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A single dyadic orthonormal wavelet on the plane R2 is a measurable square
integrable functionψ(x, y)whose images under translation along the coordinate
axes followed by dilation by positive and negative integral powers of 2 generate
an orthonormal basis for L2(R2). A planar dyadic wavelet set E is a measur-
able subset of R2 with the property that the inverse Fourier transform of the
normalized characteristic function 1

2π χ(E) of E is a single dyadic orthonormal
wavelet. While constructive characterizations are known, no algorithm is known
for constructing all of them. The purpose of this paper is to construct two new
distinct uncountably infinite families of dyadic orthonormal wavelet sets in R2.
We call these the crossover and patch families. Concrete algorithms are given
for both constructions.

Introduction

Wavelet theory is interesting to mathematicians both for its applications to signal
analysis and image analysis and also because of the rich mathematical structure
underlying the theory of wavelets. Wavelet sets are measurable sets whose nor-
malized characteristic functions are the Fourier transforms of wavelets. Planar
dyadic wavelet sets are interesting mathematically because they are fractal-like, and
there are hands-on methods for working with them and constructing new examples.
They are also interesting because while constructive characterizations are known,
no algorithm is known for constructing all planar dyadic wavelets. There are open
problems associated with their classification. Algorithms for constructing new ex-
amples or classes of examples can provide useful counterexamples to conjectures
as well as be appreciated for their intrinsic mathematical beauty.

A single dyadic orthonormal wavelet on the plane R2 is a (Lebesgue) measurable
square-integrable function ψ(x, y) whose translations along the coordinate axes
followed by dilations by positive and negative integral powers of 2 generate an
orthonormal basis for L2(R2). A planar dyadic wavelet set E is a measurable
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subset of R2 with the property that the inverse Fourier transform of the normalized
characteristic function 1/2πχ(E) of E is a single dyadic orthonormal wavelet.
As usual, the Fourier transform on L2(R2) is the tensor product of two copies of
the Fourier transform on L2(R). In this paper we discuss two algorithms which
generate two distinct uncountably infinite classes of dyadic orthonormal wavelet
sets in R2. We denote these classes the crossover and patch classes and denote
the algorithms for these constructions the crossover and patch algorithms. A free
parameter in both of the algorithms is a partition of the so-called inner square,
[−π/2, π/2)× [−π/2, π/2), into four measurable subsets X	, X⊕, Y	, Y⊕, with
the property that X	 is contained in the left half of the inner square, X⊕ is contained
in the right half, Y	 is contained in the bottom half, and Y⊕ is contained in the top
half. Notice that if the boundary of any two of these sets is the same, and if this
boundary has Lebesgue measure 0, then these two sets are still essentially disjoint
although their boundaries are the same.

Wavelets for dilations other than 2 (the dyadic case) on the line R and in Rn have
been investigated by many authors. In higher dimensions both scalar dilations and
matrix dilations have been studied. However, much of the interesting work in the
literature has been for the dyadic case, which is the case we focus on.

For completeness, we give the form used for abstract matrix dilations: A dilation
A wavelet is a function on Rn whose dilations by integral powers of A and trans-
lations along the coordinate axes (or, more generally, translations along a full-rank
lattice) form an orthonormal basis for the space of all square-integrable measurable
functions over Rn with respect to Lebesgue measure. In precise terms, a function f
on Rn is a dilation A wavelet if and only if it is measurable with respect to product
Lebesgue measure, and

{| det A|
m
2 f
(

Am t − l
)
: m ∈ Z, l ∈ Zn

}

is an orthonormal basis of L2(Rn). A dilation A wavelet set is a measurable set W
for which the inverse Fourier transform of the normalized characteristic function
is a dilation A orthonormal wavelet. The dyadic case is where A := 2I2, where I2

is the identity matrix in two dimensions.
Existence of wavelet sets in Rn was first demonstrated in 1994 [Dai et al. 1997].

The proof used an algorithmic approach which generated wavelet sets that were
unbounded and had 0 as a limit point, rendering them difficult to visualize [Dai
et al. 1997; Zhang and Larson ≥ 2008]. It showed that there are uncountably many
such sets in R2 for many matrix dilations, including the dyadic case. Subsequently,
several authors [Soardi and Weiland 1998; Dai et al. 1998; Benedetto and Leon
1999; 2001; Baggett et al. 1999; Gu and Han 2000] constructed wavelet sets in
R2 which were more easily pictured due to their qualities of being bounded and
bounded away from 0, and had other interesting structural properties. Two such sets
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were included in the final remarks section of [Dai and Larson 1998]. Recent papers
that construct new planar wavelet sets with reasonable graphics and interesting
properties can be found in [Zhang and Larson ≥ 2008] and [Merrill ≥ 2008]. A
brief history of wavelet sets can be found in [Zhang and Larson ≥ 2008, Section
5].

In the summer of 2007, the first three authors were undergraduate student par-
ticipants in the Texas A&M Mathematics REU on matrix analysis and wavelets
(funded by the NSF), which was mentored by D. Larson. They set out to clas-
sify multiple categories of wavelet sets in R2 using an algorithmic approach. The
present paper is the upshot of that project. Two algorithms were obtained. The
wavelet sets in Figures 1 and 2 are called crossover wavelet sets because in their
generation, regions are added to or subtracted from alternating sides of the inner
square. Alternatively, patch wavelet sets are created by adding regions to the same
side of the square for each translation; see, for example, the set in Figure 3. This
category of sets is so named because in computer networking a patch cable is the
opposite of a crossover cable.

Figure 1. The two-dimensional wavelet set formed in Example 1.



62 A. J. HERGENROEDER, Z. CATLIN, B. GEORGE AND D. LARSON

Figure 2. An arbitrary (conforming) partition, with wavelet set.

Figure 3. A patch wavelet set: the wedding cake set.
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1. Preliminaries

We begin with some basic formal definitions.
A single dyadic orthonormal wavelet is a function ψ ∈ L2(R) (Lebesgue mea-

sure) with the property that the set { 2
n
2ψ(2n

·−l) | n, l ∈ Z } forms an orthonormal
basis for L2(R) [Consortium 1998]; see also [Larson 2007a, pp. 6–7]. More gen-
erally, if A is any real invertible n × n matrix, then a single function ψ ∈ L2(Rn)

is a multivariate orthonormal wavelet for A if

{| det A|
n
2ψ(An

· −l) | n ∈ Z, l ∈ Z(n)}

is an orthonormal basis of L2(Rn). It was shown in [Dai et al. 1997] that if A is
expansive (equivalently, all eigenvalues of A are required to have absolute value
strictly greater than 1) then orthonormal wavelets for A always exist. The dyadic
case is the case where A := 2I2 (two times the identity matrix on Rn). This is the
simplest (and most investigated) case.

We let F denote the n-dimensional Fourier transform on L2(Rn) defined by

(F f )(s) :=
1

(2π)
n
2

∫
Rn

e−s◦t f (t)dm,

for all f ∈ L2(Rn). Here, s ◦ t denotes the real inner product. A measurable set
E ⊆ Rn is defined to be a wavelet set for a dilation matrix A if

F−1(
1

√
µ(E)

χE)

is an orthonormal wavelet for A, where F−1 denotes the inverse Fourier transform.
In this paper, we will not explicitly use properties of F and F−1; however we

state the formal definition of Fourier transform because it is needed to give the
proper definition of a wavelet set. The Fourier transform is a unitary transform from
L(Rn), where Rn is usually considered as a multivariate time domain, to another
copy of L(Rn), where Rn is considered a multivariate frequency domain. We will
do our work with wavelet sets entirely in the frequency domain. We can do this
because there is a set-theoretic characterization of wavelet sets, Proposition 1.1,
which allows one to construct and otherwise work with wavelet sets without using
the Fourier transform.

A sequence of measurable subsets {En} of a measurable set E is called a mea-
surable partition of E if the relative complement of

⋃
n En in E is a null set (that

is, has measure zero) and En ∩ Em is a null set whenever n 6= m.
Measurable subsets E and F of R are called 2π -translation congruent to each

other, denoted by E ∼2π F , if there exists a measurable partition {En} of E , such
that {En + 2nπ} is a measurable partition of F . Similarly, E and F are called
2-dilation congruent to each other, denoted by E2∼ F , if there is a measurable
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partition {En} of E , such that {2n En} is a measurable partition of F . A measur-
able set E is called a 2π -translation generator of a measurable partition of R if
{E + 2nπ}n∈Z forms a measurable partition of R. Similarly, a measurable set F is
called a 2-dilation generator of a measurable partition of R if {2n F}n∈Z forms a
measurable partition of R.

Lemma 4.3 in [Dai and Larson 1998] gives the following characterization of
dyadic wavelet sets in R, which was also obtained independently in [Fang and
Wang 1996] using different techniques. Let E ⊆ R be a measurable set. Then
E is a dyadic wavelet set if and only if E is both a 2π -translation generator of a
measurable partition of R and a 2-dilation generator of a measurable partition of
R.

In [Dai et al. 1997], this criterion was generalized to the multivariate case. We
will consider only the dyadic planar case in this paper because we will only use
the criterion for that case, although the criterion actually applies for the arbitrary
expansive case [Dai et al. 1997; 1998]. So from [Dai et al. 1997] we have that E is
a dyadic wavelet set in Rn if and only if E is both a 2π -translation generator of a
measurable partition of Rn and a 2-dilation generator of a measurable partition of
Rn . Here, to achieve a translation partition one translates by all integral multiples
of 2π separately in each coordinate direction. To achieve a dilation partition, one
dilates by all integral powers of 2 simultaneously in all coordinates. For example, it
is clear that the set [−π, π)×[−π, π) is a 2π -translation generator of a measurable
partition of R2, and

GT O\

([
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

))
is a 2-dilation generator of a measurable partition of R2.

Properly generalizing the one dimensional definition to the planar case, we say
that two Lebesgue measurable sets A, B ⊂ R2 are 2π -translation congruent if there
is a measurable partition {Ak,l : k, l ∈ Z} of A such that

{Ak,l +

[
2kπ
2lπ

]
: k, l ∈ Z}

is a measurable partition of B, and they are 2-dilation congruent if there is a mea-
surable partition {An : n ∈ Z} of A such that

{2n An : n ∈ Z}

is a measurable partition of B.
Translation congruence and dilation congruence are both equivalence relations

on the class of all measurable subsets. If a set A is 2π -translation congruent to
a 2π -translation generator of a measurable partition of R2, it is clear that A itself
is a 2π -translation generator of a measurable partition of R2. Moreover, sets A



PATCH AND CROSSOVER PLANAR DYADIC WAVELET SETS 65

and B which are both 2π -translation generators of measurable partitions of R2 are
necessarily translation congruent to each other. All this is in [Dai et al. 1997], and
other expositions can be found in [Dai and Larson 1998; Larson 2007b; Zhang and
Larson ≥ 2008]. This yields a useful criterion.

In the following proposition (and in the rest of the paper), let

GT O := [−π, π)× [−π, π) , and GSO := GT O\

([
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

))
.

Proposition 1.1 (Working Principle Criterion). A measurable set W ⊆ R2 is a
dyadic wavelet set if and only if W is 2π -translation congruent to GT O and 2-
dilation congruent to GSO .

2. The crossover algorithm

We first consider a special case of a wavelet set to illustrate the crossover algorithm.
We will then generalize this to obtain Theorem 2.1.

Example 2.1. Let

X	 =

[
−
π

2
,−
π

4

)
×

[
−
π

2
,
π

2

)
, X⊕ =

[π
4
,
π

2

)
×

[
−
π

2
,
π

2

)
,

Y	 =

[
−
π

4
,
π

4

)
×

[
−
π

2
, 0
)
, Y⊕ =

[
−
π

4
,
π

4

)
×

[
0,
π

2

)
.

We can generate a wavelet set in the plane using the above partition of the inner
square using an algorithm (the crossover algorithm) which we will illustrate with
the following example.

Let X	1 := X	. Start by adding the vector
[

2π
0

]
to the set X	, translating it

(that is, crossing it over) to the right half-plane. The set formed is[
3π
2
,

7π
4

)
×

[
−
π

2
,
π

2

)
.

Call this X	2. Secondly, scale X	2 by 1
2 to obtain[

3π
4
,

7π
8

)
×

[
−
π

4
,
π

4

)
.

Call this X	3. Thirdly, translate X	3 to the opposite half-plane by adding
[
−2π

0

]
to obtain [

−
5π
4
,−

9π
8

)
×

[
−
π

4
,
π

4

)
,
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and call this set X	4. Notice that X	4 is on the same side half-plane as X	. Finally,
scale X	4 by 1

2 to form the set[
−

5π
8
,−

9π
16

)
×

[
−
π

8
,
π

8

)
and call it X	5. Continue these four steps inductively for X	.

We perform four similar steps on the set X⊕; however, we translate by
[
−2π

0

]
for the first step (instead of

[
2π
0

]
) and translate by

[
2π
0

]
for the third step (instead

of
[
−2π

0

]
). We obtain the following from the first four steps:

X⊕2 =

[
−

7π
4
,−

3π
2

)
×

[
−
π

2
,
π

2

)
, X⊕3 =

[
−

7π
8
,−

3π
4

)
×

[
−
π

4
,
π

4

)
,

X⊕4 =

[
9π
8
,

5π
4

)
×

[
−
π

4
,
π

4

)
, X⊕5 =

[
9π
16
,

5π
8

)
×

[
−
π

8
,
π

8

)
.

Continue this process inductively for X⊕ as well. Perform similar steps for Y⊕

and Y	, translating by
[

0
±2π

]
instead of

[
±2π

0

]
, beginning with a translation of[

0
2π

]
for Y	 and a translation of

[
0

−2π

]
for Y⊕.

Let W be the set( ∞⋃
i=1

[X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i ]

)
∪

(
GT O\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

])
=

( ∞⋃
i=1

[X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i ]

)
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

])
.

We can think of W as being the union of GT O and the exterior black pieces of
the form X⊕2n , X	2n , Y⊕2n , Y	2n , with white spaces of the form X⊕2n+1, X	2n+1,
Y⊕2n+1, Y	2n+1 removed from GT O .

This set W (see Figure 1) is a wavelet set. To see this, let

G(X	odd) :=

∞⋃
i=1

X	2i−1, and G(X	even) :=

∞⋃
i=1

X	2i .
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Observe that

G(X	odd)\X	 ⊂ GSO , and G(X	even)* GSO .

Similarly, define sets for X⊕, Y	, and Y⊕ with analogous characteristics. Ob-
serve that W is translation congruent to GT O modulo 2π because[( ∞⋃

i=0

X	4i+2

)
∪

( ∞⋃
i=1

X⊕4i

)]
−

[
2π
0

]
=

[( ∞⋃
i=0

X	4i+1

)
∪

( ∞⋃
i=0

X⊕4i+3

)]
,

[( ∞⋃
i=0

X⊕4i+2

)
∪

( ∞⋃
i=1

X	4i

)]
+

[
2π
0

]
=

[( ∞⋃
i=0

X⊕4i+1

)
∪

( ∞⋃
i=0

X	4i+3

)]
,

and[( ∞⋃
i=0

X⊕4i+1

)
∪

( ∞⋃
i=0

X	4i+3

)]
∪

[( ∞⋃
i=0

X	4i+1

)
∪

( ∞⋃
i=0

X⊕4i+3

)]
= G(X	odd)∪ G(X⊕odd),

so that all gaps in the set GT O due to the crossover algorithm applied to the sets
X	1 and X⊕1 are filled when we translate the black sets formed by the crossover

algorithm applied to the sets X	1 and X⊕1 by multiples of
[

2π
0

]
. Similar results

will apply for Y	 and Y⊕.
Moreover, W is dilation congruent to GSO because

1
2 G(X	even)= G(X	odd) ∈ GSO

(that is, the even pieces of the form X	n scale into the odd pieces of the form X	n),
with similar results for G(X⊕even),G(Y	even), and G(Y⊕even).

The set of steps indicated above, applied to all four pieces of the partition of
the inner square, is a special case of the crossover algorithm. An uncountably
infinite family of wavelet sets in R2 can be similarly constructed using a natural
generalization of this algorithm. The generalized crossover algorithm will be pre-
sented rigorously in the later sections of this paper in the context of the proof of
Theorem 2.1 and the constructions involved in the proof.

A brief description of the general crossover algorithm is the following:

(i) Partition the inner square into a maximum of four subsets satisfying the con-
ditions given in the statement of Theorem 2.1 below. (These conditions are
necessary because not all partitions of the inner square will lead to a wavelet
set in this way.)

(ii) Translate one piece of the partition by
[
±2π

0

]
or
[

0
±2π

]
, moving it out of

the inner square to the opposite side of the x- or y-axis.



68 A. J. HERGENROEDER, Z. CATLIN, B. GEORGE AND D. LARSON

(iii) Dilate the set formed in step 2 into GSO by 1
2 .

(iv) Translate the set formed in step 3 in the opposite direction (compared to the

first translation), that is, by
[
∓2π

0

]
or
[

0
∓2π

]
.

(v) Dilate the set formed in step 4 into GSO by 1
2 .

(vi) Repeat these steps inductively for this piece, and perform steps 2–5 on the
other pieces of the partition inductively as well.

Theorem 2.1 (Crossover Algorithm). Let {X	, X⊕, Y	, Y⊕} be a partition of the
set [

−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

such that X	 is contained in the left half of the inner square (that is, the maximum
possible x-coordinate of any point in the set X	 is 0), X⊕ is contained in the right
half of the inner square (that is, the minimum possible x-coordinate of any point in
the set X⊕ is 0), Y	 is contained in the bottom half of the inner square (that is, the
maximum possible y-coordinate of the set Y	 is 0), and Y⊕ is contained in the top
half of the inner square (that is, the minimum possible y-coordinate of the set Y⊕

is 0). Then the set W generated by this partition, under translation by[
±2π

0

]
and

[
0

±2π

]
and dilation by powers of 2 using steps (1)–(6) above, defined as[( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
∪ GT O

]
\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

]
,

is a dyadic wavelet set in R2.

Remark 2.1. If either both X⊕ and X	 are defined, or both Y⊕ and Y	 are defined,
then the other two sets are automatically determined due to our constraints.

3. Expressions for X	n, X⊕n, Y	n, and Y⊕n

Before proving our main result, Theorem 2.1, we first give rigorous expressions for
the sets X	n , X⊕n , Y	n , and Y⊕n . We begin with the sets of the form X	n . Suppose
first that n is odd and n ≥ 3. We can derive the formula for X	n in terms of n by
looking at the first few terms. Let X	1 := X	, which has the above constraints
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listed according to the theorem. We can then find the next few odd terms using the
crossover algorithm described in the example:

X	3 =
1
2

(
X	 +

[
2π
0

])
,

X	5 =
1
2

(
X	3 −

[
2π
0

])
=

(
X	

4
+

1
4

[
2π
0

]
−

1
2

[
2π
0

])
,

X	7 =
1
2

(
X	5 +

[
2π
0

])
=

(
X	

8
+

1
8

[
2π
0

]
−

1
4

[
2π
0

]
+

1
2

[
2π
0

])
,

and, in general, we find that X	n+2 =
1
2

(
X	n + (−1)

n−1
2

[
2π
0

])
. Solving this

recurrence relation, we find that

X	n =
X	

2
n−1

2

+

[
2π
0

] ( 1

2
n−1

2

− . . .+
(−1)

n−3
2

2

)

=
X	

2
n−1

2

+

[
2π
0

]
(−1)

n−3
2

( (−1)
n−3

2

2
n−1

2

+
(−1)

n−3
2 −1

2
n−1

2 −1
+ . . .−

1
4

+
1
2

)

=
X	

2
n−1

2

+

[
2π
0

]
(−1)

n−3
2

n−1
2∑

i=1

(−1)i−1

2i

=
X	

2
n−1

2

+

[
2π
0

]
1
3
(−1)

n−3
2

(
1 − (−

1
2
)

n−1
2

)
,

(1)

using the formula for a geometric series summation. In order to formally verify
that our formula for X	n solves the recurrence relation, we merely plug in the
expressions for X	n+2 and X	n and carry out basic computations.

Now suppose n′ is even and n′> 2. We can derive the formula for X	n′ in terms
of n′ similarly:

X	2 = X	 +

[
2π
0

]
,

X	4 =
X	2

2
−

[
2π
0

]
=

X	

2
+

1
2

[
2π
0

]
−

[
2π
0

]
,

X	6 =
X	4

2
+

[
2π
0

]
=

X	

4
+

1
4

[
2π
0

]
−

1
2

[
2π
0

]
+

[
2π
0

]
,

X	8 =
X	6

2
−

[
2π
0

]
=

X	

8
+

1
8

[
2π
0

]
−

1
4

[
2π
0

]
+

1
2

[
2π
0

]
−

[
2π
0

]
,
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and, in general, we find that

X	n′+2 =
1
2

X	n′ + (−1)
n′

2

[
2π
0

]
.

Observe that X	n′

2 = X	n′+1 is, in general, true based on our construction using the
crossover algorithm since n′ is even. Since n′

+1 is odd, we plug into our formula
the values for X	n (see the bottom of page 69), where n is odd, to find X	n′ .

X	n′ = 2X	n′+1 = 2

[
X	

2
n′

2

+
1
3

[
2π
0

]
(−1)

n′
−2
2

(
1 −

(
−

1
2

) n′

2

)]

=

[
X	

2
n′−2

2

+
2
3

[
2π
0

]
(−1)

n′
−2
2

(
1 −

(
−

1
2

) n′

2

)]
.

Once again, the proof that the recurrence relation is satisfied involves plugging in
the expressions for X	n′+2 and X	n′ and performing basic computations.

Notice that when n′ is even,

X	n′ = X	n′−1 + (−1)
n′

−2
2

[
2π
0

]
,

consistent with the crossover algorithm, because of the following:

X	n′ = X	n′−1 + (−1)
n′

−2
2

[
2π
0

]
=

X	

2
n′−2

2

+
1
3

[
2π
0

]
(−1)

n′
−4
2

(
1 −

(
−

1
2

) n′
−2
2

)
+ (−1)

n′
−2
2

[
2π
0

]

=
X	

2
n′−2

2

+
2
3

[
2π
0

]
(−1)

n′
−2
2

(
−

1
2

−
(
−

1
2

) n′

2

)
+ (−1)

n′
−2
2

[
2π
0

]

=
X	

2
n′−2

2

+
2
3

[
2π
0

]
(−1)

n′
−2
2

(
1 −

(
−

1
2

) n′

2

)
.

Thus, we can say in general that

X	n =


X	

2
n−1

2
+

1
3

[
2π
0

]
(−1)

n−3
2
(
1 − (−1

2)
n−1

2
)
, for n odd,

X	

2
n′−2

2
+

2
3

[
2π
0

]
(−1)

n′
−2
2
(
1 − (−1

2 )
n′

2
)
, for n even,
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but then clearly

X⊕n =


X⊕

2
n−1

2
−

1
3

[
2π
0

]
(−1)

n−3
2
(
1 − (− 1

2)
n−1

2
)
, for n odd,

X⊕

2
n′−2

2
−

2
3

[
2π
0

]
(−1)

n′
−2
2
(
1 − (− 1

2 )
n′

2
)
, for n even.

Analogously, we find

Y	n =


Y	

2
n−1

2
+

1
3

[
0

2π

]
(−1)

n−3
2
(
1 − (− 1

2)
n−1

2
)
, for n odd,

Y	

2
n′−2

2
+

2
3

[
0

2π

]
(−1)

n′
−2
2
(
1 − (−1

2 )
n′

2
)
, for n even,

and

Y⊕n =


Y⊕

2
n−1

2
−

1
3

[
0

2π

]
(−1)

n−3
2
(
1 − (− 1

2)
n−1

2
)
, for n odd,

Y⊕

2
n′−2

2
−

2
3

[
0

2π

]
(−1)

n′
−2
2
(
1 − (− 1

2 )
n′

2
)
, for n even.

Comment: By our construction we have (analogous to the properties for X	n)
that for n′ even,

X⊕n′

2
= X⊕n′+1,

Y	n′

2
= Y	n′+1,

Y⊕n′

2
= Y⊕n′+1.

Moreover,

X⊕n′ = X⊕n′−1 − (−1)
n′

−2
2

[
2π
0

]
, Y	n′ = Y	n′−1 + (−1)

n′
−2
2

[
0

2π

]
,

Y⊕n′ = Y⊕n′−1 − (−1)
n′

−2
2

[
0

2π

]
.

4. Proof of Theorem 2.1

For the proof of Theorem 2.1 we will require three technical lemmas.

Lemma 4.1. For all odd n ≥ 3, X	n ⊆ GSO .

Proof. Since all such

X	 ⊆

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
,

by definition, for all functions f ,

f (X	)⊆ f
([

−
π

2
, 0
)

×

[π
2
,
π

2

))
.
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Therefore, we only need to prove that for all odd n ≥ 3,[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n

⊆ GSO .

Let

S	n :=

[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n

represent the result of the nth step of the crossover algorithm applied to[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

Notice that S	n is of the form of the more general set X	n , and, therefore,
we can use our derived bounds (see above on page 71) for X	n in terms of n to
determine the bounds for S	n .

We begin by showing that S	n ⊆ [−π, π)× [−π, π). That this is satisfied for
the vertical bounds of S	n is clear, so we will only consider the horizontal bounds.
Note that when we use the phrase “vertical bound,” we refer to both upper and
lower bounds. By a vertical upper bound, we mean to say that such a number is
greater than or equal to all y-coordinates of the points in that set. When we use the
phrase “horizontal bound of a set,” we refer to both left and right hand bounds of
a set. By left hand bound, we mean to signify a number that is less than or equal
to all of the horizontal coordinates of the points in that set.

Case 1. n = 4k + 1 for some k ∈ Z. Then S	n is on the left side of the origin.
Thus, the horizontal left hand bound (LHB) for S	n is

−
1

2
n−1

2

[
π
0

]
+

1
3

[
2π
0

]
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2

)
,

and we must show it is bounded below by
[
−π
0

]
. In the x-coordinate,

−π≤ −
π

2
n−1

2

+
2π
3
(−1)

n−3
2

(
1−
(
−

1
2

) n−1
2
)
⇐⇒ 1 ≥

1
22k −

2
3
(−1)2k−1

(
1−
(
−

1
2

)2k
)

⇐⇒ 1 ≥
1

22k +
2
3

(
1 −

1
22k

)
⇐⇒

1
3

≥
1

22k

(
1 −

2
3

)
⇐⇒ 1 ≥

1
22k ,
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which is clearly true because 3 ≤ n = 4k + 1 ⇒
1
2 ≤ k, and k ∈ Z, so 1 ≤ k.

Moreover, since the LHB on the x-coordinates of S	n is less than the horizontal
right hand bound (RHB), we know that −π < RHB.

Case 2. n = 4k + 3 for some k ∈ Z. Then S	n is on the right hand side of the
origin. Therefore, we want to show that the horizontal RHB on S	n is less than or
equal to π , that is, that

2π
3
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2
)

≤ π ⇐⇒
2
3
(−1)2k

(
1 −

(
−

1
2

)2k+1
)

≤ 1

⇐⇒
2
3

(
1 +

(1
2

)2k+1
)

≤ 1

⇐⇒

(
1 +

(1
2

)2k+1
)

≤
3
2

⇐⇒

(1
2

)2k
≤ 1,

which is trivially true since n is odd and n ≥ 3 ⇒ 3 ≤ 4k + 3 ⇒ 0 ≤ k. We know
that in this case, LHB ≤ RHB ≤ π , as needed. But then in all possible cases, it is
true that S	n ⊆ [−π, π)× [−π, π), and therefore that X	n ⊆ [−π, π)× [−π, π).

Now we want to show that

X	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

for all n ≥ 3. Recall from our earlier discussion that this will follow from the fact
that

S	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
.

We can prove this fact by merely showing that the horizontal bounds on the set
S	n are not contained in the set

[
−
π
2 ,

π
2

]
. Thus, the vertical bounds on the set S	n

are irrelevant.

Case 1. n = 4k + 1 for some k ∈ Z. Recall S	n is on the left hand side of the
origin, so we must show that the horizontal RHB on the x-coordinates of the set
S	n is less than or equal to −

π
2 .

−
π

2
≥

2π
3
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2
)

⇐⇒ −
1
2

≥
2
3
(−1)2k−1

(
1 −

(
−

1
2

)2k
)

⇐⇒ −
1
2

≥
2
3

(
1

22k − 1
)

⇐⇒
1
4

≥
1

22k ,
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which is true since 3 ≤ n = 4k + 1 ⇒
1
2 ≤ k and k ∈ Z (so ⇒ 1 ≤ k).

Case 2. n = 4k + 3 for some k ∈ Z. Then S	n is on the right hand side of the
origin, and therefore we want to show that the horizontal LHB on S	n is greater
than or equal to π

2 .

π

2
≤ −

π

2
n+1

2

+
2π
3
(−1)

n−3
2

(
1 −

(
−

1
2

) n−1
2
)

⇐⇒
1
2

≤ −
1

22k+2 +
2
3
(−1)2k

(
1 −

(
−

1
2

)2k+1
)

⇐⇒ −
1
6

≤
1

2k+1

(
2
3

−
1
2

)

⇐⇒ −1 ≤
1

2k+1 ,

which is trivially true since 0< 1
2k+1 ∀k .

Thus, ∀n, the horizontal bounds of S	n are not contained in the set
[
−
π
2 ,

π
2

]
but

are contained in the set [−π, π], and the vertical bounds are contained in the set
[−π, π]. Thus S	n ⊆ GSO for all odd n ≥ 3 . Recall from our earlier discussion
that it therefore follows that X	n ⊆ GSO for all odd n ≥ 3, as needed. �

Analogously, for all odd n ≥ 3, X⊕n ⊆ GSO , Y	n ⊆ GSO , and Y⊕n ⊆ GSO .

Lemma 4.2. X	n+4 and X	n are disjoint for all n > 1 ∈ Z.

Proof. Let

S	n :=

[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n

represent the result of the nth step of the crossover algorithm applied to[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

Since all X	 ⊆
[
−
π
2 , 0

)
×
[
−
π
2 ,

π
2

)
, for all functions f ,

f (X	n)⊆ f
([

−
π

2
, 0
)

×

[
−
π

2
,
π

2

))
,

and therefore X	n ⊆ S	n . Therefore, we will prove that all S	n and S	(n+4) are
disjoint, from which our lemma follows immediately.

Consider odd n (n = 2k + 1 for some k ∈ Z ). The horizontal LHB of S	(2k+1)

is

−
π

2k+1 +
2π
3
(−1)k−1

(
1 −

(
−

1
2

)k
)
,
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as follows from the rigorous definition of the set X	n , and the RHB of S	(2k+5) is

2π
3
(−1)k+1

(
1 −

(
−

1
2

)k+2
)
.

Therefore, the RHB of S	(2k+5) equals the LHB of S	(2k+1) if and only if

−
π

2k+1 +
2π
3
(−1)k−1

(
1 −

(
−

1
2

)k
)

=
2π
3
(−1)k+1

(
1 −

(
−

1
2

)k+2
)

⇐⇒ −
1

2k+1 +
2
3
(−1)k−1

+
2
3

1
(2)k

=
2
3
(−1)k+1

+
2
3

1
(2)k+2

⇐⇒ −
1
2

1
2k =

2
3

1
2k

(
1
4

− 1
)
,

which is clearly true. So for all odd n, the LHB of the set S	n is equivalent to the
RHB of the set S	(n+4). Recall that for n′ even,

1
2 X	n′ = X	n′+1, which implies 1

2 S	n′ = S	(n′+1),

that is,
1
2 S	(n−1) = S	n and 1

2 S	(n+3) = S	(n+4).

Thus, the LHB of S	(n−1) is equivalent to the RHB of the set S	(n+3). But since
n−1 ∈ Z+ is even, both even and odd cases are satisfied. Thus, we can say that for
all n′′> 1 ∈ Z, the LHB of the set S	n′′ is equivalent to the RHB of the set S	(n′′+4).
Nonetheless, these two sets are still “essentially disjoint” because their intersection
has measure 0 using Lebesgue Measure. Therefore, by our earlier argument, our
lemma follows. �

Lemma 4.3. All X⊕n, X	n′, Y⊕n′′, Y	n′′′ are disjoint for all natural numbers n, n′,
n′′, and n′′′. Moreover, X	i and X	 j are disjoint when i 6= j , with analogous
properties following for sets of the form X⊕n, Y	n , and Y⊕n .

Proof. First we show that all X⊕n, X	n are disjoint (a similar argument shows that
all Y⊕n, Y	n are disjoint). Consider the maximal case for X⊕1 and X	1, namely,

X⊕1 =

[
0,
π

2

)
×

[
−
π

2
,
π

2

)
,

X	1 =

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

Because all other X⊕n, X	n are copies of X⊕1 and X	1 that have been translated
along the x-axis and scaled, we will consider only their x-coordinates. We note
that because sets of the form X⊕n, X	n are never scaled by factors α, for |α|> 1,
they are all contained in [−∞,∞)×

[
−
π
2 ,

π
2

)
, that is, their vertical bounds are
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contained in the set
[
−
π
2 ,

π
2

)
. From the crossover algorithm, we have that the

following hold for all m (except for 4m + 1 = 1) in the x-coordinate:

X⊕4m+1 =
1
2 X⊕4m, Xm4m + 1 =

1
2 X	4m,

X⊕4m+2 = X⊕4m+1 − 2π, X	4m+2 = X	4m+1 + 2π,

X⊕4m+3 =
1
2 X⊕4m+2, X	4m+3 =

1
2 X	4m+2,

X⊕4m+4 = X⊕4m+3 + 2π, X	4m+4 = X	4m+3 − 2π,

⇒ X⊕4(m+1)+1 =
1
4 X⊕4m+1 +

π
2 , ⇒ X	4(m+1)+1 =

1
4 X	4m+1 −

π
2 .

Solving the recurrence relation for X⊕4m+1 and X	4m+1, and using the solution to
obtain the other cases, we obtain the following:

X⊕4m+1 =
1

4m X⊕1 +
2
3

(
1 −

1
4m

)
π, X	4m+1 =

1
4m X	1 +

2
3

( 1
4m − 1

)
π,

X⊕4m+2 =
1

4m X⊕1 −
2
3

(
2 +

1
4m

)
π, X	4m+2 =

1
4m X	1 +

2
3

( 1
4m + 2

)
π,

X⊕4m+3 =
1
2

1
4m X⊕1 −

1
3

(
2 +

1
4m

)
π, X	4m+3 =

1
2

1
4m X	1 +

1
3

( 1
4m + 2

)
π,

X⊕4m+4 =
1
2

1
4m X⊕1 +

1
3

(
4 −

1
4m

)
π, X	4m+4 =

1
2

1
4m X	1 +

1
3

( 1
4m − 4

)
π.

Using our maximal X⊕1 and X	1, we find that

X⊕4m+1 =

[(
2
3 −

2
3

(1
4

)m
)
π,
(

2
3 −

1
6

( 1
4

)m
)
π
)

⊂
[
0, 2

3π
)
,

X⊕4m+2 =

[(
−

4
3 −

2
3

(1
4

)m
)
π,
(
−

4
3 −

1
6

( 1
4

)m
)
π
)

⊂
[
−2π,− 4

3π
)
,

X⊕4m+3 =

[(
−

2
3 −

1
3

(1
4

)m
)
π,
(
−

2
3 −

1
12

( 1
4

)m
)
π
)

⊂
[
−π,−2

3π
)
,

X⊕4m+4 =

[(
4
3 −

1
3

(1
4

)m
)
π,
(

4
3 −

1
12

( 1
4

)m
)
π
)

⊂
[
π, 4

3π
)
,

X	4m+1 =

[(
1
6

( 1
4

)m
−

2
3

)
π,
(

2
3

( 1
4

)m
−

2
3

)
π
)

⊂
[
−

2
3π, 0

)
,

X	4m+2 =

[(
1
6

( 1
4

)m
+

4
3

)
π,
(

2
3

( 1
4

)m
+

4
3

)
π
)

⊂
[4

3π, 2π
)
,

X	4m+3 =

[(
1

12

( 1
4

)m
+

2
3

)
π,
(

1
3

( 1
4

)m
+

2
3

)
π
)

⊂
[2

3π, π
)
,

X	4m+4 =

[(
1

12

( 1
4

)m
−

4
3

)
π,
(

1
3

( 1
4

)m
−

4
3

)
π
)

⊂
[
−

4
3π,−π

)
.

Trivially, we conclude that the eight different sets of intervals are disjoint. Within
each set of intervals, note that both endpoints of the intervals either monotonically
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increase (for X⊕n) or monotonically decrease (for X	n) as n increases; we also
find that the right endpoint of X⊕4m+k is equal to the left endpoint of X⊕4(m+1)+k

for all possible values of k, and the left endpoint of X	4m+k is equal to the right
endpoint of X	4(m+1)+k for all possible values of k (See the proof of Lemma 4.2.)
Thus, all the X⊕4m+k and X	4m+k are disjoint for all k, meaning we have proved
that all X⊕n, X	n are disjoint. Moreover, all X	i and X	 j and all X⊕i and X	 j

are disjoint when i does not equal j . Analogously, all Y	i and Y	 j and all Y⊕i and
Y⊕ j are disjoint when i does not equal j .

To show that the sets of the form X⊕n, X	n, Y⊕n and Y	n are disjoint, consider
the following: All the sets of the form X⊕n, X	n are contained in the region

[−2π, 2π)×
[
−
π

2
,
π

2

)
.

Similarly, all the sets of the form Y⊕n, Y	n are contained the region

[
−
π

2
,
π

2

)
× [−2π, 2π) .

The intersection between these two regions is

[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

but the only sets in this region are X⊕1, X	1, Y⊕1, and Y	1, and by definition, these
are disjoint, completing the proof. �

Remark 4.1. The proof of Lemma 4.3 shows that all sets of the form X⊕n , X	n

for odd n ≥ 3 are in the area

[−π, π)×
[
−
π

2
,
π

2

)
\

[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
∈ GSO .

Exclusion from the inner square is due to the fact that X⊕1, X	1, Y⊕1, and Y	1

occupy that space, and all X	i and X	 j are disjoint if i 6= j (with analogous results
for X⊕, Y	, and Y⊕), implying no other sets of the form X	n, X⊕n, Y	n , and Y⊕n

can occupy that space, providing a short proof of Lemma 4.1.

We can now prove our main result.
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Proof of Theorem 2.1. Let W be defined as in Example 1 to be( ∞⋃
i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
∪

(
GT O\

[ ∞⋃
i=1

[
X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1

]])
=

( ∞⋃
i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

])
.

Part I. We will first show that W is dilation congruent to GSO . Let

8X	
: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 3},

be such that for all even n,

8X	
(X	n) :=

1
2 X	n = X	n+1 ∈ GSO ,

from Lemma 4.1 and the discussion on the top of Section 3 of our paper.

Claim 1. 8X	
is surjective. Take an arbitrary X	 j such that j ≥ 3 is odd. Then

8X	
(X	 j−1)= X	 j .

Claim 2. 8X	
is injective. Suppose

8X	
(X	 j )=8X	

(X	i ),

for some even i and j . Then X	 j+1 = X	i+1, and therefore

X	 j = 2X	 j+1 = 2X	i+1 = X	i ,

as needed.
Therefore, 8X	

is a bijection. Similarly, define 8X⊕
, 8Y	

and 8Y⊕
, which are

all bijections by analogous arguments. But then

8X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

8X	
(X	2i )=

∞⋃
i=1

X	2i+1 ∈ GSO ,

by Lemma 4.1, all of the white spaces (X	k for k ≥ 3 and odd) in GSO are filled
because 8X	

is surjective, and all of the black pieces (X	n for n even) have been
mapped into GSO injectively so that no two distinct black pieces map to the same
white space. Analogous properties follow for 8X⊕

, 8Y	
, and 8Y⊕

.
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Let

8 : {X	i ∪X⊕i ∪Y	i ∪Y⊕i : i is even ≥ 2}→{X	 j ∪X⊕ j ∪Y	 j ∪Y⊕ j : j is odd ≥ 3}

be such that

8(X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=8X	
(X	i )∪8X⊕

(X⊕i )∪8Y	
(Y	i )∪8Y⊕

(Y⊕i )

= (X	i+1 ∪ X⊕i+1 ∪ Y	i+1 ∪ Y⊕i+1) .

Then

8
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
=

∞⋃
i=1

[
8X	

(X	2i )∪8X⊕
(X⊕2i )∪8Y	

(Y	2i )∪8Y⊕
(Y⊕2i )

]
=

∞⋃
i=1

[
X	2i+1 ∪ X⊕2i+1 ∪ Y	2i+1 ∪ Y⊕2i+1

]
∈ GSO .

8 is clearly a bijection, so that 8 maps all exterior black pieces into all interior
white pieces such that no distinct black pieces map to the same white piece.

Thus,

8
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
⋃[

GSO\

( ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

)]
= GSO ,

as needed. Therefore, W is dilation congruent to GSO .

Part II. We will now prove that W is translation congruent to GT O . Let

9X	
: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 1}

be such that for all even n,

9X	
(X	n) := X	n − (−1)

n−2
2

[
2π

0

]
=

1
2

X	(n−2) = X	n−1 ∈ GT O ,

using the discussion on the top of page 70, Lemma 4.1, and the fact that

X	1 ∈

[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
.

Claim 1. 9X	
is surjective. Take an arbitrary X	 j such that j ≥ 1 is odd. Then

8X	
(X	 j+1)= X	 j .
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Claim 2. 9X	
is injective. Suppose 9X	

(X	 j )=9X	
(X	i ), for some even i and

j . Then X	 j−1 = X	i−1. Suppose that ( j − 1) 6= (i − 1). Then by Lemma 4.3,
X	 j−1 ∩ X	i−1 = ∅, which contradicts X	 j−1 = X	i−1. Thus it must be true that
( j − 1)= (i − 1) and thus X	i = X	 j , as needed.

Therefore, 9X	
is a bijection. But then

9X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

9X	
(X	2i )=

∞⋃
i=1

X	2i−1.

Therefore, all blank spaces in GT O of the form X	n are filled when 9X	
acts on⋃

∞

i=1 X	2i since 9X	
is onto. Moreover, all black pieces of the form X	n are

contained in the set
⋃

∞

i=1 X	2i , and therefore have been mapped into GT O . Since
9X	

is injective, no two distinct black pieces will map to the same white piece.
Similarly, define 9X⊕

, 9Y	
, and 9Y⊕

, which are all bijections by analogous
arguments.

Define

9 : {X	i ∪X⊕i ∪Y	i ∪Y⊕i : i is even ≥2}→{X	 j ∪X⊕ j ∪Y	 j ∪Y⊕ j : j is odd≥1},

to be such that

9 (X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=9X	
(X	i )∪9X⊕

(X⊕i )∪9Y	
(Y	i )∪9Y⊕

(Y⊕i )

=
[
X	i−1 ∪ X⊕i−1 ∪ Y	i−1 ∪ Y⊕i−1

]
∈ GT O .

9 is clearly a bijection, and therefore when 9 acts on the entire domain, that is,

9
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
=

∞⋃
i=1

9
(

X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

)
=

∞⋃
i=1

[
X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1

]
∈ GT O ,

every white space (of the form X	n for odd n) in GT O is filled by some black
piece (of the form X	n′ for some even n′) from the exterior of GT O since 9 is
surjective. No two distinct black pieces map to the same white piece since 9 is
injective. Moreover, every black piece outside GT O is contained in the domain of
9, and therefore every black piece outside GT O is mapped into GT O . Thus,

9
( ∞⋃

i=1

[
X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i

])
⋃[

GT O\

( ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

)]
= GT O ,
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and thus by definition, W is dilation congruent modulo 2π to GT O . By definition
W is a wavelet set. �

A different example of a partition of the inner square conforming to the require-
ments of Theorem 2.1 is shown in Figure 2 with the resulting wavelet set.

5. Patch wavelet sets

All of the wavelet sets we have considered thus far are crossover wavelet sets. In
this class, regions are added to or subtracted from alternating sides of the inner
square. Alternatively, we could add or subtract regions to the same side of the
square for each translation. Such wavelet sets are called patch wavelet sets. To
illustrate the patch algorithm, we give an example. The reader will note that this
example is actually a well known wavelet set: the wedding cake wavelet set (Figure
3); see [Dai and Larson 1998, Example 6.6.1] and also [Dai et al. 1998].

Patch Example 1. Let

X	 =

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
, X⊕ =

[
0,
π

2

)
×

[
−
π

2
,
π

2

)
,

Y	 = ∅, Y⊕ = ∅.

Consider the piece X	. Start by translating X	 by
[
−2π

0

]
(keeping it on the

same side of the origin) to obtain X	2. We find that

X	2 =

[
−

5π
2
,−2π

)
×

[
−
π

2
,
π

2

)
.

Secondly, scale X	2 by 1
4 to obtain

X	3 =

[
−

5π
8
,−
π

2

)
×

[
−
π

8
,
π

8

)
.

Thirdly, translate X	3 in the same direction as that of the first translation (that is,

by
[
−2π

0

]
) to obtain

X	4 =

[
−

21π
8
,−

5π
2

)
×

[
−
π

8
,
π

8

)
.

Finally, scale X	4 by 1
4 to form the set

X	5 =

[
−

21π
32

,−
5π
32

)
×

[
−
π

32
,
π

32

)
.

Continue these two steps inductively for X	.
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We perform two similar steps on the set X⊕ inductively as well; however, we

translate by
[

2π
0

]
(instead of

[
−2π

0

]
). We obtain the following as a result from

the first four steps of the patch algorithm:

X⊕2 =

[
2π,

5π
2

)
×

[
−
π

2
,
π

2

)
, X⊕3 =

[
π

2
,

5π
8

)
×

[
−
π

8
,
π

8

)
,

X⊕4 =

[
5π
2
,

21π
8

)
×

[
−
π

8
,
π

8

)
, X⊕5 =

[
5π
32
,

21π
32

)
×

[
−
π

32
,
π

32

)
.

Continue this process inductively for X⊕ as well. In theory, we would perform
similar steps for Y⊕ and Y	, but in this example both are the null set, and thus we
have no computations to carry out for the sets Y	 and Y⊕.

Let W ′ be the set

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GT O\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1]

])
=

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1]

])
,

see Figure 3. Similarly to the crossover case, we can think of the set W ′ as being
the union of GT O combined with the sets on the exterior of GT O of the form X⊕n ,
X	n where n is even and with subsets of GT O of the form X⊕n , X	n where n is
odd erased from GT O . The reader should check that this set W ′ is indeed a wavelet
set.

This algorithm can be generalized as follows:

(i) Partition the inner square into a maximum of four pieces. The conditions on
this partition are identical to those on the partition of the inner square using
the crossover algorithm as given in Theorem 2.1, and the proof for the case of
the patch algorithm is similar to the proof given for the crossover algorithm.

(ii) Translate one piece of the partition by
[
±2π

0

]
or
[

0
±2π

]
so that the piece is

translated out of the inner square and onto the half of the plane in which the
original piece of the partition previously lay.

(iii) Dilate the set formed in step 2 into GSO by 1
4 .

(iv) Translate the set formed in step 3 out of GSO in the same direction as the

translation in step 2 (that is, by
[
±2π

0

]
or
[

0
±2π

]
).

(v) Dilate the set formed in step 4 into GSO by 1
4 .
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(vi) Repeat steps 2 and 3 inductively for this piece of the partition, and perform the
same steps inductively on the other three pieces of the partition of the inner
square.

Theorem 5.1 (Patch Algorithm). Let {X	, X⊕, Y	, Y⊕} be a partition of the set[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

such that X	 is contained in the left half of the inner square, X⊕ is contained in
the right half of the inner square, Y	 is contained in the bottom half of the inner
square, and Y⊕ is contained in the top half of the inner square. Then the set W ,
defined as[( ∞⋃

i=1

[X	2i ∪ X⊕2i ∪ Y	2i ∪ Y⊕2i ]

)
∪ GT O

]
\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1 ∪ Y	2i−1 ∪ Y⊕2i−1]

]
,

generated by this partition under translation by[
±2π

0

]
and

[
0

±2π

]
and dilation by powers of 2 using steps (i)–(vi) above, is a dyadic wavelet set in
R2.

Proof. Begin by showing the following for natural numbers n odd and n′ even:

X	n+2 =
1
4

(
X	n −

[
2π
0

])
, X	n′+2 =

1
4

X	n′ −

[
2π
0

]
,

X	n′

4
= X	n′+1, X	n′ = X	n′−1 −

[
2π
0

]
.

First, we solve the recurrence relation for n odd, and use this and the fact that
X	n′

4 = X	n′+1 to obtain a form for n′ odd. From this point forward let n be an
arbitrary odd or even natural number. We find that

X	n =


X	

4
n−1

2
−

1
3

[
2π
0

] (
1 − ( 1

4)
n−1

2

)
, for n odd

X	

4
n′+1

2
−

4
3

[
2π
0

](
1 −

(1
4

) n′
−1
2

)
, for n even.

We derive similar expressions for X⊕n, Y	n , and Y⊕n.
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An analogous property to that of Lemma 4.1 can be seen for the patch algorithm.
Once again, we use the maximal possible X	n , that is,

S	n :=

[[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)]
	n
,

the result of the nth step of the patch algorithm applied to[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
.

We use our derived bounds for X	n in terms of n to determine the bounds for
S	n . We begin by showing that S	n ⊆ [−π, π)× [−π, π). That this is satisfied
for the vertical bounds of S	n is clear, so we will only consider the horizontal
bounds. There is only one case to consider for the patch algorithm, the case that
n = 2k +1 for some nonnegative integer k. (The patch algorithm requires only one
case because the algorithm always translates the odd pieces out to the same side
of the inner square rather than to alternating sides, as in the crossover algorithm,
leading to two cases for the crossover algorithm.) Second, show that

X	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

for all n ≥ 3, by showing that

S	n *
[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
.

This follows from the fact that the horizontal bounds on the set S	n are not con-
tained in the set

[
−
π
2 ,

π
2

]
. Thus, the vertical bounds on the set S	n are irrelevant.

Once again, here we find that there is only one case to consider (the case that
n = 2k + 1 for some nonnegative integer k). We conclude that S	n ⊆ GSO for all
odd n ≥ 3, and therefore that X	n ⊆ GSO for all odd n ≥ 3. Analogously, for all
odd n ≥ 3, X⊕n ⊆ GSO , Y	n ⊆ GSO , and Y⊕n ⊆ GSO .

An analogous property is true for the patch case to Lemma 4.2 for the crossover
algorithm, that X	n+2 and X	n are disjoint for all n > 0 ∈ Z. We modify the
argument that was used for the crossover case by showing that the left hand bound
of S	2k+1 equals the right hand bound of S	2k+3.

Next, an analogous property is true for the patch case to that of Lemma 4.3 for
crossover sets, namely, that all X⊕n, X	n′, Y⊕n′′, Y	n′′′ are disjoint for all natural
numbers n, n′, n′′, and n′′′. Moreover, X	i and X	 j are disjoint when i 6= j , with
analogous properties following for sets of the form X⊕n, Y	n , and Y⊕n .

First we show that all X⊕n, X	n are disjoint. Once again, consider the maximal
case for X⊕1 and X	1. Because all other X⊕n, X	n are copies of X⊕1 and X	1 that
have been translated along the x-axis and scaled, consider only the x-coordinates.
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Because sets of the form X⊕n, X	n are never scaled by factors α, for |α|> 1, they
are all contained in

[−∞,∞)×
[
−
π

2
,
π

2

)
.

From the Patch Algorithm, observe that, where 2m+1>1, the following hold for
all m in the x-coordinate:

X	2m+1 =
1
4 X	2m,

X	2m+2 = X	2m+1 − 2π,

⇒ X	2(m+1)+1 =
1
16 X	2m −

π
2 ,

X⊕2m+1 =
1
4 X⊕2m,

X⊕2m+2 = X⊕2m+1 + 2π,

⇒ X⊕2(m+1)+1 =
1
16 X⊕2m +

π
2 .

Solving these recurrence relations, we find a collection of disjoint sets, each of
which contains one of the following as a subset: X	2m+1, X	2m+2, X⊕2m+1, and
X⊕2m+2. Trivially, we conclude that the four different sets of intervals are disjoint.
Within each set of intervals, note that both endpoints of the intervals either mono-
tonically increase (for X⊕n) or monotonically decrease (for X	n) as n increases.
Recall from our argument for the property similar to Lemma 4.2 (but for the patch
case) that the left hand bound of S	2k+1 equals the right hand bound of S	2k+3.
We will also find that the right hand bound of S	2k+1 equals the left hand bound
of S	2k+3. Thereby we conclude that all X⊕n, X	n are disjoint along with all X	i ,
X	 j and all X⊕i , X⊕ j when i 6= j . Analogously, all Y⊕n and Y	n are disjoint along
with all Y	i and Y	 j and all Y⊕i and Y⊕ j when i 6= j .

To show that the sets of the form X⊕n, X	n, Y⊕n and Y	n are disjoint, consider
the following: All the sets of the form X⊕n, X	n are contained in the region

[−∞,∞)×
[
−
π

2
,
π

2

)
.

Similarly, all the sets of the form Y⊕n, Y	n are contained the region[
−
π

2
,
π

2

)
× [−∞,∞) .

The intersection between these two regions is[
−
π

2
,
π

2

)
×

[
−
π

2
,
π

2

)
,

but the only sets in this region are X⊕1, X	1, Y⊕1, and Y	1, and by definition, these
are disjoint.

Define the set W in the same way it was defined in the proof of the theorem
for the crossover case. To show that W is dilation congruent to GSO , define the
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bijection
8X	

: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 3},

such that for all even n,

8X	
(X	n) :=

1
4

X	n = X	n+1 ∈ GSO .

Observe that

8X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

8X	

(
X	2i

)
=

∞⋃
i=1

X	2i+1 ∈ GSO ,

using the property analogous to Lemma 4.1 Lemma 1 but applied to the patch case.
All of the white spaces (X	k for k ≥ 3 and odd) in GSO are filled, and all of the
black pieces (X	n for n even) have been mapped into GSO injectively.

Similarly, define the bijections 8X⊕
, 8Y	

, and 8Y⊕
. Analogous properties fol-

low for 8X⊕
, 8Y	

, and 8Y⊕
. Let

8 : {X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i : i is even ≥ 2}

→ {X	 j ∪ X⊕ j ∪ Y	 j ∪ Y⊕ j : j is odd ≥ 3}

be such that

8(X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=8X	
(X	i )∪8X⊕

(X⊕i )∪8Y	
(Y	i )∪8Y⊕

(Y⊕i )

= (X	i+1 ∪ X⊕i+1 ∪ Y	i+1 ∪ Y⊕i+1) .

Using 8, we show that W is dilation congruent to GSO .
To show that W is translation congruent to GT O , let

9X	
: {X	i : i is even ≥ 2} → {X	 j : j is odd ≥ 1}

be such that for all even n,

9X	
(X	n) := X	n +

[
2π

0

]
=

1
2

X	(n−2) = X	n−1 ∈ GT O .

9X	
is a bijection. Observe that

9X	

( ∞⋃
i=1

X	2i

)
=

∞⋃
i=1

9X	

(
X	2i

)
=

∞⋃
i=1

X	2i−1.

Therefore, all blank spaces in GT O of the form X	n are filled when 9X	
acts on

∞⋃
i=1

X	2i ,
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Figure 4. A wavelet set which has characteristics of both patch
and crossover wavelet sets.

since 9X	
is onto. Moreover, all black pieces of the form X	n are contained in

the set
∞⋃

i=1

X	2i ,

and therefore have been mapped into GT O . Define similarly 9X⊕
, 9Y	

, and 9Y⊕

which are all bijections by analogous arguments.
Define the bijection

9 : {X	i ∪X⊕i ∪Y	i ∪Y⊕i : i is even ≥2}→{X	 j ∪X⊕ j ∪Y	 j ∪Y⊕ j : j is odd≥1}

to be such that

9 (X	i ∪ X⊕i ∪ Y	i ∪ Y⊕i )=9X	
(X	i )∪9X⊕

(X⊕i )∪9Y	
(Y	i )∪9Y⊕

(Y⊕i )

=
[
X	i−1 ∪ X⊕i−1 ∪ Y	i−1 ∪ Y⊕i−1

]
∈ GT O .

Using 8, we show W is dilation congruent modulo 2π to GT O . We conclude
now that W is a wavelet set. �

6. Concluding remarks

In Figure 4, we partition the inner square in the following way:

X	 =

[
−
π

2
, 0
)

×

[
−
π

2
,
π

2

)
, X⊕ =

[
0,
π

2

)
×

[
−
π

2
,
π

2

)
,

Y	 = ∅, Y⊕ = ∅.

To the piece X	 we apply the crossover algorithm. We obtain the following:

X	2 =

[
3π
2
, 2π

)
×

[
−
π

2
,
π

2

)
, X	3 =

[
3π
4
, π

)
×

[
−
π

4
,
π

4

)
,

X	4 =

[
−

5π
4
,−2π

)
×

[
−
π

4
,
π

4

)
, X	5 =

[
−

5π
8
,−π

)
×

[
−
π

8
,
π

8

)
.
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To the piece X⊕, we apply the patch algorithm and obtain the following as a
result from the first four steps of the algorithm:

X⊕2 =

[
2π,

5π
2

)
×

[
−
π

2
,
π

2

)
, X⊕3 =

[
π

2
,

5π
8

)
×

[
−
π

8
,
π

8

)
,

X⊕4 =

[
5π
2
,

21π
8

)
×

[
−
π

8
,
π

8

)
, X⊕5 =

[
5π
32
,

21π
32

)
×

[
−
π

32
,
π

32

)
.

We continue application of the patch algorithm to the piece X⊕ and application of
the crossover algorithm to the piece X	 inductively. Once again we let W be the
set

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GT O\

[ ∞⋃
i=1

[X	2i−1 ∪ X⊕2i−1]

])
=

( ∞⋃
i=1

[X	2i ∪ X⊕2i ]

)
∪

(
GSO\

[ ∞⋃
i=2

[X	2i−1 ∪ X⊕2i−1]

])
,

where X	n is defined according to our definition for a set of this form operated
on by the crossover algorithm (see page 65), and X⊕n is defined according to our
definition given for a set of this form operated on by the Patch Algorithm.

This set W (see Figure 4) is a wavelet set. To see this, let

G(X	odd) :=

∞⋃
i=1

X	2i−1, and G(X	even) :=

∞⋃
i=1

X	2i .

Similarly, define sets for X⊕, Y	, Y⊕ with analogous characteristics. Observe that
W is translation congruent to GT O modulo 2π because

∞⋃
i=1

X	4i +

[
2π
0

]
=

∞⋃
i=0

X	4i+3,

∞⋃
i=0

X	4i+2 −

[
2π
0

]
=

∞⋃
i=0

X	4i+1,

∞⋃
i=1

X⊕2i −

[
2π
0

]
=

∞⋃
i=0

X⊕2i+1.

Notice

∞⋃
i=0

X⊕2i+1 ∪

∞⋃
i=0

X	4i+1 ∪

∞⋃
i=0

X	4i+3 = G(X	odd)∪ G(X⊕odd),
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and thus we observe that all of the white spaces in the set GT O are filled when we

translate the black sets on the exterior of GT O by multiples of
[

2π
0

]
. Moreover,

W is dilation congruent to GSO because

1
2 G(X	even)= G(X	odd) ∈ GSO ,

that is, the even pieces of the form X	n scale into the odd pieces of the form X	n ,
and

1
4 G(X⊕even)= G(X⊕odd).

Thus, W is a wavelet set by definition.
Thanks to this example, we see that a wavelet set may demonstrate characteris-

tics of both patch and crossover wavelet sets, and thereby not be classified as either
type. The set contains both a patch region and a crossover region. Therefore, we
have not made a complete classification of all two dimensional wavelet sets, but
note that crossover wavelet sets seem to be maximally nonpatch. Finding a broader
algorithm which encompasses both the patch and crossover algorithms would be
an interesting problem to consider.

As a final comment, we remark that crossover and patch wavelet sets make
perfect sense in one-dimension (that is, in R1). The reader can easily prove that
all dyadic one-dimensional wavelet sets of two or three intervals are necessarily
crossover wavelet sets. (Here crossover would mean through the origin.) On the
other hand, the well known Journe wavelet set of 4 intervals (see [Dai and Larson
1998], Example 4.5 (i)), is easily seen to be a patch wavelet set. A characterization
is not known at this time of all finite interval patch wavelet sets.
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