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We relate the parity of the partition function to the parity of the q-series co-
efficients of certain powers of the modular discriminant using their generating
functions. This allows us to make statements about the parity of the initial values
of the partition function and to obtain a modified Euler recurrence for its parity.

1. Introduction and statement of results

We begin by defining two power series in q , the power series of the modular dis-
criminant, and the generating function of the partition function, p(n). The q-series
expansion of the modular discriminant 1(q) defines the Ramanujan τ -function.
Namely, we have that

1(q) = q
∞∏

n=1

(1 − qn)24
=

∞∑
n=0

τ(n)qn

= q − 24q2
+ 252q3

− 1472q4
+ 4830q5

− 6048q6
− 16744q7

· · · .

(1.1)

Ramanujan investigated τ(n) and observed that τ(nm) = τ(n)τ (m) for (n, m) = 1,
as well as congruences like τ(n) ≡

∑
d|n d11 (mod 691).

The partition function counts the number of distinct partitions of integers n.
Like 1(q),the generating function for p(n) is an infinite product. More precisely,
we have

P(q) =

∞∑
n=0

p(n)qn
=

1
∞∏

n=1

(1 − qn)

= 1 + q + 2q2
+ 3q3

+ 5q4
+ 7q5

+ 11q6
· · · .

(1.2)
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Ramanujan proved that for all nonnegative integers n

p(5n + 4) ≡ 0 (mod 5), (1.3)

p(7n + 5) ≡ 0 (mod 7), (1.4)

p(11n + 6) ≡ 0 (mod 11). (1.5)

However, much less is known about p(n) (mod 2). For example, it is conjectured
that as x approaches infinity, the number of even and odd values of p(n) with n ≤ x
approaches 1

2 x . Nicolas et al. [1998] prove that as x → ∞,

#{n ≤ x : p(n) ≡ 0 (mod 2)} �
√

x

#{n ≤ x : p(n) ≡ 1 (mod 2)} �
√

x · e
−(log 2+ε) log x

log log x .

Ahlgren [1999] proves a slightly better bound for the number of odd values of
p(n): for sufficiently large x ,

#{n ≤ x : p(n) ≡ 1 (mod 2)} �

√
x

log x
.

Nicolas [2006] proves that there exists a constant κ > 0 such that for sufficiently
large x ,

#{n ≤ x : p(n) ≡ 1 (mod 2)} �

√
x(log log x)κ

log x
. (1.6)

He proves this bound for all κ > 0 and sufficiently large x [Nicolas 2008], as well
as proving a bound for the number of even values of p(n) up to x :

#{n ≤ x : p(n) ≡ 0 (mod 2)} � 0.28
√

x log log x (1.7)

The purpose of this paper is to investigate the parity of p(n). We first recall
Euler’s recurrence for p(n) [Andrews 1971]. If n is a positive integer, then

p(n) =

∑
k≥1

(−1)k+1 p
(

n −
3k2

+ k
2

)
+

∑
k≥1

(−1)k+1 p
(

n −
3k2

− k
2

)
.

We deform this to obtain many recurrences for p(n) (mod 2).

Theorem 1.1. For integers s ≥ 2, we have:

1(q)
4s

−1
3 ≡

( ∞∑
n=0

p(n)q8n+
4s

−1
3

)( ∞∑
n=−∞

q4s+1(3n2
−n)

)
(mod 2).

To state the next theorem, we let τm(n) denote the nth coefficient of 1(q)m .
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Theorem 1.2. If s ≥ 2 is an integer, then for any positive integer n we have

p(n) ≡ τ 4s−1
3

(
8n +

4s
− 1
3

)
+

b
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
− m))

+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
+ m)) (mod 2).

Remark 1. For n such that τ(4s−1)/3(n) ≡ 0 (mod 2), this gives an Euler-type
recurrence. We note that it is known [Serre 1974] that

lim
x→∞

#{n ≤ x : τ(4s−1)/3(n) ≡ 0 (mod 2)}

x
= 1.

Therefore, for almost all n, we have

p(n) ≡

b
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n −22s−1(3m2
−m))+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n −22s−1(3m2
+m)) (mod 2).

In order to state the next theorem, we define a function which counts the number
of representations of an integer n by certain t-ary quadratic forms:

rt(n) = #{n = x2
1 + 4x2

2 + · · · 4t−1x2
t : xi are positive odd integers}.

Theorem 1.3. If n is a positive integer, then for s ≥ 2, we have

τ(4s−1)/3(n) ≡ rs(n) (mod 2).

Now we turn to some applications of Theorem 1.1. In particular, we study the
case of s = 2 where we can determine τ5(8n + 5) (mod 2).

Theorem 1.4. If n is an integer, then

τ5(8n + 5) ≡{
1 (mod 2) if 8n + 5 = k · l2, where k ≡ 5 (mod 8) is prime and l ≡ 1(mod 2),

0 (mod 2) otherwise.

Corollary 1.5. If 8n+5 = k ·l2, where k ≡ 5 (mod 8) is prime and l ≡ 1 (mod 2),
then

p(n) ≡ 1 +

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m)) +

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2).
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If 8n + 5 cannot be written in such a form, then

p(n) ≡

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m)) +

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2).

Using these results, we obtain estimates for the parity of p(n) which fall just short
of (1.7) and (1.6).

Corollary 1.6. For all sufficiently large positive integers x , we have

#{n ≤ x : p(n) ≡ 1 (mod 2)} �

√
x

log x
.

Corollary 1.7. For all sufficiently large positive integers x , we have

#{n ≤ x : p(n) ≡ 0 (mod 2)} �
√

x .

2. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We recall the definition of 1(q) as in (1.1),

1(q) = q
∞∏

n=1

(1 − qn)24. (2.8)

Raising the series to the 4s
−1
3 power, we find

1(q)
4s

−1
3 =

(
q

∞∏
n=1

(1 − qn)24
) 4s

−1
3

≡ q
4s

−1
3

∞∏
n=1

(1 − q8n)4s
−1

≡ q
4s

−1
3

∞∏
n=1

(1 − q8n·4s
)

1∏
∞

n=1(1 − q8n)
(mod 2). (2.9)

Using the fact that P(q) =
1∏

∞

k=1(1 − qk)
, and replacing q by q8, we have

1(q)
4s

−1
3 ≡ q

4s
−1
3

( ∞∑
n=0

p(n)q8n
)( ∞∏

n=1

(1 − q8n·4s
)
)

(mod 2).

Using Euler’s identity,
∞∏

k=1

(1 − qk) =

∞∑
n=−∞

(−1)nq
3n2

−n
2 ,
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and replacing q by q8·4s
, we find

1(q)
4s

−1
3 ≡ q

4s
−1
3

( ∞∑
k=0

p(n)q8n
)( ∞∑

n=−∞

q
8·4s (3n2

−n)
2

)
≡

( ∞∑
n=0

p(n)q8n+
4s

−1
3

)( ∞∑
n=−∞

q4s+1(3n2
−n)

)
(mod 2). �

Proof of Theorem 1.2.. By Theorem 1.1, we have

1(q)
4s

−1
3 ≡

( ∞∑
n=0

p(n)q8n+
4s

−1
3

)( ∞∑
n=−∞

q4s+1(3n2
−n)

)
(mod 2)

≡

( ∞∑
k=0

p(k)q8k+
4s

−1
3

)(
1 +

∞∑
m=1

q4s+1(3m2
+m)

+

∞∑
m=1

q4s+1(3m2
−m)

)
≡

∞∑
k=0

p(k)q8k+
4s

−1
3 +

∞∑
m=1

( ∞∑
k=0

p(k)q8k+
4s

−1
3 +4s+1(3m2

+m)
)

+

∞∑
m=1

( ∞∑
k=0

p(k)q8k+
4s

−1
3 +4s+1(3m2

−m)
)

(mod 2).

(2.10)

We now examine the coefficient of qr , where r is of the form 8n +
4s

−1
3 . The

left side of (2.10) becomes τ(4s−1)/3(8n +
4s

−1
3 ). The right side becomes the sum

of p(k) for all k such that there exists an integral m such that

8n +
4s

− 1
3

= 8k +
4s

− 1
3

+ 4s+1(3m2
− m)

or

8n +
4s

− 1
3

= 8k +
4s

− 1
3

+ 4s+1(3m2
+ m).

Solving for k, we obtain

k = n − 22s−1(3m2
± m).

Because k ≥0, the limits on the sums must be chosen so that n−22s−1(3m2
±m)≥0.

Thus, we have

τ 4s−1
3

(8n +
4s

− 1
3

) ≡ p(n) +

b
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
− m))

+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
+ m))) (mod 2).
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Solving for p(n), we obtain a recurrence formula,

p(n) ≡ τ 4s−1
3

(8n +
4s

− 1
3

) +

b
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
− m))

+

b−
1
6 +

1
3·2s

√
4s−1+6nc∑

m=1

p(n − 22s−1(3m2
+ m)) (mod 2). �

3. Proof of Theorems 1.3 and 1.4 and Corollary 1.5

Lemma 3.1. If n is a positive integer, then

τ(n) ≡

{
1 if n = (2k + 1)2,

0 otherwise.

Proof. By the definition of 1(q), we have

1(q) = q
∞∏

n=1

(1 − qn)24

= q
( ∞∑

k=0

(−1)k(2k + 1)qk(k+1)/2
)8

≡

∞∑
k=0

q
(
q4k(k+1)

)
≡

∞∑
k=0

q(2k+1)2
(mod 2). �

Lemma 3.2. For integers s ≥ 2, we have

1(q)
4s

−1
3 ≡ 1(q)1(4q) · · · 1(4s−1q) (mod 2).

Proof. We can write 4s
−1
3 as 1 + 4 + · · · 4s−1. Substituting this into the expression

1(q)
4s

−1
3 , we find

1(q)
4s

−1
3 =1(q)1+4+···4s−1

=1(q)1(q)4
· · · 1(q)4s−1

≡1(q)1(4q) · · · 1(4s−1q) (mod 2). �

Proof of Theorem 1.3. Combining Lemmas 3.1 and 3.2, we find that τ(4s−1)/3(n)

(mod 2) is equivalent to the number of representations of n as

x2
1 + 4x2

2 + · · · 4s−1x2
s−1,
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where xi are positive odd integers. We can write this as

rs(n) = #{x2
1 + 4x2

2 + · · · 4s−1xs : xi are positive odd integers}.

Thus, we have τ(4s−1)/3(n) ≡ rs(n) (mod 2). �

We examine the number of representations of n as x2
+ y2 for any integers x, y

in order to find a formula for the number of representations of the form k2
+ 4l2

for positive, odd integers k, l.
We define F(q), a power series in q whose coefficients give the number of

representations of n as the sum x2
+ y2 for integers x, y. This function is generated

by summing qx2
+y2

over all integers x and y:

F(q) =

∞∑
x=−∞

∞∑
y=−∞

qx2
+y2

=

∞∑
n=0

f (n)qn. (3.11)

We find a factorization for the coefficients of F(q).

Theorem 3.3. Let n be a positive integer such that the factorization of n contains
no odd powers of primes which are 3 (mod 4). Then f (n) has the factorization

f (n) =
(
4 ·

∏
(m p − 1)

)
,

where the product is taken over all primes p ≡ 1 (mod 4) which divide n and
where m p is the largest integer such that pm p |n. If the factorization of n contains
an odd power of a prime which is 3 (mod 4), then f (n) = 0.

This follows from the unique factorization of n in Z[i] [Hardy and Wright 1979].
If we restrict our function to count only the representations of n of the form

k2
+4l2 for positive odd k, l, we can create a similar power series in q , denoted by

G(q), such that the coefficients of G(q) give the number of these representations.
We write

G(q) =

∞∑
x=0

∞∑
y=0

q(2x+1)2
+4(2y+1)2

=

∞∑
n=0

g(n)qn. (3.12)

We again find a factorization for these coefficients.

Theorem 3.4. For integers n ≡ 5 (mod 8), we have

g(n) =
1
8 f (n).

Proof. Because the only quadratic residues of 8 are 0, 1 and 4, and n ≡ 5 (mod 8),
the only representations of n as the sum of two squares are of the form k2

+ (2l)2,
where k, l are positive odd integers. Therefore, the theorem states that for every
representation of n as k2

+ 4l2 for positive, odd k, l, there are 8 representations of
n as x2

+ y2 for integers x, y. For each k, l, we can choose x and y to be either
positive or negative. This gives us four new representations. Additionally, although
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switching l and k produces a different n, switching x and y yields two different
representations of n.

Combining both above methods of generating multiple representations in x and
y, we find that for each representation of n as the k2

+ 4l2 for k and l nonnegative
odd integers, there exists 8 representations of n as x2

+ y2, for integers x, y. �

Proof of Theorem 1.4. We now investigate the parity of τ5(8n + 5).
By Theorem 1.3,

τ5(8n + 5) ≡ r2(8n + 5),

and by Theorem 3.4,

r2(8n + 5) = g(8n + 5) =
1
8(8n + 5).

Combining these facts with the formula for f (n) from Theorem 3.3, we have

τ5(8n + 5) ≡
1
2

∏
(m p + 1) (mod 2).

The odd values of τ5(8n + 5) are those for which the factorization of
∏

(m p + 1)

has exactly one power of 2. This occurs when exactly one m p1 is odd, in which
case we can write

8n + 5 = p
m p1
1 (p

m p2
2 · · · pm pn

n )(r),

where r is the product of even powers of primes which are 3 (mod 4). In the
factorization of 8n + 5, there are an even number of factors of every prime except
p1, so we can write

8n + 5 = p
m p1
1 s2

where s is odd. Because p
m p1
1 s2

≡ 5 (mod 8), and the only quadratic residues of
8 are 0, 1 and 4, p1 ≡ 5 (mod 8).

If we cannot write 8n + 5 in this form, then

1
2

∏
(m p + 1) ≡ 0 (mod 2),

so τ(42−1)/3(8n + 5) is even. �

Remark 2. We have proven the additional result that m p1 = 4m + 1 for some
nonnegative integer m, so 8n + 5 = p4m+1

1 s2 with p1 ≡ 5 (mod 8) prime, m ≥ 0,
s odd, and p1 - s. This stronger version of Theorem 1.4 first appeared as Exercise
6.7 in [Serre 1976], and also appears in [Nicolas 2006].

Proof of Corollary 1.5. By Theorem 1.2 we have

p(n)≡ τ5(8n+5) +

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
−m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
+m)) (mod 2).
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By Theorem 1.4, we find for n such that 8n + 5 = k · l2, where k ≡ 5 (mod 8) is
prime and l ≡ 1 (mod 2),

p(n) ≡ 1 +

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m)) +

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2).

If 8n + 5 cannot be written in this form, then

p(n) ≡

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
− m)) +

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n − 8(3m2
+ m)) (mod 2). �

Lemma 3.5. For all sufficiently large positive integers x ,

#{n ≤ x : τ5(n) ≡ 1 (mod 2)} �
x

log x
.

Proof. By Theorem 1.4, τ5(n) ≡ 1 (mod 2) if n can be written in the form kl2,
where k ≡ 5 (mod 8) is prime, and l ≡ 1 (mod 2). We look at the case where
n ≡ 5 (mod 8) is prime, and k = n and l = 1. For sufficiently large x , we have

x
4 log x

.

such that n ≤ x [Apostol 1976]. This gives us a lower bound for the number of
odd values of τ5(n) where n ≤ x . �

Proof of Corollary 1.6. We rewrite Theorem 1.2 with s = 2:

τ5(8n +5) ≡ p(n)+

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n −8(3m2
−m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n −8(3m2
+m))) (mod 2).

(3.13)
By the proof of Lemma 3.5, we have

#{n ≤ x : τ5(8n + 5) ≡ 1 (mod 2)} �
x

log x
. (3.14)

For each of these n, there exists a nonnegative integer r such that

p(n − 8(3r2
− r)) ≡ 1 (mod 2)

or
p(n − 8(3r2

+ r)) ≡ 1 (mod 2).

Because the number of possible r is⌊
1
6 +

1
12

√
4 + 6x

⌋
+

⌊
−

1
6 +

1
12

√
4 + 6x

⌋
+ 1 ∼

√
x,
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there must be at least
c ·

x
log x

(
1

√
x

)
distinct values of n ≤ x such that p(n) is odd.

Therefore, we have

#{n ≤ x : p(n) ≡ 1 (mod 2)} �

√
x

log x
. �

Proof of Corollary 1.7. We rewrite Theorem 1.2 in the case of s = 2:

τ5(8n+5)≡ p(n)+

b
1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
−m))+

b−
1
6 +

1
12

√
4+6nc∑

m=1

p(n−8(3m2
+m)) (mod 2).

(3.15)
We note that the number of terms on the right hand side of (3.15) is

1 +

⌊
1
6 +

1
12

√
4 + 6n

⌋
+

⌊
−

1
6 +

1
12

√
4 + 6n

⌋
,

which is odd only if, for some positive integer z,

24z2
+ 8z ≤ n < 24z2

+ 40z + 16. (3.16)

We also note, by the remark following Theorem 1.2, that

lim
x→∞

#{n ≤ x : τ5(n) ≡ 0 (mod 2)}

x
= 1. (3.17)

When an odd number of integers add up to an even number, at least one of the
integers must be even. Thus, when τ5(8n + 5) is even, and (3.16) is satisfied, one
of the terms on the right side of (3.15) must be even. We now count the number of
intervals such that (3.16) holds and all values in the interval are ≤ x . This yields⌊

−
1
6 +

1
12

√
4 + 6n

⌋
invervals, each of which contains 32z+16 integers. Therefore, the number of n ≤ x
for which the right side of (3.15) has an odd number of terms is at least

2
3 n + c1

√
4 + 6n + c2 (3.18)

for some constants c1, c2 > 0.
Combining (3.17) and (3.18), we find that, as x → ∞, the number of n ≤ x for

which τ5(8n +5) is even and there are an odd number of terms on the right side of
(3.15) approaches

2
3 x . (3.19)

For each of these n, there must be an even term on the right hand side of (3.15).
However, (3.19) does not give the total number distinct n for which p(n) is even;
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we may be counting an integer w for each n, m such that n − 8(3m2
− m) or

n − 8(3m2
+ m) = w.

We can put an upper bound on the number of m for which we are counting w

because there are only c
√

x values of m for which n − 8(3m ± m) is positive for
some n, for some constant c > 0. We divide (3.19) by the number of m in order to
compensate for the possibility of counting any w multiple times. Thus, we have,
as x → ∞,

#{n ≤ x : p(n) ≡ 0 (mod 2)} �
√

x �
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