
inv lve
a journal of mathematics

involve
2008 Volume 1 No. 1

involve
2008

V
ol.1,

N
o.1

Editorial Board
Kenneth S. Berenhaut, Managing Editor

John V. Baxley
Arthur T. Benjamin
Martin Bohner
Nigel Boston
Amarjit S. Budhiraja
Pietro Cerone
Scott Chapman
Jem N. Corcoran
Michael Dorff
Sever S. Dragomir
Behrouz Emamizadeh
Errin W. Fulp
Ron Gould
Andrew Granville
Jerrold Griggs
Sat Gupta
Jim Haglund
Johnny Henderson
Natalia Hritonenko
Charles R. Johnson
Karen Kafadar
K.B. Kulasekera
Gerry Ladas
David Larson
Suzanne Lenhart

Chi-Kwong Li
Robert B. Lund
Gaven J. Martin
Mary Meyer
Emil Minchev
Frank Morgan
Mohammad Sal Moslehian
Zuhair Nashed
Ken Ono
Joseph O’Rourke
Yuval Peres
Y.-F. S. Pétermann
Robert J. Plemmons
Carl B. Pomerance
Bjorn Poonen
James Propp
Józeph H. Przytycki
Richard Rebarber
Robert W. Robinson
Filip Saidak
Andrew J. Sterge
Ann Trenk
Ravi Vakil
Ram U. Verma
John C. Wierman

mathematical sciences publishers

2008 Vol. 1, No. 1



involve
pjm.math.berkeley.edu/inv

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley Wake Forest University, NC, USA
baxley@wfu.edu

Arthur T. Benjamin Harvey Mudd College, USA
benjamin@hmc.edu

Martin Bohner Missouri U of Science and Technology, USA
bohner@mst.edu

Nigel Boston University of Wisconsin, USA
boston@math.wisc.edu

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
budhiraj@email.unc.edu

Pietro Cerone Victoria University, Australia
pietro.cerone@vu.edu.au

Scott Chapman Trinity University, USA
schapman@trinity.edu

Jem N. Corcoran University of Colorado, USA
corcoran@colorado.edu

Michael Dorff Brigham Young University, USA
mdorff@math.byu.edu

Sever S. Dragomir Victoria University, Australia
sever@matilda.vu.edu.au

Behrouz Emamizadeh The Petroleum Institute, UAE
bemamizadeh@pi.ac.ae

Errin W. Fulp Wake Forest University, USA
fulp@wfu.edu

Andrew Granville Université Montréal, Canada
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Five-point boundary value problems for n-th order
differential equations by solution matching

Johnny Henderson, John Ehrke and Curtis Kunkel

(Communicated by Kenneth S. Berenhaut)

For the ordinary differential equation

y(n) = f (x, y, y′, y′′, . . . , y(n−1)), n ≥ 3,

solutions of three-point boundary value problems on [a, b] are matched with
solutions of three-point boundary value problems on [b, c] to obtain solutions
satisfying five-point boundary conditions on [a, c].

1. Introduction

We are concerned with the existence and uniqueness of solutions of boundary value
problems on an interval [a, c] for the n-th order ordinary differential equation

y(n) = f (x, y, y′, y′′, . . . , y(n−1)), (1)

satisfying the five-point boundary conditions

y(a)− y(x1)= y1, y(i−1)(b)= yi+1, 1 ≤ i ≤ n − 2,

y(x2)− y(c)= yn, (2)

where a < x1 < b < x2 < c and y1, . . . , yn ∈ R.

It is assumed throughout that f : [a, c]×Rn
→R is continuous and that solutions

of initial value problems for (1) are unique and exist on all of [a, c]. Moreover, the
points a < x1 < b < x2 < c are fixed throughout.

Nonlocal boundary value problems, for which the number of boundary points is
possibly greater than the order of the ordinary differential equation, have received
considerable interest. For a small sample of such works, we refer the reader to
the papers by Bai and Fang [2003], Gupta [1997], Gupta and Trofimchuk [1998],
Infante [2005], Ma [1997; 2002] and Webb [2005].

MSC2000: primary 34B15; secondary 34B10.
Keywords: boundary value problem, ordinary differential equation, solution matching.
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2 JOHNNY HENDERSON, JOHN EHRKE AND CURTIS KUNKEL

Monotonicity conditions will be imposed on f . Sufficient conditions will be
given such that, if y1(x) is a solution of a three-point boundary value problem on
[a, b], and if y2(x) is a solution of another three-point boundary value problem on
[b, c], then y(x) defined by

y(x)=

{
y1(x), a ≤ x ≤ b,

y2(x), b ≤ x ≤ c,

will be a desired unique solution of (1), (2). In particular, a monotonicity condi-
tion is imposed on f (x, r1, . . . , rn) insuring that each three-point boundary value
problem for (1) satisfying any one of the following conditions:

y(a)− y(x1)= y1, y(i−1)(b)= yi+1, 1 ≤ i ≤ n − 2,

y(n−2)(b)= m, m ∈ R, (3)

y(a)− y(x1)= y1, y(i−1)(b)= yi+1, 1 ≤ i ≤ n − 2,

y(n−1)(b)= m, m ∈ R, (4)

y(i−1)(b)= yi+1, 1 ≤ i ≤ n − 2, y(n−2)(b)= m,

y(x2)− y(c)= yn, m ∈ R (5)

or y(i−1)(b)= yi+1, 1 ≤ i ≤ n − 2, y(n−1)(b)= m,

y(x2)− y(c)= yn, m ∈ R (6)

has at most one solution.
We will impose an additional hypothesis that solutions for (1) satisfying any of

(3), (4), (5) or (6) exist. Then we will construct a unique solution of (1), (2).
Solution matching techniques were first used by Bailey et al. [1968]. They

considered solutions of two-point boundary value problems for the second order
equation y′′(x) = f (x, y(x), y′(x)) by matching solution of initial value prob-
lems. Since then, there have been numerous papers in which solutions of two-
point boundary value problems on [a, b] were matched with solutions of two-point
boundary value problems on [b, c] to obtain solutions of three-point boundary value
problems on [a, c]. See, for example [Barr and Miletta 1974; Das and Lalli 1981;
Henderson 1983; Moorti and Garner 1978; Rao et al. 1981]. In 1973, Barr and
Sherman [1973] used solution matching techniques to obtain solutions of three-
point boundary value problems for third order differential equations from solutions
of two-point problems. They also generalized their results to equations of arbitrary
order by obtaining solutions of n-th equations. More recently, Henderson and
Prasad [2001] and Eggensperger et al. [2004] used matching methods for solutions
of multipoint boundary value problems on time scales. Finally, Henderson and



SOLUTION MATCHING 3

Tisdale [2005] adapted the matching methods to obtain solutions of five-point prob-
lems for third order equations. The present work extends the results of Henderson
and Tisdale [2005] to n-th order five-point boundary value problems (1), (2) on
[a, c].

The monotonicity hypothesis on f which will play a fundamental role in unique-
ness of solutions (and later existence as well), is given by:

(A) For all w ∈ R,

f (x, v1, . . . , vn−2, vn−1, w) > f (x, u1, . . . , un−2, un−1, w),

(a) when x ∈ (a, b], (−1)n−i ui ≥ (−1)n−ivi , 1 ≤ i ≤ n−2, and vn−1> un−1,

or
(b) when x ∈ [b, c), vi ≥ ui , 1 ≤ i ≤ n − 2, and vn−1 > un−1.

2. Uniqueness of solutions

In this section, we establish that under condition (A) solutions of the three-point
boundary value problems, as well as the five-point problem are unique when they
exist.

Theorem 2.1. Let y1, . . . , yn ∈ R be given and assume condition (A) is satisfied.
Then, given m ∈ R, each of the boundary value problems for (1) satisfying any of
conditions (3), (4), (5) or (6) has at most one solution.

Proof. We will establish the result only for (1), (3). Arguments for the other
boundary value problems are very similar.

In order to reach a contradiction, we assume that for some m ∈ R, there are
distinct solutions, α and β, of (1), (3), and set w = α−β. Then

w(a)−w(x1)= w(i−1)(b)= 0, 1 ≤ i ≤ n − 1.

By the uniqueness of solutions of initial value problems for (1), we may assume
with no loss of generality that w(n−1)(b) < 0. It follows from the boundary condi-
tions satisfied by w that there exists a < r < b such that

w(n−1)(r)= 0 and w(n−1)(x) < 0 on (r, b].

Since w(i−1)(b)= 0, 1 ≤ i ≤ n − 1, it follows in turn that

(−1)n− jw( j)(x) > 0, 0 ≤ j ≤ n − 2, on [r, b).

This leads to

w(n)(r)= lim
x→r+

w(n−1)(x)
x − r

≤ 0.
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However, from condition (A), we have

w(n)(r)= α(n)(r)−β(n)(r)

= f (r, α(r), α′(r), . . . , α(n−2)(r), α(n−1)(r))

− f (r, β(r), β ′(r), . . . , β(n−2)(r), β(n−1)(r))

= f (r, α(r), α′(r), . . . , α(n−2)(r), α(n−1)(r))

− f (r, β(r), β ′(r), . . . , β(n−2)(r), α(n−1)(r))
> 0,

which is a contradiction. Thus, (1), (3) has at most one solution. The proof is
complete. �

Theorem 2.2. Let y1, . . . , yn ∈ R be given. Assume condition (A) is satisfied.
Then, the boundary value problem (1), (2) has at most one solution.

Proof. Again, we argue by contradiction. Assume for some values y1, . . . , yn ∈ R,
there exist distinct solutions α and β of (1) and (2). Also, let w = α−β. Then

w(a)−w(x1)= w(i−1)(b)= w(x2)−w(c)= 0, 1 ≤ i ≤ n − 2.

By Theorem 2.1, w(n−2)(b) 6= 0 and w(n−1)(b) 6= 0. We assume with no loss of
generality that w(n−2)(b) > 0. Then, from the boundary conditions satisfied by w,
there are points a < r1 < b < r2 < c so that

w(n−2)(r1)= w(n−2)(r2)= 0, and w(n−2)(x) > 0 on (r1, r2).

There are two cases to analyze, that is, w(n−1)(b) > 0 and w(n−1)(b) < 0. The
arguments for the two cases are completely analagous, therefore we will treat only
the first casew(n−1)(b)>0. In view of the fact thatw(n−2)(b)>0 andw(n−2)(r2)=

0, there exists b < r < r2 so that

w(n−1)(r)= 0, and w(n−1)(x) > 0 on [b, r).

Then

w( j)(x) > 0, 0 ≤ j ≤ n − 2, on (b, r ].

This leads to

w(n)(r)= lim
x→r−

w(n−1)(x)
x − r

≤ 0.
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However, again from condition (A), we have

w(n)(r)= α(n)(r)−β(n)(r)

= f (r, α(r), α′(r), . . . , α(n−2)(r), α(n−1)(r))

− f (r, β(r), β ′(r), . . . , β(n−2)(r), β(n−1)(r))

= f (r, α(r), α′(r), . . . , α(n−2)(r), α(n−1)(r))

− f (r, β(r), β ′(r), . . . , β(n−2)(r), α(n−1)(r))
> 0,

which contradicts the initial assumption. Thus, (1), (2) has at most one solution,
and the proof is complete. �

3. Existence of solutions

In this section, we show that solutions of (1) satisfying each of (3), (4), (5) and
(6) are monotone functions of m. Then, we use these monotonicity properties to
obtain solutions of (1), (2).

For notation purposes, given m ∈ R, let α(x,m), u(x,m), β(x,m) and v(x,m)
denote the solutions, when they exist, of the boundary value problems for (1) sat-
isfying, respectively, (3), (4), (5) and (6).

Theorem 3.1. Suppose that the monotonicity hypothesis (A) is satisfied and that,
for each m ∈ R, there exist solutions of (1) satisfying each of the conditions (3),
(4), (5) and (6). Then, α(n−1)(b,m) and β(n−1)(b,m) are, respectively, strictly
increasing and decreasing functions of m with ranges all of R.

Proof. The “strictness” of the conclusion arises from Theorem 2.1. Let m1 > m2

and let w(x)= α(x,m1)−α(x,m2). Then,

w(x1)−w(a)= w(i−1)(b)= 0, 1 ≤ i ≤ n − 2, w(n−2)(b)= m1 − m2 > 0

and w(n−1)(b) 6= 0.
Contrary to the conclusion, assume w(n−1)(b) < 0. Since there exists a< r1 < b

so that w(n−2)(r1) = 0 and w(n−2)(x) > 0 on (r1, b], it follows that there exists
r1 < r2 < b such that

w(n−1)(r2)= 0 and w(n−1)(x) < 0 on (r2, b].

We also have

(−1)n− jw( j)(x) > 0, 0 ≤ j ≤ n − 2 on [r2, b).

As in the other proofs above, we arrive at the same contradiction, that is, w(n)(r2)≤

0 and w(n)(r2) > 0. Thus, w(n−1)(b) > 0 and, as a consequence, α(n−1)(b,m) is a
strictly increasing function of m.
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We next argue that {α(n−1)(b,m) | m ∈ R} = R. Let k ∈ R and consider the
solution u(x, k) of (1), (4) with u as defined above. Consider also the solution
α(x, u(n−2)(b, k)) of (1), (3). Then α(x, u(n−2)(b, k)) and u(x, k) are solutions
of the same type boundary value problems (1), (3). Hence by Theorem 2.1, the
functions are identical. Therefore,

α(n−1)(b, u(n−2)(b, k))= u(n−1)(b, k)= k,

and the range of α(n−1)(b,m), as a function of m, is the set of real numbers.
The argument for β(n−1)(b,m) is quite similar. This completes the proof. �

In a similar way, we also have a monotonicity result on (n − 2)-derivatives of
u(x,m) and v(x,m).

Theorem 3.2. Assume the hypotheses of Theorem 3.1. Then, u(n−2)(b,m) and
v(n−2)(b,m) are, respectively, strictly increasing and decreasing functions of m
with ranges all of R.

We now provide our existence result.

Theorem 3.3. Assume the hypotheses of Theorem 3.1. Then (1), (2) has a unique
solution.

Proof. The existence is immediate from either Theorem 3.1 or Theorem 3.2. Mak-
ing use of Theorem 3.2, there exists a unique m0 ∈ R such that u(n−2)(b,m0) =

v(n−2)(b,m0). Then

y(x)=

{
u(x,m0), a ≤ x ≤ b,

v(x,m0), b ≤ x ≤ c,

is a solution of (1), (2). By Theorem 2.2, y(x) is the unique solution. The proof is
complete. �
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Parity of the partition function and the modular
discriminant

Sally Wolfe

(Communicated by Ken Ono)

We relate the parity of the partition function to the parity of the q-series co-
efficients of certain powers of the modular discriminant using their generating
functions. This allows us to make statements about the parity of the initial values
of the partition function and to obtain a modified Euler recurrence for its parity.

1. Introduction and statement of results

We begin by defining two power series in q, the power series of the modular dis-
criminant, and the generating function of the partition function, p(n). The q-series
expansion of the modular discriminant 1(q) defines the Ramanujan τ -function.
Namely, we have that

1(q)= q
∞∏

n=1

(1 − qn)24
=

∞∑
n=0

τ(n)qn

= q − 24q2
+ 252q3

− 1472q4
+ 4830q5

− 6048q6
− 16744q7

· · · .

(1.1)

Ramanujan investigated τ(n) and observed that τ(nm)= τ(n)τ (m) for (n,m)= 1,
as well as congruences like τ(n)≡

∑
d|n d11 (mod 691).

The partition function counts the number of distinct partitions of integers n.
Like 1(q),the generating function for p(n) is an infinite product. More precisely,
we have

P(q)=

∞∑
n=0

p(n)qn
=

1
∞∏

n=1

(1 − qn)

= 1 + q + 2q2
+ 3q3

+ 5q4
+ 7q5

+ 11q6
· · · .

(1.2)

MSC2000: 05A17.
Keywords: partition, congruences.
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Ramanujan proved that for all nonnegative integers n

p(5n + 4)≡ 0 (mod 5), (1.3)

p(7n + 5)≡ 0 (mod 7), (1.4)

p(11n + 6)≡ 0 (mod 11). (1.5)

However, much less is known about p(n) (mod 2). For example, it is conjectured
that as x approaches infinity, the number of even and odd values of p(n) with n ≤ x
approaches 1

2 x . Nicolas et al. [1998] prove that as x → ∞,

#{n ≤ x : p(n)≡ 0 (mod 2)} �
√

x

#{n ≤ x : p(n)≡ 1 (mod 2)} �
√

x · e
−(log 2+ε) log x

log log x .

Ahlgren [1999] proves a slightly better bound for the number of odd values of
p(n): for sufficiently large x ,

#{n ≤ x : p(n)≡ 1 (mod 2)} �

√
x

log x
.

Nicolas [2006] proves that there exists a constant κ > 0 such that for sufficiently
large x ,

#{n ≤ x : p(n)≡ 1 (mod 2)} �

√
x(log log x)κ

log x
. (1.6)

He proves this bound for all κ > 0 and sufficiently large x [Nicolas 2008], as well
as proving a bound for the number of even values of p(n) up to x :

#{n ≤ x : p(n)≡ 0 (mod 2)} � 0.28
√

x log log x (1.7)

The purpose of this paper is to investigate the parity of p(n). We first recall
Euler’s recurrence for p(n) [Andrews 1971]. If n is a positive integer, then

p(n)=

∑
k≥1

(−1)k+1 p
(

n −
3k2

+ k
2

)
+

∑
k≥1

(−1)k+1 p
(

n −
3k2

− k
2

)
.

We deform this to obtain many recurrences for p(n) (mod 2).

Theorem 1.1. For integers s ≥ 2, we have:

1(q)
4s

−1
3 ≡

( ∞∑
n=0

p(n)q8n+
4s

−1
3

)( ∞∑
n=−∞

q4s+1(3n2
−n)
)

(mod 2).

To state the next theorem, we let τm(n) denote the nth coefficient of 1(q)m .
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Theorem 1.2. If s ≥ 2 is an integer, then for any positive integer n we have

p(n)≡ τ 4s−1
3

(
8n +

4s
− 1
3

)
+

b
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
− m))

+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
+ m)) (mod 2).

Remark 1. For n such that τ(4s−1)/3(n) ≡ 0 (mod 2), this gives an Euler-type
recurrence. We note that it is known [Serre 1974] that

lim
x→∞

#{n ≤ x : τ(4s−1)/3(n)≡ 0 (mod 2)}
x

= 1.

Therefore, for almost all n, we have

p(n)≡
b

1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n −22s−1(3m2
−m))+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n −22s−1(3m2
+m)) (mod 2).

In order to state the next theorem, we define a function which counts the number
of representations of an integer n by certain t-ary quadratic forms:

rt(n)= #{n = x2
1 + 4x2

2 + · · · 4t−1x2
t : xi are positive odd integers}.

Theorem 1.3. If n is a positive integer, then for s ≥ 2, we have

τ(4s−1)/3(n)≡ rs(n) (mod 2).

Now we turn to some applications of Theorem 1.1. In particular, we study the
case of s = 2 where we can determine τ5(8n + 5) (mod 2).

Theorem 1.4. If n is an integer, then

τ5(8n + 5)≡{
1 (mod 2) if 8n + 5 = k · l2,where k ≡ 5 (mod 8) is prime and l ≡ 1(mod 2),

0 (mod 2) otherwise.

Corollary 1.5. If 8n+5 = k ·l2, where k ≡ 5 (mod 8) is prime and l ≡ 1 (mod 2),
then

p(n)≡ 1 +

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2).
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If 8n + 5 cannot be written in such a form, then

p(n)≡

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2).

Using these results, we obtain estimates for the parity of p(n) which fall just short
of (1.7) and (1.6).

Corollary 1.6. For all sufficiently large positive integers x , we have

#{n ≤ x : p(n)≡ 1 (mod 2)} �

√
x

log x
.

Corollary 1.7. For all sufficiently large positive integers x , we have

#{n ≤ x : p(n)≡ 0 (mod 2)} �
√

x .

2. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We recall the definition of 1(q) as in (1.1),

1(q)= q
∞∏

n=1

(1 − qn)24. (2.8)

Raising the series to the 4s
−1
3 power, we find

1(q)
4s

−1
3 =

(
q

∞∏
n=1

(1 − qn)24
) 4s

−1
3

≡ q
4s

−1
3

∞∏
n=1

(1 − q8n)4
s
−1

≡ q
4s

−1
3

∞∏
n=1

(1 − q8n·4s
)

1∏
∞

n=1(1 − q8n)
(mod 2). (2.9)

Using the fact that P(q)=
1∏

∞

k=1(1 − qk)
, and replacing q by q8, we have

1(q)
4s

−1
3 ≡ q

4s
−1
3

( ∞∑
n=0

p(n)q8n
)( ∞∏

n=1

(1 − q8n·4s
)
)

(mod 2).

Using Euler’s identity,
∞∏

k=1

(1 − qk)=

∞∑
n=−∞

(−1)nq
3n2

−n
2 ,
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and replacing q by q8·4s
, we find

1(q)
4s

−1
3 ≡ q

4s
−1
3

( ∞∑
k=0

p(n)q8n
)( ∞∑

n=−∞

q
8·4s (3n2

−n)
2

)
≡

( ∞∑
n=0

p(n)q8n+
4s

−1
3

)( ∞∑
n=−∞

q4s+1(3n2
−n)
)

(mod 2). �

Proof of Theorem 1.2.. By Theorem 1.1, we have

1(q)
4s

−1
3 ≡

( ∞∑
n=0

p(n)q8n+
4s

−1
3

)( ∞∑
n=−∞

q4s+1(3n2
−n)
)

(mod 2)

≡

( ∞∑
k=0

p(k)q8k+
4s

−1
3

)(
1 +

∞∑
m=1

q4s+1(3m2
+m)

+

∞∑
m=1

q4s+1(3m2
−m)

)
≡

∞∑
k=0

p(k)q8k+
4s

−1
3 +

∞∑
m=1

( ∞∑
k=0

p(k)q8k+
4s

−1
3 +4s+1(3m2

+m)
)

+

∞∑
m=1

( ∞∑
k=0

p(k)q8k+
4s

−1
3 +4s+1(3m2

−m)
)

(mod 2).

(2.10)

We now examine the coefficient of qr , where r is of the form 8n +
4s

−1
3 . The

left side of (2.10) becomes τ(4s−1)/3(8n +
4s

−1
3 ). The right side becomes the sum

of p(k) for all k such that there exists an integral m such that

8n +
4s

− 1
3

= 8k +
4s

− 1
3

+ 4s+1(3m2
− m)

or

8n +
4s

− 1
3

= 8k +
4s

− 1
3

+ 4s+1(3m2
+ m).

Solving for k, we obtain

k = n − 22s−1(3m2
± m).

Because k ≥0, the limits on the sums must be chosen so that n−22s−1(3m2
±m)≥0.

Thus, we have

τ 4s−1
3
(8n +

4s
− 1
3

)≡ p(n)+
b

1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
− m))

+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
+ m))) (mod 2).
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Solving for p(n), we obtain a recurrence formula,

p(n)≡ τ 4s−1
3
(8n +

4s
− 1
3

)+

b
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
− m))

+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
+ m)) (mod 2). �

3. Proof of Theorems 1.3 and 1.4 and Corollary 1.5

Lemma 3.1. If n is a positive integer, then

τ(n)≡

{
1 if n = (2k + 1)2,

0 otherwise.

Proof. By the definition of 1(q), we have

1(q)= q
∞∏

n=1

(1 − qn)24

= q
( ∞∑

k=0

(−1)k(2k + 1)qk(k+1)/2
)8

≡

∞∑
k=0

q
(
q4k(k+1))

≡

∞∑
k=0

q(2k+1)2 (mod 2). �

Lemma 3.2. For integers s ≥ 2, we have

1(q)
4s

−1
3 ≡1(q)1(4q) · · ·1(4s−1q) (mod 2).

Proof. We can write 4s
−1
3 as 1 + 4 + · · · 4s−1. Substituting this into the expression

1(q)
4s

−1
3 , we find

1(q)
4s

−1
3 =1(q)1+4+···4s−1

=1(q)1(q)4 · · ·1(q)4
s−1

≡1(q)1(4q) · · ·1(4s−1q) (mod 2). �

Proof of Theorem 1.3. Combining Lemmas 3.1 and 3.2, we find that τ(4s−1)/3(n)
(mod 2) is equivalent to the number of representations of n as

x2
1 + 4x2

2 + · · · 4s−1x2
s−1,
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where xi are positive odd integers. We can write this as

rs(n)= #{x2
1 + 4x2

2 + · · · 4s−1xs : xi are positive odd integers}.

Thus, we have τ(4s−1)/3(n)≡ rs(n) (mod 2). �

We examine the number of representations of n as x2
+ y2 for any integers x, y

in order to find a formula for the number of representations of the form k2
+ 4l2

for positive, odd integers k, l.
We define F(q), a power series in q whose coefficients give the number of

representations of n as the sum x2
+ y2 for integers x, y. This function is generated

by summing qx2
+y2

over all integers x and y:

F(q)=

∞∑
x=−∞

∞∑
y=−∞

qx2
+y2

=

∞∑
n=0

f (n)qn. (3.11)

We find a factorization for the coefficients of F(q).

Theorem 3.3. Let n be a positive integer such that the factorization of n contains
no odd powers of primes which are 3 (mod 4). Then f (n) has the factorization

f (n)=
(
4 ·

∏
(m p − 1)

)
,

where the product is taken over all primes p ≡ 1 (mod 4) which divide n and
where m p is the largest integer such that pm p |n. If the factorization of n contains
an odd power of a prime which is 3 (mod 4), then f (n)= 0.

This follows from the unique factorization of n in Z[i] [Hardy and Wright 1979].
If we restrict our function to count only the representations of n of the form

k2
+4l2 for positive odd k, l, we can create a similar power series in q , denoted by

G(q), such that the coefficients of G(q) give the number of these representations.
We write

G(q)=

∞∑
x=0

∞∑
y=0

q(2x+1)2+4(2y+1)2
=

∞∑
n=0

g(n)qn. (3.12)

We again find a factorization for these coefficients.

Theorem 3.4. For integers n ≡ 5 (mod 8), we have

g(n)=
1
8 f (n).

Proof. Because the only quadratic residues of 8 are 0, 1 and 4, and n ≡ 5 (mod 8),
the only representations of n as the sum of two squares are of the form k2

+ (2l)2,
where k, l are positive odd integers. Therefore, the theorem states that for every
representation of n as k2

+ 4l2 for positive, odd k, l, there are 8 representations of
n as x2

+ y2 for integers x, y. For each k, l, we can choose x and y to be either
positive or negative. This gives us four new representations. Additionally, although
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switching l and k produces a different n, switching x and y yields two different
representations of n.

Combining both above methods of generating multiple representations in x and
y, we find that for each representation of n as the k2

+ 4l2 for k and l nonnegative
odd integers, there exists 8 representations of n as x2

+ y2, for integers x, y. �

Proof of Theorem 1.4. We now investigate the parity of τ5(8n + 5).
By Theorem 1.3,

τ5(8n + 5)≡ r2(8n + 5),

and by Theorem 3.4,

r2(8n + 5)= g(8n + 5)=
1
8(8n + 5).

Combining these facts with the formula for f (n) from Theorem 3.3, we have

τ5(8n + 5)≡
1
2

∏
(m p + 1) (mod 2).

The odd values of τ5(8n + 5) are those for which the factorization of
∏
(m p + 1)

has exactly one power of 2. This occurs when exactly one m p1 is odd, in which
case we can write

8n + 5 = p
m p1
1 (p

m p2
2 · · · pm pn

n )(r),

where r is the product of even powers of primes which are 3 (mod 4). In the
factorization of 8n + 5, there are an even number of factors of every prime except
p1, so we can write

8n + 5 = p
m p1
1 s2

where s is odd. Because p
m p1
1 s2

≡ 5 (mod 8), and the only quadratic residues of
8 are 0, 1 and 4, p1 ≡ 5 (mod 8).

If we cannot write 8n + 5 in this form, then

1
2

∏
(m p + 1)≡ 0 (mod 2),

so τ(42−1)/3(8n + 5) is even. �

Remark 2. We have proven the additional result that m p1 = 4m + 1 for some
nonnegative integer m, so 8n + 5 = p4m+1

1 s2 with p1 ≡ 5 (mod 8) prime, m ≥ 0,
s odd, and p1 - s. This stronger version of Theorem 1.4 first appeared as Exercise
6.7 in [Serre 1976], and also appears in [Nicolas 2006].

Proof of Corollary 1.5. By Theorem 1.2 we have

p(n)≡ τ5(8n+5) +

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
−m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
+m)) (mod 2).
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By Theorem 1.4, we find for n such that 8n + 5 = k · l2, where k ≡ 5 (mod 8) is
prime and l ≡ 1 (mod 2),

p(n)≡ 1 +

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2).

If 8n + 5 cannot be written in this form, then

p(n)≡

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2). �

Lemma 3.5. For all sufficiently large positive integers x ,

#{n ≤ x : τ5(n)≡ 1 (mod 2)} �
x

log x
.

Proof. By Theorem 1.4, τ5(n) ≡ 1 (mod 2) if n can be written in the form kl2,
where k ≡ 5 (mod 8) is prime, and l ≡ 1 (mod 2). We look at the case where
n ≡ 5 (mod 8) is prime, and k = n and l = 1. For sufficiently large x , we have

x
4 log x

.

such that n ≤ x [Apostol 1976]. This gives us a lower bound for the number of
odd values of τ5(n) where n ≤ x . �

Proof of Corollary 1.6. We rewrite Theorem 1.2 with s = 2:

τ5(8n +5)≡ p(n)+
b

1
6 +

1
12

√
4+6nc∑

m=1

p(n −8(3m2
−m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n −8(3m2
+m))) (mod 2).

(3.13)
By the proof of Lemma 3.5, we have

#{n ≤ x : τ5(8n + 5)≡ 1 (mod 2)} �
x

log x
. (3.14)

For each of these n, there exists a nonnegative integer r such that

p(n − 8(3r2
− r))≡ 1 (mod 2)

or
p(n − 8(3r2

+ r))≡ 1 (mod 2).

Because the number of possible r is⌊
1
6 +

1
12

√
4 + 6x

⌋
+

⌊
−

1
6 +

1
12

√
4 + 6x

⌋
+ 1 ∼

√
x,
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there must be at least
c ·

x
log x

(
1

√
x

)
distinct values of n ≤ x such that p(n) is odd.

Therefore, we have

#{n ≤ x : p(n)≡ 1 (mod 2)} �

√
x

log x
. �

Proof of Corollary 1.7. We rewrite Theorem 1.2 in the case of s = 2:

τ5(8n+5)≡ p(n)+
b

1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
−m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
+m)) (mod 2).

(3.15)
We note that the number of terms on the right hand side of (3.15) is

1 +

⌊
1
6 +

1
12

√
4 + 6n

⌋
+

⌊
−

1
6 +

1
12

√
4 + 6n

⌋
,

which is odd only if, for some positive integer z,

24z2
+ 8z ≤ n < 24z2

+ 40z + 16. (3.16)

We also note, by the remark following Theorem 1.2, that

lim
x→∞

#{n ≤ x : τ5(n)≡ 0 (mod 2)}
x

= 1. (3.17)

When an odd number of integers add up to an even number, at least one of the
integers must be even. Thus, when τ5(8n + 5) is even, and (3.16) is satisfied, one
of the terms on the right side of (3.15) must be even. We now count the number of
intervals such that (3.16) holds and all values in the interval are ≤ x . This yields⌊

−
1
6 +

1
12

√
4 + 6n

⌋
invervals, each of which contains 32z+16 integers. Therefore, the number of n ≤ x
for which the right side of (3.15) has an odd number of terms is at least

2
3 n + c1

√
4 + 6n + c2 (3.18)

for some constants c1, c2 > 0.
Combining (3.17) and (3.18), we find that, as x → ∞, the number of n ≤ x for

which τ5(8n +5) is even and there are an odd number of terms on the right side of
(3.15) approaches

2
3 x . (3.19)

For each of these n, there must be an even term on the right hand side of (3.15).
However, (3.19) does not give the total number distinct n for which p(n) is even;
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we may be counting an integer w for each n,m such that n − 8(3m2
− m) or

n − 8(3m2
+ m)= w.

We can put an upper bound on the number of m for which we are counting w
because there are only c

√
x values of m for which n − 8(3m ± m) is positive for

some n, for some constant c> 0. We divide (3.19) by the number of m in order to
compensate for the possibility of counting any w multiple times. Thus, we have,
as x → ∞,

#{n ≤ x : p(n)≡ 0 (mod 2)} �
√

x �
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Qualitative behavior and computation of multiple
solutions of singular nonlinear boundary value

problems
Grey Ballard and John Baxley

(Communicated by Kenneth S. Berenhaut)

We consider boundary value problems of the form

y′′
= − f (t, y), y(0)= 0, y(1)= 0,

motivated by examples where f (t, y) = φ(t)g(y) and g(y) behave like y−λ

(λ > 0) as y → 0+. We explore conditions under which such problems have
multiple positive solutions, investigate qualitative behavior of these solutions,
and discuss computational methods for approximating the solutions.

1. Introduction

The present work is a first attempt to understand singular boundary value problems
with multiple solutions. As such, it seeks to combine research on singular boundary
value problems having unique solutions that began with the paper of Taliaferro
[1979] with work on nonsingular boundary value problems having multiple solu-
tions that received impetus from the paper by Henderson and Thompson [2000]
but dates back at least to work by Parter [1974]. The majority of later papers dealt
with theoretical questions of existence, but a few, such as [Baxley 1995; Baxley
and Thompson 2000; Ballard et al. 2006], have dealt with computational questions.

We shall focus here on two examples, which have the form

y′′
= − f (t, y), 0< t < 1, (1)

y(0)= 0, y(1)= 0, (2)

where the nonlinear function f (t, y) is positive and singular as y → 0+ and may
also be singular as t → 0+ or t → 1−.

MSC2000: 34B16, 65L10.
Keywords: singular nonlinear boundary value problems, multiple solutions, shooting, computation,

qualitative behavior.
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Taliaferro [1979] considered the case

f (t, y)=
φ(t)
yλ

,

where λ > 0 and φ is continuous on (0, 1). He proved the existence of a unique
positive solution if ∫ 1

0
t (1 − t)φ(t) dt <∞.

He then described the asymptotic behavior at the endpoints of this solution y(t).
For example, if ∫ 1/2

0
φ(t)t−λ dt <∞,

then the slope of the solution y(t) is finite at t = 0. If this integral is infinite and,
for example, φ(t) ∼ tα, as t → 0+, where −2 < α ≤ λ− 1, then the slope of the
solution is infinite at t = 0 and Taliaferro [1979] provides the detailed asymptotic
behavior. Note that for these results, the function f (t, y) is decreasing in y for
fixed t and tends to ∞ as t → 0+.

To compute the positive solution to such a problem, the papers [Baxley 1995;
Baxley and Thompson 2000] took advantage of the known asymptotic behavior of
the solution at the endpoints to design a shooting method. Basically, the interval [0,
1] was replaced by a slightly smaller interval [a, b] and the asymptotic knowledge
was used to design an initial value problem at a and a terminal value problem at b,
each depending on a parameter. These problems were solved using an initial value
method such as that of Runge–Kutta–Fehlburg and parameters were adjusted by
a modified Newton method until the solutions met at t = 1/2 with essentially the
same slope and altitude.

Henderson and Thompson [2000] dealt with the problem (Equation (1), (2))
in the autonomous case f (t, y) = f (y) with f (y) continuous for y ≥ 0. They
gave conditions under which the problem has at least three positive solutions, and
the behavior of f (y) which triggered the multiple solutions was, in contrast to
Taliaferro [1979], a tendency for f (y) to increase. Specifically, they required that
there be numbers 0 < a < b < 2b so that f (y) is much larger on the interval [b,
2b] than on the interval [0, a].

Henderson and Thompson [2000] also provided qualitative information about
the size of the three positive solutions, and this knowledge was used in [Ballard
et al. 2006] to compute solutions to such nonsingular problems. Since this qualita-
tive knowledge has a global character and gives no information about the behavior
near endpoints, the problem was discretized on the interval [0, 1] and an iterative
method was used to obtain rough approximations to the solutions. The values of
these approximations near the endpoints were then used to estimate slopes at the
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endpoints and these estimates were used to seed a shooting method similar to that
used earlier on the Taliaferro problems.

The last example discussed in [Ballard et al. 2006] is singular and was designed
by modifying an example in [Baxley 1995] so that the singular nonlinearity f (t, y)
exhibited also the behavior required in [Henderson and Thompson 2000]. The so-
lution of the original example has finite slope at both endpoints. The computational
work indicates that the problem has three solutions, each having finite slopes at the
endpoints.

2. Solutions with finite slopes at endpoints

We begin with a synopsis of the last example considered in [Ballard et al. 2006].

Example 2.1. For 0< t < 1, let

f (t, y)=


2
√

t (1−t)
√

y , 0< y ≤ 1,

2
√
(2 − y)t (1 − t)+ 400(y − 1), 1< y < 2,

40, 2 ≤ y.

According to [Taliaferro 1979] (or see the generalization in [Baxley 1991]), we
would expect solutions to exist and have finite slopes at the endpoints t = 0 and
t = 1 since f (t, θ t) is integrable in a neighborhood of t = 0 and f (t, θ(1 − t)) is
integrable in a neighborhood of t = 1, for each constant θ > 0. Further, one easily
verifies that f (t, y) satisfies the Henderson–Thompson type estimates

f (t, y) < 8a, α ≤ y ≤ α+ a,

f (t, y) > 16b, b ≤ y ≤ 2b,

f (t, y) < 8c, α ≤ y ≤ α+ c,

where α = 1/32, a = 1, b = 2, c = 6, so one might hope that Equations (1) and
(2) will have three positive solutions. Note that the theory in [Taliaferro 1979] and
[Baxley and Thompson 2000; Henderson and Thompson 2000] cannot actually be
applied to this example, but work in progress will extend the results of Taliaferro
[1979] and Henderson and Thompson [2000] to such problems.

Our method, used in [Ballard et al. 2006], is basically a two-step procedure. Step
2 is a shooting method and for each solution y(t), we need approximate values of
y′(0) and y′(1) to seed the method. Then we can choose a slightly smaller subinter-
val [a, b] of [0, 1] and use the asymptotic formulas of Taliaferro [1979] to estimate
the values of y(a), y′(a) and y(b), y′(b). Employing any dependable initial value
solver, such as RKF45, we can then solve the resulting initial value problem on
[0, 1/2] and the terminal value problem on [1/2, 1]. The initial approximations of
y′(0), y′(1) can then be adjusted by a modified Newton method until these two
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solutions meet at t = 1/2 with essentially the same altitude and slope. Details
of such a shooting method appear in [Baxley 1995; Baxley and Thompson 2000;
Ballard et al. 2006].

Thus step 1 of our method is designed to produce reasonably good approxi-
mations for y′(0) and y′(1) for each of the three solutions. For this purpose, we
discretize the problem by dividing the interval [0, 1] into n + 1 equal parts at the
mesh points ti = i/(n + 1) and seek to approximate y(ti ), for i = 1, 2, . . . , n.
We approximate the second derivative as usual with the central divided difference
quotient

y′′(tk)≈
1
h2

(
y(tk+1)− 2y(tk)+ y(tk−1)

)
,

where h = 1/(n + 1). Letting yi be our approximation for y(ti ) and Y be the
n-dimensional column vector with components yi , our discrete problem is

1
h2 AY = F(T, Y ), (3)

where T is the n-vector with components ti , F(T, Y ) is the n-vector with compo-
nents f (ti , yi ), and A is the matrix

A =


−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...
...

...
...

0 0 0 0 · · · −2

 .

Note that the boundary conditions y(0)= 0, y(1)= 0 have been used to obtain this
formulation. We rewrite Equation (3) in the fixed point form

h2 A−1 F(T, Y )= Y, (4)

and then use iteration to obtain three solutions Y1, Y2, Y3 of this problem that are
viewed as crude approximations for y1, y2, y3 at the mesh points.

Based on qualitative estimates in [Henderson and Thompson 2000], we expect
Y1 (the “small” solution) to have a maximum less than 1, Y2, to have a maximum
greater than 1, but a value at 1/4 less than 2,and Y3 (the “large” solution) to have
a value at 1/4 greater than 2. So we seed the iteration with initial vectors which
satisfy these requirements. It turns out that Y1 and Y3 are attractors for this discrete
problem, but Y2 is a repeller. So, we “back” into an approximation for Y2 by using
averages of approximations for Y1 and Y3; details can be found in [Ballard et al.
2006], where one can find numerical results of the full computation. The same
method will be used below.
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3. Solutions with infinite slopes at endpoints

Example 3.1. For 0< t < 1, we now let

f (t, y)=


3(1−t)2+4t (1−t)+4t2

16t3/2(1−t)y , 0< y ≤ 1,

(2 − y)3(1−t)2+4t (1−t)+4t2

16t3/2(1−t) + 40(y − 1), 1< y < 2,

40, 2 ≤ y.

The asymptotic formulas in [Taliaferro 1979] (see also [Baxley and Thompson
2000, Theorem 10], [Baxley and Martin 2000, Lemma 12]) suggest that solutions
to Equation (1) and (2) should now have infinite slope at both endpoints. Also the
behavior of f (t, y) resembles that of the first example, so it seems likely that there
will be three solutions.

If y(t) is any solution of Equation (1) and (2), then y(t) is near zero in a neigh-
borhood of the endpoints. Thus to examine asymptotic behavior near the endpoints,
we let

φ(t)=
3(1 − t)2 + 4t (1 − t)+ 4t2

16t3/2(1 − t)
,

and we see that

φ(t)∼
3
16

t−3/2, as t → 0+
; φ(t)∼

1
4
(1 − t)−1, as t → 1−.

Thus the asymptotic formulas in Taliaferro [1979], Baxley [1995], and Baxley
and Thompson [2000] indicate that any solution y(t) of Equation (1) and (2) will
exhibit the asymptotic behavior

y(t)∼ Qt (α+2)/(λ+1)
= Qt1/4, as t → 0+, (5)

where α = − 1.5, λ= 1.0, and

Q =

(
3(λ+ 1)2

16(α+ 2)(λ−α− 1)

)1/(λ+1)

= 1.

A similar analysis leads to

y(t)∼ (1 − t)1/2, as t → 1−. (6)

To compute approximations for these three solutions, the overall strategy is the
same as before. We wish to use shooting, taking advantage of the asymptotic
formulas (5) and (6) as we did in [Baxley 1995; Baxley and Thompson 2000], but
as before we need a first step to find crude approximations for the three solutions.

In our first effort, we used the same iteration scheme as in Example 2.1, but
found that it gave poor accuracy. After some confusion, we discovered that the
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problem lay in the matrix A, and the correction comes from a careful analysis of
our approximation for y′′(tk).

Approximating y′(tk) with a backward difference quotient

y′(tk)≈
y(tk)− y(tk−1)

h
,

where h = tk −tk−1, we then approximate y′′(tk) with a forward difference quotient

y′′(tk)=
y′(tk+1)− y′(tk)

h
.

We combine these to get the usual second order divided difference quotient. But
if we focus on an endpoint, say t1, we are led, in the approximation for y′′(t1), to
replace y′(t1) with y(t1)/h. This, it turns out, is a blunder. To see why, we apply
Equation (5) to conclude

y′(t)∼
1
4

t−3/4, as t → 0+, and
y(t)

t
∼ t−3/4, as t → 0+.

Thus

y′(t)∼
1
4

y(t)
t
, as t → 0+.

Therefore, a better approximation for y′(t1) is
1
4

y(t1)
h

, which leads to the approx-
imation

y′′(t1)≈
−

5
4 y(t1)+ y(t2)

h2 .

A similar analysis shows that a better approximation for y′′(tn) is

y′′(tn)≈
y(tn−1)−

3
2 y(tn)

h2 .

So we modify the earlier matrix A to obtain instead

A =



−
5
4 1 0 0 · · · 0 0

1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...
...

...
...

...

0 0 0 0 · · · −2 1
0 0 0 0 · · · 0 −

3
2


.

4. Numerical calculations

We now discuss numerical calculations for Example 3.1, beginning with the ap-
proximation of the larger solution y3. For the results reported here, we began by
dividing our interval [0, 1] into 8 equal parts, seeking approximations of y3(tk),
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y3(1/32) y3(1/4) y3(1/2) y3(31/32)

unmodified A 0.5853 3.6660 4.8982 0.5347
modified A 2.2798 5.1757 6.1415 1.2206

Table 1. Results of discrete iteration for large solution.

where tk = k/8, k = 1, 2, . . . , 7. We seeded the iteration with the vector Y =

(1.8, 2.4, 2.7, 3.0, 2.7, 2.4, 1.8). Of course, we do not expect the solution to be
symmetric about t = 0.5, but otherwise this approximation has roughly the right
shape, with the value at t = 1/4 greater than 2, and the value at t = 1/2 less than
6. We iterated the fixed point form Equation (4) (with the 7×7 matrix A) 7 times,
then extended this approximation, dividing the interval into 16 equal parts, by linear
interpolation (we approximated y(1/16)= 0.6y(1/8) and y(15/16)= 0.6y(7/8)).
We then iterated the fixed point form (with the 15×15 matrix A) 7 times. Finally,
we doubled the number of subintervals again by the same procedure and iterated 7
times with the 31×31 matrix A. The final iterate is then our approximation for Y3,
which in turn approximates y3. The first component of Y3 is then our approxima-
tion for y3(1/32), the 15th component is our approximation for y3(1/2) and the last
component is our approximation for y3(31/32). In Table 1, we report the numerical
results, not only using the modified matrix A above but also, for comparison, of
the unmodified matrix A used for Example 2.1. Note how significant is the effect
of the modification of A. All calculations for this iterative procedure were done
using MATLAB. The large solution Y3 is an asymptotically stable attractor and we
obtained the same result with a variety of initial seeds.

The value of our approximation for y3(1/2) using the modified A is discon-
certing, since it exceeds 6.0. We would expect from the qualitative Henderson–
Thompson type estimates that the maximum value of our solution would be less
than 6.0. This is actually the case, but our initial approximation is too rough to
confirm this expectation.

Using the asymptotic estimate y(t)∼ t1/4, we expect that (32)1/4 y(1/32)= Q ≈

1.0. Computing this value from Table 1, we get the value Q = 5.422 (resp. Q =

1.392) for the modified (resp. unmodified) matrix A. The effect of the modification
is clearly large. The asymptotic estimate y(t) ∼ (1 − t)1/2 and the corresponding
expectation (32)1/2 y(31/32) = P ≈ 1.0 leads to the value P = 6.905 (resp. P =

3.025) for the modified (resp. unmodified) matrix A. The import of the difference
is fully realized only in passing to step 2 of our procedure and solving Equation (1)
and (2) by shooting.

The shooting procedure, using the computed values of Q and P (with the mod-
ified A) to seed the shooting, and essentially Newton’s method to adjust values of
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interval Q y3(1/4) y3(1/2) P

[.03, .97] 5.118 5.067 6.055 6.650
[.02, .98] 3.916 4.647 5.698 5.265
[.01, .99] 2.491 4.209 5.334 3.661
[.002, .998] 1.298 3.918 5.091 1.890

Table 2. Shooting results for large solution.

Q and P so that the solutions to the appropriate initial and terminal value problems
meet at t = 0.5 with altitudes and slopes agreeing to two decimal places, led to
the results reported in Table 2. Since 1/32 ≈ 0.03, we first solved the boundary
value problem, replacing the interval [0, 1] with [.03, .97]. Note that the values of
Q = 5.118 and P = 6.650 reported in Table 2 are quite close to the seed values
predicted by the modified A, but quite far from the seed values predicted by the
unmodified A. (In fact, using the seed values from the unmodified A caused our
computer program to terminate before completion.) We then enlarged this interval
in steps of 0.004 by subtracting 0.002 from the left endpoint and adding 0.002 to
the right endpoint and using the final values of Q and P from the previous step
as seeds for Q and P on the current step. We report only a few of the results in
Table 2, where it is seen that these values of Q and P are indeed moving (slowly)
toward 1.0 and the value of the solution at t = 0.5 is falling significantly below
y = 6.0 as expected from the Henderson–Thompson estimates. We also report the
value of the solution at t = 0.25, where the Henderson–Thompson estimates would
expect y > 2.0.

All computations involving shooting were done using the FORTRAN subroutine
RKF45 [Forsythe et al. 1977] of Shampine and Watts. For these calculations, we
only asked RKF45 for three decimal place accuracy and consequently that the
altitude and slope of the solution agree to two decimal places at t = 0.5. Thus,
the results of the shooting procedure should only be trusted to two decimal places.
Of course, the difference in the computed solutions and the true solution depends
also on replacing the interval [1, 0] by a smaller interval and using the asymptotic
formulas to generate initial and terminal conditions. The computation in [Baxley
1991; Baxley and Thompson 2000] suggests that good approximation demands
using an interval as large as [.001, .999].

We now discuss the smaller solution y1. (This solution y1(t)= t1/4(1 − t)1/2 is
known in closed form [Baxley 1995]; it can be quickly verified by direct substitu-
tion.) The iterative procedure using Equation (4) now has interesting features. The
iteration exhibits characteristics of a two cycle, but also the two cycle to which the
sequence of iterates converges appears to depend on the initial seed, a characteristic
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y1(1/32) y1(1/4) y1(1/2) y1(31/32)

0.3903 0.5168 0.4913 0.1623

Table 3. Results of discrete iteration for small solution.

interval Q y1(1/4) y1(1/2) P

[.03, .97] .951 .6045 .5898 .981
[.02, .98] .967 .6079 .5918 .987
[.01, .99] .983 .6105 .5933 .994
[.002, .998] .997 .6121 .5942 .999

Table 4. Shooting results for small solution.

of chaotic behavior. This iteration is taking place in a space of dimension 7, then
15, and finally 31. We tried a variety of initial seeds for the iteration and in every
case the smaller of the two cycle was a reasonable approximation for the solution
y1. Some initial seeds provided very good approximations. These approximations
were reasonable in the sense that the value of y at 1/32, 31/32 provided values
of Q, P close enough to give convergence of the Newton iterates in the shooting
method. In Table 3, we provide results of this iteration, only for the modified matrix
A. We seeded the discrete iteration with the vector Y = (.3, .4, .45, .5, .45, .4, .3)
and show the results for the smaller member of the resulting two cycle.

y2(1/32) y2(1/4) y2(1/2) y2(31/32)

0.6006 1.1068 1.2415 0.2438

Table 5. Results of discrete iteration for middle solution.

interval Q y2(1/4) y2(1/2) P

[.03, .97] 1.270 1.122 1.306 1.312
[.02, .98] 1.195 1.116 1.322 1.249
[.01, .99] 1.107 1.110 1.338 1.161
[.002, .998] 1.025 1.107 1.348 1.053

Table 6. Shooting results for middle solution.
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Using the values in Table 3 for y1(1/32) and y1(31/32), we compute the seed
values Q = 0.93 and P = 0.92 for the shooting method. We report the results of
shooting in Table 4. Note that the values of Q and P are now quite close to 1. Also
note that the closed form solution gives y1(1/4) = 0.6124 and y1(1/2) = 0.5946,
so that our final approximation for y1 is actually correct to three decimal places.

Finally, we pass to the middle solution y2. As indicated earlier, the approxima-
tion Y2 is a repeller for the discrete iteration. We proceed as we did in [Ballard et al.
2006]. We begin with Z1 and Z3, the 31 dimensional vectors which emerge from
the discrete iteration as approximations for the solutions Y1 and Y3. We average
these two vectors to get a vector Z2. We then iterate one time to see if this seed
vector is moving toward Z1 or Z3. If it is moving toward Z1, we replace Z1 by
Z2; otherwise we replace Z3 by Z2. We repeat this process until Z1 and Z3 differ
by less than 0.001 in the 16th component. At this point, Z1 and Z3 are viewed
as both close to the repeller Y2, but on opposite sides. However, they are formed
from averages of the original Z1 and Z3 and as such do not have the appropriate
shape for Y2. Thus we iterate once beginning with the final Z1 and once beginning
with the final Z3. This iteration reshapes Z1 and Z3 without serious movement.
We then take the average of these reshaped versions as our approximation for Y2.
In Table 5, we provide the result of this computation.

The values of y2(1/32) and y2(31/32) in Table 5 give us the seed values Q =

1.43 and P = 1.38 for shooting. These results are given in Table 6. Note again
that the values of Q and P are moving towards 1.
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Maximal subgroups of the semigroup of partial
symmetries of a regular polygon

Thomas L. Shelly and Janet E. Mills
(Communicated by Scott Chapman)

The semigroup of partial symmetries of a polygon P is the collection of all
distance-preserving bijections between subpolygons of P , with composition as
the operation. Around every idempotent of the semigroup there is a maximal
subgroup that is the group of symmetries of a subpolygon of P . In this paper we
construct all of the maximal subgroups that can occur for any regular polygon
P , and determine for which P there exist nontrivial cyclic maximal subgroups,
and for which there are only dihedral maximal subgroups.

1. Introduction and basic properties

The semigroup of partial symmetries of a polygon is a natural generalization of
the group of symmetries of a polygon. In this paper we will assume knowledge of
an undergraduate abstract algebra course and will generally use the terminology
of Gallian [2002]. The group of symmetries of a polygon P is the set of distance-
preserving mappings of P onto P , with composition as the operation. In particular,
for any n > 2, the group of symmetries of a regular n-gon is a group, called the
dihedral group, with 2n elements, and is denoted by Dn . The elements of this
group are completely determined by the movement of the vertices, and Dn can be
considered as a subgroup of the group of all permutations of the vertices of the
polygon, under composition.

To generalize the notion of symmetries of a polygon, we first need to describe
what a subpolygon should be. Let P be a convex polygon with set of vertices
V (P) = {v1, v2, . . . , vn}, listed clockwise, where there exists an edge between vi

and vi+1 for i = 1, 2, . . . , n − 1, and an edge between vn and v1. Let

A =
{
vi1, vi2, . . . , vim

}
be a subset of V (P), where i1< i2< . . .< im and let PA be the polygon with edges
between vi j and vi j+1 for j =1, 2, . . . ,m−1, and between vim and vi1 . The polygon

MSC2000: 20M18.
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PA is called a subpolygon of P , and in particular, PA is said to be the subpolygon
formed by A. Note that if vi j and vi j+1 are adjacent in P then the edge between
them is still an edge in PA; otherwise, the edge between them is new. Note also
that the subpolygons include those with no vertices (the empty polygon), exactly
one vertex (a point), or two vertices (a line segment).

For each subset of V (P), there is a unique subpolygon described since the in-
dices on the vertices must be increasing and each subpolygon is a convex polygon.
The set of all subpolygons of P will be denoted by 5. Now we must describe the
semigroup of partial symmetries of a convex polygon P . This class of semigroups
was first defined in [Mills 1990b], and some of its properties explored in [Mills
1990a; 1993]. The domain and range of a function α will be denoted by dom α

and ranα respectively.

Definition. Let P be a convex polygon. On the set

S = S(P)= {α : A → B | PA, PB ∈5, and α is a distance-preserving bijection} ,

define composition by xαβ = (xα)β for all x ∈ domα such that xα ∈ domβ. Then
under this operation, S is a semigroup, called the semigroup of partial symmetries
of the polygon P .

Note that if α is in S and maps A onto B, then α−1 is also a distance-preserving
bijection of B onto A, so α−1 is in S. The semigroup S is an example of an inverse
semigroup. That is, for each α ∈ S, there is a unique β ∈ S such that αβα = α and
βαβ = β. In our semigroup, for α ∈ S, the mapping α−1 serves as the needed β.

An idempotent of S is any α such that α2
= α. It is easy to see that because

the mappings are one-to-one, α is an idempotent if and only if α is the identity
on its domain A, denoted by ιA. In any inverse semigroup the idempotents form a
skeleton of the semigroup, and around every idempotent there is a maximal sub-
group with that idempotent as its identity. In S, if A is a subset of V (P), then the
maximal subgroup with ιA as its identity is

HA = {α ∈ S | there exists a β ∈ S such that αβ = βα = ιA}

= {α ∈ S | domα = ranα = A} .

This is the largest subgroup of S having ιA as its identity.
It is the purpose of this paper to determine, for a regular polygon P , exactly

which groups can occur as a maximal subgroup of S(P). It is clear from the
description above that the maximal subgroup around ιA is the group of symmetries
of the subpolygon PA. Therefore, the effort to find all maximal subgroups of S
reduces to describing the group of symmetries of each subpolygon of P . As is
well known, the group of symmetries of any polygon is either a dihedral group or
a cyclic group [Gallian 2002, Theorem 27.1]. The problem here is that we have
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a particular regular polygon P , and need to determine exactly which dihedral and
cyclic groups can occur as symmetry groups of subpolygons of that polygon P .

From now on, we will assume that P is a regular polygon with n vertices. The
semigroup S(P) has an identity ιP , and the maximal subgroup around ιP is just
the group of symmetries of P , or Dn . As we shall see, this subgroup plays an
important part in determining the other maximal subgroups. Therefore, we need
to recall some information about the group Dn . In particular, Dn is a group with
2n elements, having n reflections and n rotations. All reflections are about some
line of symmetry of P that passes through the center of P . If n is even, every line
of symmetry passes through two vertices or through the midpoint between two
vertices, whereas if n is odd, every line of symmetry passes through exactly one
vertex. Since P is regular, the rotations form a subgroup generated by ρ, which
is a rotation about the center of P through 2π/n radians. This subgroup is often
written as 〈ρ〉, the cyclic subgroup generated by ρ, which is isomorphic to Zn , the
group of integers modulo n. In this paper, ρ will always denote this rotation.

2. Maximal subgroups

In this section we find all maximal subgroups of S for any regular polygon P . In
addition, we provide a description of all subpolygons with rotational symmetry
and we give a method for constructing subpolygons with cyclic symmetry groups.
For the remainder of the paper we use the following notation: Greek letters are
used to represent elements of S, and the letters v and w are used to represent
vertices. Thus any expression of the form αβ denotes composition, whereas the
expression vα=w says that the vertex v is mapped to w under α (we always write
the argument of the function to the left of the function, as in the definition of S in
Section 1). The letter d is always used to represent an arbitrary element of Dn .

It was shown in [Mills 1993] that for a regular polygon P , every element α ∈ S
can be extended to an element in the group of symmetries of P . That is, if
domα = A then α = ιAd for some d ∈ Dn . Further, it was shown that if A has at
least 3 elements, then d is unique. For the remainder of the paper, we always take
any subset A of V (P) to have more than two elements to ensure every element
in the maximal subgroup HA extends uniquely to Dn . Not much is lost by this
restriction, since if |A| ≤ 2 then PA is either a point or a line segment, and HA is
either Z1 or Z2. This unique extension guarantees that rotations in HA are extended
to rotations in Dn and reflections in HA are extended to reflections in Dn . More
specifically, we can connect elements in HA to those in Dn as follows.

Lemma 2.1. Let α and β be elements of a maximal subgroup HA, with |A| > 2,
such that α = ιAd1 and β = ιAd2 for d1, d2 ∈ Dn . Then the following are true:

(a) αβ = ιAd1d2.
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(b) α j
= ιAd j

1 for all j ∈ Z.

(c) |α| = |d1|, where |α| and |d1| are the orders of α and d1 in HA and Dn respec-
tively.

Proof. To prove Lemma 2.1a, let α and β be defined as above. Then since ιA is
the identity in HA, αβ = (ιAd1) (ιAd2)= ((ιAd1) ιA) d2 = (ιAd1) d2 = ιAd1d2. The
proof of Lemma 2.1b is a simple application of Lemma 2.1a using induction and
the fact that α−1

= ιAd−1
1 . To prove Lemma 2.1c, suppose that |α| = m. Then m is

the smallest positive integer such that αm
= ιA. From Lemma 2.1b, αm

= ιAdm
1 , so

ιA = ιAdm
1 . We have assumed that |A|>2, so ιA can be extended to a unique element

of Dn . Since ιAιP = ιA, the uniqueness of extension gives dm
1 = ιP . If d`1 = ιP for

some ` < m, then α` = ιAd`1 = ιAιP = ιA, which contradicts the minimality of m.
Thus m is the smallest positive integer such that dm

1 = ιP . Therefore |d1| = m. �

It should be noted that in general, for d ∈ Dn , ιAd is not necessarily an element of
HA. For any d ∈ Dn , let d|A denote the function d with the domain of d restricted
to A, and let d|A(A) denote the image of A under this mapping. Then ιAd ∈ S is
an element of HA if and only if d|A(A)= A. In this light, we can express HA as

HA = {ιAd | d ∈ Dn and d|A(A)= A} . (1)

There is a subtlety in this notation that is worth mentioning. Equation (1) for HA

is guaranteed to be valid if |A|> 2, but may fail otherwise. For example, suppose
that |A| = 1. Then PA is a point, so clearly HA contains only the identity ιA. But
the set {ιAd | d ∈ Dn and d|A(A)= A} contains two elements, the identity in Dn

and the reflection of P about the line through the vertex in A. We use the useful
notation of Equation (1) freely, since we have assumed that |A|> 2.

It is evident from Lemma 2.1a that composition within maximal subgroups is
essentially the same as composition in Dn . As groups then, it is not surprising that
many properties of the maximal subgroups of S are consequences of properties of
Dn (with Lemma 2.1c as just one example). Another important property of Dn that
is reflected in maximal subgroups of S is the structure of cyclic subgroups. Such
subgroups are important to this discussion since both dihedral and cyclic groups
contain them. As mentioned in Section 1, the subgroup of all rotations in Dn is the
cyclic group of order n generated by a rotation, ρ, of 2π/n radians. As a result,
the subgroup of all rotations in any maximal subgroup of S is also a cyclic group
generated by a rotation.

Lemma 2.2. Let HA be a maximal subgroup with a nontrivial rotation. Then the
subgroup of all rotations in HA is a cyclic group generated by some rotation α∈ HA

such that α = ιAρ
k , where k divides n. In particular, the subgroup of all rotations

in HA is isomorphic to Zn/k , where k is the smallest positive integer such that
ιAρ

k
∈ HA.
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Proof. Assume HA has a nontrivial rotation γ . Then γ = ιAρ
j for some j . Since

the set {m | ιAρ
m

∈ HA,m ≥ 1} is thus nonempty, by the well-ordering principle
it has a least element k. Hence there exists α ∈ HA such that α = ιAρ

k . By the
division algorithm, there exist unique q, r ∈ N such that n = kq +r with 0 ≤ r < k.
So

ιAρ
r
= ιAρ

n−kq
= ιAρ

nρ−kq
= ιAιPρ

−kq
= ιAρ

−kq
=
(
ιAρ

k)−q
= α−q ,

and α−q
∈ HA by closure. Thus r = 0 by minimality of k. Therefore k divides n.

It remains to be shown that the subgroup of all rotations in HA is exactly 〈α〉. To
this end, let β be a nontrivial rotation in HA. Then β= ιAρ

m for some m. Applying
the division algorithm again, there exist unique s, t ∈ N such that m = ks + t , with
0 ≤ t < k. Then

ιAρ
t
= ιAρ

m−ks
=
(
ιAρ

m) ρ−ks
=βρ−ks

=βιA
(
ρk)−s

=β
(
ιAρ

k)−s
=βα−s

∈ HA.

So t must be zero, by minimality of k. Thus β = ιAρ
ks

=
(
ιAρ

k
)s

= αs
∈ 〈α〉.

From Lemma 2.1c, |〈α〉| =
∣∣ιAρk

∣∣ =
∣∣ρk
∣∣. And

∣∣ρk
∣∣ = n/k since k divides n.

So 〈α〉 ≈ Zn/k . �

Though Lemma 2.2 is useful for describing the cyclic subgroups of maximal sub-
groups as groups, it says nothing about what the subpolygons look like that have
such subgroups. To aid in the description of these subpolygons, a distance function
is defined on V (P) that exploits the regularity of P and is independent of the actual
size of the regular polygon.

Definition. The polygonal distance between two vertices v and w is the fewest
number of edges between v andw in the regular polygon P . The polygonal distance
is denoted P(v,w).

The polygonal distance is equivalent to the usual Euclidean distance in the
sense that for any vertices v1, v2, w1, w2, P(v1, w1) = P(v2, w2) if and only if
E(v1, w1) = E(v2, w2), where E(v,w) denotes the Euclidean distance between
v and w. This follows immediately from the fact that P is a regular polygon. In
particular, since the elements of Dn are isometries, we know E(v,w)= E(vd, wd)
for all d ∈ Dn . This implies

P(v,w)= P(vd, wd), for all d ∈ Dn. (2)

Further, since P is a regular polygon, a subpolygon PA is regular if and only if
there exists an ` ∈ N such that for all v,w ∈ A that are connected by an edge
in PA, the polygonal distance P(v,w) = `. So the vertices of any subpolygon
which is itself a regular polygon must be evenly spaced around P with respect to
the polygonal distance. The vertex sets of regular subpolygons are fundamental to
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describing the maximal subgroups of S, so we give these sets of vertices their own
notation.

Definition. Let k divide n such that k 6= n/2. The k class of the vertex vi , denoted
by [vi ]k , is defined as [vi ]k =

{
v j | P(vi , v j )= mk for some m ∈ N

}
.

From the discussion above, these k classes are precisely the vertex sets of regular
subpolygons. Since P(vi , viρ

`k) is a multiple of k for all ` ∈ N, it is apparent that
v j ∈ [vi ]k if and only if viρ

mk
= v j for some m ∈ N. So [vi ]k =

{
viρ

mk
| m ∈ N

}
.

The set
{
viρ

mk
| m ∈ N

}
is the set of all vertices that vi is mapped to under elements

of
〈
ρk
〉
, called the orbit of vi under

〈
ρk
〉
. No two distinct elements of

〈
ρk
〉

map vi

to the same vertex, so |[vi ]k | =
∣∣〈ρk

〉∣∣ = n/k. So, each k class forms a regular
subpolygon with n/k vertices (we have disallowed k = n/2 to ensure each k class
has more than two vertices). Moreover, it is well known that the set of all orbits
of any set under some group is a partition of that set, so P[v]k is the unique regular
subpolygon with n/k vertices containing v. Since the symmetry group of a regular
polygon is dihedral, we have proven the following result:

Proposition 2.1. Let P be a regular polygon with n sides. Then S has a maximal
subgroup isomorphic to the dihedral group Dn/k for every k which divides n.

Dihedral maximal subgroups are thus abundant in the sense that as long as n is not
prime (and P is not a square), S contains at least one nontrivial dihedral maximal
subgroup (the trivial case being the group of symmetries of P). In contrast, the
restriction that n be not prime is not sufficient to show that S contains a nontrivial
cyclic maximal subgroup. As we will show, stronger restrictions must be placed
on the divisors of n to guarantee nontrivial cyclic maximal subgroups of S exist.

We will use k classes to describe all subpolygons that have rotational symmetry.

Lemma 2.3. A maximal subgroup HA has a nontrivial subgroup of rotations if and
only if

A =

⋃
v∈A0

[v]k for some k and some A0 ⊆ V (P).

Moreover, any nontrivial subgroup of rotations in HA is isomorphic to Zn/h for
some h.

Proof. First, assume HA has a nontrivial rotation. Then there exists α ∈ HA such
that α = ιAρ

k for some k. Since ιAρk
∈ HA, we have [v]k ⊆ A for all v ∈ A.

Let A0 be a subset of A consisting of a representative of each k class. Then
A =

⋃
v∈A0

[v]k .
For the other direction, assume A =

⋃
v∈A0

[v]k for some k and some A0 ⊆

V (P). Since for any v ∈ A the set [v]k is the orbit of v under ρk , we know
vρk

∈ A. Thus α = ιAρ
k is an element of HA. Since ρk is a nontrivial rotation
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in Dn , α is a nontrivial rotation in HA. Therefore 〈α〉 is a nontrivial subgroup of
rotations of HA.

From Lemma 2.1c, |α| =
∣∣ρk
∣∣= n/k. Since |α| = |〈α〉|, the cyclic group 〈α〉 is

of order n/k, and is therefore isomorphic to Zn/k . �

These k classes can then be viewed as the building blocks for all cyclic and
dihedral maximal subgroups since both contain subgroups of rotations. However,
at this point we have no way of knowing whether a subpolygon formed by a union
of more than one k class will have a cyclic or a dihedral symmetry group. The fol-
lowing lemma gives one method of proving or disproving that a maximal subgroup
is cyclic:

Lemma 2.4. Let A be a collection of vertices of P that can be written as a union
of k classes, with k the smallest positive integer such that A =

⋃
v∈A0

[v]k for some
set of vertices A0. Then HA ≈ Zn/k if and only if HA contains no reflections.
Otherwise, HA ≈ Dn/k .

Proof. First note that since k is the smallest positive integer such that A can be
written as the union of k classes, k is also the smallest positive integer such that
ιAρ

k
∈ HA. So, by Lemma 2.2, the subgroup of all rotations in HA is isomorphic to

Zn/k . So clearly if HA ≈ Zn/k then every element in HA is a rotation. Conversely,
if HA contains no reflections, then it must contain only rotations. Since the set of
all rotations in HA is

〈
ιAρ

k
〉
, we have HA =

〈
ιAρ

k
〉
≈ Zn/k .

If HA 6≈ Zn/k , then Zn/k is still the subgroup of all rotations in HA. So HA

must contain some element γ 6∈ Zn/k . This implies that HA is not cyclic. Since all
finite plane symmetry groups are either cyclic or dihedral, HA is thus isomorphic
to a dihedral group. The only dihedral group that contains Zn/k as its largest cyclic
subgroup is Dn/k . Therefore HA ≈ Dn/k . �

So, we can now state the problem of finding cyclic maximal subgroups as follows:
for which values of n can we find a collection of k classes, A, such that HA contains
no reflections?

We begin this search by constructing some subpolygons with cyclic symmetry
groups. In order to construct such subpolygons we make use of the concept of an
integer partition. A partition of an integer m is a way of expressing m as the sum
of positive integers. Each summand in the expression of m is called a part of the
partition. The usual convention dictates that the parts of a partition be written in
nonincreasing order, but for our purposes this requirement is irrelevant. For our
construction we will need the following definitions:

Definition. Let A and B be collections of vertices of P .

(a) Two vertices of A are said to be adjacent in PA if they are connected by an
edge in the subpolygon PA.
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(b) Let B ⊆ A. If for all v ∈ B there exists w ∈ B such that v is adjacent to w in
PA, then B is said to be a consecutive subset of A.

(c) The set EA is defined by EA =
{

P(vi , v j ) | vi , v j ∈ A and vi is adjacent to
v j in PA

}
.

Note that the polygonal distance always refers to the minimum number of edges of
the original polygon P between two vertices, even in reference to two vertices of a
subpolygon. Note also that vertices labeled with consecutive indices, for example
w1 and w2, are always meant to be adjacent in PA.

Theorem 2.1. Let k divide n. Then for every partition of k into m distinct parts,
with m ≥ 3, there exists a cyclic maximal subgroup of S isomorphic to Zn/k .

Proof. Let k divide n. Suppose k = a1+a2+. . .+am , for some m ≥ 3, where all the
ai are distinct. Using this partition of k, we wish to construct a set of vertices A that
will give rise to a subpolygon PA with only rotations in its symmetry group HA. To
do this, let A0 =

{
vi1, vi2, . . . , vim

}
be a set of vertices such that P(vi j , vi j+1)= a j

for all j = 1, 2, . . . ,m −1. Consider the set A =
⋃
v∈A0

[v]k . For convenience, let
A =

{
w1, w2, . . . , wq

}
, where the first m vertices in A are precisely the elements

of A0, and q = mn/k. We break up the proof that HA ≈ Zn/k into three parts.

(a) The set A has the following properties:

(i) EA = {ai | i = 1, 2, . . . ,m}.
(ii) If B is any consecutive subset of A, and |B| ≤ m + 1, then all elements

of EB are distinct.

We know from the construction of A that

P (wi , wi+1) = ai for i = 1, 2, . . . ,m − 1.

Also, since wm+1 = w1ρ
k , we have P(w1, wm+1)= k. Since the set

{w1, w2, . . . , wm+1}

is a consecutive subset of A we may write

P(w1, wm+1)= P(w1, wm)+ P(wm, wm+1).

So

P(wm, wm+1)= P(w1, wm+1)− P(w1, wm)

= k − (a1 + a2 + . . .+ am−1)

= am .

This shows that EA0 = {ai | i = 1, 2, . . . ,m}. Now let w j ∈ A. Then there
exists an ` ∈ N such that w j = wiρ

`k for some wi ∈ A0 by the construction
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of A. So (recalling Equation (2)),

P(w j , w j+1)= P(wiρ
`k, wi+1ρ

`k)= P(wi , wi+1)= ai ,

which proves the first property.
To prove the second, note if B is consecutive subset of A and |B| ≤ m + 1,

then EB has at most m elements. Each element of EB must be a unique part
of the partition of k, all of which are distinct.

(b) The subgroup of all rotations in HA is isomorphic to Zn/k :
In order to show that the subgroup of all rotations in HA is Zn/k , from

Lemma 2.2 we need only show that k is the smallest positive integer such that
ιAρ

k
∈ HA. Assume, rather, that ιAρ j is an element of HA for some j such that

0< j < k. Let A1 = A0∪{wm+1}. Note that since |A1| = m+1, every element
of EA1 is unique by Theorem 2.1a-ii. Also note that since ιAρ j is a rotation, it
preserves both adjacency and orientation of the vertices of A. With these two
facts, we see that w1ρ

j and w2ρ
j cannot both lie in A1. If they did, we would

have P(w1, w2)= P(w1ρ
j , w2ρ

j )∈ EA1 , contradicting Theorem 2.1a-ii. But
recall that P(w1, w1ρ

j ) = j , and by construction, P(w1, wm+1) = k. Since
j < k, this implies that w1ρ

j
=ws for some ws ∈ A1. Since the vertices of A

are indexed clockwise, we have that s < m + 1. Now, since w1ρ
j
= ws , and

ρ j is orientation preserving, we may write w2ρ
j
=ws+1. From our argument

above, since w1ρ
j
∈ A1, we know that w2ρ

j
6∈ A1. That is, s + 1 > m + 1.

Since we have already established that s <m +1, we have s <m +1< s +1.
This is impossible since both m and s are positive integers. Thus, k is the
smallest positive integer such that ιAρk

∈ HA. Therefore, the subgroup of all
rotations in HA is isomorphic to Zn/k .

(c) HA contains no reflections: We again proceed by contradiction. Suppose that
PA is symmetric about some line L . Let d ∈ Dn be the reflection of P about
L . Then α = ιAd ∈ HA. There are two cases to consider.

(i) L passes through some vertex wi ∈ A. Let B = {wi−1, wi , wi+1}. Now,
wiα = wi , and wi+1α = wi−1. Moreover, from Theorem 2.1a-i,

P(wi , wi+1)= P(wiα,wi+1α)= P(wi , wi−1)= a j for some j.

But P(wi−1, wi ), P(wi , wi+1)∈EB , and B is a consecutive subset of A of
order 3. Since m ≥ 3, |B| = 3<m +1. So P(wi−1, wi ) and P(wi , wi+1)

must be distinct by Theorem 2.1a-i, which is a contradiction.
(ii) L passes through no vertices of A. Then there exists wi ∈ A such that

wiα = wi+1 and wi−1α = wi+2. Thus, from Theorem 2.1a-i:

P(wi , wi−1)= P(wiα,wi−1α)= P(wi+1, wi+2)= a j for some j.
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Let B = {wi−1, wi , wi+1, wi+2}. Then B is a consecutive subset of order
4. Since m ≥ 3, |B| ≤ m + 1. But clearly not every element of EB is
distinct. By Theorem 2.1a-ii, this is impossible.

Therefore, the subpolygon PA has no line of symmetry. Thus HA contains no
reflections. The theorem now follows. �

Corollary 2.1. If k divides n and k ≥6, then S has a maximal subgroup isomorphic
to Zn/k .

Proof. Let k divide n and k ≥ 6. Then k = 1 + 2 + (k − 3), and k − 3 > 2, so k
can be partitioned into at least 3 distinct parts. Thus by Theorem 2.1, S contains a
maximal subgroup isomorphic to Zn/k . �

As an example of the construction of subpolygons with cyclic symmetry groups
given in Theorem 2.1, let n =24 and k =8. Consider the partition 8=1+2+5. Now
let A0 ⊆ V (P) such that A0 = {v1, v2, v4} (see Figure 1). Note that P(v1, v2)= 1
and P(v2, v4)= 2. If we then consider the set A =

⋃
v∈A0

[v]8, we get

A = [v1]8 ∪ [v2]8 ∪ [v4]8

= {v1, v9, v17} ∪ {v2, v10, v18} ∪ {v4, v12, v20}

= {v1, v2, v4, v9, v10, v12, v17, v18, v20} .

So A is essentially made up of 3 copies of A0 evenly spaced around the polygon,
and one can see that the polygonal distances between adjacent vertices in PA are
all elements of the partition of k. The entire subpolygon in Figure 1 is PA.

We have shown that, given a regular polygon with n sides and a positive integer
k ≥ 6 that divides n, we can construct a subpolygon with symmetry group Zn/k .

v1 v2

v4

Figure 1. Subpolygon with symmetry group Z3 in a regular 24-gon.
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With the following three results, we show that if k < 6 then no such subpolygon
exists.

Lemma 2.5. If A is the union of exactly two k classes, then HA is isomorphic to a
dihedral group.

Proof. Let A = [v]k ∪ [w]k , where [v]k ∩ [w]k = ∅. If [v]k ∪ [w]k = [v] j for
some j , then PA is regular and the result holds. So assume that is not the case.
We know there exists some reflection d ∈ Dn such that vd = w and wd = v.
Recall that P[v]k and P[w]k are the unique regular subpolygons with n/k vertices
containing v and w respectively. Since d is an isometry, the subpolygon formed
by the vertex set d([v]k) must also be a regular n/k-gon. Since vd = w ∈ [w]k ,
we have d([v]k)= [w]k by the uniqueness of P[w]k . Similarly d([w]k) = [v]k . So
d|A(A)= A, and ιAd is a reflection in HA. From Lemma 2.4, since A is the union
of k classes and HA contains a reflection, HA is isomorphic to a dihedral group. �

Lemma 2.6. For any A ⊆ V (P), let Ac
= V (P)\ A. If A is a subset of V (P) such

that |A|> 2 and |Ac|> 2, then HA ≈ HAc .

Proof. Let A be a subset of V (P) such that |A| > 2 and |Ac| > 2. Recall from
Equation (1) that HA = {ιAd | d ∈ Dn and d|A(A)= A} . Let

Dn(A)= {d ∈ Dn | d|A(A)= A} and Dn(Ac)=
{
d ∈ Dn | d|Ac(Ac)= Ac} .

Since all mappings in Dn are bijections from V (P) to V (P), we have d|A(A)= A
if and only if d|Ac(Ac)= Ac. So Dn(A) = Dn(Ac). Now define the mapping
φ : HA → HAc by φ(ιAd) = ιAc d. Such a mapping is guaranteed to exist since
Dn(A) = Dn(Ac), and furthermore, the same equality shows that φ maps onto
HAc . Since |A| > 2, every element of HA can be extended to a unique element
of Dn . So ιAd1 = ιAd2 if and only if d1 = d2, and φ is thus well defined. To see
that φ is one-to-one, suppose that φ(ιAd1) = φ(ιAd2). Then ιAc d1 = ιAc d2. By
assumption, |Ac|> 2, so uniqueness of extension gives d1 = d2. Thus ιAd1 = ιAd2.
It follows from Lemma 2.1a that for any d1, d2 ∈ Dn(A),

φ((ιAd1) (ιAd2))= φ(ιAd1d2)= ιAc d1d2 = (ιAc d1) (ιAc d2)= φ(ιAd1) φ(ιAd2) .

So φ is a homomorphism, and HA ≈ HAc . �

Lemma 2.7. Let k divide n, k ≤ 5, and k 6= n/2. Then S has no maximal subgroup
isomorphic to Zn/k .

Proof. Let k be as described and A ⊆ V (P) such that A is the union of m k classes.
Since k ≤ 5, we know m ≤ 5. Then we can write Ac as the union of (k − m)
k classes. Since k 6= n/2, both A and Ac have more than two elements. Since
m + (k − m) = k ≤ 5, either m ≤ 2 or k − m ≤ 2. Thus from Lemma 2.5, HA

or HAc is isomorphic to a dihedral group. From Lemma 2.6, HA ≈ HAc , so both
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HA and HAc are isomorphic to a dihedral group. Thus the symmetry group of any
subpolygon whose vertices are the union of k classes is dihedral. So Zn/k does not
occur as a maximal subgroup of S. �

We now have all of the information necessary to determine exactly for which reg-
ular polygons P , S(P) contains cyclic maximal subgroups other than Z1 and Z2.

Theorem 2.2. Let P be a regular polygon with n sides. Then S contains a maximal
subgroup isomorphic to Zm , for some m ≥ 3, if and only if n = km for some k ≥ 6.
In particular, 18 is the smallest value of n for which this occurs.

Proof. Suppose that S contains a cyclic maximal subgroup isomorphic to Zm for
some m ≥ 3. Then, by Lemma 2.3, m = n/k for some k. Since m ≥ 3, we know
that k 6= n/2. Then by the contrapositive of Lemma 2.7, since Zm = Zn/k is a
maximal subgroup of S, then k ≥ 6. Thus n = km where k ≥ 6 and m ≥ 3.

Conversely, suppose n = km for some k and m such that k ≥ 6 and m ≥ 3.
By Corollary 2.1, since k ≥ 6 and k divides n, S contains a maximal subgroup
isomorphic to Zn/k = Zm . The result follows since |Zm | = m ≥ 3.

Thus 6 × 3 = 18 is the fewest number of vertices of a regular polygon P such
that S has a cyclic maximal subgroup with more than two elements. �

For values of n ≤ 40, the only n for which S contains a nontrivial (other than
Z1 and Z2) cyclic maximal subgroup are 18, 21, 24, 27, 28, 30, 32, 33, 35, 36, 39,
and 40. In contrast, there are 26 values of n ≤ 40 for which S contains a nontrivial
dihedral maximal subgroup.

The case where n is even and k = n/2 was ignored throughout the paper in
order to ensure that each individual k class formed a regular polygon with at least
3 vertices. However, the consequences of allowing k to take the value of n/2 are
nontrivial. If k = n/2, then any subpolygon formed by exactly one k class is simply
a line segment connecting two antipodal vertices, so its symmetry group is Z2. But
suppose that we take the union of two k classes of adjacent vertices, [v1]k and [v2]k .
Then the resulting subpolygon is a nonsquare rectangle (if n > 4). The symmetry
group of a nonsquare rectangle contains 4 elements: the identity, one rotation of or-
der 2, and two reflections. This symmetry group is known by more than one name,
including the Klein four group, and Z2 × Z2. But if we define the dihedral groups
in terms of generators and relations as Dn =

〈
d1, d2 | d2

1 = d2
2 = (d1d2)

n
= ιP

〉
,

then the symmetry group of a nonsquare rectangle is seen to be isomorphic to D2

[Gallian 2002, p. 442]. This maximal subgroup exists only for all even n > 4
(using the construction above).

With this final case considered, we have characterized all maximal subgroups
of S for any regular polygon P .
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n Dihedral maximal subgroups Cyclic maximal subgroups

4 D4 Z1, Z2

8 D2, D4, D8 Z1, Z2

13 D13 Z1, Z2

18 D2, D3, D6, D9, D18 Z1, Z2, Z3

24 D2, D3, D4, D6, D8, D12, D24 Z1, Z2, Z3, Z4

30 D2, D3, D5, D6, D10, D15, D30 Z1, Z2, Z3, Z5

Table 1. Maximal subgroups for various values of n.

Theorem 2.3. Let P be a regular polygon with n sides, and let n > 4. Let S be
the semigroup of partial symmetries of P. Then every maximal subgroup of S is
isomorphic to one of the following groups, and S contains a maximal subgroup
isomorphic to each of the following:

(a) Z1;

(b) Z2;

(c) Dn/k for all k that divide n;

(d) Zn/k for all k that divide n such that k ≥ 6 and n/k ≥ 3.

Table 1 shows exactly which maximal subgroups occur for a variety of values of n.

Acknowledgement

This work was conducted by Tom Shelly as an undergraduate research project
under the guidance of Dr. Janet Mills.

References

[Gallian 2002] J. A. Gallian, Contemporary Abstract Algebra, Houghton Mifflin Company, Boston,
2002.

[Mills 1990a] J. E. Mills, “The inverse semigroup of partial symmetries of a convex polygon”, Semi-
group Forum 41:2 (1990), 127–143. MR 91j:20158 Zbl 0704.20051

[Mills 1990b] J. E. Mills, “Inverse semigroups through groups”, Internat. J. Math. Ed. Sci. Tech.
21:1 (1990), 93–98. MR 1036371 Zbl 0693.20059

[Mills 1993] J. E. Mills, “Factorizable semigroup of partial symmetries of a regular polygon”, Rocky
Mountain J. Math. 23:3 (1993), 1081–1090. MR 94j:20077 Zbl 0815.20064

Received: 2007-06-11 Accepted: 2007-11-01

shellyt@seattleu.edu Department of Mathematics, 901 12th Ave.,
P.O. Box 222000, Seattle, WA 98122-1090, United States

jemills@seattleu.edu Department of Mathematics, 901 12th Ave.,
P.O. Box 222000, Seattle, WA 98122-1090, United States



INVOLVE 1:1(2008)

Divisibility of class numbers of imaginary quadratic
function fields

Adam Merberg

(Communicated by Ken Ono)

We consider applications to function fields of methods previously used to study
divisibility of class numbers of quadratic number fields. Let K be a quadratic
extension of Fq(x), where q is an odd prime power. We first present a function
field analog to a Diophantine method of Soundararajan for finding quadratic
imaginary function fields whose class groups have elements of a given order. We
also show that this method does not miss many such fields. We then use a method
similar to Hartung to show that there are infinitely many imaginary K whose
class numbers are indivisible by any odd prime distinct from the characteristic.

1. Introduction and statement of results

The study of the structure of class groups of imaginary quadratic number fields
dates back to Gauss, who posed the problem of finding all positive square-free d
such that the class group of Q(

√
−d), which we denote by Cl(−d), has some fixed

order h. Heegner [1952], Baker [1967] and Stark [1967] solved Gauss’s problem
in the case h = 1, showing that there are only nine imaginary quadratic fields of
class number 1. Baker [1971] and Stark [1975] later presented solutions to the
case h = 2. A famous theorem of Siegel says that for ε > 0, there exist positive
constants c1(ε) and c2(ε) such that for each square-free d we have

c1(ε)d
1
2 −ε < h(−d) < c2(ε)d

1
2 +ε .

But this bound was ineffective. Goldfeld [1976] and Gross and Zagier [1983]
showed that Gauss’s problem is effectively computable for any h.

Of interest in the study of the structure of the class groups of the imaginary
quadratic fields is the presence or absence of c-torsion for positive integers c. For
c = 2, the answer to this question follows from Gauss’s genus theory. For odd

MSC2000: primary 11R29; secondary 11R11.
Keywords: number theory, quadratic function fields, class numbers, class groups, divisibility.
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primes c, a conjecture of Cohen and Lenstra [1984] states that the “probability”
that Cl(−d) has an element of order c is

1 −

∏
1≤k<∞

(1 − c−k).

With a few exceptions, little is known about divisibility of class numbers of imagi-
nary quadratic number fields. A theorem of Davenport and Heilbronn [1971] shows
that for c = 3, the proportion of d for which the order of Cl(−d) is prime to 3 is
at least 1/2. Other results do not even give positive proportions. Soundararajan
[2000] used a Diophantine construction to show that the number of d < X such
that Cl(−d) has an element of even order c is

�

{
X1/2+2/c−ε, if c ≡ 0 (mod 4),

X1/2+3/(c+2)−ε, if c ≡ 2 (mod 4).
(1)

This can also be used to give a bound for c odd since if Cl(−d) has an element of
order 2c, then it also has an element of order c. On the question of indivisibility of
class numbers, Kohnen and Ono [1999] showed that for odd primes c, the number
of d < X such that Cl(−d) has no c−torsion is at least(

2(c − 2)
√

3(c − 1)
− ε

) √
X

log X
,

for any ε > 0.
In the setting of function fields, Friedman and Washington [1989] conjectured an

analog of the Cohen–Lenstra heuristics. Achter [2006] used methods of algebraic
geometry to prove this conjecture in a recent paper.

In this paper, we consider divisibility of class numbers of imaginary quadratic
function fields. We use several styles of arguments applied to imaginary quadratic
number fields prior to the work of Achter. We let q be a power of an odd prime,
and define k := Fq(x) and A := Fq [x], the rational function field and polynomial
ring over the finite field with q elements. Denote by Cl( f ) the (divisor) class group
of the function field k(

√
f ) for f square-free and let h( f ) = # Cl( f ). We look

in particular at the case when deg f is odd. This is an analog of the case of an
imaginary quadratic number field in which the prime at infinity ramifies and the
unit group has rank 0. This case also has the property that the class number of
the function field k(

√
f ) is the same as the class number of its maximal order

[Rosen 2002, Chapter 14]. Soundararajan [2000, Proposition 1] used solutions to
the Diophantine equation t2d = mc

−n2 to find d such that Cl(−d) has an element
of order c. The following is our analogous result for function fields.

Theorem 1.1. Let c ≥ 3 be a positive odd integer. Let f ∈ A be a square-free
polynomial of odd degree. If there exist nonzero m, n, t ∈ A such that mc

=n2
−t2 f
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with (m, n) = 1 and c deg m < p deg f , where p is the smallest prime dividing c,
then Cl( f ) has an element of order c.

Remark 1. Cardon and Ram Murty [2001] used a similar Diophantine method to
give a bound similar to Equation (1) in the function field case.

In the number field case, Soundararajan showed that any d such that Cl(−d)
has an element of order c satisfies a Diophantine condition similar to that in his
construction. The following is a function field analog of his result. In the theorem,
the Diophantine condition from Theorem 1.1 corresponds to the case l = 1. Like
Soundararajan’s result, this is proven only in the case of c prime, but we expect a
similar result to hold if c is composite.

Theorem 1.2. Let c ≥ 3 be prime and let f ∈ A be a square-free polynomial of odd
degree. Denote by hc( f ) the number of elements of order c in Cl( f ). Let C+ = 2
and C− = 1. If for each choice of ε in {+,−}, Dε is the number of solutions in
polynomials l,m, n and t with l,m, n monic to

lmc
= n2l2

− t2 f, where l| f, (m, f n)= 1 and deg lm <
Cε
2

deg f, (2)

then D− ≤ hc( f )≤ D+.

We also consider indivisibility of class numbers of quadratic function fields.
Hartung [1974] used a famous class number relation to show that there are infinitely
many imaginary quadratic number fields whose class numbers are not divisible by
3, and his method extends to any odd prime. We prove the following analog for
function fields.

Theorem 1.3. If c =4 or c is an odd prime not dividing q , then there exist infinitely
many quadratic imaginary function fields K over k with class number not divisible
by c.

Theorem 1.1 will be proven in Section 2, and Theorem 1.2 will be proven in
Section 3. In Section 4, we prove Theorem 1.3. In Section 5, we conclude with
some numerical examples.

2. Proof of Theorem 1.1

Some additional definitions and comments will be useful in proving these theorems.
Given a quadratic extension K of the rational function field k, we can define a norm
map N : K → k taking x to the product of its Galois conjugates (or N (x) = x2

for x ∈ k). Furthermore, if B is the integral closure of A in K , then we can define
the norm of an ideal I ⊂ B as the ideal in A generated by elements of the set
{N (b) : b ∈ I}. The ring B is a Dedekind domain and thus has unique factorization
of ideals [Rosen 2002, Chapter 7]. In the special case that I ⊂ B is principal, say
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I = (b), it is clear that N (I) = (N (b)). We also note that since A is a principal
ideal domain, N (I) is principal even if I is not. We also note that if K = k(

√
f ),

then B = A[
√

f ]. This follows immediately from the formula for the roots of a
quadratic equation. In the case of quadratic number fields, we have multiple cases
depending on the parity of the discriminant, but in the function field case multiple
cases do not arise since 2 is a unit of A so that an element of the form (a+b

√
f )/2

(as would be given by the quadratic formula) can always be rewritten as a′
+b′

√
f

with a, b ∈ A.

Proof of Theorem 1.1. Let K = k(
√

f ) and consider the factorization of ideals
(m)c = (n + t

√
f )(n − t

√
f ) in the integral closure B of A in K . We claim that

the ideals on the right side are relatively prime. If h is a common prime divisor,
then (n + t

√
f )+ (n − t

√
f ) = 2n ∈ h. However, we also have mc

∈ h, which
implies that m ∈ h since h is prime. Then h|((m, n)), but this is a contradiction
since (m, n)= 1.

Thus, the factorization of ideals shows that each of (n ± t
√

f ) is a cth power.
Since {1,

√
f } is a basis for B over A, let bc

= (n+t
√

f ). We show that b has order
exactly c in Cl( f ). Otherwise, b has order r < c. Then br

= (u + v
√

f ) for some
u, v ∈ A. We now consider the norms of each side of the equation (n + t

√
f )= bc.

On the left side, we have

N (n + t
√

f ) = (n2
− t2 f ) = (m)c.

On the right side,

N (bc) = N (br )c/r
= (u2

− v2 f )c/r .

Comparing degrees now gives c deg m = c/r · deg(u2
− v2 f ). Since the prime at

infinity ramifies in k(
√

f ), the unit group of the integral closure of A in k(
√

f )
has rank 0, thus it follows that n+ t

√
f = [α(u+v

√
f )]c/r for some α ∈ F×

q . Since
t 6= 0, it is immediate that v 6= 0. Thus v2 f 6= 0 has odd degree, and since u2 has
even degree, deg(u2

− v2 f ) ≥ deg f . Then c deg m ≥ c/r · deg f . But c/r ≥ p,
and c deg m < p deg f by hypothesis, so it must be that b has order exactly c in
Cl( f ). �

Remark 2. Soundararajan’s Proposition 1 in [Soundararajan 2000] also holds if
c is even. Indeed, in the function field case, the proof goes through without the
explicit assumption that c is odd, but the conditions mc

= n2
− t2 f and c deg m <

p deg f are never simultaneously satisfied for c even.

3. Proof of Theorem 1.2

Proof of Theorem 1.2. We first prove the lower bound. Suppose that we have a
solution in l,m, n to t to Equation (2). We will show that the pair of solutions
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(l,m, n, t) and (l,m, n,−t) uniquely determines a pair of two ideals a and ā of
order c in Cl( f ) such that N (a)= N (ā) has degree less than 1

2 deg f .
Let K = k(

√
f ) and, as before, denote by B the integral closure of A in K .

Consider the factorization of ideals in B:

(l)(m)c = (lmc) = (nl + t
√

f )(nl − t
√

f ). (3)

Since l| f , l is a product of primes in K which are ramified over k, whence (l)= l2

for some ideal l of B. Letting h = (nl + t
√

f , nl − t
√

f ), it follows from Equation
(3) that l2|h2 so l|h. Furthermore, h2 contains both lmc and (nl)2 = n2l2. Since
ln| f n and (m, f n)=1, it follows that (mc, nl)= (mc, n2l)=1. Thus (lmc, n2l)= l,
so l ∈ h2. This shows that h2 divides (l)= l2, thus h = l.

We can now write (nl + t
√

f ) = bl and (nl − t
√

f ) = b̄l where b and b̄ are
relatively prime. Since l2 = (l), we have that b̄b = (m)c, so b and b̄ must both be
cth powers, say b = βc and b̄ = β̄c where β is an ideal of norm m. Define a = βl.
Clearly a 6= ā since otherwise we would have b = b̄, from which it would follow
that t = 0.

We now show that a has order exactly c. Since

ac
= βclc = bl(l)(c−1)/2

= (nl + t
√

f )(l)(c−1)/2

is principal, a has order dividing c. Suppose a is principal and write a= (a+b
√

f )
with a, b ∈ A and b nonzero (if b is 0 it follows from ac

= (nl + t
√

f )(l)(c−1)/2

that t = 0). Then N (a)= N ((a + b
√

f ))= (a2
− b2 f ). Since a2 has even degree

and b2 f has odd degree, the degree of this must be at least deg f . However, this
implies that 1

2 deg f > deg lm = deg N (a) ≥ deg f , a contradiction. Thus a is not
principal and must have order c.

We now consider the degree of a generating element of N (a). We have

N (a)c = (nl + t
√

f )(l)(c−1)/2
· (nl − t

√
f )(l)(c−1)/2

= (lmc)(l)c−1
= ((lm)c).

Thus N (a)c is generated by (lm)c whence N (a)= (lm) which has degree deg lm<
1
2 deg f .

We now show that different solutions to Equation (2) with Cε = 1 correspond
to distinct pairs of ideals of order c in Cl( f ). Consider two distinct solutions
(l1,m1, n1, t1) and (l2,m2, n2, t2) with deg li mi <

1
2 deg f . Let ai denote the cor-

responding ideals having order c in Cl( f ). Suppose that a1 and a2 are in the same
class in Cl( f ). Then a1ā2 is principal, so let a1ā2 = (a + b

√
f ). Then

(a2
− b2 f ) = N (a1ā2) = (l1m1l2m2).

Considering degrees in this equality, we see that

deg(a2
− b2 f )= deg l1m1 + deg l2m2 < deg f,
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so b = 0 and a1ā2 = (a). Thus

(a)c = ac
1ā

c
2 = (n1l1 + t1

√
f )(n2l2 − t2

√
f )(l1l2)

(c−1)/2.

Since the
√

f term on the right side must be zero, we have n1l1t2 =n2l2t1. From the
equation in Equation (2), it is clear that (ni li , ti )2|li mc

i . Since li is square-free, this
implies that (ni li , ti )|mc

i . Since also (ni li , ti )| f ni and (mc
i , f ni )= (mi , f ni )= 1,

it follows that (ni li , ti ) = 1. Using the fact that li and ni are monic, we have that
t1 = t2 and n1l1 = n2l2. Substituting into the Equation (2) gives l1mc

1 = l2mc
2. Since

li divides f and mi is prime to f , it follows that m1 = m2 and l1 = l2, so the
solutions are not distinct. A similar argument shows that a1 and ā2 are in different
classes unless (l2,m2, n2, t2)= (l1,m1, n1,−t1). Thus each pair of solutions of the
form (l1,m1, n1, t1), (l1,m1, n1,−t1) yields a unique pair of elements of order c.
This completes the proof of the lower bound D− ≤ hc( f ).

It remains to show the upper bound. Define s = hc( f )/2 for simplicity of nota-
tion. We note that s is an integer since if C ∈ Cl( f ) has order c, then so does C−1

(note also that since c> 2 these elements must be distinct). Let C1, C̄1, . . . ,Cs, C̄s

be the classes of order c in Cl( f ). By Theorem 4.4 in [Hayes 1999], we can choose
integral ideals ai ∈ Ci and āi ∈ C̄i of minimal degree less than (deg f − 1)/2.
Furthermore, it is clear that ideals ai and āi chosen to be minimal in this way are
not divisible by any principal ideals.

Starting with a minimal pair of ideals ai and āi we construct a solution to Equa-
tion (2) with Cε = 2. Write ai = bi li where li is either the unit ideal or has order 2
in Cl( f ) and bi is not divisible by any ideals of order 2. Similarly, write āi = b̄i l̄i
(in fact, li = l̄i ). Then denote the unique monic generator of N (li ) by li . Note that
each prime dividing li also divides f since any prime dividing li is ramified over
k. Since li is not divisible by any principal ideal, li is not divisible by the square
of any prime, so in particular li | f . Define mi to be the monic generator for N (bi ).
Then

deg li mi = 2 deg bi li = 2 deg ai ≤ deg f − 1 <
C+

2
deg f.

Since ai has order c, we can write ac
i = (ai + bi

√
f ) for some polynomials ai

and bi , and we can assume that ai is monic. Then (li )
(c−1)/2

= lc−1
i divides ac

i , so
l(c−1)/2
i divides both ai and bi , so we may write ai =wi l

(c−1)/2
i and bi = ti l

(c−1)/2
i .

Since also āc
i = (ai − bi

√
f ), we have that (li mi )

c
= lc−1

i w2
i − lc−1

i t2
i f , and so

li mc
i = w2

i − t2
i f . From the assumption that li | f it follows that li |w

2
i , and since li

is square-free this implies that li |wi . Write wi = ni li . Since ai = wi l
(c−1)/2
i and li

are both monic, ni is also monic. Thus, we have a solution to li mc
i = n2

i l2
i − t2

i f
with li | f and deg li mi <

C+

2 deg f . Since ti is not restricted to being monic, we
note that substituting −t for t gives another solution.
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We now show that for the solutions constructed, (mi , ni f ) = 1. Since b and b̄

are not divisible by any ideals of order 2, it follows that mi , the monic generator
for N (bi ), is coprime to f . Since (mi , ni )

2 divides mc
i and n2

i it also divides t2
i f ,

but since ni is coprime to f , it follows that (mi , ni )
2
|t2

i , so (mi , ni )|ti . Since ni |ai ,
it follows that (mi , ni )|(ai +bi

√
f )= ac

i . In particular, this means that each prime
of A dividing (mi , ni ) also divides ai . However A is a principal ideal domain, but
ai was taken not to be divisible by any principal ideal, so (mi , ni ) = 1 and since
also (mi , f )= 1, we have (mi , ni f )= 1 as desired.

Finally, we must show that different pairs of ideals ai , āi and a j , ā j give rise to
distinct pairs of solutions as constructed above. If not, then it would follow that
ai = a j and bi = ±b j . Then ac

i = ac
j , so ai = a j . Thus, we have shown that a

pair of inverse elements of Cl( f ) having order c gives a unique pair of solutions
to Equation (2), concluding the proof of the upper bound hc( f )≤ D+. �

4. Proof of Theorem 1.3

4.1. Background. We will use a class number relation over function fields proven
by Yu. Before stating the proposition, we introduce some additional notation. If
m ∈ A is of odd degree but is not necessarily square-free, we define h(m) to be the
class number of the order A[

√
m]. This notation is consistent with our previous

definition of h(n) for n square-free because the class number of the maximal order
A[

√
m] is equal to the class number of the field k(

√
m)when m has odd degree and

is square-free [Rosen 2002, Chapter 14]. We define w(m) := #A[
√

m]
×/(q − 1)

and h′(m) := h(m)/w(m). This allows us define the Hurwitz class number

H(m) :=

∑
n2|m

h′(m/n2).

We now have defined all of the notation that we will need for the following class
number relation, Proposition 7 of Yu [1995].

Proposition 4.1. If m ∈ A is monic, then

∑
t∈A

µ∈F×
q /F

×2
q

H(t2
−µm) =

∑
d|m

max(|d|, |m/d|)−
∑
d|m

deg d=1/2 deg m

|m|
−1/2 |m| − |m − d2

|

q − 1
, (4)

where the sums on the right are over monic divisors and the sum on the left is over
pairs (t, µ) such that t2

− µm is an imaginary discriminant. This is equivalent
to the condition that either t2

− µm has odd degree or t2
− µm has a leading

coefficient that is not a square in Fq [Rosen 2002, Chapter14].
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We need one additional lemma regarding class numbers. Define the Kronecker
symbol χ f on the monic irreducible elements of A by

χ f (P) =


1 if P splits in k(

√
f ),

0 if P ramifies in k(
√

f ),

−1 otherwise,

and extend χ f to all monic polynomials in A by χ f
(∏

Pei
i

)
=
∏
χ f (Pi )

ei . The
following is Lemma 3 in [Yu 1995].

Lemma 1. For any square-free f ∈ A and any b ∈ A,

h′( f b2)

h′( f )
= | f |

∏
P| f

(
1 −

χ f (P)
|P|

)
.

Corollary 1. Under the hypotheses of the lemma, h′( f b2)|h′( f ).

We also prove a general proposition about polynomials.

Proposition 4.2. Let f1, . . . , fn ∈ A be monic polynomials of odd degree. There
exists a monic irreducible polynomial m ∈ A of odd degree such that each fi for
1 ≤ i ≤ n is a quadratic nonresidue modulo m.

Proof. Let p1, . . . , pr be the monic irreducible polynomials of odd degree dividing
any of the fi , and let l1, . . . , ls be the monic irreducibles of even degree dividing
any of the fi . By the multiplicativity of the Legendre symbol, it suffices to find a
monic polynomial m such that (pu/m)= − 1 for each u and (lv/m)= 1 for each
v.

For each u with 1 ≤ u ≤ r , let πu be an irreducible polynomial such that
(πu/pu)= (−1)(q+1)/2. For 1≤v≤ s, choose νv to be a monic irreducible such that
(νv/ lv) = 1. Such πu and νv exist by Dirichlet’s theorem on primes in arithmetic
progressions. Applying this theorem again, choose m to be a monic irreducible of
odd degree such that m ≡ πu (mod pu) and m ≡ νv (mod lv) for each choice of
u and v.

We show that m satisfies the conclusion of the proposition. Applying quadratic
reciprocity for function fields [Rosen 2002, Chapter 3], for each pu we have( pu

m

)
= (−1)

q−1
2 ·deg m·deg pu ·

(
m
pu

)
= (−1)

q−1
2 ·

(
πu

pu

)
= (−1)

q−1
2 ·(−1)

q+1
2 = −1.

Similarly, for the lv, we have(
lv
m

)
= (−1)

q−1
2 ·deg m·deg lv ·

(
m
lv

)
= 1 ·

(
νv

lv

)
= 1.
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Thus, m satisfies the conditions stated at the beginning of the proof and thus also
the conclusion of the proposition. �

4.2. Proof of Theorem 1.3. Suppose that S is any finite set (possibly empty) of
monic polynomials f ∈ A of odd degree such that c - h( f ). By Proposition 4.2,
take m to be an irreducible monic polynomial of odd degree such that each f ∈ S
is a quadratic nonresidue modulo m (if S = ∅, take m to be any monic irreducible
of odd degree). The class number relation Equation (4) gives us∑

t∈A
µ∈F×

q /F
×2
q

H(t2
−µm) =

∑
d|m

max(|d|, |m/d|) = 2qdeg m .

Since c - 2qdeg m , at least one of the terms on the left side of the equation is not
divisible by c, we can take µ and t so that H(t2

−µm) is not divisible by c. From
the definition of the Hurwitz class number,

H(t2
−µm) =

∑
n2|m

h′

(
t2

−µm
n2

)
.

Since the left side of the equation is indivisible by c, we can choose n such that
h′

(
t2

−µm
n2

)
is indivisible by c. We now write

t2
−µm
n2 = f b2,

where f is square-free. From Corollary 1, we have that h′( f )|h′( f b2). In par-
ticular, c - h′( f ). Furthermore, we have h′( f ) = h( f )/w( f ). Since the prime at
infinity is totally ramified in k(

√
f ), the group of units of A[

√
f ] has rank 0 and

thus is just F×
q . This means that

w( f ) =
#A[

√
f ]

×

q − 1
= 1.

So h( f )= w( f )h′( f )= h′( f ), whence c - h( f ). This gives us an element f ∈ A
such that h( f ) is indivisible by c.

We show that f 6∈ S. We have that f ·(bn)2 = t2
−µm. Reducing modulo m, we

have f ≡ (t/bn)2 (mod m), so f is a quadratic residue modulo m. In particular,
f 6∈ S. Thus, there are infinitely many quadratic imaginary discriminants f of odd
degree such that c does not divide the class number of K = k(

√
f ).

5. Examples

We consider first an example constructed by Theorem 1.1. Let q = 3 and c = 17,
so that we aim to construct a quadratic imaginary discriminant f ∈ F3[x] such that
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h( f ) is divisible by 17. Take

f = 2x5
+ 2x4

+ 1,

n = x7
+ 2x6

+ x5
+ 2x4

+ x3
+ 2,

t = x6
+ x5

+ 2x3
+ 1,

m = x .

Our choice of f is square-free (and, in fact, irreducible). The condition c deg m <

p deg f is clearly satisfied (note that since c is prime, we have c = p). We also have
(m, n) = 1 and m17

= n2
− t2 f , so Theorem 1.1 says that Cl( f ) has an element

of order 17. Indeed, h( f ) = 17. In fact, computation of a finite number of class
numbers shows that there is no choice of f of smaller degree such that 17|h( f ).

We now provide an example of the method of the proof of Theorem 1.3. Let
q = 3, and define k = Fq(x). Begin with the polynomials

f1 = x + 2 and f2 = x3
+ x2

+ 2x = x(x2
+ x + 2).

It can be computed that h( f1) = 1 and h( f2) = 6. We will use the method of
the proof of Theorem 1.3 to find a third quadratic imaginary discriminant f3 such
that h( f3) is relatively prime to c = 5. Using the same notation as the proof of
Proposition 4.2, we have p1 = x and l1 = x2

+ x +2. The method of the proof now
calls for us to find irreducible polynomials π1 and ν1 such that(

π1

p1

)
= (−1)

q+1
2 = 1 and

(
ν1

l1

)
= 1.

It will thus suffice to take π1 ≡ 1 (mod p1), and ν1 ≡ 1 (mod l1). Because the
next step in the proof is to apply the Chinese Remainder Theorem, it is unneces-
sary (although a trivial exercise) to actually compute irreducible polynomials π1

and ν1. In the proof we use the existence of irreducible polynomials to apply qua-
dratic reciprocity, but for the purpose of construction we need only find appropriate
residue classes to apply the Chinese Remainder Theorem. We now need a monic
irreducible polynomial m of odd degree such that

m ≡

{
1 (mod p1),

1 (mod l1).

One such polynomial is m = p1 · l1 + 1 = x3
+ x2

+ 2x + 1. By the class number
relation Equation (4), we have∑

t∈A
µ∈F×

q /F
×2
q

H(t2
−µm) =

∑
d|m

max(|d|, |m/d|) = 54,
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where the sum on the left is over all (µ, t) such that µ is either 1 or 2 and t has
degree 0 or 1. Expanding the sum, we have

H(−m)+ H(−2m)+ 2H(1 − m)+ 2H(1 − 2m)+ 2H(x2
− m)

+ 2H(x2
− 2m)+ 2H((x + 1)2 − m)+ 2H((x + 1)2 − 2m)

+ 2H((x + 2)2 − m)+ 2H((x + 2)2 − 2m)= 54.

Since 5 - 54, at least one of the Hurwitz class numbers on the left side of this
equation is indivisible by 5. Although the first term, H(−m) is 5, we find that the
second term, H(−2m)= H(m) is 3. Furthermore, since m is irreducible, we have
by the definition of the Hurwitz class number that

H(−2m) = H(m) =

∑
n2|m

h′(m/n2) = h′(m).

As discussed in the proof of Theorem 1.3, we have that h(m)= h′(m), so h(m)= 3.
Thus choosing f3 = m = x3

+x2
+2x +1 gives a third polynomial f3 with 5 - h( f3).
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Patch and crossover planar dyadic wavelet sets
A. J. Hergenroeder, Zachary Catlin, Brandon George and David R. Larson

(Communicated by Kenneth S. Berenhaut)

A single dyadic orthonormal wavelet on the plane R2 is a measurable square
integrable functionψ(x, y)whose images under translation along the coordinate
axes followed by dilation by positive and negative integral powers of 2 generate
an orthonormal basis for L2(R2). A planar dyadic wavelet set E is a measur-
able subset of R2 with the property that the inverse Fourier transform of the
normalized characteristic function 1

2π χ(E) of E is a single dyadic orthonormal
wavelet. While constructive characterizations are known, no algorithm is known
for constructing all of them. The purpose of this paper is to construct two new
distinct uncountably infinite families of dyadic orthonormal wavelet sets in R2.
We call these the crossover and patch families. Concrete algorithms are given
for both constructions.

Introduction

Wavelet theory is interesting to mathematicians both for its applications to signal
analysis and image analysis and also because of the rich mathematical structure
underlying the theory of wavelets. Wavelet sets are measurable sets whose nor-
malized characteristic functions are the Fourier transforms of wavelets. Planar
dyadic wavelet sets are interesting mathematically because they are fractal-like, and
there are hands-on methods for working with them and constructing new examples.
They are also interesting because while constructive characterizations are known,
no algorithm is known for constructing all planar dyadic wavelets. There are open
problems associated with their classification. Algorithms for constructing new ex-
amples or classes of examples can provide useful counterexamples to conjectures
as well as be appreciated for their intrinsic mathematical beauty.

A single dyadic orthonormal wavelet on the plane R2 is a (Lebesgue) measurable
square-integrable function ψ(x, y) whose translations along the coordinate axes
followed by dilations by positive and negative integral powers of 2 generate an
orthonormal basis for L2(R2). A planar dyadic wavelet set E is a measurable

MSC2000: 47A13, 42C40, 42C15.
Keywords: wavelet, wavelet set, patch, crossover, congruence.
D. L. was partially supported by a grant from the National Science Foundation.

59



60 A. J. HERGENROEDER, Z. CATLIN, B. GEORGE AND D. LARSON

subset of R2 with the property that the inverse Fourier transform of the normalized
characteristic function 1/2πχ(E) of E is a single dyadic orthonormal wavelet.
As usual, the Fourier transform on L2(R2) is the tensor product of two copies of
the Fourier transform on L2(R). In this paper we discuss two algorithms which
generate two distinct uncountably infinite classes of dyadic orthonormal wavelet
sets in R2. We denote these classes the crossover and patch classes and denote
the algorithms for these constructions the crossover and patch algorithms. A free
parameter in both of the algorithms is a partition of the so-called inner square,
[−π/2, π/2)× [−π/2, π/2), into four measurable subsets X	, X⊕, Y	, Y⊕, with
the property that X	 is contained in the left half of the inner square, X⊕ is contained
in the right half, Y	 is contained in the bottom half, and Y⊕ is contained in the top
half. Notice that if the boundary of any two of these sets is the same, and if this
boundary has Lebesgue measure 0, then these two sets are still essentially disjoint
although their boundaries are the same.

Wavelets for dilations other than 2 (the dyadic case) on the line R and in Rn have
been investigated by many authors. In higher dimensions both scalar dilations and
matrix dilations have been studied. However, much of the interesting work in the
literature has been for the dyadic case, which is the case we focus on.

For completeness, we give the form used for abstract matrix dilations: A dilation
A wavelet is a function on Rn whose dilations by integral powers of A and trans-
lations along the coordinate axes (or, more generally, translations along a full-rank
lattice) form an orthonormal basis for the space of all square-integrable measurable
functions over Rn with respect to Lebesgue measure. In precise terms, a function f
on Rn is a dilation A wavelet if and only if it is measurable with respect to product
Lebesgue measure, and

{| det A|
m
2 f
(

Am t − l
)
: m ∈ Z, l ∈ Zn

}

is an orthonormal basis of L2(Rn). A dilation A wavelet set is a measurable set W
for which the inverse Fourier transform of the normalized characteristic function
is a dilation A orthonormal wavelet. The dyadic case is where A := 2I2, where I2

is the identity matrix in two dimensions.
Existence of wavelet sets in Rn was first demonstrated in 1994 [Dai et al. 1997].

The proof used an algorithmic approach which generated wavelet sets that were
unbounded and had 0 as a limit point, rendering them difficult to visualize [Dai
et al. 1997; Zhang and Larson ≥ 2008]. It showed that there are uncountably many
such sets in R2 for many matrix dilations, including the dyadic case. Subsequently,
several authors [Soardi and Weiland 1998; Dai et al. 1998; Benedetto and Leon
1999; 2001; Baggett et al. 1999; Gu and Han 2000] constructed wavelet sets in
R2 which were more easily pictured due to their qualities of being bounded and
bounded away from 0, and had other interesting structural properties. Two such sets
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were included in the final remarks section of [Dai and Larson 1998]. Recent papers
that construct new planar wavelet sets with reasonable graphics and interesting
properties can be found in [Zhang and Larson ≥ 2008] and [Merrill ≥ 2008]. A
brief history of wavelet sets can be found in [Zhang and Larson ≥ 2008, Section
5].

In the summer of 2007, the first three authors were undergraduate student par-
ticipants in the Texas A&M Mathematics REU on matrix analysis and wavelets
(funded by the NSF), which was mentored by D. Larson. They set out to clas-
sify multiple categories of wavelet sets in R2 using an algorithmic approach. The
present paper is the upshot of that project. Two algorithms were obtained. The
wavelet sets in Figures 1 and 2 are called crossover wavelet sets because in their
generation, regions are added to or subtracted from alternating sides of the inner
square. Alternatively, patch wavelet sets are created by adding regions to the same
side of the square for each translation; see, for example, the set in Figure 3. This
category of sets is so named because in computer networking a patch cable is the
opposite of a crossover cable.

Figure 1. The two-dimensional wavelet set formed in Example 1.
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Figure 2. An arbitrary (conforming) partition, with wavelet set.

Figure 3. A patch wavelet set: the wedding cake set.
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1. Preliminaries

We begin with some basic formal definitions.
A single dyadic orthonormal wavelet is a function ψ ∈ L2(R) (Lebesgue mea-

sure) with the property that the set { 2
n
2ψ(2n

·−l) | n, l ∈ Z } forms an orthonormal
basis for L2(R) [Consortium 1998]; see also [Larson 2007a, pp. 6–7]. More gen-
erally, if A is any real invertible n × n matrix, then a single function ψ ∈ L2(Rn)

is a multivariate orthonormal wavelet for A if

{| det A|
n
2ψ(An

· −l) | n ∈ Z, l ∈ Z(n)}

is an orthonormal basis of L2(Rn). It was shown in [Dai et al. 1997] that if A is
expansive (equivalently, all eigenvalues of A are required to have absolute value
strictly greater than 1) then orthonormal wavelets for A always exist. The dyadic
case is the case where A := 2I2 (two times the identity matrix on Rn). This is the
simplest (and most investigated) case.

We let F denote the n-dimensional Fourier transform on L2(Rn) defined by

(F f )(s) :=
1

(2π)
n
2

∫
Rn

e−s◦t f (t)dm,

for all f ∈ L2(Rn). Here, s ◦ t denotes the real inner product. A measurable set
E ⊆ Rn is defined to be a wavelet set for a dilation matrix A if

F−1(
1

√
µ(E)

χE)

is an orthonormal wavelet for A, where F−1 denotes the inverse Fourier transform.
In this paper, we will not explicitly use properties of F and F−1; however we

state the formal definition of Fourier transform because it is needed to give the
proper definition of a wavelet set. The Fourier transform is a unitary transform from
L(Rn), where Rn is usually considered as a multivariate time domain, to another
copy of L(Rn), where Rn is considered a multivariate frequency domain. We will
do our work with wavelet sets entirely in the frequency domain. We can do this
because there is a set-theoretic characterization of wavelet sets, Proposition 1.1,
which allows one to construct and otherwise work with wavelet sets without using
the Fourier transform.

A sequence of measurable subsets {En} of a measurable set E is called a mea-
surable partition of E if the relative complement of

⋃
n En in E is a null set (that

is, has measure zero) and En ∩ Em is a null set whenever n 6= m.
Measurable subsets E and F of R are called 2π -translation congruent to each

other, denoted by E ∼2π F , if there exists a measurable partition {En} of E , such
that {En + 2nπ} is a measurable partition of F . Similarly, E and F are called
2-dilation congruent to each other, denoted by E2∼ F , if there is a measurable
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partition {En} of E , such that {2n En} is a measurable partition of F . A measur-
able set E is called a 2π -translation generator of a measurable partition of R if
{E + 2nπ}n∈Z forms a measurable partition of R. Similarly, a measurable set F is
called a 2-dilation generator of a measurable partition of R if {2n F}n∈Z forms a
measurable partition of R.

Lemma 4.3 in [Dai and Larson 1998] gives the following characterization of
dyadic wavelet sets in R, which was also obtained independently in [Fang and
Wang 1996] using different techniques. Let E ⊆ R be a measurable set. Then
E is a dyadic wavelet set if and only if E is both a 2π -translation generator of a
measurable partition of R and a 2-dilation generator of a measurable partition of
R.

In [Dai et al. 1997], this criterion was generalized to the multivariate case. We
will consider only the dyadic planar case in this paper because we will only use
the criterion for that case, although the criterion actually applies for the arbitrary
expansive case [Dai et al. 1997; 1998]. So from [Dai et al. 1997] we have that E is
a dyadic wavelet set in Rn if and only if E is both a 2π -translation generator of a
measurable partition of Rn and a 2-dilation generator of a measurable partition of
Rn . Here, to achieve a translation partition one translates by all integral multiples
of 2π separately in each coordinate direction. To achieve a dilation partition, one
dilates by all integral powers of 2 simultaneously in all coordinates. For example, it
is clear that the set [−π, π)×[−π, π) is a 2π -translation generator of a measurable
partition of R2, and

GT O\

([
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

))
is a 2-dilation generator of a measurable partition of R2.

Properly generalizing the one dimensional definition to the planar case, we say
that two Lebesgue measurable sets A, B ⊂ R2 are 2π -translation congruent if there
is a measurable partition {Ak,l : k, l ∈ Z} of A such that

{Ak,l +

[
2kπ
2lπ

]
: k, l ∈ Z}

is a measurable partition of B, and they are 2-dilation congruent if there is a mea-
surable partition {An : n ∈ Z} of A such that

{2n An : n ∈ Z}

is a measurable partition of B.
Translation congruence and dilation congruence are both equivalence relations

on the class of all measurable subsets. If a set A is 2π -translation congruent to
a 2π -translation generator of a measurable partition of R2, it is clear that A itself
is a 2π -translation generator of a measurable partition of R2. Moreover, sets A
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and B which are both 2π -translation generators of measurable partitions of R2 are
necessarily translation congruent to each other. All this is in [Dai et al. 1997], and
other expositions can be found in [Dai and Larson 1998; Larson 2007b; Zhang and
Larson ≥ 2008]. This yields a useful criterion.

In the following proposition (and in the rest of the paper), let

GT O := [−π, π)× [−π, π) , and GSO := GT O\

([
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

))
.

Proposition 1.1 (Working Principle Criterion). A measurable set W ⊆ R2 is a
dyadic wavelet set if and only if W is 2π -translation congruent to GT O and 2-
dilation congruent to GSO .

2. The crossover algorithm

We first consider a special case of a wavelet set to illustrate the crossover algorithm.
We will then generalize this to obtain Theorem 2.1.

Example 2.1. Let

X	 =

[
−
π

2
,−
π

4

)
×

[
−
π

2
,
π

2

)
, X⊕ =

[π
4
,
π

2

)
×

[
−
π

2
,
π

2

)
,

Y	 =

[
−
π

4
,
π

4

)
×

[
−
π

2
, 0
)
, Y⊕ =

[
−
π

4
,
π

4

)
×

[
0,
π

2

)
.

We can generate a wavelet set in the plane using the above partition of the inner
square using an algorithm (the crossover algorithm) which we will illustrate with
the following example.

Let X	1 := X	. Start by adding the vector
[

2π
0

]
to the set X	, translating it

(that is, crossing it over) to the right half-plane. The set formed is[
3π
2
,

7π
4

)
×

[
−
π

2
,
π

2

)
.

Call this X	2. Secondly, scale X	2 by 1
2 to obtain[

3π
4
,

7π
8

)
×

[
−
π

4
,
π

4

)
.

Call this X	3. Thirdly, translate X	3 to the opposite half-plane by adding
[
−2π

0

]
to obtain [

−
5π
4
,−

9π
8

)
×

[
−
π

4
,
π

4

)
,
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and call this set X	4. Notice that X	4 is on the same side half-plane as X	. Finally,
scale X	4 by 1

2 to form the set[
−

5π
8
,−

9π
16

)
×

[
−
π

8
,
π

8

)
and call it X	5. Continue these four steps inductively for X	.

We perform four similar steps on the set X⊕; however, we translate by
[
−2π

0

]
for the first step (instead of

[
2π
0

]
) and translate by

[
2π
0

]
for the third step (instead

of
[
−2π

0

]
). We obtain the following from the first four steps:

X⊕2 =

[
−

7π
4
,−

3π
2

)
×

[
−
π

2
,
π

2

)
, X⊕3 =

[
−

7π
8
,−

3π
4

)
×

[
−
π

4
,
π

4

)
,

X⊕4 =

[
9π
8
,

5π
4

)
×

[
−
π

4
,
π

4

)
, X⊕5 =

[
9π
16
,

5π
8

)
×

[
−
π

8
,
π

8

)
.

Continue this process inductively for X⊕ as well. Perform similar steps for Y⊕

and Y	, translating by
[

0
±2π

]
instead of

[
±2π

0

]
, beginning with a translation of[

0
2π

]
for Y	 and a translation of

[
0

−2π

]
for Y⊕.

Let W be the set( ∞⋃
i=1

[X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i ]

)
∪

(
GT O\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

])
=

( ∞⋃
i=1

[X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i ]

)
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

])
.

We can think of W as being the union of GT O and the exterior black pieces of
the form X⊕2n , X	2n , Y⊕2n , Y	2n , with white spaces of the form X⊕2n+1, X	2n+1,
Y⊕2n+1, Y	2n+1 removed from GT O .

This set W (see Figure 1) is a wavelet set. To see this, let

G(X	odd) :=

∞⋃
i=1

X	2i−1, and G(X	even) :=

∞⋃
i=1

X	2i .
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Observe that

G(X	odd)\X	 ⊂ GSO , and G(X	even)* GSO .

Similarly, define sets for X⊕, Y	, and Y⊕ with analogous characteristics. Ob-
serve that W is translation congruent to GT O modulo 2π because[( ∞⋃

i=0

X	4i+2

)
∪

( ∞⋃
i=1

X⊕4i

)]
−

[
2π
0

]
=

[( ∞⋃
i=0

X	4i+1

)
∪

( ∞⋃
i=0

X⊕4i+3

)]
,

[( ∞⋃
i=0

X⊕4i+2

)
∪

( ∞⋃
i=1

X	4i

)]
+

[
2π
0

]
=

[( ∞⋃
i=0

X⊕4i+1

)
∪

( ∞⋃
i=0

X	4i+3

)]
,

and[( ∞⋃
i=0

X⊕4i+1

)
∪

( ∞⋃
i=0

X	4i+3

)]
∪

[( ∞⋃
i=0

X	4i+1

)
∪

( ∞⋃
i=0

X⊕4i+3

)]
= G(X	odd)∪ G(X⊕odd),

so that all gaps in the set GT O due to the crossover algorithm applied to the sets
X	1 and X⊕1 are filled when we translate the black sets formed by the crossover

algorithm applied to the sets X	1 and X⊕1 by multiples of
[

2π
0

]
. Similar results

will apply for Y	 and Y⊕.
Moreover, W is dilation congruent to GSO because

1
2 G(X	even)= G(X	odd) ∈ GSO

(that is, the even pieces of the form X	n scale into the odd pieces of the form X	n),
with similar results for G(X⊕even),G(Y	even), and G(Y⊕even).

The set of steps indicated above, applied to all four pieces of the partition of
the inner square, is a special case of the crossover algorithm. An uncountably
infinite family of wavelet sets in R2 can be similarly constructed using a natural
generalization of this algorithm. The generalized crossover algorithm will be pre-
sented rigorously in the later sections of this paper in the context of the proof of
Theorem 2.1 and the constructions involved in the proof.

A brief description of the general crossover algorithm is the following:

(i) Partition the inner square into a maximum of four subsets satisfying the con-
ditions given in the statement of Theorem 2.1 below. (These conditions are
necessary because not all partitions of the inner square will lead to a wavelet
set in this way.)

(ii) Translate one piece of the partition by
[
±2π

0

]
or
[

0
±2π

]
, moving it out of

the inner square to the opposite side of the x- or y-axis.
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(iii) Dilate the set formed in step 2 into GSO by 1
2 .

(iv) Translate the set formed in step 3 in the opposite direction (compared to the

first translation), that is, by
[
∓2π

0

]
or
[

0
∓2π

]
.

(v) Dilate the set formed in step 4 into GSO by 1
2 .

(vi) Repeat these steps inductively for this piece, and perform steps 2–5 on the
other pieces of the partition inductively as well.

Theorem 2.1 (Crossover Algorithm). Let {X	, X⊕, Y	, Y⊕} be a partition of the
set [

−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

such that X	 is contained in the left half of the inner square (that is, the maximum
possible x-coordinate of any point in the set X	 is 0), X⊕ is contained in the right
half of the inner square (that is, the minimum possible x-coordinate of any point in
the set X⊕ is 0), Y	 is contained in the bottom half of the inner square (that is, the
maximum possible y-coordinate of the set Y	 is 0), and Y⊕ is contained in the top
half of the inner square (that is, the minimum possible y-coordinate of the set Y⊕

is 0). Then the set W generated by this partition, under translation by[
±2π

0

]
and

[
0

±2π

]
and dilation by powers of 2 using steps (1)–(6) above, defined as[( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
∪ GT O

]
\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

]
,

is a dyadic wavelet set in R2.

Remark 2.1. If either both X⊕ and X	 are defined, or both Y⊕ and Y	 are defined,
then the other two sets are automatically determined due to our constraints.

3. Expressions for X	n, X⊕n, Y	n, and Y⊕n

Before proving our main result, Theorem 2.1, we first give rigorous expressions for
the sets X	n , X⊕n , Y	n , and Y⊕n . We begin with the sets of the form X	n . Suppose
first that n is odd and n ≥ 3. We can derive the formula for X	n in terms of n by
looking at the first few terms. Let X	1 := X	, which has the above constraints
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listed according to the theorem. We can then find the next few odd terms using the
crossover algorithm described in the example:

X	3 =
1
2

(
X	 +

[
2π
0

])
,

X	5 =
1
2

(
X	3 −

[
2π
0

])
=

(
X	

4
+

1
4

[
2π
0

]
−

1
2

[
2π
0

])
,

X	7 =
1
2

(
X	5 +

[
2π
0

])
=

(
X	

8
+

1
8

[
2π
0

]
−

1
4

[
2π
0

]
+

1
2

[
2π
0

])
,

and, in general, we find that X	n+2 =
1
2

(
X	n + (−1)

n−1
2

[
2π
0

])
. Solving this

recurrence relation, we find that

X	n =
X	

2
n−1

2

+

[
2π
0

] ( 1

2
n−1

2

− . . .+
(−1)

n−3
2

2

)

=
X	

2
n−1

2

+

[
2π
0

]
(−1)

n−3
2

( (−1)
n−3

2

2
n−1

2

+
(−1)

n−3
2 −1

2
n−1

2 −1
+ . . .−

1
4

+
1
2

)

=
X	

2
n−1

2

+

[
2π
0

]
(−1)

n−3
2

n−1
2∑

i=1

(−1)i−1

2i

=
X	

2
n−1

2

+

[
2π
0

]
1
3
(−1)

n−3
2

(
1 − (−

1
2
)

n−1
2

)
,

(1)

using the formula for a geometric series summation. In order to formally verify
that our formula for X	n solves the recurrence relation, we merely plug in the
expressions for X	n+2 and X	n and carry out basic computations.

Now suppose n′ is even and n′> 2. We can derive the formula for X	n′ in terms
of n′ similarly:

X	2 = X	 +

[
2π
0

]
,

X	4 =
X	2

2
−

[
2π
0

]
=

X	

2
+

1
2

[
2π
0

]
−

[
2π
0

]
,

X	6 =
X	4

2
+

[
2π
0

]
=

X	

4
+

1
4

[
2π
0

]
−

1
2

[
2π
0

]
+

[
2π
0

]
,

X	8 =
X	6

2
−

[
2π
0

]
=

X	

8
+

1
8

[
2π
0

]
−

1
4

[
2π
0

]
+

1
2

[
2π
0

]
−

[
2π
0

]
,
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and, in general, we find that

X	n′+2 =
1
2

X	n′ + (−1)
n′

2

[
2π
0

]
.

Observe that X	n′

2 = X	n′+1 is, in general, true based on our construction using the
crossover algorithm since n′ is even. Since n′

+1 is odd, we plug into our formula
the values for X	n (see the bottom of page 69), where n is odd, to find X	n′ .

X	n′ = 2X	n′+1 = 2

[
X	

2
n′

2

+
1
3

[
2π
0

]
(−1)

n′
−2
2

(
1 −

(
−

1
2

) n′

2

)]

=

[
X	

2
n′−2

2

+
2
3

[
2π
0

]
(−1)

n′
−2
2

(
1 −

(
−

1
2

) n′

2

)]
.

Once again, the proof that the recurrence relation is satisfied involves plugging in
the expressions for X	n′+2 and X	n′ and performing basic computations.

Notice that when n′ is even,

X	n′ = X	n′−1 + (−1)
n′

−2
2

[
2π
0

]
,

consistent with the crossover algorithm, because of the following:

X	n′ = X	n′−1 + (−1)
n′

−2
2

[
2π
0

]
=

X	

2
n′−2

2

+
1
3

[
2π
0

]
(−1)

n′
−4
2

(
1 −

(
−

1
2

) n′
−2
2

)
+ (−1)

n′
−2
2

[
2π
0

]

=
X	

2
n′−2

2

+
2
3

[
2π
0

]
(−1)

n′
−2
2

(
−

1
2

−
(
−

1
2

) n′

2

)
+ (−1)

n′
−2
2

[
2π
0

]

=
X	

2
n′−2

2

+
2
3

[
2π
0

]
(−1)

n′
−2
2

(
1 −

(
−

1
2

) n′

2

)
.

Thus, we can say in general that

X	n =


X	

2
n−1

2
+

1
3

[
2π
0

]
(−1)

n−3
2
(
1 − (−1

2)
n−1

2
)
, for n odd,

X	

2
n′−2

2
+

2
3

[
2π
0

]
(−1)

n′
−2
2
(
1 − (−1

2 )
n′

2
)
, for n even,
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but then clearly

X⊕n =


X⊕

2
n−1

2
−

1
3

[
2π
0

]
(−1)

n−3
2
(
1 − (− 1

2)
n−1

2
)
, for n odd,

X⊕

2
n′−2

2
−

2
3

[
2π
0

]
(−1)

n′
−2
2
(
1 − (− 1

2 )
n′

2
)
, for n even.

Analogously, we find

Y	n =


Y	

2
n−1

2
+

1
3

[
0

2π

]
(−1)

n−3
2
(
1 − (− 1

2)
n−1

2
)
, for n odd,

Y	

2
n′−2

2
+

2
3

[
0

2π

]
(−1)

n′
−2
2
(
1 − (−1

2 )
n′

2
)
, for n even,

and

Y⊕n =


Y⊕

2
n−1

2
−

1
3

[
0

2π

]
(−1)

n−3
2
(
1 − (− 1

2)
n−1

2
)
, for n odd,

Y⊕

2
n′−2

2
−

2
3

[
0

2π

]
(−1)

n′
−2
2
(
1 − (− 1

2 )
n′

2
)
, for n even.

Comment: By our construction we have (analogous to the properties for X	n)
that for n′ even,

X⊕n′

2
= X⊕n′+1,

Y	n′

2
= Y	n′+1,

Y⊕n′

2
= Y⊕n′+1.

Moreover,

X⊕n′ = X⊕n′−1 − (−1)
n′

−2
2

[
2π
0

]
, Y	n′ = Y	n′−1 + (−1)

n′
−2
2

[
0

2π

]
,

Y⊕n′ = Y⊕n′−1 − (−1)
n′

−2
2

[
0

2π

]
.

4. Proof of Theorem 2.1

For the proof of Theorem 2.1 we will require three technical lemmas.

Lemma 4.1. For all odd n ≥ 3, X	n ⊆ GSO .

Proof. Since all such

X	 ⊆

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
,

by definition, for all functions f ,

f (X	)⊆ f
([

−
π

2
, 0
)

×

[π
2
,
π

2

))
.
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Therefore, we only need to prove that for all odd n ≥ 3,[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n

⊆ GSO .

Let

S	n :=

[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n

represent the result of the nth step of the crossover algorithm applied to[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

Notice that S	n is of the form of the more general set X	n , and, therefore,
we can use our derived bounds (see above on page 71) for X	n in terms of n to
determine the bounds for S	n .

We begin by showing that S	n ⊆ [−π, π)× [−π, π). That this is satisfied for
the vertical bounds of S	n is clear, so we will only consider the horizontal bounds.
Note that when we use the phrase “vertical bound,” we refer to both upper and
lower bounds. By a vertical upper bound, we mean to say that such a number is
greater than or equal to all y-coordinates of the points in that set. When we use the
phrase “horizontal bound of a set,” we refer to both left and right hand bounds of
a set. By left hand bound, we mean to signify a number that is less than or equal
to all of the horizontal coordinates of the points in that set.

Case 1. n = 4k + 1 for some k ∈ Z. Then S	n is on the left side of the origin.
Thus, the horizontal left hand bound (LHB) for S	n is

−
1

2
n−1

2

[
π
0

]
+

1
3

[
2π
0

]
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2

)
,

and we must show it is bounded below by
[
−π
0

]
. In the x-coordinate,

−π≤ −
π

2
n−1

2

+
2π
3
(−1)

n−3
2

(
1−
(
−

1
2

) n−1
2
)
⇐⇒ 1 ≥

1
22k −

2
3
(−1)2k−1

(
1−
(
−

1
2

)2k
)

⇐⇒ 1 ≥
1

22k +
2
3

(
1 −

1
22k

)
⇐⇒

1
3

≥
1

22k

(
1 −

2
3

)
⇐⇒ 1 ≥

1
22k ,
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which is clearly true because 3 ≤ n = 4k + 1 ⇒
1
2 ≤ k, and k ∈ Z, so 1 ≤ k.

Moreover, since the LHB on the x-coordinates of S	n is less than the horizontal
right hand bound (RHB), we know that −π < RHB.

Case 2. n = 4k + 3 for some k ∈ Z. Then S	n is on the right hand side of the
origin. Therefore, we want to show that the horizontal RHB on S	n is less than or
equal to π , that is, that

2π
3
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2
)

≤ π ⇐⇒
2
3
(−1)2k

(
1 −

(
−

1
2

)2k+1
)

≤ 1

⇐⇒
2
3

(
1 +

(1
2

)2k+1
)

≤ 1

⇐⇒

(
1 +

(1
2

)2k+1
)

≤
3
2

⇐⇒

(1
2

)2k
≤ 1,

which is trivially true since n is odd and n ≥ 3 ⇒ 3 ≤ 4k + 3 ⇒ 0 ≤ k. We know
that in this case, LHB ≤ RHB ≤ π , as needed. But then in all possible cases, it is
true that S	n ⊆ [−π, π)× [−π, π), and therefore that X	n ⊆ [−π, π)× [−π, π).

Now we want to show that

X	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

for all n ≥ 3. Recall from our earlier discussion that this will follow from the fact
that

S	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
.

We can prove this fact by merely showing that the horizontal bounds on the set
S	n are not contained in the set

[
−
π
2 ,

π
2

]
. Thus, the vertical bounds on the set S	n

are irrelevant.

Case 1. n = 4k + 1 for some k ∈ Z. Recall S	n is on the left hand side of the
origin, so we must show that the horizontal RHB on the x-coordinates of the set
S	n is less than or equal to −

π
2 .

−
π

2
≥

2π
3
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2
)

⇐⇒ −
1
2

≥
2
3
(−1)2k−1

(
1 −

(
−

1
2

)2k
)

⇐⇒ −
1
2

≥
2
3

(
1

22k − 1
)

⇐⇒
1
4

≥
1

22k ,
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which is true since 3 ≤ n = 4k + 1 ⇒
1
2 ≤ k and k ∈ Z (so ⇒ 1 ≤ k).

Case 2. n = 4k + 3 for some k ∈ Z. Then S	n is on the right hand side of the
origin, and therefore we want to show that the horizontal LHB on S	n is greater
than or equal to π

2 .

π

2
≤ −

π

2
n+1

2

+
2π
3
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2
)

⇐⇒
1
2

≤ −
1

22k+2 +
2
3
(−1)2k

(
1 −

(
−

1
2

)2k+1
)

⇐⇒ −
1
6

≤
1

2k+1

(
2
3

−
1
2

)

⇐⇒ −1 ≤
1

2k+1 ,

which is trivially true since 0< 1
2k+1 ∀k .

Thus, ∀n, the horizontal bounds of S	n are not contained in the set
[
−
π
2 ,

π
2

]
but

are contained in the set [−π, π], and the vertical bounds are contained in the set
[−π, π]. Thus S	n ⊆ GSO for all odd n ≥ 3 . Recall from our earlier discussion
that it therefore follows that X	n ⊆ GSO for all odd n ≥ 3, as needed. �

Analogously, for all odd n ≥ 3, X⊕n ⊆ GSO , Y	n ⊆ GSO , and Y⊕n ⊆ GSO .

Lemma 4.2. X	n+4 and X	n are disjoint for all n > 1 ∈ Z.

Proof. Let

S	n :=

[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n

represent the result of the nth step of the crossover algorithm applied to[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

Since all X	 ⊆
[
−
π
2 , 0

)
×
[
−
π
2 ,

π
2

)
, for all functions f ,

f (X	n)⊆ f
([

−
π

2
, 0
)

×

[
−
π

2
,
π

2

))
,

and therefore X	n ⊆ S	n . Therefore, we will prove that all S	n and S	(n+4) are
disjoint, from which our lemma follows immediately.

Consider odd n (n = 2k + 1 for some k ∈ Z ). The horizontal LHB of S	(2k+1)

is

−
π

2k+1 +
2π
3
(−1)k−1

(
1 −

(
−

1
2

)k
)
,
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as follows from the rigorous definition of the set X	n , and the RHB of S	(2k+5) is

2π
3
(−1)k+1

(
1 −

(
−

1
2

)k+2
)
.

Therefore, the RHB of S	(2k+5) equals the LHB of S	(2k+1) if and only if

−
π

2k+1 +
2π
3
(−1)k−1

(
1 −

(
−

1
2

)k
)

=
2π
3
(−1)k+1

(
1 −

(
−

1
2

)k+2
)

⇐⇒ −
1

2k+1 +
2
3
(−1)k−1

+
2
3

1
(2)k

=
2
3
(−1)k+1

+
2
3

1
(2)k+2

⇐⇒ −
1
2

1
2k =

2
3

1
2k

(
1
4

− 1
)
,

which is clearly true. So for all odd n, the LHB of the set S	n is equivalent to the
RHB of the set S	(n+4). Recall that for n′ even,

1
2 X	n′ = X	n′+1, which implies 1

2 S	n′ = S	(n′+1),

that is,
1
2 S	(n−1) = S	n and 1

2 S	(n+3) = S	(n+4).

Thus, the LHB of S	(n−1) is equivalent to the RHB of the set S	(n+3). But since
n−1 ∈ Z+ is even, both even and odd cases are satisfied. Thus, we can say that for
all n′′> 1 ∈ Z, the LHB of the set S	n′′ is equivalent to the RHB of the set S	(n′′+4).
Nonetheless, these two sets are still “essentially disjoint” because their intersection
has measure 0 using Lebesgue Measure. Therefore, by our earlier argument, our
lemma follows. �

Lemma 4.3. All X⊕n, X	n′, Y⊕n′′, Y	n′′′ are disjoint for all natural numbers n, n′,
n′′, and n′′′. Moreover, X	i and X	 j are disjoint when i 6= j , with analogous
properties following for sets of the form X⊕n, Y	n , and Y⊕n .

Proof. First we show that all X⊕n, X	n are disjoint (a similar argument shows that
all Y⊕n, Y	n are disjoint). Consider the maximal case for X⊕1 and X	1, namely,

X⊕1 =

[
0,
π

2

)
×

[
−
π

2
,
π

2

)
,

X	1 =

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

Because all other X⊕n, X	n are copies of X⊕1 and X	1 that have been translated
along the x-axis and scaled, we will consider only their x-coordinates. We note
that because sets of the form X⊕n, X	n are never scaled by factors α, for |α|> 1,
they are all contained in [−∞,∞)×

[
−
π
2 ,

π
2

)
, that is, their vertical bounds are
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contained in the set
[
−
π
2 ,

π
2

)
. From the crossover algorithm, we have that the

following hold for all m (except for 4m + 1 = 1) in the x-coordinate:

X⊕4m+1 =
1
2 X⊕4m, Xm4m + 1 =

1
2 X	4m,

X⊕4m+2 = X⊕4m+1 − 2π, X	4m+2 = X	4m+1 + 2π,

X⊕4m+3 =
1
2 X⊕4m+2, X	4m+3 =

1
2 X	4m+2,

X⊕4m+4 = X⊕4m+3 + 2π, X	4m+4 = X	4m+3 − 2π,

⇒ X⊕4(m+1)+1 =
1
4 X⊕4m+1 +

π
2 , ⇒ X	4(m+1)+1 =

1
4 X	4m+1 −

π
2 .

Solving the recurrence relation for X⊕4m+1 and X	4m+1, and using the solution to
obtain the other cases, we obtain the following:

X⊕4m+1 =
1

4m X⊕1 +
2
3

(
1 −

1
4m

)
π, X	4m+1 =

1
4m X	1 +

2
3

( 1
4m − 1

)
π,

X⊕4m+2 =
1

4m X⊕1 −
2
3

(
2 +

1
4m

)
π, X	4m+2 =

1
4m X	1 +

2
3

( 1
4m + 2

)
π,

X⊕4m+3 =
1
2

1
4m X⊕1 −

1
3

(
2 +

1
4m

)
π, X	4m+3 =

1
2

1
4m X	1 +

1
3

( 1
4m + 2

)
π,

X⊕4m+4 =
1
2

1
4m X⊕1 +

1
3

(
4 −

1
4m

)
π, X	4m+4 =

1
2

1
4m X	1 +

1
3

( 1
4m − 4

)
π.

Using our maximal X⊕1 and X	1, we find that

X⊕4m+1 =

[(
2
3 −

2
3

(1
4

)m
)
π,
(

2
3 −

1
6

( 1
4

)m
)
π
)

⊂
[
0, 2

3π
)
,

X⊕4m+2 =

[(
−

4
3 −

2
3

(1
4

)m
)
π,
(
−

4
3 −

1
6

( 1
4

)m
)
π
)

⊂
[
−2π,− 4

3π
)
,

X⊕4m+3 =

[(
−

2
3 −

1
3

(1
4

)m
)
π,
(
−

2
3 −

1
12

( 1
4

)m
)
π
)

⊂
[
−π,−2

3π
)
,

X⊕4m+4 =

[(
4
3 −

1
3

(1
4

)m
)
π,
(

4
3 −

1
12

( 1
4

)m
)
π
)

⊂
[
π, 4

3π
)
,

X	4m+1 =

[(
1
6

( 1
4

)m
−

2
3

)
π,
(

2
3

( 1
4

)m
−

2
3

)
π
)

⊂
[
−

2
3π, 0

)
,

X	4m+2 =

[(
1
6

( 1
4

)m
+

4
3

)
π,
(

2
3

( 1
4

)m
+

4
3

)
π
)

⊂
[4

3π, 2π
)
,

X	4m+3 =

[(
1

12

( 1
4

)m
+

2
3

)
π,
(

1
3

( 1
4

)m
+

2
3

)
π
)

⊂
[2

3π, π
)
,

X	4m+4 =

[(
1

12

( 1
4

)m
−

4
3

)
π,
(

1
3

( 1
4

)m
−

4
3

)
π
)

⊂
[
−

4
3π,−π

)
.

Trivially, we conclude that the eight different sets of intervals are disjoint. Within
each set of intervals, note that both endpoints of the intervals either monotonically
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increase (for X⊕n) or monotonically decrease (for X	n) as n increases; we also
find that the right endpoint of X⊕4m+k is equal to the left endpoint of X⊕4(m+1)+k

for all possible values of k, and the left endpoint of X	4m+k is equal to the right
endpoint of X	4(m+1)+k for all possible values of k (See the proof of Lemma 4.2.)
Thus, all the X⊕4m+k and X	4m+k are disjoint for all k, meaning we have proved
that all X⊕n, X	n are disjoint. Moreover, all X	i and X	 j and all X⊕i and X	 j

are disjoint when i does not equal j . Analogously, all Y	i and Y	 j and all Y⊕i and
Y⊕ j are disjoint when i does not equal j .

To show that the sets of the form X⊕n, X	n, Y⊕n and Y	n are disjoint, consider
the following: All the sets of the form X⊕n, X	n are contained in the region

[−2π, 2π)×
[
−
π

2
,
π

2

)
.

Similarly, all the sets of the form Y⊕n, Y	n are contained the region

[
−
π

2
,
π

2

)
× [−2π, 2π) .

The intersection between these two regions is

[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

but the only sets in this region are X⊕1, X	1, Y⊕1, and Y	1, and by definition, these
are disjoint, completing the proof. �

Remark 4.1. The proof of Lemma 4.3 shows that all sets of the form X⊕n , X	n

for odd n ≥ 3 are in the area

[−π, π)×
[
−
π

2
,
π

2

)
\

[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
∈ GSO .

Exclusion from the inner square is due to the fact that X⊕1, X	1, Y⊕1, and Y	1

occupy that space, and all X	i and X	 j are disjoint if i 6= j (with analogous results
for X⊕, Y	, and Y⊕), implying no other sets of the form X	n, X⊕n, Y	n , and Y⊕n

can occupy that space, providing a short proof of Lemma 4.1.

We can now prove our main result.
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Proof of Theorem 2.1. Let W be defined as in Example 1 to be( ∞⋃
i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
∪

(
GT O\

[ ∞⋃
i=1

[
X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1

]])
=

( ∞⋃
i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

])
.

Part I. We will first show that W is dilation congruent to GSO . Let

8X	
: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 3},

be such that for all even n,

8X	
(X	n) :=

1
2 X	n = X	n+1 ∈ GSO ,

from Lemma 4.1 and the discussion on the top of Section 3 of our paper.

Claim 1. 8X	
is surjective. Take an arbitrary X	 j such that j ≥ 3 is odd. Then

8X	
(X	 j−1)= X	 j .

Claim 2. 8X	
is injective. Suppose

8X	
(X	 j )=8X	

(X	i ),

for some even i and j . Then X	 j+1 = X	i+1, and therefore

X	 j = 2X	 j+1 = 2X	i+1 = X	i ,

as needed.
Therefore, 8X	

is a bijection. Similarly, define 8X⊕
, 8Y	

and 8Y⊕
, which are

all bijections by analogous arguments. But then

8X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

8X	
(X	2i )=

∞⋃
i=1

X	2i+1 ∈ GSO ,

by Lemma 4.1, all of the white spaces (X	k for k ≥ 3 and odd) in GSO are filled
because 8X	

is surjective, and all of the black pieces (X	n for n even) have been
mapped into GSO injectively so that no two distinct black pieces map to the same
white space. Analogous properties follow for 8X⊕

, 8Y	
, and 8Y⊕

.
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Let

8 : {X	i ∪X⊕i ∪Y	i ∪Y⊕i : i is even ≥ 2}→{X	 j ∪X⊕ j ∪Y	 j ∪Y⊕ j : j is odd ≥ 3}

be such that

8(X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=8X	
(X	i )∪8X⊕

(X⊕i )∪8Y	
(Y	i )∪8Y⊕

(Y⊕i )

= (X	i+1 ∪ X⊕i+1 ∪ Y	i+1 ∪ Y⊕i+1) .

Then

8
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
=

∞⋃
i=1

[
8X	

(X	2i )∪8X⊕
(X⊕2i )∪8Y	

(Y	2i )∪8Y⊕
(Y⊕2i )

]
=

∞⋃
i=1

[
X	2i+1 ∪ X⊕2i+1 ∪ Y	2i+1 ∪ Y⊕2i+1

]
∈ GSO .

8 is clearly a bijection, so that 8 maps all exterior black pieces into all interior
white pieces such that no distinct black pieces map to the same white piece.

Thus,

8
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
⋃[

GSO\

( ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

)]
= GSO ,

as needed. Therefore, W is dilation congruent to GSO .

Part II. We will now prove that W is translation congruent to GT O . Let

9X	
: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 1}

be such that for all even n,

9X	
(X	n) := X	n − (−1)

n−2
2

[
2π

0

]
=

1
2

X	(n−2) = X	n−1 ∈ GT O ,

using the discussion on the top of page 70, Lemma 4.1, and the fact that

X	1 ∈

[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
.

Claim 1. 9X	
is surjective. Take an arbitrary X	 j such that j ≥ 1 is odd. Then

8X	
(X	 j+1)= X	 j .
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Claim 2. 9X	
is injective. Suppose 9X	

(X	 j )=9X	
(X	i ), for some even i and

j . Then X	 j−1 = X	i−1. Suppose that ( j − 1) 6= (i − 1). Then by Lemma 4.3,
X	 j−1 ∩ X	i−1 = ∅, which contradicts X	 j−1 = X	i−1. Thus it must be true that
( j − 1)= (i − 1) and thus X	i = X	 j , as needed.

Therefore, 9X	
is a bijection. But then

9X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

9X	
(X	2i )=

∞⋃
i=1

X	2i−1.

Therefore, all blank spaces in GT O of the form X	n are filled when 9X	
acts on⋃

∞

i=1 X	2i since 9X	
is onto. Moreover, all black pieces of the form X	n are

contained in the set
⋃

∞

i=1 X	2i , and therefore have been mapped into GT O . Since
9X	

is injective, no two distinct black pieces will map to the same white piece.
Similarly, define 9X⊕

, 9Y	
, and 9Y⊕

, which are all bijections by analogous
arguments.

Define

9 : {X	i ∪X⊕i ∪Y	i ∪Y⊕i : i is even ≥2}→{X	 j ∪X⊕ j ∪Y	 j ∪Y⊕ j : j is odd≥1},

to be such that

9 (X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=9X	
(X	i )∪9X⊕

(X⊕i )∪9Y	
(Y	i )∪9Y⊕

(Y⊕i )

=
[
X	i−1 ∪ X⊕i−1 ∪ Y	i−1 ∪ Y⊕i−1

]
∈ GT O .

9 is clearly a bijection, and therefore when 9 acts on the entire domain, that is,

9
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
=

∞⋃
i=1

9
(

X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

)
=

∞⋃
i=1

[
X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1

]
∈ GT O ,

every white space (of the form X	n for odd n) in GT O is filled by some black
piece (of the form X	n′ for some even n′) from the exterior of GT O since 9 is
surjective. No two distinct black pieces map to the same white piece since 9 is
injective. Moreover, every black piece outside GT O is contained in the domain of
9, and therefore every black piece outside GT O is mapped into GT O . Thus,

9
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
⋃[

GT O\

( ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

)]
= GT O ,
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and thus by definition, W is dilation congruent modulo 2π to GT O . By definition
W is a wavelet set. �

A different example of a partition of the inner square conforming to the require-
ments of Theorem 2.1 is shown in Figure 2 with the resulting wavelet set.

5. Patch wavelet sets

All of the wavelet sets we have considered thus far are crossover wavelet sets. In
this class, regions are added to or subtracted from alternating sides of the inner
square. Alternatively, we could add or subtract regions to the same side of the
square for each translation. Such wavelet sets are called patch wavelet sets. To
illustrate the patch algorithm, we give an example. The reader will note that this
example is actually a well known wavelet set: the wedding cake wavelet set (Figure
3); see [Dai and Larson 1998, Example 6.6.1] and also [Dai et al. 1998].

Patch Example 1. Let

X	 =

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
, X⊕ =

[
0,
π

2

)
×

[
−
π

2
,
π

2

)
,

Y	 = ∅, Y⊕ = ∅.

Consider the piece X	. Start by translating X	 by
[
−2π

0

]
(keeping it on the

same side of the origin) to obtain X	2. We find that

X	2 =

[
−

5π
2
,−2π

)
×

[
−
π

2
,
π

2

)
.

Secondly, scale X	2 by 1
4 to obtain

X	3 =

[
−

5π
8
,−
π

2

)
×

[
−
π

8
,
π

8

)
.

Thirdly, translate X	3 in the same direction as that of the first translation (that is,

by
[
−2π

0

]
) to obtain

X	4 =

[
−

21π
8
,−

5π
2

)
×

[
−
π

8
,
π

8

)
.

Finally, scale X	4 by 1
4 to form the set

X	5 =

[
−

21π
32

,−
5π
32

)
×

[
−
π

32
,
π

32

)
.

Continue these two steps inductively for X	.
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We perform two similar steps on the set X⊕ inductively as well; however, we

translate by
[

2π
0

]
(instead of

[
−2π

0

]
). We obtain the following as a result from

the first four steps of the patch algorithm:

X⊕2 =

[
2π,

5π
2

)
×

[
−
π

2
,
π

2

)
, X⊕3 =

[
π

2
,

5π
8

)
×

[
−
π

8
,
π

8

)
,

X⊕4 =

[
5π
2
,

21π
8

)
×

[
−
π

8
,
π

8

)
, X⊕5 =

[
5π
32
,

21π
32

)
×

[
−
π

32
,
π

32

)
.

Continue this process inductively for X⊕ as well. In theory, we would perform
similar steps for Y⊕ and Y	, but in this example both are the null set, and thus we
have no computations to carry out for the sets Y	 and Y⊕.

Let W ′ be the set

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GT O\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1]

])
=

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1]

])
,

see Figure 3. Similarly to the crossover case, we can think of the set W ′ as being
the union of GT O combined with the sets on the exterior of GT O of the form X⊕n ,
X	n where n is even and with subsets of GT O of the form X⊕n , X	n where n is
odd erased from GT O . The reader should check that this set W ′ is indeed a wavelet
set.

This algorithm can be generalized as follows:

(i) Partition the inner square into a maximum of four pieces. The conditions on
this partition are identical to those on the partition of the inner square using
the crossover algorithm as given in Theorem 2.1, and the proof for the case of
the patch algorithm is similar to the proof given for the crossover algorithm.

(ii) Translate one piece of the partition by
[
±2π

0

]
or
[

0
±2π

]
so that the piece is

translated out of the inner square and onto the half of the plane in which the
original piece of the partition previously lay.

(iii) Dilate the set formed in step 2 into GSO by 1
4 .

(iv) Translate the set formed in step 3 out of GSO in the same direction as the

translation in step 2 (that is, by
[
±2π

0

]
or
[

0
±2π

]
).

(v) Dilate the set formed in step 4 into GSO by 1
4 .
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(vi) Repeat steps 2 and 3 inductively for this piece of the partition, and perform the
same steps inductively on the other three pieces of the partition of the inner
square.

Theorem 5.1 (Patch Algorithm). Let {X	, X⊕, Y	, Y⊕} be a partition of the set[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

such that X	 is contained in the left half of the inner square, X⊕ is contained in
the right half of the inner square, Y	 is contained in the bottom half of the inner
square, and Y⊕ is contained in the top half of the inner square. Then the set W ,
defined as[( ∞⋃

i=1

[X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i ]

)
∪ GT O

]
\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

]
,

generated by this partition under translation by[
±2π

0

]
and

[
0

±2π

]
and dilation by powers of 2 using steps (i)–(vi) above, is a dyadic wavelet set in
R2.

Proof. Begin by showing the following for natural numbers n odd and n′ even:

X	n+2 =
1
4

(
X	n −

[
2π
0

])
, X	n′+2 =

1
4

X	n′ −

[
2π
0

]
,

X	n′

4
= X	n′+1, X	n′ = X	n′−1 −

[
2π
0

]
.

First, we solve the recurrence relation for n odd, and use this and the fact that
X	n′

4 = X	n′+1 to obtain a form for n′ odd. From this point forward let n be an
arbitrary odd or even natural number. We find that

X	n =


X	

4
n−1

2
−

1
3

[
2π
0

] (
1 − ( 1

4)
n−1

2

)
, for n odd

X	

4
n′+1

2
−

4
3

[
2π
0

](
1 −

(1
4

) n′
−1
2

)
, for n even.

We derive similar expressions for X⊕n, Y	n , and Y⊕n.
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An analogous property to that of Lemma 4.1 can be seen for the patch algorithm.
Once again, we use the maximal possible X	n , that is,

S	n :=

[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n
,

the result of the nth step of the patch algorithm applied to[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

We use our derived bounds for X	n in terms of n to determine the bounds for
S	n . We begin by showing that S	n ⊆ [−π, π)× [−π, π). That this is satisfied
for the vertical bounds of S	n is clear, so we will only consider the horizontal
bounds. There is only one case to consider for the patch algorithm, the case that
n = 2k +1 for some nonnegative integer k. (The patch algorithm requires only one
case because the algorithm always translates the odd pieces out to the same side
of the inner square rather than to alternating sides, as in the crossover algorithm,
leading to two cases for the crossover algorithm.) Second, show that

X	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

for all n ≥ 3, by showing that

S	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
.

This follows from the fact that the horizontal bounds on the set S	n are not con-
tained in the set

[
−
π
2 ,

π
2

]
. Thus, the vertical bounds on the set S	n are irrelevant.

Once again, here we find that there is only one case to consider (the case that
n = 2k + 1 for some nonnegative integer k). We conclude that S	n ⊆ GSO for all
odd n ≥ 3, and therefore that X	n ⊆ GSO for all odd n ≥ 3. Analogously, for all
odd n ≥ 3, X⊕n ⊆ GSO , Y	n ⊆ GSO , and Y⊕n ⊆ GSO .

An analogous property is true for the patch case to Lemma 4.2 for the crossover
algorithm, that X	n+2 and X	n are disjoint for all n > 0 ∈ Z. We modify the
argument that was used for the crossover case by showing that the left hand bound
of S	2k+1 equals the right hand bound of S	2k+3.

Next, an analogous property is true for the patch case to that of Lemma 4.3 for
crossover sets, namely, that all X⊕n, X	n′, Y⊕n′′, Y	n′′′ are disjoint for all natural
numbers n, n′, n′′, and n′′′. Moreover, X	i and X	 j are disjoint when i 6= j , with
analogous properties following for sets of the form X⊕n, Y	n , and Y⊕n .

First we show that all X⊕n, X	n are disjoint. Once again, consider the maximal
case for X⊕1 and X	1. Because all other X⊕n, X	n are copies of X⊕1 and X	1 that
have been translated along the x-axis and scaled, consider only the x-coordinates.
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Because sets of the form X⊕n, X	n are never scaled by factors α, for |α|> 1, they
are all contained in

[−∞,∞)×
[
−
π

2
,
π

2

)
.

From the Patch Algorithm, observe that, where 2m+1>1, the following hold for
all m in the x-coordinate:

X	2m+1 =
1
4 X	2m,

X	2m+2 = X	2m+1 − 2π,

⇒ X	2(m+1)+1 =
1
16 X	2m −

π
2 ,

X⊕2m+1 =
1
4 X⊕2m,

X⊕2m+2 = X⊕2m+1 + 2π,

⇒ X⊕2(m+1)+1 =
1
16 X⊕2m +

π
2 .

Solving these recurrence relations, we find a collection of disjoint sets, each of
which contains one of the following as a subset: X	2m+1, X	2m+2, X⊕2m+1, and
X⊕2m+2. Trivially, we conclude that the four different sets of intervals are disjoint.
Within each set of intervals, note that both endpoints of the intervals either mono-
tonically increase (for X⊕n) or monotonically decrease (for X	n) as n increases.
Recall from our argument for the property similar to Lemma 4.2 (but for the patch
case) that the left hand bound of S	2k+1 equals the right hand bound of S	2k+3.
We will also find that the right hand bound of S	2k+1 equals the left hand bound
of S	2k+3. Thereby we conclude that all X⊕n, X	n are disjoint along with all X	i ,
X	 j and all X⊕i , X⊕ j when i 6= j . Analogously, all Y⊕n and Y	n are disjoint along
with all Y	i and Y	 j and all Y⊕i and Y⊕ j when i 6= j .

To show that the sets of the form X⊕n, X	n, Y⊕n and Y	n are disjoint, consider
the following: All the sets of the form X⊕n, X	n are contained in the region

[−∞,∞)×
[
−
π

2
,
π

2

)
.

Similarly, all the sets of the form Y⊕n, Y	n are contained the region[
−
π

2
,
π

2

)
× [−∞,∞) .

The intersection between these two regions is[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

but the only sets in this region are X⊕1, X	1, Y⊕1, and Y	1, and by definition, these
are disjoint.

Define the set W in the same way it was defined in the proof of the theorem
for the crossover case. To show that W is dilation congruent to GSO , define the
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bijection
8X	

: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 3},

such that for all even n,

8X	
(X	n) :=

1
4

X	n = X	n+1 ∈ GSO .

Observe that

8X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

8X	

(
X	2i

)
=

∞⋃
i=1

X	2i+1 ∈ GSO ,

using the property analogous to Lemma 4.1 Lemma 1 but applied to the patch case.
All of the white spaces (X	k for k ≥ 3 and odd) in GSO are filled, and all of the
black pieces (X	n for n even) have been mapped into GSO injectively.

Similarly, define the bijections 8X⊕
, 8Y	

, and 8Y⊕
. Analogous properties fol-

low for 8X⊕
, 8Y	

, and 8Y⊕
. Let

8 : {X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i : i is even ≥ 2}

→ {X	 j ∪ X⊕ j ∪ Y	 j ∪ Y⊕ j : j is odd ≥ 3}

be such that

8(X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=8X	
(X	i )∪8X⊕

(X⊕i )∪8Y	
(Y	i )∪8Y⊕

(Y⊕i )

= (X	i+1 ∪ X⊕i+1 ∪ Y	i+1 ∪ Y⊕i+1) .

Using 8, we show that W is dilation congruent to GSO .
To show that W is translation congruent to GT O , let

9X	
: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 1}

be such that for all even n,

9X	
(X	n) := X	n +

[
2π

0

]
=

1
2

X	(n−2) = X	n−1 ∈ GT O .

9X	
is a bijection. Observe that

9X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

9X	

(
X	2i

)
=

∞⋃
i=1

X	2i−1.

Therefore, all blank spaces in GT O of the form X	n are filled when 9X	
acts on

∞⋃
i=1

X	2i ,
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Figure 4. A wavelet set which has characteristics of both patch
and crossover wavelet sets.

since 9X	
is onto. Moreover, all black pieces of the form X	n are contained in

the set
∞⋃

i=1

X	2i ,

and therefore have been mapped into GT O . Define similarly 9X⊕
, 9Y	

, and 9Y⊕

which are all bijections by analogous arguments.
Define the bijection

9 : {X	i ∪X⊕i ∪Y	i ∪Y⊕i : i is even ≥2}→{X	 j ∪X⊕ j ∪Y	 j ∪Y⊕ j : j is odd≥1}

to be such that

9 (X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=9X	
(X	i )∪9X⊕

(X⊕i )∪9Y	
(Y	i )∪9Y⊕

(Y⊕i )

=
[
X	i−1 ∪ X⊕i−1 ∪ Y	i−1 ∪ Y⊕i−1

]
∈ GT O .

Using 8, we show W is dilation congruent modulo 2π to GT O . We conclude
now that W is a wavelet set. �

6. Concluding remarks

In Figure 4, we partition the inner square in the following way:

X	 =

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
, X⊕ =

[
0,
π

2

)
×

[
−
π

2
,
π

2

)
,

Y	 = ∅, Y⊕ = ∅.

To the piece X	 we apply the crossover algorithm. We obtain the following:

X	2 =

[
3π
2
, 2π

)
×

[
−
π

2
,
π

2

)
, X	3 =

[
3π
4
, π

)
×

[
−
π

4
,
π

4

)
,

X	4 =

[
−

5π
4
,−2π

)
×

[
−
π

4
,
π

4

)
, X	5 =

[
−

5π
8
,−π

)
×

[
−
π

8
,
π

8

)
.
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To the piece X⊕, we apply the patch algorithm and obtain the following as a
result from the first four steps of the algorithm:

X⊕2 =

[
2π,

5π
2

)
×

[
−
π

2
,
π

2

)
, X⊕3 =

[
π

2
,

5π
8

)
×

[
−
π

8
,
π

8

)
,

X⊕4 =

[
5π
2
,

21π
8

)
×

[
−
π

8
,
π

8

)
, X⊕5 =

[
5π
32
,

21π
32

)
×

[
−
π

32
,
π

32

)
.

We continue application of the patch algorithm to the piece X⊕ and application of
the crossover algorithm to the piece X	 inductively. Once again we let W be the
set

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GT O\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1]

])
=

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1]

])
,

where X	n is defined according to our definition for a set of this form operated
on by the crossover algorithm (see page 65), and X⊕n is defined according to our
definition given for a set of this form operated on by the Patch Algorithm.

This set W (see Figure 4) is a wavelet set. To see this, let

G(X	odd) :=

∞⋃
i=1

X	2i−1, and G(X	even) :=

∞⋃
i=1

X	2i .

Similarly, define sets for X⊕, Y	, Y⊕ with analogous characteristics. Observe that
W is translation congruent to GT O modulo 2π because

∞⋃
i=1

X	4i +

[
2π
0

]
=

∞⋃
i=0

X	4i+3,

∞⋃
i=0

X	4i+2 −

[
2π
0

]
=

∞⋃
i=0

X	4i+1,

∞⋃
i=1

X⊕2i −

[
2π
0

]
=

∞⋃
i=0

X⊕2i+1.

Notice

∞⋃
i=0

X⊕2i+1 ∪

∞⋃
i=0

X	4i+1 ∪

∞⋃
i=0

X	4i+3 = G(X	odd)∪ G(X⊕odd),
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and thus we observe that all of the white spaces in the set GT O are filled when we

translate the black sets on the exterior of GT O by multiples of
[

2π
0

]
. Moreover,

W is dilation congruent to GSO because

1
2 G(X	even)= G(X	odd) ∈ GSO ,

that is, the even pieces of the form X	n scale into the odd pieces of the form X	n ,
and

1
4 G(X⊕even)= G(X⊕odd).

Thus, W is a wavelet set by definition.
Thanks to this example, we see that a wavelet set may demonstrate characteris-

tics of both patch and crossover wavelet sets, and thereby not be classified as either
type. The set contains both a patch region and a crossover region. Therefore, we
have not made a complete classification of all two dimensional wavelet sets, but
note that crossover wavelet sets seem to be maximally nonpatch. Finding a broader
algorithm which encompasses both the patch and crossover algorithms would be
an interesting problem to consider.

As a final comment, we remark that crossover and patch wavelet sets make
perfect sense in one-dimension (that is, in R1). The reader can easily prove that
all dyadic one-dimensional wavelet sets of two or three intervals are necessarily
crossover wavelet sets. (Here crossover would mean through the origin.) On the
other hand, the well known Journe wavelet set of 4 intervals (see [Dai and Larson
1998], Example 4.5 (i)), is easily seen to be a patch wavelet set. A characterization
is not known at this time of all finite interval patch wavelet sets.
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Difference inequalities, comparison tests, and some
consequences
Frank J. Palladino

(Communicated by Gerry Ladas)

We study the behavior of nonnegative sequences which satisfy certain difference
inequalities. Several comparison tests involving difference inequalities are de-
veloped for nonnegative sequences. Using the aforementioned comparison tests,
it is possible to determine the global stability and boundedness character for
nonnegative solutions of particular rational difference equations in a range of
their parameters.

1. Introduction

There has been a significant amount of work done at the University of Rhode Island
pertaining to the boundedness character of rational difference equations. Recently
a general boundedness result has appeared in the literature. This result proves the
boundedness of solutions for many special cases of the k-th order rational dif-
ference equation [Camouzis et al. 2006, Theorem 6]. In this paper we intend to
generalize this result.

Rather than working with solutions of difference equations, we intend to work
with sequences which satisfy recursive inequalities, which we call difference in-
equalities. This approach bears relevance to the field of difference equations, as
every solution to a difference equation satisfies several difference inequalities. The
use of difference inequalities provides a general and efficient way to obtain bounds,
attracting intervals, and convergence results for a variety of difference equations.
These four theorems presented below provide the theoretical groundwork needed.

The first theorem demonstrates that the previously mentioned boundedness re-
sult extends to the framework of difference inequalities. In fact Theorem 1 demon-
strates a much stronger result. Theorem 1 acts as a comparison test between
difference inequalities, showing that any sequence of nonnegative real numbers
which satisfies one of the assumed difference inequalities also satisfies a Riccati
inequality.

MSC2000: 39A10.
Keywords: difference equation, boundedness, global stability, difference inequality.
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A Riccati inequality is a difference inequality of the form

xn ≤
α+β maxi=1,...,k (xn−i )

A + B maxi=1,...,k (xn−i )
, n ≥ J,

where J is a nonnegative integer. It is easy to see that with A, B > 0 and α, β ≥ 0
any nonnegative sequence which satisfies a Riccati inequality is bounded. Theorem
2 will demonstrate something stronger, however, namely a comparison between
any nonnegative sequence which satisfies a Riccati inequality, and a solution to a
particular associated Riccati equation.

Combining Theorem 1 and Theorem 2 a strong comparison is made between
the solutions of certain rational difference equations and the solutions of associated
Riccati equations. Using this comparison it is possible to prove global convergence
results for certain rational difference equations in a range of their parameters. This
global convergence result is given in Theorem 4.

2. Boundedness by iteration

Here the general theorem which proves boundedness through the method of itera-
tion [Camouzis et al. 2006, Theorem 6] is extended to the framework of difference
inequalities. Nonnegative sequences which satisfy certain difference inequalities
are shown to satisfy a Riccati inequality. A direct result of this is that every solu-
tion of every rational difference equation which is bounded through the method of
iteration satisfies a Ricatti inequality.

Theorem 1. Suppose that we have a sequence of nonnegative real numbers {xn}
∞

n=1
which satisfies the inequality

xn ≤
α+

∑k
i=1 βi xn−i

A +
∑k

i=1 Bi xn−i
, n ≥ J, (1)

with nonnegative parameters.
Let us define the sets of indices

Iβ = {i ∈ {1, 2, . . . , k} : βi > 0} and IB = {i ∈ {1, 2, . . . , k} : Bi > 0}.

Suppose that the following conditions hold true:

(1) A > 0 .

(2) There exists a positive integer η, such that for every sequence {cm}
∞

m=1 with
cm ∈ Iβ , for m = 1, 2, . . ., there exist positive integers, N1, N2 ≤ η, such that∑N2

m=N1
cm ∈ IB .

Then {xn}
∞

n=1 satisfies a Riccati inequality for n ≥ J + kη.
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In particular, if A ≥
∑k

i=1 βi , then, for n ≥ J + kη,

xn ≤
αη

A
+

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A + mini∈IB (Bi )maxi=1,...,kη (xn−i )
, (2)

and if A <
∑k

i=1 βi , then for n ≥ J + kη,

xn ≤

αη
A

+

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A + mini∈IB (Bi )maxi=1,...,kη (xn−i )

(∑k
i=1 βi

A

)η−1

. (3)

Proof. Let us consider a particular term xN in {xn}
∞

n=1. Now for xN , with N ≥

max(J, k + 1), let us define a finite sequence {cm}
τ
m=1 recursively based on xN ,

{xn}
∞

n=1, and Iβ . We will define this sequence by letting

c1 = min
(

i : xN−i = max
ρ∈Iβ

(
xN−ρ

))
, (4)

and supposing that c1, . . . , ct−1 exist, and N −
∑t−1

m=1 cm ≥ max(J, k+1), and then
letting

ct = min
(

i : xN−i−
∑t−1

m=1 cm
= max

ρ∈Iβ

(
xN−ρ−

∑t−1
m=1 cm

))
.

Notice that this is a finite sequence, and that τ is the first integer such that N −∑τ
m=1 cm < max(J, k + 1). This finite sequence {cm}

τ
m=1 has two noteworthy

properties. First it is a finite sequence {cm}
τ
m=1 with cm ∈ Iβ for m = 1, . . . , τ ;

second,

max
i∈Iβ

(
xN−i−

∑t−1
m=1 cm

)
= xN−

∑t
m=1 cm

. (5)

We will use these properties to establish bounds for the term xN .
For the sake of notation let us define c0 = 0. Now we will show by induction

that when N ≥ max(J, k + 1), for all t such that 1 ≤ t ≤ τ , we have

xN ≤

(α
A

) t−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t (
xN−

∑t
m=1 cm

)
∏t−1

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) . (6)

First we will establish the base case

xN ≤
α+

∑k
i=1 βi xN−i

A +
∑k

i=1 Bi xN−i
≤
α

A
+

(∑k
i=1 βi

)
maxi∈Iβ (xN−i )

A +
∑k

i=1 Bi xN−i
.
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Now using Equation (4) we get that

xN ≤
α

A
+

(∑k
i=1 βi

)
xN−c1

A +
∑k

i=1 Bi xN−i
.

This is since maxi∈Iβ (xN−i ) = xN−c1 , by (4). Thus (6) holds for t = 1. Now
suppose (6) holds for t < τ , we must show that it holds for t + 1.

xN ≤

(α
A

) t−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t (
xN−

∑t
m=1 cm

)
∏t−1

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (7a)

≤

(α
A

) t−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t (
α+

∑k
i=1 βi xN−i−

∑t
m=1 cm

)
∏t

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (7b)

≤

(α
A

) t∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t+1 (
maxi∈Iβ

(
xN−i−

∑t
m=1 cm

))
∏t

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (7c)

≤

(α
A

) t∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t+1 (
xN−

∑t+1
m=1 cm

)
∏t

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) . (7d)

Our induction assumption is (7a). We get (7b) from (7a) using our original inequal-
ity (1). We get (7c) from (7b), since A > 0 and our parameters are nonnegative.
We get (7d) from (7c) since

max
i∈Iβ

(
xN−i−

∑t
m=1 cm

)
= xN−

∑t+1
m=1 cm

,

from (5). Thus we have shown that (6) holds for all t such that 1 ≤ t ≤ τ .
Since τ is the first integer such that N −

∑τ
m=1 cm <max(J, k + 1), then

N − max(J, k + 1) <
τ∑

m=1

cm < kτ.

Thus τ > (N − max(J, k + 1))/k. So if we choose N ≥ J + kη, where η is the
integer η defined in Condition (2), then τ ≥η. We know there exist positive integers
N1, N2 ≤ η, so that

∑N2
m=N1

cm ∈ IB ; this is from Condition (2) in our original
assumptions. Thus

N2∑
m=1

cm =

N1−1∑
m=0

cm + i,
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for some i ∈ IB . Since N2 ≤ η ≤ τ , by Equation (6)

xN ≤

(α
A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
∏N2−1

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (8a)

≤

(α
A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A +

∑k
i=1 Bi xN−i−

∑N1−1
m=0 cm

) (8b)

≤

(α
A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A +

(
mini∈IB (Bi )

)(
x

N−
∑N2

m=1 cm

)) . (8c)

We get (8a) directly from (6) with t = N2. We get (8b) from (8a), since A> 0 and
our parameters are nonnegative. This expression is obtained by reducing all of the
terms of the product in the denominator of this fraction, except for the term where
L = N1 − 1, which is kept as it is needed to establish a bound. We get (8c) from
(8b) since

N2∑
m=1

cm =

N1−1∑
m=0

cm + i,

for some i ∈ IB . Now we will consider two cases, namely

A ≥

k∑
i=1

βi and A <
k∑

i=1

βi .

Considering the former case, since 1 ≤ N2 ≤ η, we have that,

xN ≤

(α
A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A+

(
mini∈IB (Bi )

)(
x

N−
∑N2

m=1 cm

)) (9a)

≤
αη

A
+

(∑k
i=1 βi

)
x

N−
∑N2

m=1 cm

A +
(
mini∈IB (Bi )

)
x

N−
∑N2

m=1 cm

. (9b)

Notice that our bound in (9b) is increasing with respect to x
N−

∑N2
m=1 cm

, and that
1 ≤

∑N2
m=1 cm ≤ kη; thus, by (9b),

xN ≤
αη

A
+

(∑k
i=1 βi

)
maxi=1,...,kη (xN−i )

A +
(
mini∈IB (Bi )

)
maxi=1,...,kη (xN−i )

,

for all N ≥ J + kη. Thus we have shown the inequality (2).
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If A <
∑k

i=1 βi , then, since 1 ≤ N2 ≤ η, we have,

xN ≤

(α
A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A+

(
mini∈IB (Bi )

)(
x

N−
∑N2

m=1 cm

)) (10a)

≤

αη
A

+

(∑k
i=1 βi

)
x

N−
∑N2

m=1 cm

A +
(
mini∈IB (Bi )

)
x

N−
∑N2

m=1 cm

(∑k
i=1 βi

A

)η−1

. (10b)

Notice that our bound in Equation (10b) is increasing with respect to x
N−

∑N2
m=1 cm

,
and that 1 ≤

∑N2
m=1 cm ≤ kη. Thus, by (10b),

xn ≤

αη
A

+

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A +
(
mini∈IB (Bi )

)
maxi=1,...,kη (xn−i )

(∑k
i=1 βi

A

)η−1

,

for all N ≥ J + kη. Thus we have shown the inequality (3) and the theorem is
proved. �

Theorem 1 immediately establishes the boundedness character for a number of
special cases of the k-th order rational difference equation. These boundedness
results were completely established in [Camouzis et al. 2006]. For related works,
see [Kocić and Ladas 1993; Kulenović and Ladas 2002; Camouzis et al. 2004a;
2004b; 2005a; 2005b; 2006; Ladas 2004; Camouzis and Ladas 2005; Grove and
Ladas 2005; Camouzis 2006].

Since Theorem 1 only assumes that the inequality (1) eventually holds for our
sequence {xn}

∞

n=1, it is also possible to quickly establish the boundedness character
for several nonautonomous rational difference equations.

3. Comparison tests of the maximum and minimum

The following two theorems deal with comparison tests involving the maximum
and minimum. One important consequence of these tests is that when combined
with Theorem 1 they allow for the comparison between solutions of certain special
cases of the k-th order rational difference equation and solutions of a Riccati type
difference equation.

Theorem 2. Let g : [0,∞)→ [0,∞) be defined and increasing for all x ∈ [0,∞).
Suppose that we have a sequence of nonnegative real numbers {xn}

∞

n=1 which
satisfies the inequality, xn ≤ g(max(xn−1, . . . , xn−k)), with n ≥ N . Let {yn}

∞

n=0 be
a solution of the difference equation yn = g(yn−1), given n = 1, 2, . . . , and with
y0 = max(xN−1, . . . , xN−k), then, for all n ≥ N ,

max(xn−1, . . . , xn−k)≤ max(y
b

n−N
k c
, . . . , yn−N ). (11)
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Proof. This result follows by strong induction. From our assumptions we have
that max(xN−1, . . . , xN−k) = y0. This establishes the base case for n = N . Now
suppose that

max (xn−1, . . . , xn−k)≤ max
(

y
b

n−N
k c
, . . . , yn−N

)
,

for all N ≤ n < J . Then, for all N ≤ n < J ,

xn ≤ g (max (xn−1, . . . , xn−k))≤ g
(

max
(

y
b

n−N
k c
, . . . , yn−N

))
.

Since g is defined and increasing for all x ∈ [0,∞),

xn ≤ max
(

g
(

y
b

n−N
k c

)
, . . . , g (yn−N )

)
= max

(
y1+b

n−N
k c
, . . . , yn+1−N

)
.

From this it follows that,

max (x J−1, . . . , x J−k)≤ max
n=J−1,...,J−k

(
max

(
y1+b

n−N
k c
, . . . , yn+1−N

))
.

Thus,

max (x J−1, . . . , x J−k)≤ max
(
y1+b

J−k−N
k c

, . . . , yJ−N

)
= max

(
y
b

J−N
k c
, . . . , yJ−N

)
.

This proves that Equation (11) holds for J, and completes the proof by induction.
�

Theorem 3. Let g : [0,∞)→ [0,∞) be defined and increasing for all x ∈ [0,∞).
Suppose that we have a sequence of nonnegative real numbers {xn}

∞

n=1 which
satisfies the inequality, xn ≥ g(min(xn−1, . . . , xn−k)) with n ≥ N . Let {yn}

∞

n=0 be
a solution of the difference equation yn = g(yn−1), with n = 1, 2, . . . , and with
y0 = min(xN−1, . . . , xN−k), then for all n ≥ N ,

min (xn−1, . . . , xn−k)≥ min
(

y
b

n−N
k c
, . . . , yn−N

)
. (12)

Proof. This result follows by strong induction. From our assumptions we have
that min(xN−1, . . . , xN−k) = y0. This establishes the base case for n = N . Now
suppose that

min (xn−1, . . . , xn−k)≥ min
(

y
b

n−N
k c
, . . . , yn−N

)
,

for all N ≤ n < J . Then, for all N ≤ n < J ,

xn ≥ g (min (xn−1, . . . , xn−k))≥ g
(

min
(

y
b

n−N
k c
, . . . , yn−N

))
.

Since g is defined and increasing for all x ∈ [0,∞),

xn ≥ min
(

g
(

y
b

n−N
k c

)
, . . . , g (yn−N )

)
= min

(
y1+b

n−N
k c
, . . . , yn+1−N

)
.
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From this it follows that

min (x J−1, . . . , x J−k)≥ min
n=J−1,...,J−k

(
min

(
y1+b

n−N
k c
, . . . , yn+1−N

))
.

Thus,

min (x J−1, . . . , x J−k)≥ min
(

y1+b
J−k−N

k c
, . . . , yJ−N

)
= min

(
y
b

J−N
k c
, . . . , yJ−N

)
.

This proves that Equation (12) holds for J, and completes the proof by induction.
�

Theorem 2 and its dual Theorem 3 provide a general and useful method for ob-
taining tighter bounds on both the solutions of difference equations and sequences
which satisfy difference inequalities. Indeed using Theorem 2 it is sometimes
possible to obtain upper bounds for the solutions of certain difference equations
which are arbitrarily close to an equilibrium. The discovery of such bounds coupled
with a thorough understanding of semicycle analysis may yield some interesting
convergence results. We will leave this idea for future investigation.

4. A convergence result for difference inequalities

Here we will give one example which demonstrates convergence even in the frame-
work of difference inequalities. The convergence result here also settles an open
problem in rational difference equations in the case A =

∑k
i=1 βi .

Theorem 4. Suppose that we have a sequence of nonnegative real numbers {xn}
∞

n=1
which satisfies the inequality,

xn ≤

∑k
i=1 βi xn−i

A +
∑k

i=1 Bi xn−i
, n ≥ J,

with nonnegative parameters.
Let us define the sets of indices

Iβ = {i ∈ {1, 2, . . . , k} : βi > 0} and IB = {i ∈ {1, 2, . . . , k} : Bi > 0}.

Suppose that the following conditions hold true:

(1) A ≥
∑k

i=1 βi .

(2) There exists a positive integer η, such that for every sequence {cm}
∞

m=1 with
cm ∈ Iβ for m = 1, 2, . . . there exists positive integers, N1, N2 ≤ η, such that∑N2

m=N1
cm ∈ IB .

Then {xn}
∞

n=1 converges to 0.
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Proof. By Theorem 1, for n ≥ J + kη,

xn ≤

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A +
(
mini∈IB (Bi )

)
maxi=1,...,kη (xn−i )

.

Dividing the numerator and denominator by
∑k

i=1 βi , we may rewrite the inequal-
ity in the form,

xn ≤
maxi=1,...,kη (xn−i )

ρ+ C maxi=1,...,kη (xn−i )
,

where ρ ≥ 1 and C > 0. Applying Theorem 2 we get that for {yn}
∞

n=0, a solution
of the difference equation,

yn =
yn−1

ρ+ Cyn−1
, n = 1, 2, . . . , (13)

with y0 = max
(
x J+kη−1, . . . , x J+kη−k

)
, then for all n ≥ J + kη,

max (xn−1, . . . , xn−k)≤ max
(

y
b

n−J−kη
k c

, . . . , yn−J−kη

)
.

Since {yn}
∞

n=0 is decreasing and bounded below by zero, {yn}
∞

n=0 converges. Since
the only equilibrium of equation Equation (13) is zero, {yn}

∞

n=0 converges to zero.
Since {yn}

∞

n=0 converges to zero, given ε > 0, there exists a natural number N
sufficiently large so that yn < ε for all n ≥ N . Choose D to be a natural number so
that N = b(D − J − kη) /kc. Then, for n ≥ D,

xn−1 ≤max(xn−1, . . . , xn−k)≤max
(

y
b

n−J−kη
k c

, . . . , yn−J−kη

)
<max(ε, . . . , ε)=ε.

Thus, given ε > 0, there exists a natural number D sufficiently large so that xn < ε

for all n ≥ D. Therefore {xn}
∞

n=1 converges to 0. �
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On the asymptotic behavior of unions of sets of
lengths in atomic monoids

Paul Baginski, Scott Thomas Chapman, Natalie Hine and João Paixão

(Communicated by Kenneth S. Berenhaut)

Let M be a commutative cancellative atomic monoid. We use unions of sets
of lengths in M to construct the V-Delta set of M . We first derive some basic
properties of V-Delta sets and then show how they offer a method to investigate
the asymptotic behavior of the sizes of unions of sets of lengths.

A central focus of number theory is the study of number theoretic functions
and their asymptotic behavior. This has led to similar investigations concerning
nonunique factorizations in integral domains and moniods. Suppose that M is
a commutative cancellative monoid in which each nonunit can be factored into
a product of irreducible elements (such a monoid is known as atomic). For a
nonunit x in M , let L(x) represent the maximum length of a factorization of x into
irreducibles and l(x) the minimum such length. The functions

L(x)= lim
k→∞

L(xn)

n
and l(x)= lim

k→∞

l(xn)

n

have been studied in the literature by Anderson and Pruis [1991] and Geroldinger
and Halter-Koch [1992]. Chapman and Smith [1998] defined the notion of a gen-
eralized set of lengths, and showed [Chapman and Smith 1993b] that the size of a
generalized set of lengths (denoted 8(n)) satisfies

8(R)= lim
n→∞

8(n)
n

=
D(G)2 − 4

2D(G)
, (1)

for a ring of algebraic integers R where D(G) represents Davenport’s constant of
the ideal class group G of R (the Davenport constant is defined in [Geroldinger
and Halter-Koch 2006, Section 3.4]). Since a generalized set of lengths is actually

MSC2000: primary 20M14; secondary 20D60, 11B75.
Keywords: nonunique factorization, elasticity of factorization, unions of sets of lengths.
P. B. was supported by a Department of Homeland Security Graduate Fellowship. This work was
completed during the 2006 Trinity University Research Experiences for Undergraduates in Mathe-
matics Program. J. P. and N. H. were supported by the National Science Foundation, Grant no. DMS-
0353488.
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a union of certain length sets, we will refer to these sets with the more descriptive
term unions of sets of lengths. The value 8(R) has also been explored for various
semigroup rings over fields [Anderson et al. 1993, Theorem 3.3]. In this note,
we examine the limit 8(R) in greater detail. By generalizing the well known
notion of the Delta set of a monoid M [Geroldinger and Halter-Koch 2006, Section
1.4], we find new bounds for the value 8(M) which allows us to determine exact
calculations in several instances recently addressed in the literature (see Examples 3
and 4). We will begin with a review of the necessary definitions and notations from
the theory of nonunique factorizations. The reader is directed to the monograph
[Geroldinger and Halter-Koch 2006] for a complete survey of recent results in this
area.

Throughout our work, we assume that M is an atomic commutative cancellative
monoid with sets I(M) of irreducible elements and M• of nonunits. The set of
lengths of x ∈ M• is L(x)= {n | x = x1 · · · xn with each xi ∈ I(M)}. Also, define
L(x)= max L(x) and l(x)= min L(x). The quotient L(x)/ l(x) is called the elas-
ticity of x and the constant ρ(M)= sup

{
L(x)
l(x) | x ∈ M•

}
is known as the elasticity

of M . A survey of the results in the literature concerning elasticity can be found in
[Anderson 1997]. If L(x) = {n1, . . . , nt } with the ni ’s listed in increasing order,
then the Delta set of x is 1(x)= {ni −ni−1 | 2 ≤ i ≤ t}. The Delta set of M is then
defined as1(M)=∪x∈M•1(x). If d = gcd1(M), Geroldinger [1988, Proposition
4] has shown that d ∈1(M). Hence, it follows that

{d, qd} ⊆1(M)⊆ {d, 2d, . . . , qd}, (2)

for some positive integer q . While the concept of the Delta set of a monoid M has
been widely studied, there are few exact computations of specific Delta sets in the
literature. If B(Zn) represents the block monoid ([Geroldinger and Halter-Koch
2006] or Example 2) on the cyclic group of order n, then

1(B(Zn))= {1, 2, . . . , n − 2}

[Geroldinger and Halter-Koch 2006, Theorem 6.7.1]. The Delta sets of several nu-
merical monoids [Bowles et al. 2006] and several congruence monoids [Baginski et
al. 2008] have been computed under restricted conditions. In particular, an example
is constructed in [Bowles et al. 2006, Proposition 4.9] where both containments in
Equation (2) are strict.

The notion of a set of lengths was generalized in [Chapman and Smith 1998] as
follows: With M as above, for each n ∈ N set W(n)= {m ∈ M | n ∈ L(m)} and

V(n)=

⋃
m∈W(n)

L(m).
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We refer to the set V(n) as a union of sets of lengths. In [Chapman and Smith
1998], the basic properties of these sets are determined. Moreover, for block
monoids B(G) where G is a finite abelian group, the authors argue that the se-
quence {V(n)}∞n=1 does not uniquely characterize G. We will often need to refer
to the maximum and minimum values in V(n). Hence for each n ∈ N we set

λn(M)= min V(n) and ρn(M)= sup V(n).

When the monoid M is understood, we will merely use the notation λn and ρn .
The sequence {ρn}

∞

n=1 has been an object of study in its own right [Geroldinger
and Halter-Koch 2006, Section 1.4] and [Geroldinger and Hassler ≥ 2008] and it
is shown in [Geroldinger and Halter-Koch 2006, Proposition 1.4.2] that

ρ(M)= lim
n→∞

ρn(M)
n

.

Finally, for each n ∈ N, set8(n)=|V(n)|. Some basic properties of the8-function
are explored in [Chapman and Smith 1990, Section 2] and several additional com-
putations of the limit

8(M)= lim
n→∞

8(n)
n

can be found in the literature [Chapman and Smith 1993a, Theorem 2.7 and The-
orem 2.10].

For our purposes, we extend the notion of the Delta set to unions of sets of
lengths as follows: For a fixed monoid M , suppose for each n ∈ N that

V(n)= {v1,n, . . . , vt,n},

where vi,n < vi+1,n for 1 ≤ i < t . Define the V(n)-Delta set of M to be

1V(n)= {vi,n − vi−1,n | 2 ≤ i ≤ t}

and the V-Delta set of M to be

1V(M)=

⋃
n∈N

1
(
V(n)

)
.

In addition, set V∗(M)= sup1V(M) and V∗(M)= min1V(M). Clearly,

1V(1)= ∅.

Example 1. Let N0 represent the nonnegative integers. Consider the additive sub-
monoid M = {(x1, x2, x3) | x1 + 3x2 = 4x3 with each xi ∈ N0} of N3

0. Such a
monoid is known as a Diophantine monoid [Chapman et al. 2002]. A character-
ization of Diophantine monoids can be found in [Geroldinger and Halter-Koch
2006, Theorem 2.7.14]. It follows from [Chapman et al. 2000, Proposition 4.8],
that 1(M)= {2}. Using elementary number theory, it follows that the irreducible
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λn ρn

n ≡ 0 (mod 4) 2b
n
4c 2n

n ≡ 1 (mod 4) 2b
n−1

4 c +1 2n-1

n ≡ 2 (mod 4) 2b
n
4c + 2 2n

n ≡ 3 (mod 4) 2b
n−1

4 c + 3 2n-1

Table 1. Example 1: values for λn and ρn for n = 0, 1, 2, 3.

elements of M are v1 = (4, 0, 1), v2 = (0, 4, 3) and v3 = (1, 1, 1). The following
two facts will be key in determining 1V(M):

• using the relation v1 + v2 = 4v3, it is clear that an irreducible factorization in
M which contains both v1 and v2 can be increased in length by 2;

• by [Chapman and Smith 1993a, Lemma 2.8], if a and b are in V(n), then
a ≡ b (mod 2).

By observing that λn is obtained by factoring nv3 and ρn by factoring 2nv3, if n is
even or (2n − 1)v3, if n is odd, we obtain the values given in Table 1. We list the
first few values of V(n) below:

V(1)= {1}, V(5)= {3, 5, 7, 9},

V(2)= {2, 4}, V(6)= {4, 6, 8, 10, 12},

V(3)= {3, 5}, V(7)= {5, 7, 9, 11, 13},

V(4)= {2, 4, 6, 8}, V(8)= {4, 6, 8, 10, 12, 14, 16}.

We have that 1
(
V(n)

)
= {2} for all n and hence 1V(M) = {2}. Notice here that

1V(M)=1(M). �

Example 2. Let G be an abelian group and F(G) represent the free abelian monoid
on G. Set

B(G)=

∏
gi ∈G

gni
i |

∑
gi ∈G

ni gi = 0

 .
B(G) is a submonoid of F(G) known as the block monoid on G. Its irreducible
elements are known as minimal zero-sequences. Using the results of [Chapman
and Smith 1998], we can write out the unions of sets of lengths, and in turn the
V(n)-Delta sets of block monoids on relatively simple groups. For instance, if
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G = Z5, then [Chapman and Smith 1998, Example 5.4] yields:

ρn = b
5n
2

c for n ≥ 2,

λ1 = 1, λk = 2 for k = 2, 3, 4, 5,

λk = λ(k−5) + 2 for k ≥ 6,

for all n ≥ 1, V(n) = [λn, ρn] ∩ Z Hence, 1V(n) = {1} for each n > 1 in N and
thus 1V(B(Z5)) = {1}. Notice that our previous remark yields that 1(B(Z5)) =

{1, 2, 3}. �

We consider some basic properties of the V-Delta set of M in the following lemma.

Lemma 1. Let M be an atomic monoid with min1(M)= d and max1(M)= qd
for q ≥ 1.

(1) V∗(M)= d.

(2) V∗(M)≤ qd.

(3) {d} ⊆1V(M)⊆ {d, 2d, . . . , qd}.

Proof. Choose n ∈ N and let vi+1,n, vi,n be in V(n). We may choose x1 and x2 in
M• such that {n, vi+1,n} ⊆ L(x1) and {n, vi,n} ⊆ L(x2). By Equation (2), L(x1) is
a subset of n + dZ which contains n and whose consecutive elements are at most
qd apart. The same statement holds for L(x2), therefore the union, L(x1)∪L(x2),
also possesses all these properties. Note that the union is a subset of V(n), so
since vi+1,n and vi,n are consecutive elements of V(n), they in particular must be
consecutive elements of L(x1) ∪ L(x2). Therefore vi+1,n − vi,n = td for some
1 ≤ t ≤ q. This shows that 1V(n) ⊆ {d, 2d, . . . , qd}, which in turn implies (2)
and (3). It also determines that V∗(M) ≥ d, so we are left with just showing
d ∈1V(M).

Since d ∈1(M), there is an x ∈ M and l1, l2 ∈ L(x) with l2 − l1 = d. Consider
V(l1), to which both l1 and l2 belong. They must be consecutive elements of V(l1)

since we have just shown that consecutive elements are at least d apart. Hence
d ∈1(V(l1))⊂1V(M). �

Note that Example 2 indicates that the inequality in Lemma 1 regarding V∗(M)
may be strict. The next corollary will later be useful and follows immediately from
Lemma 1.

Corollary 1. If 1(M)= {d}, then 1V(M)= {d}.

We apply the V-Delta set to limits of the form Equation (1). Unlike the L(x)
and l(x) functions, there is no known argument that 8(M) exists for a general
atomic monoid M . Hence, our analysis of Equation (1) will involve the use of
lim inf and lim sup. Moreover, we must assume that 8(n) is finite for all n, since
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this is necessary for lim supn→∞ to be finite. Indeed, if 8(n) were infinite for
some n, then so would be 8(kn) for all k: if x has a factorization of length n and
of length m, then xk has factorizations of lengths kn and km. In [Chapman and
Smith 1990], an atomic monoid which statisfies 8(n) <∞ for all nonnegative n
is called 8-finite.

Our main theorem will use the stronger hypothesis that M has finite elasticity.
The following proposition shows this is a necessary condition for

lim sup
n→∞

8(n)
n

to be finite, and the main theorem shows that it is sufficient as well.

Proposition 1. Let M be an atomic 8-finite monoid. If ρ(M)= ∞, then

lim sup
n→∞

8(n)
n

= ∞.

Proof.
Since ρ(M)= ∞, there are xt such that at = L(xt) and bt = l(xt) satisfying

lim
t→∞

at

bt
= ∞.

But all the V(n) are finite and at ∈ V(bt), implying that for every M > 0 there
is an N > 0 such that for all t > N , bt > M . Therefore we may assume that the
sequence is chosen such that the bt are strictly increasing.

Since 8(n) is finite for each n, V∗(bt) exists and V∗(bt) ≥ at . Pruning the
sequence if necessary, we may assume that the bt are chosen such that

lim
t→∞

V∗(bt)

bt
= ∞.

We may estimate

8(bt)≥
V∗(bt)− V∗(bt)+ 1

qd
.

Since V∗(bt)≤ bt , we find that

8(bt)

bt
≥

V∗(bt)

btqd
−

1
qd

+
1

btqd
.

Taking lim inf of both sides, we see that

lim inf
t→∞

8(bt)

bt
≥ ∞,

since the bt are strictly increasing. Therefore

lim sup
n→∞

8(n)
n

= ∞. �
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Now our main theorem:

Theorem 1. Let M be an atomic monoid with ρ(M) <∞. Then M is8-finite and
moreover

ρ(M)2 − 1
ρ(M)V∗(M)

≤ lim inf
n→∞

8(n)
n

≤ lim sup
n→∞

8(n)
n

≤
ρ(M)2 − 1
ρ(M)V∗(M)

. (3)

Proof. Let n ∈ N and suppose that m ∈ V(n). It follows that

1
ρ(M)

≤
m
n

≤ ρ(M)

and hence
n

ρ(M)
≤ m ≤ nρ(M),

which shows that M is 8-finite. We further obtain that(
ρ(M)− 1

ρ(M)

)
n + 1

V∗(M)
≤8(n)≤

(
ρ(M)− 1

ρ(M)

)
n + 1

V∗(M)
.

Thus,(
ρ(M)2 − 1
ρ(M)V∗(M)

)
n +

1
V∗(M)

≤8(n)≤

(
ρ(M)2 − 1
ρ(M)V∗(M)

)
n +

1
V∗(M)

.

After dividing by n and taking the respective lim inf and lim sup, we get that

ρ(M)2 − 1
ρ(M)V∗(M)

≤ lim inf
n→∞

8(n)
n

≤ lim sup
n→∞

8(n)
n

≤
ρ(M)2 − 1
ρ(M)V∗(M)

. �

If1(M)= {d}, then Corollary 1 implies that V∗(M)= V∗(M)= d and Theorem 1
reduces to the following.

Corollary 2. Let M be an atomic monoid with ρ(M) <∞. If 1(M)= {d}, then

8(M)=
ρ(M)2 − 1
ρ(M)d

. (4)

Corollary 2 immediately has some nice applications.

Example 3. A numerical monoid is an additive submonoid of the nonnegative
integers. Every numerical monoid S has a unique minimal set of generators, and
we will use the notation S = 〈a1, a2, . . . , at 〉 to represent the minimal generating
set (which we assume is written in linear order). S is primitive if

1 = gcd{s | s ∈ S}.

Every numerical monoid S is isomorphic to a unique primitive numerical monoid,
so when working with numerical monoids, we can always assume that S is a
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primitive numerical monoid. By [Bowles et al. 2006], there exists a method for
calculating max1(S) in finite time and

min1(S)= gcd {ai − ai−1 | i ∈ {2, 3, . . . , t}} = d.

By [Chapman et al. 2006, Theorem 2.1], ρ(S) = at/a1. Hence for a numerical
monoid, Equation (3) reduces to

a2
t − a2

1

V∗a1at
≤ lim

n→∞
inf
8(n)

n
≤ lim

n→∞
sup

8(n)
n

≤
a2

t − a2
1

V∗a1at
.

If we know further that the generators of S form an arithmetic sequence (that is,
S =〈a, a+d, a+2d, . . . , a+kd〉 for some positive integers d and k), then [Bowles
et al. 2006, Theorem 3.9] indicates that1(S)={d}. In this case we obtain an exact
calculation of 8(S) as

8(S)=
k(2a + kd)
a(a + kd)

= k
(

1
a

+
1

a + kd

)
. �

Example 4. Let a and b be positive integers with a ≤ b and a2
≡ a (mod b). The

set of numbers M(a, b) = {x | x ∈ N and x ≡ a (mod b)} ∪ {1} forms a mul-
tiplicative monoid known as an arithmetical congruence monoid (ACM). ACMs
have been the focus of three recent papers in the literature [Banister et al. 2007a,
2007b, Baginski et al. 2008]. An ACM is called local if gcd(a, b)= pα for some
prime number p and positive integer α. It follows from elementary number theory
that a local ACM M(a, b) has a minimal index, which we denote by β, for which
pβ ∈ M(a, b). There are two relevant known results for a local ACM M(a, b):

• ρ(M(a, b))=
α+β−1
α

[Banister et al. 2007b, Theorem 2.4]

• if α = β > 1, then 1(M(a, b))= {1} [Baginski et al. 2008, Theorem 3.1].

Hence, for an ACM as above where α = β > 1 (for instance, M(4, 12)), Equation
(4) reduces to

8(M(a, b))=
(2α− 1)2 −α2

α(2α− 1)
. �

We close with a few comments:

• The proof in [Chapman and Smith 1993b] of Equation (1) relies on a different
technique than that used above. The proof relies on knowing the exact struc-
ture of the sets in an infinite subsequence of the sequence V(1), V(2), . . . .

• By a recent result of [Freeze and Geroldinger ≥ 2008],

V∗(B(G))= V∗(B(G))= 1

for all abelian groups G. Combined with Theorem 1, this yields a simpler
proof of Equation (1) than the original proof in [Chapman and Smith 1993b].
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• Connected to the last remark is a question posed in [Chapman and Smith 1998,
Section 5]: for B(Zn), does ρ3 = max V(3)= n + 1? This question has been
answered in the affirmative by [Gao and Geroldinger ≥ 2008].
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An asymptotic for the representation of integers
as sums of triangular numbers

Atanas Atanasov, Rebecca Bellovin,
Ivan Loughman-Pawelko, Laura Peskin and Eric Potash

(Communicated by Ken Ono)

Motivated by the result of Rankin for representations of integers as sums of
squares, we use a decomposition of a modular form into a particular Eisenstein
series and a cusp form to show that the number of ways of representing a positive
integer n as the sum of k triangular numbers is asymptotically equivalent to the
modified divisor function σ ]2k−1(2n + k).

1. Introduction

1A. General problem. We wish to study δk(n), the number of ways to write n as
the sum of k triangular numbers. This problem dates back to Gauss, who discovered
that every nonnegative integer can be represented as a sum of three triangular num-
bers. The basic problem is similar to questions about representations of integers
as sums of squares, and some of the basic techniques for attacking that problem
carry over. We define the function

2(q) :=

∞∑
n=−∞

qn2
= 1 + 2q + 2q4

+ 2q9
+ · · ·

so that
2k(q)=

∑
n≥0

rk(n)qn

where rk(n) is the number of representations of n as the sum of k squares. It
was exploited in [Rankin 1965] the fact that 2(1) is a modular form of weight 1

2
for 00(4) to study the functions rk(n). Ono, Robins, and Wahl [1995] defined an
analogous modular form to study triangular numbers.

We begin by defining triangular numbers.

MSC2000: 11F11.
Keywords: modular form, triangular number, asymptotics.
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Definition 1.1. The n-th triangular number (n ≥ 0) is

Tn :=
n(n + 1)

2
.

These numbers may be geometrically interpreted as the number of dots in a grid
with the shape of an equilateral triangle of side length n. We also introduce the
generating functions

9(q) :=

∞∑
n=0

qTn = 1 + q + q3
+ q6

+ · · ·

and

9k(q)=

∞∑
n=0

δk(n)qn.

1B. Modular group and congruence subgroups. Before we formally define mod-
ular forms, we need to define the modular group and its subgroups.

Definition 1.2. Let A =
(

a b
c d

)
. The modular group 0 is

SL2(Z) = {A | a, b, c, d ∈ Z and det A = ±1}.

It is well known that 0 is generated by S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Definition 1.3. The congruence subgroups of level N ∈ N are defined as follows:

(1) 00(N ) := {A ∈ 0 | c ≡ 0 mod N };

(2) 01(N ) := {A ∈ 0 | c ≡ 0 mod N and a ≡ d ≡ 1 mod N };

(3) 0(N ) := {A ∈ 0 | c ≡ b ≡ 0 mod N and a ≡ d ≡ 0 mod N }.

It is easy to check that they are, in fact, subgroups.
It is clear that for every level N ∈ N, 0(N ) ≤ 01(N ) ≤ 00(N ) ≤ 0. More

precisely, the following identities hold [Koblitz 1993, p. 231]:

[0 : 00(N )] = N
∏
p | N

(
1 +

1
p

)
,

[0 : 01(N )] = N 2
∏
p | N

(
1 −

1
p2

)
,

[0 : 0(N )] = N 3
∏
p | N

(
1 −

1
p2

)
.
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We will make use of 00(4), which is generated by T and ST −4S. In particular,
[0 : 00(4)] = 6, with coset representatives

I =

( 1 0
0 1

)
, S−1T −2S =

( 1 0
2 1

)
, S =

( 0 −1
1 0

)
,

ST =

( 0 −1
1 1

)
, ST 2

=

( 0 −1
1 2

)
, ST 3

=

( 0 −1
1 3

)
.

Any group of 2×2 matrices gives rise to an action on the complex plane, namely
the linear fractional transformation

Az :=
az + b
cz + d

,

where A =
(

a b
c d

)
. In particular, 0 and its subgroups act on the upper half plane

H = {z ∈ C | Im(z) > 0}.

Considering the geometric meaning of orbits and equivalence classes under this
action on H leads to the idea of a fundamental domain. This is a subset of H

which possesses both convenient topological and geometric properties and is also
algebraically related to some 0 or one of its subgroups.

Definition 1.4. A closed, simply connected region F in H is called a fundamental
domain for a subgroup 0′ of 0 if every point in the plane is equivalent under 0′ to
a point in F and no two points in the interior of F are equivalent under 0′.

For example, a fundamental domain for 0 is the set

R0 = {z ∈ C | −
1
2 ≤ Re(z)≤

1
2 , |z| ≥ 1}.

Figure 1 shows this fundamental domain, as well as the fundamental domain for
00(4)

For the sake of consistency, we will use R0′ to denote a fundamental domain
for 0′. The following lemma provides an algorithm to compute R0′ using R0, and
coset representation of 0′ in 0.

Lemma 1.5. Let 0′
≤ 0 be of finite index n in 0. If 0 =

⋃n
i=1 γi0

′ is its coset
representation, then

R0′ =

n⋃
i=1

γ−1
i R0.

Proof. This is proved in [Koblitz 1993, p.105]. �

Definition 1.6. Let 0′
≤ 0, and fix a fundamental domain R0′ . The points where

R0′ intersects the boundary ∂H = {i∞} ∪ R are called the cusps of 0′.
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Figure 1. The fundamental domains for 0 (left) and for 00(4) (right).

The full modular group has a single cusp at i∞. From the fundamental domain
for 00(4) shown in Figure 1, we see that 00(4) has three cusps, namely 0, 1

2 and
i∞.

1C. Modular forms. Modular forms are holomorphic functions on H which have
nice symmetry properties under the action of 0 or one of its subgroups. Specifi-
cally, we say

Definition 1.7. f : H → C is a modular form of weight k ∈ N over 00(N ) if

(i) f is holomorphic on H;

(ii) f is holomorphic at the cusps of 00(N );

(iii) for all A =
(

a b
c d

)
∈ 00(N ), the equation f (Az)= (cz + d)k f (z) holds for all

z ∈ H.

Definition 1.8. A modular form f over 0′ is called a cusp form if it vanishes at
all cusps of 0′.

If T ∈ 0′, it follows that a modular form over 0′ always has period 1. In other
words, f (z) = f (z + 1) for all z ∈ H. Therefore f has a Fourier expansion (also
called q-expansion) in q = e2π i z:

f (z)=

∞∑
n=0

c(n)qn.
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Modular forms of a given congruence subgroup and of fixed weight form a
vector space. This structure can be of great help when trying to study a particular
modular form. Using a suitable basis, we can decompose elements of a given
space of modular forms in terms of basis vectors. This technique often produces
expressions that are easy to work with.

Definition 1.9. The vector space of modular forms of weight k over the congruence
subgroup0′ of0 is denoted Mk(0

′). The subspace of cusp forms is denoted Sk(0
′).

For all 0′
≤0 which contain −I , both M2k+1(0

′) and S2k+1(0
′) are trivial. This

follows by applying the transformation −I to a modular form f (z), implying

f (z)= (−1)2k+1 f (z)= − f (z),

and hence f (z) = 0 for all z ∈ H. Thus, we may consider only modular forms of
even weight. Since 00(4) will be important in our work, we state without proof a
characterization of its spaces of even-weight modular forms. Recall the definition
of 2(z)=

∑
∞

n=−∞
qn2

.

Definition 1.10. Let F(z) be the following modular form of weight 2 over 00(4):

F(z)=

∞∑
n=1

σ1(2n + 1)q2n+1.

Lemma 1.11. M2k(00(4)) is a (k + 1)-dimensional vector space with basis

{Fk, Fk−124, . . . , F24(k−1),22k
}.

Furthermore, S2k(00(4)) consists of all polynomials divisible by

24 F(24
− 16F)= η12(2z).

Therefore, there exists an isomorphism between S2k(00(4)) and M2k−6(00(4)).

Proof. This is Exercise III.3.17 in [Koblitz 1993], proved on pp. 235–6. �

1D. Representations as sums of triangular numbers. In our study of δk(n), we
focus on the expressions for δ4k(n). The generating function qk94k(q2) is in
M2k(00(4)), which is a well-understood space of small dimension. By decom-
posing elements of M2k(00(4)) for some k into basis vectors, it is possible to
find identities between qk94k(q2) and other forms in the same space with ac-
cessible coefficients. This is the method used by Ono et al. [1995] for δk(n),
k = 2, 3, 4, 6, 8, 10, 12 and 24. Their results for δ4k(n) are summarized in the
following lemma.
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Lemma 1.12. For n ≥ 0,

δ4(n)= σ1(2n + 1),

δ8(n)= −
1
8σ

]

3 (n + 1),

δ12(n)=
1

256(σ5(2n + 3)− a(2n + 3)), and

δ24(n)=
1

17689

(
σ
]

11(n + 3)− τ(n + 3)− 2072 τ
(n + 3

2

))
,

where a(n) is defined by η12(2z) =
∑

∞

n=1 a(n)qn and τ(n) is the n-th Fourier
coefficient of 1(z)= (2π)12η24(z).

Looking at the case δ4, this lemma states that

q94(q2)=

∞∑
n=0

δ4(n)q2n+1
= F(z),

where F is as defined previously, so we have the following useful corollary:

Corollary 1.13.
qk94k(q2)= Fk .

2. δ4k as an Eisenstein series plus a cusp form

The generating function 2k(z) for rk(n) can be decomposed into a cusp form and
a particular Eisenstein series. In the same vein as the work by Rankin [1965] on
2k(z), we would like to similarly decompose qk94k(q2).

Definition 2.1. Let k ∈ N. Then let H2k be the Eisenstein series of weight 2k on
00(4) defined by

H2k(z)=



∞∑
n>0
n odd

σ
]

2k−1(n)q
n if k is odd,

∞∑
n>0

n even

σ
]

2k−1(n)q
n if k is even.

Definition 2.2. We define the partial zeta function ζ i (s) for i modulo N to be

ζ i (s) :=

∑
n≡i mod N

1
ns .

Proposition 2.3. For a given congruence subgroup 00(N ), let G(a1,a2)
k (z) be the

Eisenstein series ∑
m1≡a1(N )
m2≡a2(N )

1

(m1z + m2)
k
,
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and let B2k ∈ Q be the 2k-th Bernoulli number. Then

(1) as a modular form for 00(2),
∞∑

n=1

σ
]

2k−1(n)q
n

= −
B2k

8kζ(2k)

(
G(1,0)

2k (z)+ G(1,1)
2k (z)

)
;

(2) as a modular form for 00(4),
∞∑

n=1

σ
]

2k−1(n)q
n

= −
22k B2k

8kζ(2k)

(
G(2,0)

2k (z)+ G(2,2)
2k (z)

)
.

Proof. Koblitz [1993, p. 133] shows that for 00(N ),

G(a1,a2)
k (z) = b(a1,a2)

0 +
(−1)k−12kζ(k)

N k Bk

·

( ∑
m1≡a1 mod N

m1>0

∞∑
j=1

j k−1ξ ja2q jm1
N +(−1)k

∑
m1≡−a1 mod N

m1>0

∞∑
j=1

j k−1ξ− ja2q jm1
N

)
,

where

ξ := e2π i/N , qN := e2π i z/N , b(a1,a2)
0 =

{
0 if a1 6= 0,

ζ a1(k)+ (−1)kζ−a2(k) if a1 = 0.

We can collect terms with jm1 = n to find explicit expansions of some particular
G(a1,a2)

k (z). From the above expression, we have two assertions:

(i) G(1,0)
2k (z)= 2c2k

∞∑
n=1

( ∑
j | n,n/j odd

j2k−1
)

qn
2 ,

G(1,1)
2k (z)= 2c2k

∞∑
n=1

( ∑
j | n,n/j odd

j2k−1(−1) j
)

qn
2 .

Adding these two series, we get

G(1,0)
2k (z)+G(1,1)

2k (z)= 22k+1c2k

∞∑
n=1

σ
]

2k−1(n)q
n
=−

8kζ(2k)
B2k

∞∑
n=1

σ
]

2k−1(n)q
n,

which is the first assertion.

(ii) The second assertion follows similarly, except that c2k = −
4kζ(2k)
24k B2k

for the
Eisenstein series of 00(4). �

If we take the first identity from Proposition 2.3 and substitute in 2z, we obtain
∞∑

n=1

σ
]

2k−1(n)q
2n

= −
B2k

8kζ(2k)

(
G(1,0)

2k (2z)+ G(1,1)
2k (2z)

)
.
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This is a modular form for 00(4). By the definition of σ ]2k−1(n) and the definition
of G(a1,a2)

k (z),

∞∑
n=1

σ
]

2k−1(2n)q2n
=

−
22k B2k

16ζ(2k)

(
G(2,0)

2k (z)+ G(2,1)
2k (z)+ G(2,2)

2k (z)+ G(2,3)
2k (z)

)
. (2-1)

We have proven

Corollary 2.4.
∑

n>0
even

σ
]

2k−1(n)q
n and

∑
n>0
odd

σ
]

2k−1(n)q
n are both modular forms

for 00(4). The former is given by Equation (2-1), and the latter is equal to

−
22k B2k

16ζ(2k)

(
G(2,0)

2k (z)− G(2,1)
2k (z)+ G(2,2)

2k (z)− G(2,3)
2k (z)

)
.

We can now compute the desired values at the cusps. From [Koblitz 1993], we
have

G(2,i)
2k (z)= −

4kζ(2k)
42k B2k

∞∑
n=1

( ∑
j | n

n/j≡i(4)

j2k−1
+

∑
j | n

n/j≡−i(4)

j2k−1
)

qn
4

so it follows that
∑

n>0
even

σ
]

2k−1(n)q
n and

∑
n>0
odd

σ
]

2k−1(n)q
n are both 0 at i∞.

To find the values at the cusp 0, we use the transformation S. We have

G(2,0)
2k (z)|[S]2k = G(0,2)(z); G(2,1)

2k (z)|[S]2k = G(1,2)(z);

G(2,2)
2k (z)|[S]2k = G(2,2)(z); G(2,3)

2k (z)|[S]2k = G(3,2)(z).

Additionally, G(1,2)(i∞) = G(2,2)(i∞) = G(3,2)(i∞) = 0 (from [Koblitz 1993]
again) and

G(0,2)(i∞)= 2ζ 2(2k)= 2
∑
n>0

n≡2(4)

1
n2k = 2

( 1
22k −

1
24k

)
ζ(2k).

Hence,
∑

n>0
even

σ
]

2k−1(n)q
n and

∑
n>0
odd

σ
]

2k−1(n)q
n both equal

−
B2k

8k

(
1 −

1
4k

)
at 0.
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To find the values at the cusp 1
2 , we use the transformation ST −2S. We have

G(2,0)
2k (z)|[ST −2S]2k = G(2,0)(z); G(2,1)

2k (z)|[ST −2S]2k = G(0,1)(z);

G(2,2)
2k (z)|[ST −2S]2k = G(2,2)(z); G(2,3)

2k (z)|[ST −2S]2k = G(0,3)(z).

We know G(2,0)
2k (i∞)= G(2,2)

2k (i∞)= 0, and

G(0,1)
2k (i∞)= G(0,3)

2k (i∞)= ζ 1(2k)+ ζ 3(2k)=

∑
n>0
n odd

1
n2k =

(
1 −

1
22k

)
ζ(2k).

Hence, at the cusp 1
2 ,

∑
n>0,even

σ
]

2k−1(n)q
n

= −
4k B2k

8k

(
1 −

1
4k

)
,

∑
n>0,odd

σ
]

2k−1(n)q
n

=
4k B2k

8k

(
1 −

1
4k

)
.

Theorem 2.5. Let k ∈ N. Then

qk94k(q2)=
1
dk
(H2k(z)− T2k(z)), (2-2)

where

dk = −
(−16)k B2k(4k

− 1)
8k

∈ Q

and T2k(z) ∈ S2k(00(4)).

Proof. We know that Fk(z) is 0 at i∞,
(
−

1
64

)k at 0, and
( 1

16

)k at 1
2 , as is 1

dk
H2k(z).

Hence,

qk94k(q2)−
1
dk

H2k(z)

is a cusp form. �

Corollary 2.6.

δ4k(n)=
1
dk
(σ

]

2k−1(2n + k)− a(2n + k)), (2-3)

where

T2k(z)=

∑
n

a(n)qn
∈ S2k(00(4)).

Proof. This follows from equating the coefficients of the Fourier series in (2-2). �
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k
∑

a(n)qn

1 0
2 0
3 28 F − 1624 F2

4 27(28 F2
− 1624 F3)

5 216 F − 32212 F2
+ 1996828 F3

− 315924 F4

6 211(216 F2
− 32212 F3

+ 232828 F4
− 3315224 F5)

7 224 F − 48220 F2
+ 1595136216 F3

−51023872212 F4
+ 166074777628 F5

− 2004143308824 F6

8 215
(
224 F2

− 48220 F3
+ 33576216 F4

−1053952212 F5
+ 2327193628 F6

− 23796940824 F7
)

Table 1

Corollary 2.7. δ4k(n)∼ σ
]

2k−1(2n + k).

Proof. The cusp form coefficients in (2-3) a(2n +k) ∈ O(nk) [Apostol 1990]. The
σ
]

2k−1(2n + k) term has lower bound n2k−1, and thus this term is asymptotically
dominant. Therefore

lim
n→∞

δ4k(n)

σ
]

2k−1(2n + k)
= 1 . �

For particular k, we can compute the value of c2k , and then, by equating finitely
many coefficients, compute the remaining cusp form

∑
a(n)qn as a homogeneous

polynomial in F and 24. We list the result of this computation for several values
of k in Table 1.

We can rewrite (2-3) using

σ
]
k (n)=

{
σk(n) if n is odd,

2kσ
]
k (

n
2 ) if n is even,

and the values in Table 1. The resulting formulae for k = 1, 2, 3, and 6 agree with
those in Lemma 1.12.
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