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ALGORITHM FOR HIGH-ORDER FINITE-VOLUME METHODS
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We present a new limiter method for solving the advection equation using a
high-order, finite-volume discretization. The limiter is based on the flux-corrected
transport algorithm. We modify the classical algorithm by introducing a new
computation for solution bounds at smooth extrema, as well as improving the
preconstraint on the high-order fluxes. We compute the high-order fluxes via a
method-of-lines approach with fourth-order Runge–Kutta as the time integrator.
For computing low-order fluxes, we select the corner-transport upwind method
due to its improved stability over donor-cell upwind. Several spatial differencing
schemes are investigated for the high-order flux computation, including centered-
difference and upwind schemes. We show that the upwind schemes perform well
on account of the dissipation of high-wavenumber components. The new limiter
method retains high-order accuracy for smooth solutions and accurately captures
fronts in discontinuous solutions. Further, we need only apply the limiter once
per complete time step.

1. Introduction

We wish to solve hyperbolic conservation laws of the form

∂U
∂t
+∇ · ( EF(U ))= 0, (1)

where U represents a vector of conserved values and EF = (F1
· · · FD) the

corresponding D-dimensional fluxes. The discrete solution of these equations at a
given time tn+1 and spatial location i is given by

〈U 〉n+1
i = 〈U 〉ni −

1t
h

D∑
d=1

[
(Fd)

n+1/2
i+ed/2− (F

d)
n+1/2
i−ed/2

]
, (2)

where 〈U 〉ni approximates the average of U over a rectangular Cartesian control
volume at time tn and (Fd)n+1/2 approximates the average of EF(U ) from time tn

to tn+1 over the faces of the same control volume. The parameters1t and h represent
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the time-step size and grid spacing, respectively. Methods for accurately computing
the fluxes, (Fd)n+1/2, to obtain high-order accuracy for smooth solutions are well
understood. However, these high-order methods must be modified to selectively
introduce dissipation in the presence of discontinuities or underresolved gradients.
These modification methods are called limiter schemes. Modern limiter schemes
seek to achieve high-order accuracy for smooth solutions regardless of complexity
and to represent discontinuities well.

Many of the original second-order limiter schemes, such as monotonic upstream-
centered schemes for conservation laws (MUSCL) [25], total variation diminishing
(TVD) [11], piecewise parabolic method (PPM) [7], and flux-corrected transport
(FCT) [2], are still used in some form today. But these original schemes strug-
gled to achieve all of the aforementioned goals, particularly high-order accuracy
for solutions that are both complicated and smooth. The standard and weighted
essentially nonoscillatory (ENO/WENO) schemes were developed to address these
issues for TVD [12; 17; 22]. An extremum-preserving limiter has been added
to PPM [6]. For FCT, a nonclipping limiter was developed [28]. Finite-element
methods, in particular discontinuous Galerkin (DG) methods, have also been gaining
popularity for these problems. DG methods use a menagerie of technologies to
handle discontinuities [3]. Recent efforts have been made to combine aspects
of WENO limiting and the DG discretization [22]. FCT was also extended to
finite-element discretizations [18; 19], and many of the recent improvements to the
algorithm have been on these discretizations [16; 13; 15; 14]. Most of the limiter
methods mentioned so far use a semidiscrete, method-of-lines formulation, wherein
a standard ordinary differential equation (ODE) integrator is used to advance the
solution after the spatial differencing scheme has been applied. There are fully
discrete methods as well, such as arbitrary derivative in space and time (ADER)
[24; 23]. They offer an alternative to the method-of-lines approaches [1; 9].

The starting point for our approach is a method-of-lines, finite-volume formula-
tion. In all semidiscrete implementations mentioned above, the limiter algorithm is
applied every time a high-order flux evaluation occurs. This requires the limiter to
be applied several times during a single time-update procedure. For this study we
chose to only apply limiting once per time update, after the total high-order flux
was generated. This choice is motivated by both current and future performance
considerations [10; 26]. Moving limiting to a postprocessing procedure allows
for smaller stencils and less parallel communication. Limiters that are designed
to preserve high-order accuracy at smooth extrema typically make use of second-
or higher-order spatial derivative information to determine where the solution is
smooth enough to not require limiting. Computing these derivatives at each stage
in high-order ODE integration scheme requires a larger stencil than the standard
high-order flux stencil, at least up until ninth order. The other half of this is that,
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typically because the limiter procedure is complicated and has a wide stencil, ghost
cells are synchronized at each stage computation. If one can fit all the data required
to complete the entire time update in local memory, then synchronization must only
occur once per time advance. These two hindrances, namely wider stencils and
repeated synchronization barriers, motivated the departure from the stage-by-stage
limiting approach.

We elected to use a version of flux-corrected transport (FCT) for our limiting
scheme [2; 28; 15]. FCT introduces dissipation through a nonlinear hybridization
of a high-order flux with a dissipative, low-order flux. To compute the high-order
flux, we used a method-of-lines approach with fourth-order Runge–Kutta (RK4)
as the time-integration scheme. For the spatial derivatives we looked at a family
of methods based on high-order centered- and one-point-upwinded linear finite-
volume interpolations. The low-order scheme was the corner-transport upwind
(CTU) method [4; 21]. We elected to use CTU for two reasons: CTU permits
the use of larger time steps than the standard donor-cell method, and CTU can
be constructed in such a way as to preserve positivity in the solution. In addition
to using these schemes for the high- and low-order fluxes, we modified the FCT
algorithm in three important ways. First we included an extremum-preserving
bound computation based on the approach used in [6; 20] for interpolation-based
limiting. We also designed a more restrictive condition on applying the typical
preconstraint for the high-order fluxes. Furthermore, we extended the product rule
to sixth-order accuracy. All of these features were required in order to maintain
high-order accuracy for complicated smooth solutions.

For this study, we restricted our attention to the scalar advection equation. This
allowed us to explore design space for this novel single-stage limiter in a simple
setting, but one that is still relatively unforgiving. These advective terms appear
directly in real applications including transport of scalars in the atmosphere, Vlasov
equations in phase space, and combustion.

Advection equation. We will consider the linear advection equation in the form

∂q
∂t
+∇ · (q Eu)= 0, (3)

∇ · Eu = 0, (4)

on a D-dimensional square domain � = [0, 1]D. In this case Eu is an advective
velocity and q is a scalar field. The partial differential equation above can also be
written as

dq
dt
= 0,

d Ex
dt
= Eu. (5)

Provided that an initial condition is specified (q0 = q(Ex(t0), t0)), this system of
ordinary differential equations yields a unique solution for any q(Ex(t), t) and Ex(t).
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The solution arrived at by integrating the equations is that q is constant along
characteristic curves defined by Ex(t). Even though there is a simple solution to
this equation, the analysis is still quite useful since there is no diffusion or entropy
condition built into the equation: any numerical errors introduced are propagated
through the domain.

Finite-volume discretization. Our approach is to use a finite-volume method to
discretize the physical domain into a union of control volumes

Vi =
[(

i − 1
2

)
h,
(
i + 1

2

)
h
]
, i ∈ ZD, (6)

where h is the grid spacing and i is a D-dimensional index denoting location. The
origin in the physical domain occurs at the point (i − 1

2)h when i = 0.
Values of the conserved scalar quantity q are stored as cell averages 〈q〉 over

each Vi , and the fluxes Fd
= qud are stored as averages 〈Fd

〉i±ed/2 over the surface
faces A±d of each cell:

〈q〉i (t)=
1

hD

∫
Vi

q(x, t) dx, (7)

〈Fd
〉i±ed/2(t)=

1
hD−1

∫
A±d

Fd(x, t) dx. (8)

Applying the finite-volume discretization (6) to (3) yields a semidiscrete system of
ordinary differential equations (ODEs) in time

d〈q〉i
dt
=−

1
hD

∫
Vi

(∇ · ( EF)) dx. (9)

The divergence theorem is then applied to (9):

d〈q〉i
dt
=−D · 〈 EF〉(t), (10)

=−
1
h

D∑
d=1

[
〈Fd
〉i+ed/2−〈Fd

〉i−ed/2
]
. (11)

The integration of the above system with respect to time from tn to tn+1 produces
the solution

〈q〉n+1
i = 〈q〉ni −

1t
h

D∑
d=1

[
〈Fd
〉

n+1/2
i+ed/2−〈F

d
〉

n+1/2
i−ed/2

]
, (12)

〈Fd
〉

n+1/2
i±ed/2 =

1
1t

∫ tn
+1t

tn
〈Fd
〉i±ed/2(t) dt. (13)

The resulting challenge is to accurately compute 〈Fd
〉

n+1/2
i±ed/2. It is important to

note that no approximations have been made at this point: (12) and (13) are exact
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relationships. However, to obtain a full discrete approximation, we need quadrature
rules for the surface fluxes in (11) and for the time-averaged fluxes in (13). The
quadrature rules for computing these fluxes are defined following ideas from [20].
In that work, the high-order quadratures were computed using a method-of-lines
approach. The surface fluxes were computed using a high-order centered-difference
method, and the temporal integration was computed using the classic RK4 method.
We retained the use of RK4 in this study and investigated several high-order methods
for computing the surface fluxes.

Hybridization. Returning to the flux description in (13), we may now define the
hybridization

〈Fd
〉

n+1/2
i+ed/2 = (ηi+ed/2)〈Fd

H 〉i+ed/2+ (1− ηi+ed/2)〈Fd
L 〉i+ed/2, (14)

where the subscripts H and L refer to the high-order and low-order fluxes and
ηi+ed/2 is the hybridization coefficient.

In the following sections of the paper we will describe the design choices and pro-
cedures for computing the high-order flux, the low-order flux, and the hybridization
coefficient.

2. High-order flux computation

We compute the high-order fluxes using the method of lines. Two schemes must be
chosen: a scheme for integrating the solution in time and a scheme for computing the
spatial derivatives. High-order accuracy requires that both schemes be high-order
accurate.

High-order temporal integration scheme. We use the RK4 scheme to advance the
solution. Returning to the system of ODEs (10),

d〈q〉
dt
=−D · 〈 EF〉(t),

we want to integrate 〈q〉 from tn to tn+1. RK4 is a fourth-order integration scheme
that consists of computing a linear combination of stage-update variables ks . The
updates are defined as

〈q〉0 = 〈q〉(tn), k1 =−D · 〈 EF(〈q〉0)〉1t, (15)

〈q〉1 = 〈q〉0+ 1
2 k1, k2 =−D · 〈 EF(〈q〉1)〉1t, (16)

〈q〉2 = 〈q〉0+ 1
2 k2, k3 =−D · 〈 EF(〈q〉2)〉1t, (17)

〈q〉3 = 〈q〉0+ k3, k4 =−D · 〈 EF(〈q〉3)〉1t. (18)
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Each update variable ks requires computing stage fluxes 〈Fd
〉

s
i±ed/2 = 〈qud

〉
s
i±ed/2.

The stage fluxes are functions of the stage values 〈q〉si and 〈ud
〉

s
i exclusively, and

the procedure for computing the fluxes will be described in the next section.
To perform the RK4 integration, we compute the appropriate linear combination

of stage updates

〈q〉(tn
+1t)= 〈q〉(tn)+ 1

6(k1+ 2k2+ 2k3+ k4)+O(h5). (19)

Using the conservation notation, this RK4 integration can also be described by

〈q〉n+1
i = 〈q〉ni −

1t
h

D∑
d=1

[
〈Fd

H 〉i+ed/2−〈Fd
H 〉i−ed/2

]
, (20)

〈Fd
H 〉i±ed/2 =

1
6

[
〈Fd
〉
(0)
i±ed/2+ 2〈Fd

〉
(1)
i±ed/2+ 2〈Fd

〉
(2)
i±ed/2+〈F

d
〉
(3)
i±ed/2

]
. (21)

High-order spatial difference schemes. We use high-order finite-difference meth-
ods to approximate the surface fluxes associated with the spatial derivatives. The
fluxes 〈qud

〉i±ed/2 for the spatial derivatives are functions only of the cell-averaged
〈q〉i and 〈ud

〉i at any time. Several methods were explored in this study for com-
puting 〈q〉i±ed/2, including high-order centered-difference schemes and upwind
schemes. The advantage of the upwind methods is that they have greater diffusion
especially in regimes where the phase error begins to rise. The upwind methods only
require a small additional computation, and the stability of similar-order centered-
difference and upwind methods is almost identical. Although not investigated in
this study, high-order centered-difference schemes with hyperdiffusive fluxes [28]
offer a possible alternative to the upwind ones used here.

The interpolation formulae corresponding to the spatial differencing schemes
used are presented below. For compactness, the following notation will be used:

〈q〉ni+ed/2 =

S∑
s=−S

as〈q〉ni+sed , (22)

where S is the width of the stencil and as are the coefficients. The odd-ordered
methods use the full range of coefficients, whereas the even-ordered methods have
no coefficient at s =−S.

• Fourth-order centered difference (S = 2):

{as : s =−S+ 1, . . . , S} = 1
12{−1, 7, 7,−1}. (23)

• Fifth-order upwind (S = 2):

{as : s =−S, . . . , S} = 1
60{2,−13, 47, 27,−3}. (24)
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• Sixth-order centered difference (S = 3):

{as : s =−S+ 1, . . . , S} = 1
60{1,−8, 37, 37,−8, 1}. (25)

• Seventh-order upwind (S = 3):

{as : s =−S, . . . , S} = 1
420{−3, 25,−101, 319, 214,−38, 4}. (26)

• Ninth-order upwind (S = 4):

{as : s=−S, . . . , S}= 1
2520{4,−41, 199,−641, 1879, 1375,−305, 55,−5}. (27)

Product rule. To complete the flux computation, we must compute the average of
the product of the scalar variable and the velocity (〈qud

〉i+ed/2). The 2D product
rules for second-, fourth-, and sixth-order accuracy are

〈qud
〉i+ed/2 = 〈q〉i+ed/2〈ud

〉i+ed/2+O(h2), (28)

〈qud
〉i+ed/2 = 〈q〉i+ed/2〈ud

〉i+ed/2+
1
12 h2

∑
d ′ 6=d

∂q
∂xd ′

∂ud

∂xd ′ +O(h4), (29)

〈qud
〉i+ed/2 = 〈q〉i+ed/2〈ud

〉i+ed/2+
1
12 h2

∑
d ′ 6=d

(
∂q
∂xd ′

∂ud

∂xd ′

)

+
1

1440 h4
∑
d ′ 6=d

(
3
∂3q
∂x3

d ′

∂ud

∂xd ′
+ 3

∂3ud

∂x3
d ′

∂q
∂xd ′
+ 2

∂2ud

∂x2
d ′

∂2q
∂x2

d ′

)
+O(h6). (30)

The possible sources of error in the product formulae above are computing the
averages 〈q〉i+ed/2 and 〈ud

〉i+ed/2 and computing the partial-derivative sums. We
have already discussed several methods and their accuracy for computing 〈q〉i+ed/2.
The velocity fields are analytic for advection, so 〈ud

〉i+ed/2 introduces no error.
The derivative terms in the summations above were computed exclusively using
centered-difference approximations of appropriate accuracy. For example, the
derivatives in the fourth-order-accurate product formula were computed using a
second-order centered difference. The derivatives in the sixth-order formula were
computed to fourth order (for the term multiplied by h2) and to second order (for
the term multiplied by h4).

We note that the product rule has no contribution in a 1D problem or in any
multidimensional problem with constant velocity. To obtain an arbitrary O(hN )-
accurate solution for a multidimensional problem with varying velocity, we need to
ensure that the product rule along with the time integrator and the spatial differencing
scheme are all at least O(hN ). In this study, our overall solution accuracy was
constrained by the use of RK4 for integration. However, lower spatial discretization
errors are produced using the sixth-order product rule, in place of the fourth-order
rule, with fifth- and higher-order-accurate spatial differencing schemes.
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Method Stability constraint

4th center σ . 2.06/D
5th upwind σ . 1.73/D
6th center σ . 1.78/D
7th upwind σ . 1.69/D
9th upwind σ . 1.60/D

Table 1. Stability of methods for varying spatial difference operators and dimensionality D.

Stability. We compute the stability for each high-order scheme to determine the
allowable time-step size following the procedure in [5]. Stability for the method
of lines requires the eigenvalues of the right-hand side to lie within the stability
region of the time integrator. These eigenvalues are computed by diagonalizing the
semidiscrete system (10). For advection the eigenvalues are defined as the product
of the velocity and the spatial derivative operator:

d〈q〉
dt
= λ〈q〉, (31)

λ〈q〉 = −Eu
∂

∂x
〈q〉. (32)

The particular eigenvalues for each spatial differencing scheme will be presented
later.

These eigenvalues must lie within the stability region of the time integrator. The
stability region for RK4 is well known and can be described by its characteristic
polynomial

P(z)= 1+ z+ 1
2 z2
+

1
6 z3
+

1
24 z4, (33)

where z =1t λ. Stability for this problem requires that |P(z)| ≤ 1. The resulting
stability constraints for each spatial differencing scheme are presented in Table 1,
where σ = |u|1t/h.

Along with stability, the phase error and dissipation were computed (Figure 1).
The dissipation was defined as (1− |g|), where

|g| =
√

Re(g)2+ Im(g)2, (34)

Re(g)= (1+ x + 1
2 x2
+

1
6 x3
+

1
24 x4)− 1

2 y2(1+ x + 1
2 x2)+ 1

24 y4, (35)

Im(g)= y(1+ x + 1
2 x2
+

1
6 x3)− 1

6 y3(1+ x), (36)

and z = x + iy. The normalized phase error, |1−α|, is defined using

α =
α(β)

|u|
= −

1
σβ

Im(g)
Re(g)

, (37)

where β = 2πkh for k = 0,±1,±2, . . . ,±N/2.
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Figure 1. Normalized phase error (left) and dissipation (right) for the high-order methods
(σ = 0.8).

Spatial differencing eigenvalues. The eigenvalues for each of the different high-
order spatial differencing schemes are presented below. In each of the eigenvalue
descriptions, βd may range from −π to π and is defined as 2πkdh with kd =

0,±1,±2, . . . ,±N/2.

• Fourth-order centered difference:

λ4 =
i

12h

D∑
d=1

ud
[16 sin(βd)− 2 sin(2βd)]. (38)

• Fifth-order upwind:

λ5 =
1

60h

D∑
d=1

ud[(
−2 cos(3βd)+ 12 cos(2βd)− 30 cos(βd)+ 20

)
+ i
(
2 sin(3βd)− 18 sin(2βd)+ 90 sin(βd)

)]
. (39)

• Sixth-order centered difference:

λ6 =
i

60h

D∑
d=1

ud
[2 sin(3βd)− 18 sin(2βd)+ 90 sin(βd)]. (40)

• Seventh-order upwind:

λ7 =
1

420h

D∑
d=1

ud[(3 cos(4βd)− 24 cos(3βd)+ 84 cos(2βd)− 168 cos(βd)+ 105
)

+ i
(
−3 sin(4βd)+ 32 sin(3βd)− 168 sin(2βd)+ 672 sin(βd)

)]
. (41)
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• Ninth-order upwind:

λ9 =
1

2520h

D∑
d=1

ud[(
−4 cos(5βd)+ 40 cos(4βd)− 180 cos(3βd)

+ 480 cos(2βd)− 840 cos(βd)+ 504
)

+ i
(
4 sin(5βd)− 50 sin(4βd)+ 300 sin(3βd)

− 1200 sin(2βd)+ 4200 sin(βd)
)]
. (42)

3. Low-order flux computation

The low-order fluxes are computed using the CTU method [4; 21]. CTU is a
first-order time-advancement scheme. The method is desirable over the simpler
donor-cell upwind method because its stability is independent of dimensionality.
However, this increased stability comes with a price. Instead of a single flux being
defined by a single upwind value, the CTU flux is dependent upon a set of upwinded
values. These values are determined by tracing the characteristic paths from the
nodes that define the flux surface. This process involves an increasing number of
Riemann solves as the dimensionality of the problem increases. In the 1D case,
CTU is identical to donor-cell upwind.

4. Computing the hybridization coefficient

We compute the hybridization coefficient η using a modified multidimensional
flux-corrected transport (FCT) algorithm. Note that the time superscript notation (n)
for fluxes is dropped for the remainder of the paper, but it is implied. Our algorithm
is based upon the method described first in [28]. Here is the generic FCT procedure:

(1) Compute the high-order fluxes 〈Fd
H 〉i±ed/2 over the cell volume Vi .

(2) Compute the low-order fluxes 〈Fd
L 〉i±ed/2 and the corresponding low-order

update

〈q〉tdi = 〈q〉
n
i −

1t
h

D∑
d=1

[
〈Fd

L 〉i+ed/2−〈Fd
L 〉i−ed/2

]
. (43)

(3) Compute the antidiffusive fluxes

〈Ad
〉i±ed/2 = 〈Fd

H 〉i±ed/2−〈Fd
L 〉i±ed/2. (44)

(4) Limit the antidiffusive fluxes:

〈Ad
η〉i±ed/2 = η

d
i±ed/2〈A

d
〉i±ed/2, 0≤ ηd

i±ed/2 ≤ 1. (45)
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(5) Update the solution with the limited antidiffusive fluxes:

〈q〉n+1
i = 〈q〉tdi −

1t
h

D∑
d=1

[
〈Ad

η〉i+ed/2−〈A
d
η〉i−ed/2

]
. (46)

Limiting the antidiffusive flux. The primary challenge in the above formulation is
computing the hybridization coefficients (ηi±ed/2). Following the procedure in [28],
we compute the coefficients in the following manner.

Preconstrain the high-order fluxes 〈FH 〉i±ed/2. This is a prelimiting step that in
effect sets 〈Ad

〉i±ed/2 to zero when it would otherwise admit diffusion and flatten
the solution profile.

Compute the sum (P±i ) of all the antidiffusive fluxes into and out of the cell and
a measure of the allowable flux into or out of the cell (Q±i ):

P+i =
D∑

d=1

[max(〈Ad
〉i−ed/2, 0)−min(〈Ad

〉i+ed/2, 0)], (47)

Q+i = ((qmax)i −〈q〉tdi )
h
1t
, (48)

P−i =
D∑

d=1

[max(〈Ad
〉i+ed/2, 0)−min(〈Ad

〉i−ed/2, 0)], (49)

Q−i = (〈q〉
td
i − (qmin)i )

h
1t
. (50)

Compute the least upper bounds

R+i =
{

min(1.0, Q+i /P+i ) if P+i > 0.0,
0.0 otherwise,

(51)

R−i =
{

min(1.0, Q−i /P−i ) if P−i > 0.0,
0.0 otherwise.

(52)

Select the hybridization coefficient with the most restrictive upper bound:

ηi+ed/2 =

{
min(R+i+ed , R−i ) if 〈Ad

〉i+ed/2 > 0.0,
min(R+i , R−i+ed ) if 〈Ad

〉i+ed/2 ≤ 0.0.
(53)

In the above description the user is provided with two design choices: preconstraint
for the high-order flux and method of computing the solution bounds (qmax)i and
(qmin)i .

Computing the solution bounds. Compute initial estimates of the solution bounds,
(qmax)i and (qmin)i . First, compute the bounded solutions in a rectangular stencil
(Bi ) that is [2si+1]D cells in size, where si is the stencil size. Following convention
the stencil size was fixed to be one cell.
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After the stencil is determined, four bounds are computed: max based on 〈q〉n ,
min based on 〈q〉n , max based on 〈q〉td , and min based on 〈q〉td :

(qmax)
n
i =max(Bi (〈q〉n)), (54)

(qmin)
n
i =min(Bi (〈q〉n)), (55)

(qmax)
td
i =max(Bi (〈q〉td)), (56)

(qmin)
td
i =min(Bi (〈q〉td)). (57)

Then select the upper and lower bounds of the two estimates:

(qmax)i =max((qmax)
n
i , (qmax)

td
i ), (58)

(qmin)i =min((qmin)
n
i , (qmin)

td
i ). (59)

Accurate solution bounds at smooth extrema. For the vast majority of cells within
the domain, the previous bound computation is sufficiently accurate. However,
computing bounds at extrema is more complicated. Ideally the bounds need to
keep the solution monotonic and positive, but the bounds should also not “clip” the
solution. There are a few different methods for avoiding clipping, and we use a
geometric construction that is only applied at smoothly varying extrema. It is based
on the ideas in [6].

The first task is to detect a smooth extremum. The smooth-extremum criterion
in 1D is

(extd)i =min[(dq)i ·(dq)i+ed , (dq)i−ed ·(dq)i+2ed ]≤0.0, 1.25·(dqtot)i <(tv)i ,
(60)

where

(dq)i = 〈q〉tdi −〈q〉
td
i−ed , (61)

(dqtot)i = |〈q〉tdi+2ed −〈q〉tdi−2ed |, (62)

(tv)i = |(dq)i+2ed | + |(dq)i+ed | + |(dq)i | + |(dq)i−ed |. (63)

This criterion has two parts. First, check for a sign change in the first derivative.
The sign change will indicate either an extremum or a discontinuity in the solution.
Second, ensure that the solution locally is not a perturbation of a discontinuity.

For a smooth multidimensional extremum, either (extd)i must be true in all
dimensions or it must be true for some d and the solution must remain constant
along the dimensions in which (extd)i is not true. We use this criterion to determine
if the solution is constant:

max(|(qd
max)

td
i −〈q〉

td
i |, |(q

d
min)

td
i −〈q〉

td
i |)≤ 10−14, (64)
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where

(qd
max)

td
i =max

(
〈q〉tdi−ed , 〈q〉tdi , 〈q〉

td
i+ed

)
, (65)

(qd
min)

td
i =min

(
〈q〉tdi−ed , 〈q〉tdi , 〈q〉

td
i+ed

)
. (66)

Once we have determined that the solution at Vi is at a smooth extremum, we
compute new values of (qmax)i and (qmin)i . The first step is to construct a parabolic
function from the local values of 〈q〉n:

qd(x)= 1
2(d2q)ni x2

+
1
2(〈q〉

n
i+ed −〈q〉ni−ed )x +〈q〉ni , (67)

where

(d2q)ni = 〈q〉
n
i+ed +〈q〉ni−ed − 2〈q〉ni . (68)

The location of the vertex (xc) is given by the ratio −b/2a, where a and b are the
quadratic and linear coefficients from (67):

xc =−
〈q〉ni+ed −〈q〉ni−ed

2(d2q)ni
(69)

and −0.5 ≤ xc ≤ 0.5. Then, we evaluate the quadratic at the vertex to find the
extremum value as well as deconvolve to get an estimate of the point value:

(qd
ext)i =

1
2(d2q)ni x2

c +
1
2(〈q〉

n
i+ed −〈q〉ni−ed )xc+〈q〉ni −

1
24(d2q)ni . (70)

We select the largest (qd
ext)i or smallest (qd

ext)i depending on the sign of the second
derivative:

(qext)i =

{
maxd((qd

ext)i , (qmax)i ) if sgn((d2q)ni )≤ 0.0,
mind((qd

ext)i , (qmin)i ) otherwise.
(71)

Finally, we compute the appropriate extremum bound by augmenting the solution
value at the previous time by a scaled difference between the extremum value and
the solution value

(qmax)i =

{
〈q〉ni + 2.0[(qext)i −〈q〉ni ] if sgn((d2q)ni )≤ 0.0,
(qmax)i otherwise,

(72)

(qmin)i =

{
〈q〉ni + 2.0[(qext)i −〈q〉ni ] if sgn((d2q)ni ) > 0.0,
(qmin)i otherwise.

(73)

Updating R±i at extrema. We flag the extrema at which the Laplacian is changing
sign. In most cases this flag should not be activated. However, if the Laplacian does
change sign at a smooth extremum, we turn the limiter on so that the low-order flux
is chosen. This is a protective measure we have included in the algorithm.
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We compute the D-dimensional approximation to the Laplacian over a three-point
stencil

1qi =

D∑
d=1

∂2qi

∂x2
d
≈

D∑
d=1

(d2q)ni
h2 . (74)

If 1q changes sign anywhere in the three-point vicinity of i , then we flag that cell i .
We then update the least upper bound multiplier at the flagged cells:

R±i = 0 if i flagged. (75)

Preconstraining the high-order flux. We preconstrain the high-order flux where
the corresponding antidiffusive flux would admit diffusion and flatten the solution
profile. In practice, the value of the antidiffusive flux is edited instead of the high-
order flux directly. Following [28] we set the antidiffusive flux to zero in these
regions.

The baseline condition for applying the preconstraint is

〈Ad
〉i+ed/2(〈q〉

td
i+ed −〈q〉tdi )≤ 0.0. (76)

However, this condition was not sufficient for our algorithm. The condition was
occasionally satisfied at smooth areas in the solution. This manifested itself as
a drop in convergence rate. We noticed that the preconstraint was mainly being
applied near steep gradients and discontinuities. Moving forward, we only want to
apply the preconstraint at discontinuities.

We added the following requirements to make sure we only apply this condition
away from smooth areas:

min
[
(d2q)ni+ed · (d2q)ni , (d2q)ni · (d2q)ni−ed , (d2q)ni+ed · (d2q)ni+2ed

]
< 0.0, (77)

|〈Ad
〉i+ed/2| ≤

|(ud)i+ed/2|h
2

(1− σi+ed/2)
|(d2q)i + (d2q)i+ed |

2
, (78)

where σi+ed/2 = |(ud)i+ed/2|1t/h.
The first constraint above (77) attempts to detect a discontinuity in the solution.

However, there are smooth multidimensional solutions in which the second de-
rivative naturally changes sign. The second constraint (78) seeks to preclude this
case. The term on the right-hand side of the inequality (78) is the d-directional
dissipation term, scaled by the cell size, in the modified equation analysis of CTU
applied to the advection equation:

∂q
∂t
+

D∑
d=1

(
ud ∂q
∂xd

)
=

D∑
d=1

(
udh

2
(1− σd)

∂2q
∂x2

d

)
+O(h2). (79)

We are interested in comparing the magnitude of this dissipative term to the anti-
diffusive flux. The magnitude of the dissipative term is large in the neighborhood
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of discontinuities. If this magnitude is large relative to the antidiffusive term, then
we assume we are near a discontinuity and allow the preconstraint.

Steepening. In the previous subsection, we stated that the antidiffusive flux is set to
zero in the regions where it would flatten the profile. As recognized in [8; 15], we
may alternatively reverse the sign of and scale the antidiffusive flux. This process,
known as steepening, seems to produce even sharper solution profiles at fronts.
However, steepening has led to robustness issues in the past, including producing
overshoots in the solution if the scaling factor is too large. For this reason we elected
to keep the scaling factor at zero for the vast majority of the tests in this study.

If steepening is deemed necessary, we make the following changes to the al-
gorithm: make the smoothness check more stringent and scale the antidiffusive
flux instead of zeroing it. We found that scaling the right-hand side of (78) by 0.5
worked well to ensure the solution was discontinuous. In addition, we found that
the best scaling factor for the tests in this study was 2.0.

5. Results

Results in one and two dimensions are presented. A total of four initial conditions
were investigated. Of the four, one initial condition was smooth and the others
contained a discontinuity. For the two-dimensional tests, we used a constant diagonal
velocity field and a solid-body-rotation velocity field:

u = [1, 1], (80)

u = 2π [y−0.5, 0.5−x]. (81)

The center for the constant-velocity initial condition was in the middle of the domain,
whereas it was offset by 0.25 of the grid height for the solid-body-rotation examples:

xconst
c = (0.5, 0.5),

xsolid
c = (0.5, 0.75).

Initial conditions. The smooth initial condition was constructed as a power of
cosines

qi (t0)=
{

cos8
(
π
2 (R/R0)

)
if R ≤ R0,

0 otherwise,
(82)

with
R =

√
(xi − xc)2, xi ∈ [0, 1], R0 = 0.15.

Three different discontinuous initial conditions were investigated. The first was a
square and is described as

qi (t0)=
{

1 if |x D
i − x D

c | ≤ 0.15 for each D,
0 otherwise.

(83)
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Figure 2. Centered (left) versus upwind (right) difference methods without limiting
(σ = 0.8, t = 1.0, and N = 128).

The next is a semiellipse

qi (t0)=
{√

1.0− (R/R0)2 if R ≤ R0,

0 otherwise,
with R0 = 0.25. (84)

The last test case is the classic slotted cylinder in two dimensions

qi (t0)=
{

1 if |x0
i − x0

c | ≥ 0.025 or x1
i ≥ 0.85 (provided R ≤ 0.15),

0 otherwise,
(85)

with R =
√
(xi − xsolid

c )2.

Effectiveness of design features. We seek to demonstrate the need for each of the
design choices made in the algorithm. The first feature is upwind methods for
high-order fluxes. To show the effectiveness of the upwind methods, we examined
the performance of the high-order fluxes with no limiting (Figure 2) on the square
initial condition (83) in 1D. In the presence of a discontinuity, upwind methods
produced much smaller magnitude oscillations than centered-difference methods.
This outcome is consistent with the amplitude and phase error analysis presented
earlier. When the limiter is turned on, the oscillations are clipped for both types of
fluxes but the dispersive errors remain in the centered-difference solutions. Figure 3
shows this remaining dispersive error on the semiellipse initial condition (84).

The second design feature is the extremum-preserving limiter. We simulated
advection with the smooth cosine initial condition (82) in 2D. This initial condition
has a smoothly varying extremum in the middle of the domain. Figure 4, left, shows
the excessive diffusion at this extremum that results from not using the extremum-
preserving limiter. Not only is there excess diffusion, but also the convergence rate
of the method suffers.

The preconstraint is another important feature of this algorithm. Figure 4, right,
shows the effectiveness of the preconstraint on the square initial condition running
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Figure 3. Centered (left) versus upwind (right) difference methods with limiting (σ = 0.8,
t = 1.0, and N = 128).
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Figure 4. Effectiveness of extremum-preserving limiter at t = 5.0 (left) and preconstraint
and steepener in 2D at t = 1.0 (right) (σ = 0.8 and N = 128).

right at the stability limit of the method in 2D. The preconstraint sharpens the
solution profile near the front. The steepening preconstraint improves the solution
profile even further. However, for most of the tests in this study, our preconstraint
produced identical results with and without steepening. The remaining results do
not include steepening.

One-dimensional tests. The first requirement for the limiter method is that it re-
duces to the high-order scheme away from discontinuities. All of the high-order
schemes running at a large CFL number (σ = 0.8) achieved similar errors for
smooth solutions in 1D (Figure 5). At this CFL number, the rate of convergence for
each method was 4.0. We also computed the errors running at a lower CFL number
(σ = 0.2). The error-reduction rate for each scheme at the low CFL number roughly
matched the order of the spatial differencing scheme for the grid sizes displayed
here. These results demonstrate that the limiter is not being activated in smooth
regions, and hence, the first requirement is met.
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Figure 5. L∞ errors in 1D. Left column: error without limiter. Right column: error with
limiter. Top row: σ = 0.8. Bottom row: σ = 0.2.
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Figure 6. Discontinuous solutions with limiting and square (left) and semiellipse (right)
initial conditions (σ = 0.8, t = 1.0, and N = 128).

The second requirement is that the limiter method accurately represent discon-
tinuities. Figure 6 shows how the limiter performs on the square and semiellipse
initial conditions in 1D. For both cases, the limiter method accurately captures the
front and keeps the solution bounded.
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Figure 7. L∞ errors in 2D. Left column: without limiter. Right column: with limiter.
Top row: constant velocity. Bottom row: rotation velocity.

Two-dimensional tests. The errors for the smooth initial condition test in two di-
mensions are reported with and without the limiter for both velocity fields (Figure 7).
As in the one-dimensional case, the high-order solution accuracy requirement is
met. Interestingly, for the solid-body-rotation solution, the error reduction is greater
than fourth order for many of the spatial differencing schemes. Also the ninth-order
scheme is still convergent right at its theoretical stability limit (σ ≈ 0.8).

The limiter also performs quite well at representing discontinuities in two di-
mensions. Various solution plots for discontinuous initial conditions are presented
(Figures 8–10). All of the two-dimensional plots were generated using the ninth-
order scheme in space, running at σ = 0.8. The square solution under constant
velocity has few, if any, ripples and is nicely bounded (Figure 8). There is some
distortion of the corners, particularly at the top-left and bottom-right. The square
solution under solid-body rotation looks similar to the constant-velocity solution,
and the corner issue is mitigated.

The semiellipse solution is likewise well resolved (Figure 9). As with the one-
dimensional case there are some dispersive errors on the leading edge, but they
are small. The solutions under both velocity fields are accurately bounded. The
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Figure 8. Square solutions (σ = 0.8, t = 1.0, and N = 128). Top left: constant velocity.
Top right: solid-body rotation. Bottom row: centerline comparison.

semiellipse solution under solid-body rotation was centered at xsolid
c = (1.0, 1.5) to

keep the edge of the condition away from the domain boundary. The domain was
also expanded to xi ∈ [0, 2].

The final test was the slotted cylinder (Figure 10). The limiter method keeps the
solution bounded and resolves the fronts quite nicely. At lower grid resolutions, the
slot can fill in and the bounds may not be enforced. But as the grid is refined, both
of these issues are resolved.

6. Conclusions

We presented a new flux limiter based upon FCT that retains high-order accuracy
for smooth solutions and captures fronts well. Our algorithm presented here uses
CTU for low-order fluxes, upwind schemes for high-order fluxes, and RK4 for time
integration. Our additions to the previous FCT method included a new computation
for the extrema, an expanded preconstraint on the high-order fluxes, and a sixth-
order-accurate finite-volume product rule. Furthermore, the limiter was only applied
once per each time advance.
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Left: solution. Right: centerline comparison.

The convergence rates for the smooth initial-condition tests were extremely
similar in all three of the standard norms: L1, L2, and L∞. On account of this
only the L∞ errors were displayed. Each high-order spatial discretization achieved
fourth-order accuracy, at a minimum, for the smooth initial condition. In theory, we
could also have achieved a higher overall order of accuracy with a more accurate
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temporal integration scheme. Fourth-order accuracy was expected since we used a
fourth-order-accurate time integrator (RK4) and a relatively large CFL number (0.8)
for the majority of the test cases presented. At this CFL number, the error from the
temporal discretization is much larger than the spatial discretization. To confirm
this we also ran simulations at a low CFL number (0.2). The algorithm achieved
higher convergence rates at this lower CFL number. We concluded that the errors
from the spatial differencing schemes dominate the solution when running at low
CFL numbers. The solid-body-rotation test also produced higher-order convergence
rates than expected. This is likely explained by the fact that the solution is being
advected at a range of CFL numbers tending toward zero as the solution approaches
the center of the domain. Another interesting feature is the large difference in
errors between the various spatial differencing schemes for the solid-body-rotation
example. At the higher CFL number there are nearly two orders of magnitude
difference in the max-norm error between the fourth- and ninth-order schemes. For
the same initial condition running at the lower CFL number, there are over three
orders of magnitude difference between these max-norm errors.

Potential extensions for this work are applying the limiter to systems of hyperbolic
conservation laws, developing new high-order upwind methods with corner coupling,
and further improving the preconstraint on the high-order fluxes. Applying the
limiter to hyperbolic systems is the most direct extension of this work. Implementing
this limiter for a compressible gas dynamics solver would be a good starting point.
Following [15] we would not apply the limiter directly to the conserved variables
but rather to the characteristic variables. The equations that govern the characteristic
variables in 1D look like a system of decoupled advection equations, and the ideas
presented here have clear applicability. Characteristic decomposition and limiting
become more difficult in multiple dimensions, but there is a road map to follow.
There are two general approaches available: either compute the fluxes and limiter
along each direction in a split manner, or compute the fluxes in a multidimensional
manner and limit the directional fluxes independently or sequentially. In previous
studies [15] there was no discernible difference between the two approaches for the
test cases analyzed, but it is important to consider both in general.

High-order, corner-coupled upwind methods for use with general multistage time
integrators could remove the dimensional dependence of the stability. However, no
upwind method of this nature currently exists. The preconstraint on the high-order
fluxes is another area where additional study could pay off. In this work we found
that the preconstraint affected a delicate balance between effectively representing
discontinuities and retaining high-order accuracy in smooth yet complex areas. It
was relatively simple to achieve one or the other. Ensuring both required testing
many versions of the preconstraint. Introducing a steepening coefficient with the
preconstraint improved discontinuity representation, but additional work must be
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done to ensure robustness. The primary robustness concern with steepening is
avoiding overshoot in the solution; however, our restrictions of only applying
the preconstraint near fronts as well as limiting smooth extrema at which the
Laplacian changes sign should reduce the risk of overshoot. We could also use other
antidiffusive approaches for handling these types of contact discontinuities [27]. On
the other hand, several canonical hyperbolic systems of equations have steepening
mechanisms built into the physics, so steepening may only be useful in certain
limited contexts.
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