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We consider boundary value problems of the form

y′′
= − f (t, y), y(0) = 0, y(1) = 0,

motivated by examples where f (t, y) = φ(t)g(y) and g(y) behave like y−λ

(λ > 0) as y → 0+. We explore conditions under which such problems have
multiple positive solutions, investigate qualitative behavior of these solutions,
and discuss computational methods for approximating the solutions.

1. Introduction

The present work is a first attempt to understand singular boundary value problems
with multiple solutions. As such, it seeks to combine research on singular boundary
value problems having unique solutions that began with the paper of Taliaferro
[1979] with work on nonsingular boundary value problems having multiple solu-
tions that received impetus from the paper by Henderson and Thompson [2000]
but dates back at least to work by Parter [1974]. The majority of later papers dealt
with theoretical questions of existence, but a few, such as [Baxley 1995; Baxley
and Thompson 2000; Ballard et al. 2006], have dealt with computational questions.

We shall focus here on two examples, which have the form

y′′
= − f (t, y), 0 < t < 1, (1)

y(0) = 0, y(1) = 0, (2)

where the nonlinear function f (t, y) is positive and singular as y → 0+ and may
also be singular as t → 0+ or t → 1−.
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Taliaferro [1979] considered the case

f (t, y) =
φ(t)
yλ

,

where λ > 0 and φ is continuous on (0, 1). He proved the existence of a unique
positive solution if ∫ 1

0
t (1 − t)φ(t) dt < ∞.

He then described the asymptotic behavior at the endpoints of this solution y(t).
For example, if ∫ 1/2

0
φ(t)t−λ dt < ∞,

then the slope of the solution y(t) is finite at t = 0. If this integral is infinite and,
for example, φ(t) ∼ tα, as t → 0+, where −2 < α ≤ λ − 1, then the slope of the
solution is infinite at t = 0 and Taliaferro [1979] provides the detailed asymptotic
behavior. Note that for these results, the function f (t, y) is decreasing in y for
fixed t and tends to ∞ as t → 0+.

To compute the positive solution to such a problem, the papers [Baxley 1995;
Baxley and Thompson 2000] took advantage of the known asymptotic behavior of
the solution at the endpoints to design a shooting method. Basically, the interval [0,
1] was replaced by a slightly smaller interval [a, b] and the asymptotic knowledge
was used to design an initial value problem at a and a terminal value problem at b,
each depending on a parameter. These problems were solved using an initial value
method such as that of Runge–Kutta–Fehlburg and parameters were adjusted by
a modified Newton method until the solutions met at t = 1/2 with essentially the
same slope and altitude.

Henderson and Thompson [2000] dealt with the problem (Equation (1), (2))
in the autonomous case f (t, y) = f (y) with f (y) continuous for y ≥ 0. They
gave conditions under which the problem has at least three positive solutions, and
the behavior of f (y) which triggered the multiple solutions was, in contrast to
Taliaferro [1979], a tendency for f (y) to increase. Specifically, they required that
there be numbers 0 < a < b < 2b so that f (y) is much larger on the interval [b,
2b] than on the interval [0, a].

Henderson and Thompson [2000] also provided qualitative information about
the size of the three positive solutions, and this knowledge was used in [Ballard
et al. 2006] to compute solutions to such nonsingular problems. Since this qualita-
tive knowledge has a global character and gives no information about the behavior
near endpoints, the problem was discretized on the interval [0, 1] and an iterative
method was used to obtain rough approximations to the solutions. The values of
these approximations near the endpoints were then used to estimate slopes at the
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endpoints and these estimates were used to seed a shooting method similar to that
used earlier on the Taliaferro problems.

The last example discussed in [Ballard et al. 2006] is singular and was designed
by modifying an example in [Baxley 1995] so that the singular nonlinearity f (t, y)

exhibited also the behavior required in [Henderson and Thompson 2000]. The so-
lution of the original example has finite slope at both endpoints. The computational
work indicates that the problem has three solutions, each having finite slopes at the
endpoints.

2. Solutions with finite slopes at endpoints

We begin with a synopsis of the last example considered in [Ballard et al. 2006].

Example 2.1. For 0 < t < 1, let

f (t, y) =


2
√

t (1−t)
√

y , 0 < y ≤ 1,

2
√

(2 − y)t (1 − t) + 400(y − 1), 1 < y < 2,

40, 2 ≤ y.

According to [Taliaferro 1979] (or see the generalization in [Baxley 1991]), we
would expect solutions to exist and have finite slopes at the endpoints t = 0 and
t = 1 since f (t, θ t) is integrable in a neighborhood of t = 0 and f (t, θ(1 − t)) is
integrable in a neighborhood of t = 1, for each constant θ > 0. Further, one easily
verifies that f (t, y) satisfies the Henderson–Thompson type estimates

f (t, y) < 8a, α ≤ y ≤ α + a,

f (t, y) > 16b, b ≤ y ≤ 2b,

f (t, y) < 8c, α ≤ y ≤ α + c,

where α = 1/32, a = 1, b = 2, c = 6, so one might hope that Equations (1) and
(2) will have three positive solutions. Note that the theory in [Taliaferro 1979] and
[Baxley and Thompson 2000; Henderson and Thompson 2000] cannot actually be
applied to this example, but work in progress will extend the results of Taliaferro
[1979] and Henderson and Thompson [2000] to such problems.

Our method, used in [Ballard et al. 2006], is basically a two-step procedure. Step
2 is a shooting method and for each solution y(t), we need approximate values of
y′(0) and y′(1) to seed the method. Then we can choose a slightly smaller subinter-
val [a, b] of [0, 1] and use the asymptotic formulas of Taliaferro [1979] to estimate
the values of y(a), y′(a) and y(b), y′(b). Employing any dependable initial value
solver, such as RKF45, we can then solve the resulting initial value problem on
[0, 1/2] and the terminal value problem on [1/2, 1]. The initial approximations of
y′(0), y′(1) can then be adjusted by a modified Newton method until these two
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solutions meet at t = 1/2 with essentially the same altitude and slope. Details
of such a shooting method appear in [Baxley 1995; Baxley and Thompson 2000;
Ballard et al. 2006].

Thus step 1 of our method is designed to produce reasonably good approxi-
mations for y′(0) and y′(1) for each of the three solutions. For this purpose, we
discretize the problem by dividing the interval [0, 1] into n + 1 equal parts at the
mesh points ti = i/(n + 1) and seek to approximate y(ti ), for i = 1, 2, . . . , n.
We approximate the second derivative as usual with the central divided difference
quotient

y′′(tk) ≈
1
h2

(
y(tk+1) − 2y(tk) + y(tk−1)

)
,

where h = 1/(n + 1). Letting yi be our approximation for y(ti ) and Y be the
n-dimensional column vector with components yi , our discrete problem is

1
h2 AY = F(T, Y ), (3)

where T is the n-vector with components ti , F(T, Y ) is the n-vector with compo-
nents f (ti , yi ), and A is the matrix

A =


−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · −2

 .

Note that the boundary conditions y(0) = 0, y(1) = 0 have been used to obtain this
formulation. We rewrite Equation (3) in the fixed point form

h2 A−1 F(T, Y ) = Y, (4)

and then use iteration to obtain three solutions Y1, Y2, Y3 of this problem that are
viewed as crude approximations for y1, y2, y3 at the mesh points.

Based on qualitative estimates in [Henderson and Thompson 2000], we expect
Y1 (the “small” solution) to have a maximum less than 1, Y2, to have a maximum
greater than 1, but a value at 1/4 less than 2,and Y3 (the “large” solution) to have
a value at 1/4 greater than 2. So we seed the iteration with initial vectors which
satisfy these requirements. It turns out that Y1 and Y3 are attractors for this discrete
problem, but Y2 is a repeller. So, we “back” into an approximation for Y2 by using
averages of approximations for Y1 and Y3; details can be found in [Ballard et al.
2006], where one can find numerical results of the full computation. The same
method will be used below.
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3. Solutions with infinite slopes at endpoints

Example 3.1. For 0 < t < 1, we now let

f (t, y) =


3(1−t)2

+4t (1−t)+4t2

16t3/2(1−t)y , 0 < y ≤ 1,

(2 − y)3(1−t)2
+4t (1−t)+4t2

16t3/2(1−t) + 40(y − 1), 1 < y < 2,

40, 2 ≤ y.

The asymptotic formulas in [Taliaferro 1979] (see also [Baxley and Thompson
2000, Theorem 10], [Baxley and Martin 2000, Lemma 12]) suggest that solutions
to Equation (1) and (2) should now have infinite slope at both endpoints. Also the
behavior of f (t, y) resembles that of the first example, so it seems likely that there
will be three solutions.

If y(t) is any solution of Equation (1) and (2), then y(t) is near zero in a neigh-
borhood of the endpoints. Thus to examine asymptotic behavior near the endpoints,
we let

φ(t) =
3(1 − t)2

+ 4t (1 − t) + 4t2

16t3/2(1 − t)
,

and we see that

φ(t) ∼
3
16

t−3/2, as t → 0+
; φ(t) ∼

1
4
(1 − t)−1, as t → 1−.

Thus the asymptotic formulas in Taliaferro [1979], Baxley [1995], and Baxley
and Thompson [2000] indicate that any solution y(t) of Equation (1) and (2) will
exhibit the asymptotic behavior

y(t) ∼ Qt (α+2)/(λ+1)
= Qt1/4, as t → 0+, (5)

where α = − 1.5, λ = 1.0, and

Q =

(
3(λ + 1)2

16(α + 2)(λ − α − 1)

)1/(λ+1)

= 1.

A similar analysis leads to

y(t) ∼ (1 − t)1/2, as t → 1−. (6)

To compute approximations for these three solutions, the overall strategy is the
same as before. We wish to use shooting, taking advantage of the asymptotic
formulas (5) and (6) as we did in [Baxley 1995; Baxley and Thompson 2000], but
as before we need a first step to find crude approximations for the three solutions.

In our first effort, we used the same iteration scheme as in Example 2.1, but
found that it gave poor accuracy. After some confusion, we discovered that the
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problem lay in the matrix A, and the correction comes from a careful analysis of
our approximation for y′′(tk).

Approximating y′(tk) with a backward difference quotient

y′(tk) ≈
y(tk) − y(tk−1)

h
,

where h = tk −tk−1, we then approximate y′′(tk) with a forward difference quotient

y′′(tk) =
y′(tk+1) − y′(tk)

h
.

We combine these to get the usual second order divided difference quotient. But
if we focus on an endpoint, say t1, we are led, in the approximation for y′′(t1), to
replace y′(t1) with y(t1)/h. This, it turns out, is a blunder. To see why, we apply
Equation (5) to conclude

y′(t) ∼
1
4

t−3/4, as t → 0+, and
y(t)

t
∼ t−3/4, as t → 0+.

Thus

y′(t) ∼
1
4

y(t)
t

, as t → 0+.

Therefore, a better approximation for y′(t1) is
1
4

y(t1)
h

, which leads to the approx-
imation

y′′(t1) ≈
−

5
4 y(t1) + y(t2)

h2 .

A similar analysis shows that a better approximation for y′′(tn) is

y′′(tn) ≈
y(tn−1) −

3
2 y(tn)

h2 .

So we modify the earlier matrix A to obtain instead

A =



−
5
4 1 0 0 · · · 0 0

1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −2 1
0 0 0 0 · · · 0 −

3
2


.

4. Numerical calculations

We now discuss numerical calculations for Example 3.1, beginning with the ap-
proximation of the larger solution y3. For the results reported here, we began by
dividing our interval [0, 1] into 8 equal parts, seeking approximations of y3(tk),
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y3(1/32) y3(1/4) y3(1/2) y3(31/32)

unmodified A 0.5853 3.6660 4.8982 0.5347
modified A 2.2798 5.1757 6.1415 1.2206

Table 1. Results of discrete iteration for large solution.

where tk = k/8, k = 1, 2, . . . , 7. We seeded the iteration with the vector Y =

(1.8, 2.4, 2.7, 3.0, 2.7, 2.4, 1.8). Of course, we do not expect the solution to be
symmetric about t = 0.5, but otherwise this approximation has roughly the right
shape, with the value at t = 1/4 greater than 2, and the value at t = 1/2 less than
6. We iterated the fixed point form Equation (4) (with the 7×7 matrix A) 7 times,
then extended this approximation, dividing the interval into 16 equal parts, by linear
interpolation (we approximated y(1/16) = 0.6y(1/8) and y(15/16) = 0.6y(7/8)).
We then iterated the fixed point form (with the 15×15 matrix A) 7 times. Finally,
we doubled the number of subintervals again by the same procedure and iterated 7
times with the 31×31 matrix A. The final iterate is then our approximation for Y3,
which in turn approximates y3. The first component of Y3 is then our approxima-
tion for y3(1/32), the 15th component is our approximation for y3(1/2) and the last
component is our approximation for y3(31/32). In Table 1, we report the numerical
results, not only using the modified matrix A above but also, for comparison, of
the unmodified matrix A used for Example 2.1. Note how significant is the effect
of the modification of A. All calculations for this iterative procedure were done
using MATLAB. The large solution Y3 is an asymptotically stable attractor and we
obtained the same result with a variety of initial seeds.

The value of our approximation for y3(1/2) using the modified A is discon-
certing, since it exceeds 6.0. We would expect from the qualitative Henderson–
Thompson type estimates that the maximum value of our solution would be less
than 6.0. This is actually the case, but our initial approximation is too rough to
confirm this expectation.

Using the asymptotic estimate y(t)∼ t1/4, we expect that (32)1/4 y(1/32)= Q ≈

1.0. Computing this value from Table 1, we get the value Q = 5.422 (resp. Q =

1.392) for the modified (resp. unmodified) matrix A. The effect of the modification
is clearly large. The asymptotic estimate y(t) ∼ (1 − t)1/2 and the corresponding
expectation (32)1/2 y(31/32) = P ≈ 1.0 leads to the value P = 6.905 (resp. P =

3.025) for the modified (resp. unmodified) matrix A. The import of the difference
is fully realized only in passing to step 2 of our procedure and solving Equation (1)
and (2) by shooting.

The shooting procedure, using the computed values of Q and P (with the mod-
ified A) to seed the shooting, and essentially Newton’s method to adjust values of
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interval Q y3(1/4) y3(1/2) P

[.03, .97] 5.118 5.067 6.055 6.650
[.02, .98] 3.916 4.647 5.698 5.265
[.01, .99] 2.491 4.209 5.334 3.661
[.002, .998] 1.298 3.918 5.091 1.890

Table 2. Shooting results for large solution.

Q and P so that the solutions to the appropriate initial and terminal value problems
meet at t = 0.5 with altitudes and slopes agreeing to two decimal places, led to
the results reported in Table 2. Since 1/32 ≈ 0.03, we first solved the boundary
value problem, replacing the interval [0, 1] with [.03, .97]. Note that the values of
Q = 5.118 and P = 6.650 reported in Table 2 are quite close to the seed values
predicted by the modified A, but quite far from the seed values predicted by the
unmodified A. (In fact, using the seed values from the unmodified A caused our
computer program to terminate before completion.) We then enlarged this interval
in steps of 0.004 by subtracting 0.002 from the left endpoint and adding 0.002 to
the right endpoint and using the final values of Q and P from the previous step
as seeds for Q and P on the current step. We report only a few of the results in
Table 2, where it is seen that these values of Q and P are indeed moving (slowly)
toward 1.0 and the value of the solution at t = 0.5 is falling significantly below
y = 6.0 as expected from the Henderson–Thompson estimates. We also report the
value of the solution at t = 0.25, where the Henderson–Thompson estimates would
expect y > 2.0.

All computations involving shooting were done using the FORTRAN subroutine
RKF45 [Forsythe et al. 1977] of Shampine and Watts. For these calculations, we
only asked RKF45 for three decimal place accuracy and consequently that the
altitude and slope of the solution agree to two decimal places at t = 0.5. Thus,
the results of the shooting procedure should only be trusted to two decimal places.
Of course, the difference in the computed solutions and the true solution depends
also on replacing the interval [1, 0] by a smaller interval and using the asymptotic
formulas to generate initial and terminal conditions. The computation in [Baxley
1991; Baxley and Thompson 2000] suggests that good approximation demands
using an interval as large as [.001, .999].

We now discuss the smaller solution y1. (This solution y1(t) = t1/4(1 − t)1/2 is
known in closed form [Baxley 1995]; it can be quickly verified by direct substitu-
tion.) The iterative procedure using Equation (4) now has interesting features. The
iteration exhibits characteristics of a two cycle, but also the two cycle to which the
sequence of iterates converges appears to depend on the initial seed, a characteristic
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y1(1/32) y1(1/4) y1(1/2) y1(31/32)

0.3903 0.5168 0.4913 0.1623

Table 3. Results of discrete iteration for small solution.

interval Q y1(1/4) y1(1/2) P

[.03, .97] .951 .6045 .5898 .981
[.02, .98] .967 .6079 .5918 .987
[.01, .99] .983 .6105 .5933 .994
[.002, .998] .997 .6121 .5942 .999

Table 4. Shooting results for small solution.

of chaotic behavior. This iteration is taking place in a space of dimension 7, then
15, and finally 31. We tried a variety of initial seeds for the iteration and in every
case the smaller of the two cycle was a reasonable approximation for the solution
y1. Some initial seeds provided very good approximations. These approximations
were reasonable in the sense that the value of y at 1/32, 31/32 provided values
of Q, P close enough to give convergence of the Newton iterates in the shooting
method. In Table 3, we provide results of this iteration, only for the modified matrix
A. We seeded the discrete iteration with the vector Y = (.3, .4, .45, .5, .45, .4, .3)

and show the results for the smaller member of the resulting two cycle.

y2(1/32) y2(1/4) y2(1/2) y2(31/32)

0.6006 1.1068 1.2415 0.2438

Table 5. Results of discrete iteration for middle solution.

interval Q y2(1/4) y2(1/2) P

[.03, .97] 1.270 1.122 1.306 1.312
[.02, .98] 1.195 1.116 1.322 1.249
[.01, .99] 1.107 1.110 1.338 1.161
[.002, .998] 1.025 1.107 1.348 1.053

Table 6. Shooting results for middle solution.



30 GREY BALLARD AND JOHN BAXLEY

Using the values in Table 3 for y1(1/32) and y1(31/32), we compute the seed
values Q = 0.93 and P = 0.92 for the shooting method. We report the results of
shooting in Table 4. Note that the values of Q and P are now quite close to 1. Also
note that the closed form solution gives y1(1/4) = 0.6124 and y1(1/2) = 0.5946,
so that our final approximation for y1 is actually correct to three decimal places.

Finally, we pass to the middle solution y2. As indicated earlier, the approxima-
tion Y2 is a repeller for the discrete iteration. We proceed as we did in [Ballard et al.
2006]. We begin with Z1 and Z3, the 31 dimensional vectors which emerge from
the discrete iteration as approximations for the solutions Y1 and Y3. We average
these two vectors to get a vector Z2. We then iterate one time to see if this seed
vector is moving toward Z1 or Z3. If it is moving toward Z1, we replace Z1 by
Z2; otherwise we replace Z3 by Z2. We repeat this process until Z1 and Z3 differ
by less than 0.001 in the 16th component. At this point, Z1 and Z3 are viewed
as both close to the repeller Y2, but on opposite sides. However, they are formed
from averages of the original Z1 and Z3 and as such do not have the appropriate
shape for Y2. Thus we iterate once beginning with the final Z1 and once beginning
with the final Z3. This iteration reshapes Z1 and Z3 without serious movement.
We then take the average of these reshaped versions as our approximation for Y2.
In Table 5, we provide the result of this computation.

The values of y2(1/32) and y2(31/32) in Table 5 give us the seed values Q =

1.43 and P = 1.38 for shooting. These results are given in Table 6. Note again
that the values of Q and P are moving towards 1.
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