in MPI receives (including waiting
time) is shown in red. We observe how LB1 leads to load imbalance and incurs

5https://www.vampir.eu/

https://www.vampir.eu/

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 119

significant wait times in processes handling a later TS. In contrast, the processes’
idle times (shown in red) in MPI receives are almost invisible in the case of LB2.
Elimination of wait times leads to a significant reduction in runtime and increase in
speedup, as will be shown in Section 4.

4. Results

Speedup and runtime measurements were performed on the Cray XC40 supercom-
puter Piz Dora6 at the Swiss National Supercomputing Center (CSCS) in Lugano.
It features 1256 compute nodes, which all hold two 12-core Intel Xeon E5-2690v3
processors. This results in a total of 30144 compute cores and a peak performance
of 1.254 PFlops; it occupies position 56 in the Top500 November 2014 list.7 On
Piz Dora, we used the GNU Compiler Collection8 version 4.9.2 and the runtimes
we provide do not include the cost of I/O operations. Some simulations measuring
convergence were performed on a machine located at the Università della Svizzera
italiana that is maintained by members of the Institute of Computational Science of
the Faculty of Informatics.9

For the results presented in the following, we use a coarse grid resolution of
(1τ)co = (1ρ)co = 1co = L/2048 ≈ 0.039 and a fine grid resolution of 1fi =

1co/8 ≈ 0.005. We have also determined a reference solution to approximately
measure the serial fine stepper’s discretization error. For this we have used again
the serial fine time stepper but with a step size of 1re =1fi/4≈ 0.001.

4.1. Subcritical. First we consider the subcritical case, where no black holes form.
Figure 5 shows for Npr = 256 and two different sets of initial data parameters the
relative defect

D[i] =
‖r[i]− rfi‖2

‖rfi‖2
, (4.1.1)

which measures the difference between the Parareal solution r[i] after i iterations
and the serial fine solution rfi as a function of the characteristic coordinate τ .

In Figure 5, left, we use the initial data parameters (φ0, ρ0, δ0)= (0.035, 20, 1),
which results in an “early” bounce of the wave packet at about τ = 20. For the
simulations in Figure 5, right, the values are (φ0, ρ0, δ0) = (0.01, 75, 1), which
leads to a “late” bounce at about τ = 75. Defects are plotted for Nit ∈ {1, 2, 3, 4}
along with the estimated discretization errors ‖rco− rre‖2/‖rfi‖2 of serial coarse
and ‖rfi − rre‖2/‖rfi‖2 of serial fine solutions. We observe that in Figure 5, left,
the data for Nit = 3 is somewhat jagged because for LB2 there are various start

6http://www.cscs.ch/computers/piz_daint_piz_dora/
7http://www.top500.org/list/2014/11
8https://gcc.gnu.org
9https://www.ics.usi.ch/index.php/ics-research/resources

http://www.cscs.ch/computers/piz_daint_piz_dora/
http://www.top500.org/list/2014/11
https://gcc.gnu.org
https://www.ics.usi.ch/index.php/ics-research/resources

120 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

0 20 40 60 80
10−15

10−12

10−9

10−6

10−3

Coordinate τ

D
ef

ec
t
D

[i
]
fo

r
N

p
r
=

2
5
6

Nit = 1
Nit = 2
Nit = 3
Nit = 4
Coarse
Fine

0 20 40 60 80
10−14

10−11

10−8

10−5

10−2

Coordinate τ

D
ef

ec
t
D

[i
]
fo

r
N

p
r
=

2
5
6

Nit = 1
Nit = 2
Nit = 3
Nit = 4
Coarse
Fine

Figure 5. Defect in r between Parareal and the fine method over time for fixed Npr = 256.
Left: early bounce scenario. Right: late bounce situation.

and end times of TSs near the bounce region. In any case, Parareal converges in
two iterations: for Nit = 2, the defect is below the discretization error for all τ . In
fact, without the bounce region near τ = 20, only one iteration would be required
for convergence. For the late bounce scenario in Figure 5, right, we also observe
that the rate of convergence at the final time τ = L − λ gives an indication of the
convergence at all τ . In the following we thus focus on convergence at the final
time. Convergence for the other evolved field 8 is not shown but was found to be
at least as good as for r .10

Figure 6, left and middle, illustrate the defect of Parareal at the end of the
simulation at τ = L − λ for various values of Npr with third-order interpolation
(left) and fifth-order interpolation (middle). For third-order interpolation, Parareal
does not converge at all. The configuration stalls at a defect of about 10−2 until
the iteration count equals Npr. There, Parareal converges by definition but cannot
provide any speedup. In contrast, Parareal shows good convergence behavior for
fifth-order interpolation. For Npr less than 64, the defect of Parareal falls below
the approximate discretization error of the fine method after a single iteration.
Otherwise, for Npr ≥ 64 up to Npr = 512, two iterations are required.

The resulting speedups with correspondingly adjusted values for Nit are shown in
Figure 6, right, for both load balancing strategies (see the discussion in Section 3.5).
In addition, the projected speedup according to (3.4.1) is shown. The fine-to-coarse
ratio Rfi/Rco was determined experimentally and found to be about 74. Up to
Npr = 64, for the advanced load balancing, speedup closely mirrors the theoretical
curve while the basic load balancing performs significantly worse. For Npr ≥ 64,
measured speedups fall short of the theoretical values, peak at Npr = 256, and

10Convergence seems to be unaffected by the load balancing. In tests not documented here, we
found that for LB1 it takes two iterations for Parareal to converge as well.

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 121

1 8 64 512

10−14

10−11

10−8

10−5

10−2

Iterations Nit

D
ef

ec
t
D

[i
]
at
τ
=
L
−
λ

Npr = 2
Npr = 8
Npr = 32
Npr = 128
Npr = 512
Coarse
Fine

1 8 64 512
10−15

10−12

10−9

10−6

10−3

Iterations Nit

D
ef

ec
t
D

[i
]
at
τ
=
L
−
λ

Npr = 2
Npr = 8
Npr = 32
Npr = 128
Npr = 512
Coarse
Fine

2 8 32 128 512

0

15

30

45

60

75

90

Cores Npr

S
p
e
e
d
u
p
S

Theory
LB2
LB1

Figure 6. Parareal’s performance for the subcritical case in terms of convergence for
polynomial interpolation orders 3 and 5 and in terms of speedup. Left: defect for late
bounce and interpolation order 3. Middle: defect for late bounce and interpolation order 5.
Right: Parareal speedup for fifth-order interpolation.

then start to decrease. Note that the theoretical model (blue line in Figure 6, right)
does take into account the scaling limit from the serial correction step according to
Amdahl’s law. The difference between theory and measured speedup is therefore due
to other overheads (communication and transfer between meshes) as analyzed below.

Although the load balancing strategy LB2 results in significantly better speedup
than the basic approach LB1, the peak value provided by both schemes is essentially
the same. This is because, for increasingly large numbers of cores, the computa-
tional load per TS eventually becomes small and imbalances in computational load
insignificant. Instead, runtime is dominated by overhead from, e.g., communication
in time. The communication load is independent of the chosen load balancing and
depends solely on the number of TSs; for every TS one message has to be sent
and received once per iteration (save for the first and last TS). Therefore, it can
be expected that ultimately both approaches to load balancing lead to comparable
peak values. Below we demonstrate that the saturation in speedup is related to a
significant increase in time spent in MPI routines; eventually, communication cost
starts to dominate over the computational cost left on each time slice and the time
parallelization saturates just as spatial parallelization does.

Figure 7 illustrates the reason behind the drop-off in speedup beyond Npr = 256.
First, define

R p
pa = R p

co+ R p
fi +

∑
st

R p
st, (4.1.2)

where R p
st denotes runtime spent in stages that are different from coarse and fine

integration on the TS assigned to process p. For now, we consider only overhead
from sending and receiving data as well as from interpolation; other overheads are

122 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

2 8 32 128 512

0

0.3

0.6

0.9

Cores Npr

O
ve

rh
ea

d
O

av

2 8 32 128 512
10−8

10−5

10−2

101

Core p

O
ve

rh
ea

d
O

p st
fo

r
N

p
r
∈

{3
2
,5

1
2
}

Receive, Npr = 512
Receive, Npr = 32
Interpolate, Npr = 512
Interpolate, Npr = 32
Send, Npr = 512
Send, Npr = 32

Figure 7. Overhead from communication and other sources increases with Npr, which
leads to Parareal’s speedup decay. Left: average overhead. Right: overhead caused by
three different Parareal stages.

not further analyzed here. Next, we introduce the total overhead on a TS as the
sum of all stage runtimes or

O p
to =

∑
st

R p
st, (4.1.3)

which is also the runtime spent neither in the coarse nor fine integrator for a given p.
The average overhead is now defined as the geometric mean value of O p

to over all
TSs, which is

Oav =

∑Npr
p=1 O p

to

Npr
. (4.1.4)

Finally, we define the relative overhead for individual stages on a TS as

O p
st =

R p
st

R p
pa
, (4.1.5)

where R p
pa is the runtime of Parareal at processor p. Ideally, as is assumed for the

derivation of the speedup model given in (3.4.1), R p
co and R p

fi are the dominant
costs. In this case, R p

co+ R p
fi ≈ R p

pa so that according to (4.1.2) we have O p
to ≈ 0

and therefore Oav ≈ 0 by definition. However, as can be seen in Figure 7, left,
Oav is small only for small values of Npr. For Npr ≥ 32 it increases rapidly, which
indicates that the overhead from communication and other sources starts to play a
more dominant role when Npr is increased.

Figure 7, right, shows the relative overhead from (4.1.5) for Npr ∈ {32, 512} and
p ∈ {1, . . . , Npr} for the three different stages st ∈ {Interpolation,Send,Receive};

“Send” and “Receive” refer to the corresponding MPI routines. There is a significant

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 123

10−12 10−10 10−8 10−6 10−4

10−4

10−3

10−2

10−1

Criticality φ0 − φ?0

M
as

s
M

Coarse
Nit = 1
Nit = 2
Nit = 3
Fine

2 8 32 128 512

0

15

30

45

60

75

90

Cores Npr

S
p
e
e
d
u
p
S

Theory
LB2

Figure 8. Parareal’s performance for the supercritical case. Left: Choptuik scaling from
Parareal. Right: Parareal speedup.

increase in relative overhead in all three stages as the number of cores grows,
causing the eventual drop-off in speedup for increasing Npr.

4.2. Supercritical. We consider now the more complex case in which a black
hole forms at some time during the simulation. The goal is to compute the black
hole’s position via (2.1.8) so that its mass can be determined from (2.1.9) (see
Section 2.3). Because the characteristic coordinates (τ, ρ) do not allow us to
continue the simulation past the black hole formation event, we need a way to keep
the simulation from terminating when 2+ approaches 0 (see Figure 2, right).

To avoid the need to adaptively modify the decomposition of the time domain,
we carry out the supercritical case study using initial data parameter values near
(φ0, ρ0, δ0) = (0.01, 75, 1), which we have also used for the results in Figure 5,
right. With these parameters and in particular for φ0 ≥ 0.01, for all investigated
partitions of the time axis with Npr ≤ 256, the black hole generated by the fine
time integrator forms in the last TS unless φ0 becomes too large (ρ0 and δ0 are
fixed). Thus, Parareal can be used over all TSs except for the last one, where
only the fine method is executed to compute the black hole’s position. The C++
implementation uses a try-throw-catch approach to prevent complete termination
of the simulation; if the radicand in the definition of 2+ in (2.1.8) fails to be
nonnegative, an exception is thrown such that the Parareal iteration can continue.
As the Parareal iteration converges and better and better starting values are provided
for F on the last TS, the accuracy of the computed black hole position improves. A
more general implementation aiming at production runs would need to allow for
black hole formation in TSs before the last one, but this is left for future work. In
this article, the focus lies on investigating the principal applicability of Parareal to
the simulation of gravitational collapse.

124 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

φ?0 γ

Value Error (%) Value Error (%)

Coarse 0.01057748 7.25 · 10−1 0.458 20.21
Nit = 1 0.01055915 5.51 · 10−1 0.377 1.05
Nit = 2 0.01050240 1.01 · 10−2 0.370 2.89
Nit = 3 0.01050135 9.52 · 10−5 0.381 0

Fine 0.01050134 0 0.381 0

Table 1. Approximate values and relative errors for the critical amplitude φ?0 and resulting
straight line slope γ .

Figure 8, left, depicts the Choptuik scaling that results from solutions computed
with Parareal for Npr= 256 after the first three iterations. Table 1 lists the generated
values of φ?0 and γ (see Section 2.3) and errors compared to the value provided
by the fine integrator, which agrees with the result in [20]. As can be seen in
Figure 8, left, the coarse integrator C alone cannot adequately resolve black holes
with φ0−φ

?
0 . 10−9 (they are too small for C to be “visible”) and its γ is wrong

by about 20%. This means that the coarse method is too “coarse” in the sense
that, on its own, it cannot correctly capture the physics underlying the investigated
problem. Nonetheless, Parareal is not only capable of generating the correct black
hole physics but can do so after only one iteration.

Figure 8, right, visualizes the speedup achieved in the supercritical case including
the theoretical estimate according to (3.4.1). The numbers of iterations required
for Parareal to converge are derived from an analysis just like the one plotted in
Figure 6, middle, for the subcritical case, and basically the values are identical. Up
to 64 processes, good speedup close to the theoretical bound is observed. For larger
core numbers, however, speedup reaches a plateau and performance is no longer
increasing. As in the subcritical case, as Npr increases, the computing times per TS
eventually become too small and Parareal’s runtime becomes dominated by, e.g.,
communication (see Figure 7). Even though the temporal parallelization eventually
saturates, substantial acceleration of almost a factor of 30 using 128 cores in time
is possible, corresponding to a parallel efficiency of about 23%.

5. Conclusion

The article assesses the performance of the parallel-in-time integration method
Parareal for the numerical simulation of gravitational collapse of a massless scalar
field in spherical symmetry. It gives an overview of the dynamics and physics
described by the corresponding Einstein field equations and presents the employed
numerical methods to solve them. Because the system is formulated and solved in
characteristic coordinates, the computational spacetime domain is triangular so that

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 125

later time steps carry fewer spatial degrees of freedom. A strategy for balancing
computational cost per subinterval instead of just number of steps is discussed, and
its benefits are demonstrated by traces using the Vampir tool. Numerical experiments
are presented for both the sub- and supercritical case. Parareal converges rapidly
for both and, for the latter, correctly reproduces Choptuik’s mass scaling law after
only one iteration despite the fact that the used coarse integrator alone generates
a strongly flawed mass scaling law. This underlines the capability of Parareal to
quickly correct a coarse method that does not resolve the dynamics of the problem.
The results given here illustrate that Parareal and presumably other parallel-in-
time methods as well can be used to improve utilization of parallel computers for
numerical studies of black hole formation.

Multiple directions for future research emerge from the presented results. Evaluat-
ing performance gains for computing the critical solution [7; 21] would be valuable.
Next, more complex collapse scenarios such as in the Einstein–Yang–Mills system
[8], axial symmetry [37], or binary black hole spacetimes [38] could be addressed.
An extended implementation of Parareal could utilize a more sophisticated conver-
gence criterion [2], more flexible black hole detection, and parallelism in space via,
e.g., again Parareal. The latter would be possible because the integration along the
characteristic we took to represent space is for the solution of initial value problems
just like in the temporal direction. Another topic of interest is that of adaptive
mesh refinement (J. Thornburg, personal communication, 2015): how it can be
used efficiently in connection with Parareal or other time-parallel methods seems
to be an open problem. As discussed in the introduction, a mathematical analysis
of the convergence behavior of Parareal for Einstein’s equations would be of great
interest as well, particularly since the good performance is unexpected in view of
the negative theoretical results for basic hyperbolic problems. Finally, incorporating
a parallel-in-time integration method into a software library widely used for black
hole or other numerical relativity simulations would be the ideal way to make this
new approach available to a large group of domain scientists.11

Acknowledgments

We would like to thank Matthew Choptuik from the University of British Columbia
in Vancouver, Canada and Jonathan Thornburg from the Indiana University in
Bloomington for providing feedback and suggestions on an earlier version of the
manuscript. We would also like to thank Jean-Guillaume Piccinali and Gilles
Fourestey from the Swiss National Supercomputing Center (CSCS) in Lugano and

11A copy of the library Lib4PrM for the Parareal method can be obtained by cloning the Git
repository https://scm.ti-edu.ch/repogit/lib4prm.

https://scm.ti-edu.ch/projects/lib4prm/

126 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

Andrea Arteaga from the Swiss Federal Institute of Technology Zurich (ETHZ) for
discussions concerning the hardware at CSCS.

This research is funded by the Deutsche Forschungsgemeinschaft (DFG) as
part of the “ExaSolvers” project in the Priority Programme 1648 “Software for
Exascale Computing” (SPPEXA) and by the Swiss National Science Foundation
(SNSF) under the lead agency agreement as grant SNSF-145271. The research
of Kreienbuehl, Ruprecht, and Krause is also funded through the “Future Swiss
Electrical Infrastructure” (FURIES) project of the Swiss Competence Centers for
Energy Research (SCCER) at the Commission for Technology and Innovation (CTI).

References

[1] M. Alcubierre, Introduction to 3+ 1 numerical relativity, International Series of Monographs on
Physics, no. 140, Oxford University, 2008.

[2] E. Aubanel, Scheduling of tasks in the parareal algorithm, Parallel Comput. 37 (2011), no. 3,
172–182.

[3] T. W. Baumgarte and S. L. Shapiro, Numerical relativity: solving Einstein’s equations on the
computer, Cambridge University, 2010.

[4] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations,
J. Comput. Phys. 53 (1984), no. 3, 484–512.

[5] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004),
no. 3, 501–517.

[6] F. Chen, J. S. Hesthaven, and X. Zhu, On the use of reduced basis methods to accelerate and
stabilize the parareal method, Reduced order methods for modeling and computational reduction
(A. Quarteroni and G. Rozza, eds.), Modeling, Simulation and Applications, no. 9, Springer,
Cham, 2014, pp. 187–214.

[7] M. W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field,
Phys. Rev. Lett. 70 (1993), no. 1, 9–12.

[8] M. W. Choptuik, E. W. Hirschmann, and R. L. Marsa, New critical behavior in Einstein–Yang–
Mills collapse, Phys. Rev. D 60 (1999), no. 12, 124011.

[9] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM J. Sci.
Comput. 32 (2010), no. 2, 818–835.

[10] D. Christodoulou, Bounded variation solutions of the spherically symmetric Einstein-scalar field
equations, Comm. Pure Appl. Math. 46 (1993), no. 8, 1131–1220.

[11] X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic
systems, SIAM J. Sci. Comput. 35 (2013), no. 1, A52–A78.

[12] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential
equations, Commun. Appl. Math. Comput. Sci. 7 (2012), no. 1, 105–132.

[13] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time
integration with multigrid, SIAM J. Sci. Comput. 36 (2014), no. 6, C635–C661.

[14] P. F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the
Navier–Stokes equations, Domain decomposition methods in science and engineering (Berlin,
2003) (R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, eds.), Lecture
Notes in Computational Science and Engineering, no. 40, Springer, Berlin, 2005, pp. 433–440.

http://dx.doi.org/10.1093/acprof:oso/9780199205677.001.0001
http://dx.doi.org/10.1016/j.parco.2010.10.004
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1137/S0036144502417715
http://dx.doi.org/10.1007/978-3-319-02090-7_7
http://dx.doi.org/10.1007/978-3-319-02090-7_7
http://dx.doi.org/10.1103/PhysRevLett.70.9
http://dx.doi.org/10.1103/PhysRevD.60.124011
http://dx.doi.org/10.1103/PhysRevD.60.124011
http://dx.doi.org/10.1137/09075740X
http://dx.doi.org/10.1002/cpa.3160460803
http://dx.doi.org/10.1002/cpa.3160460803
http://dx.doi.org/10.1137/110861002
http://dx.doi.org/10.1137/110861002
http://dx.doi.org/10.2140/camcos.2012.7.105
http://dx.doi.org/10.2140/camcos.2012.7.105
http://dx.doi.org/10.1137/130944230
http://dx.doi.org/10.1137/130944230
http://dx.doi.org/10.1007/3-540-26825-1_44
http://dx.doi.org/10.1007/3-540-26825-1_44

TIME-PARALLEL GRAVITATIONAL COLLAPSE SIMULATION 127

[15] M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates
of approximation, Numer. Math. 107 (2007), no. 2, 315–331.

[16] M. J. Gander, Analysis of the parareal algorithm applied to hyperbolic problems using charac-
teristics, Bol. Soc. Esp. Mat. Apl. (2008), no. 42, 21–35.

[17] , 50 years of time parallel time integration, Multiple shooting and time domain de-
composition methods (Heidelberg, 2013) (T. Carraro, M. Geiger, S. Körkel, and R. Rannacher,
eds.), Contributions in Mathematical and Computational Sciences, no. 9, Springer, Cham, 2015,
pp. 69–113.

[18] M. J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for
linear problems, ESAIM Proc. 25 (2008), 114–129.

[19] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method,
SIAM J. Sci. Comput. 29 (2007), no. 2, 556–578.

[20] D. Garfinkle, Choptuik scaling in null coordinates, Phys. Rev. D 51 (1995), no. 10, 5558–5561.

[21] C. Gundlach and J. M. Martín-García, Critical phenomena in gravitational collapse, Living Rev.
Relativ. 10 (2007), no. 5.

[22] W. Hackbusch, Parabolic multigrid methods, Proceedings of the sixth International Symposium
on Computing Methods in Applied Sciences and Engineering (Versailles, 1983) (R. Glowinski
and J.-L. Lions, eds.), North-Holland, Amsterdam, 1984, pp. 189–197.

[23] G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods 8 (1992), no. 9,
585–595.

[24] G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complexity for
solving parabolic partial differential equations, SIAM J. Sci. Comput. 16 (1995), no. 3, 531–541.

[25] V. Husain, Critical behaviour in quantum gravitational collapse, Adv. Sci. Lett. 2 (2009), no. 2,
214–220.

[26] L. E. Kidder, M. A. Scheel, S. A. Teukolsky, E. D. Carlson, and G. B. Cook, Black hole evolution
by spectral methods, Phys. Rev. D 62 (2000), no. 8, 084032.

[27] E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson,
M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S. Tucker,
J. L. Weiland, E. Wollack, and E. L. Wright, Five-year Wilkinson microwave anisotropy probe
observations: cosmological interpretation, Astrophys. J. Suppl. S. 180 (2009), no. 2, 330–376.

[28] A. Kreienbuehl, Quantum cosmology, polymer matter, and modified collapse, Ph.D. thesis,
University of New Brunswick, 2011.

[29] A. Kreienbuehl, V. Husain, and S. S. Seahra, Modified general relativity as a model for quantum
gravitational collapse, Classical Quant. Grav. 29 (2012), no. 9, 095008.

[30] A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum, and R. Krause, Numerical
simulation of skin transport using Parareal, Comput. Vis. Sci. 17 (2015), no. 2, 99–108.

[31] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”,
C. R. Acad. Sci. Paris I 332 (2001), no. 7, 661–668.

[32] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D.
Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna, The Einstein Toolkit: a community
computational infrastructure for relativistic astrophysics, Classical Quant. Grav. 29 (2012),
no. 11, 115001.

[33] M. L. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl. Math.
Comput. Sci. 5 (2010), no. 2, 265–301.

http://dx.doi.org/10.1007/s00211-007-0093-y
http://dx.doi.org/10.1007/s00211-007-0093-y
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1051/proc:082508
http://dx.doi.org/10.1051/proc:082508
http://dx.doi.org/10.1137/05064607X
http://dx.doi.org/10.1103/PhysRevD.51.5558
http://dx.doi.org/10.12942/lrr-2007-5
http://dx.doi.org/10.1002/cnm.1630080906
http://dx.doi.org/10.1137/0916034
http://dx.doi.org/10.1137/0916034
http://dx.doi.org/10.1166/asl.2009.1028
http://dx.doi.org/10.1103/PhysRevD.62.084032
http://dx.doi.org/10.1103/PhysRevD.62.084032
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://search.proquest.com/docview/1324727787
http://dx.doi.org/10.1088/0264-9381/29/9/095008
http://dx.doi.org/10.1088/0264-9381/29/9/095008
http://dx.doi.org/10.1007/s00791-015-0246-y
http://dx.doi.org/10.1007/s00791-015-0246-y
http://dx.doi.org/10.1016/S0764-4442(00)01793-6
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.2140/camcos.2010.5.265

128 A. KREIENBUEHL, P. BENEDUSI, D. RUPRECHT AND R. KRAUSE

[34] A. S. Nielsen and J. S. Hesthaven, Fault tolerance in the Parareal method, Proceedings of the
ACM Workshop on Fault-Tolerance for HPC at Extreme Scale (Kyoto, 2016), ACM, New York,
2016.

[35] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7
(1964), no. 12, 731–733.

[36] E. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics, Cambridge University,
2004.

[37] F. Pretorius, Numerical simulations of gravitational collapse, Ph.D. thesis, University of British
Columbia, 2002.

[38] , Evolution of binary black-hole spacetimes, Phys. Rev. Lett. 95 (2005), no. 12, 121101.

[39] F. Pretorius and L. Lehner, Adaptive mesh refinement for characteristic codes, J. Comp. Phys.
198 (2004), no. 1, 10–34.

[40] D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection
system, Comput. Fluids 59 (2012), 72–83.

[41] R. Speck and D. Ruprecht, Toward fault-tolerant parallel-in-time integration with PFASST ,
Parallel Comput. 62 (2017), 20–37.

[42] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and P. Gibbon, A mas-
sively space-time parallel N-body solver, SC ’12: proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (Salt Lake City, 2012),
IEEE, Los Alamitos, CA, 2012.

[43] J. Thornburg, Adaptive mesh refinement for characteristic grids, Gen. Relativity Gravitation 43
(2011), no. 5, 1211–1251.

[44] J. Ziprick and G. Kunstatter, Dynamical singularity resolution in spherically symmetric black
hole formation, Phys. Rev. D 80 (2009), no. 2, 024032.

Received April 24, 2016. Revised December 28, 2016.

ANDREAS KREIENBUEHL: akreienbuehl@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, United States

PIETRO BENEDUSI: pietro.benedusi@usi.ch
Institute of Computational Science, Faculty of Informatics, Università della Svizzera italiana,
Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

DANIEL RUPRECHT: d.ruprecht@leeds.ac.uk
School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT,
United Kingdom

ROLF KRAUSE: rolf.krause@usi.ch
Institute of Computational Science, Faculty of Informatics, Università della Svizzera italiana,
Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

mathematical sciences publishers msp

http://dx.doi.org/10.1145/2909428.2909431
http://dx.doi.org/10.1145/355588.365137
http://dx.doi.org/10.1017/CBO9780511606601
http://search.proquest.com/docview/305430765
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1016/j.jcp.2004.01.001
http://dx.doi.org/10.1016/j.compfluid.2012.02.015
http://dx.doi.org/10.1016/j.compfluid.2012.02.015
http://dx.doi.org/10.1016/j.parco.2016.12.001
http://dx.doi.org/10.1109/SC.2012.6
http://dx.doi.org/10.1109/SC.2012.6
http://dx.doi.org/10.1007/s10714-010-1096-z
http://dx.doi.org/10.1103/PhysRevD.80.024032
http://dx.doi.org/10.1103/PhysRevD.80.024032
mailto:akreienbuehl@lbl.gov
mailto:pietro.benedusi@usi.ch
mailto:d.ruprecht@leeds.ac.uk
mailto:rolf.krause@usi.ch
http://msp.org

Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
msp.org/camcos.

Originality. Submission of a manuscript acknowledges that the manuscript is
original and and is not, in whole or in part, published or under consideration
for publication elsewhere. It is understood also that the manuscript will not be
submitted elsewhere while under consideration for publication in this journal.

Language. Articles in CAMCoS are usually in English, but articles written in
other languages are welcome.

Required items. A brief abstract of about 150 words or less must be included. It
should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and subject
classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties of
TEX, and exceptionally in other formats, are acceptable. Initial uploads should be
in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article titles
and page ranges. All references in the bibliography should be cited in the text. The
use of BibTEX is preferred but not required. Tags will be converted to the house
format, however, for submission you may use the format of your choice. Links will
be provided to all literature with known web locations and authors are encouraged
to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to
submit the original source files in vector graphics format for all diagrams in your
manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure that
what you are saving is vector graphics and not a bitmap. If you need help, please
write to graphics@msp.org with details about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated
corresponding author) at a Web site in PDF format. Failure to acknowledge the
receipt of proofs or to return corrections within the requested deadline may cause
publication to be postponed.

http://msp.org/camcos
mailto:graphics@msp.org

Communications in Applied Mathematics
and Computational Science

vol. 12 no. 1 2017

1A single-stage flux-corrected transport algorithm for high-order finite-volume
methods

Christopher Chaplin and Phillip Colella

25Achieving algorithmic resilience for temporal integration through spectral
deferred corrections

Ray W. Grout, Hemanth Kolla, Michael L. Minion and John

B. Bell

51A fourth-order Cartesian grid embedded boundary method for Poisson’s
equation

Dharshi Devendran, Daniel T. Graves, Hans Johansen and
Terry Ligocki

81A central-upwind geometry-preserving method for hyperbolic conservation
laws on the sphere

Abdelaziz Beljadid and Philippe G. LeFloch

109Time-parallel gravitational collapse simulation
Andreas Kreienbuehl, Pietro Benedusi, Daniel Ruprecht

and Rolf Krause

1559-3940(2017)12:1;1-G

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.12,
no.1

2017

	 vol. 12, no. 1, 2017
	Masthead and Copyright
	Christopher Chaplin and Phillip Colella
	1. Introduction
	2. High-order flux computation
	3. Low-order flux computation
	4. Computing the hybridization coefficient
	5. Results
	6. Conclusions
	Acknowledgements
	References

	Ray W. Grout and Hemanth Kolla and Michael L. Minion and John B. Bell
	1. Introduction
	2. Preliminaries and related work
	2.1. SDC formulation
	2.2. Soft error fault injection
	2.3. Algorithmic approaches to resilience
	2.4. S3D reacting flow solver and ignition benchmark problem

	3. Soft error injection response
	3.1. Work array sensitivity
	3.2. Solution after injection of perturbation
	3.3. Response of linear problem to perturbation
	3.4. Response to multiple errors

	4. Conclusion
	Acknowledgments
	References

	Dharshi Devendran and Daniel T. Graves and Hans Johansen and Terry Ligocki
	1. Introduction
	2. Algorithm
	2.1. Finite volume discretization
	2.2. Taylor series expansions for average quantities
	2.3. Weighted least-squares interpolants
	2.3.1. Boundary conditions
	2.3.2. Weighting matrix
	2.3.3. Neighborhood algorithm

	2.4. Multigrid algorithm

	3. Convergence tests
	3.1. Truncation error
	3.2. Solution error

	4. Operator eigenvalues
	5. Effect on accuracy of geometric differentiability
	5.1. Accuracy vs. resolution for a smooth geometry
	5.2. Accuracy vs. resolution for a nonsmooth geometry
	5.3. Singular solutions and error characteristics

	6. Geometric regularization and accuracy
	6.1. Smoothing the geometric description
	6.2. Regularization length scale and grid refinement

	7. Conclusions
	Acknowledgment
	References

	Abdelaziz Beljadid and Philippe G. LeFloch
	1. Introduction
	2. Governing equations
	3. Derivation of the proposed method
	4. Formulation using the latitude-longitude grid on the sphere
	5. Geometry-compatible flux vectors and particular solutions of interest
	6. Numerical experiments
	7. Concluding remarks
	Acknowledgments
	References

	Andreas Kreienbuehl and Pietro Benedusi and Daniel Ruprecht and Rolf Krause
	1. Introduction
	2. Equations
	2.1. Gravitational collapse
	2.2. Numerical solution
	2.3. Mass scaling

	3. Parareal
	3.1. Algorithm
	3.2. Spatial coarsening in Parareal
	3.3. Implementation
	3.4. Speedup
	3.5. Load balancing

	4. Results
	4.1. Subcritical
	4.2. Supercritical

	5. Conclusion
	Acknowledgments
	References

	Guidelines for Authors
	Table of Contents

