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In this paper we address two-point boundary value problems of the form

u′′+ f (u)= 0, in (0, 1), u(0)= u(1)= 0,

where the function f resembles f (u) = λ(exp(au/(a + u))− c) for some con-
stants c ≥ 0, λ > 0, a > 4. We prove the existence of positive solutions for the
semipositone case where f (0) < 0, and further prove multiplicity under certain
conditions. In particular we extend theorems from Henderson and Thompson to
the semipositone case.

1. Introduction

In this paper we address two-point boundary value problems of the form

u′′+ f (u)= 0, in (0, 1), u(0)= u(1)= 0, (1)

where the function f resembles f (u)=λ(exp(au/(a+u))−c) for some constants
c ≥ 0, λ > 0, and a > 4. Boundary value problems of this sort are motivated by a
variety of applications, such as nonlinear heat generation and combustion [Brown
et al. 1981], and have been studied extensively since the early work of authors such
as Keller and Cohen [1967]. These references deal exclusively with the positone
case, the case where f is positive and monotone.

In this paper we are interested in finding multiple positive solutions for the semi-
positone case where f (0) < 0. In particular we extend theorems from [Henderson
and Thompson 2000] to the semipositone case. Our results complement those in
[Brown et al. 1981; Castro and Shivaji 1998], and many related papers that dis-
cuss S-shaped bifurcation curves for positone and semipositone problems. Related
PDE results can be found in [Drábek and Robinson 2006; Robinson and Rudd
2006]. Drábek and Robinson [2006] generalizes the main theorem in [Henderson
and Thompson 2000] to the PDE case over arbitrary smooth bounded domains.
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124 ANDREW ARNDT AND STEPHEN B. ROBINSON

[Robinson and Rudd 2006] generalizes our ODE results to the analogous PDE
problem on the unit ball.

Our proofs characterize solutions as critical points of the functional

J (u)=
1
2

∫ 1

0

(
u′
)2
−

∫ 1

0
F(u), u ∈ H 1

0 (0, 1),

where F(u) :=
∫ u

0 f . Using step functions as a simple model for f we produce
lower solutions, {u1, u 2}, and upper solutions, {u1, u2}, with the ordering

u1 ≤ u1 ≤ u 2 ≤ u2.

Standard arguments show that J has a local minimum in each of the generalized
intervals

[
u1, u1

]
and

[
u 2, u2

]
. The third solution is characterized as a saddle

point lying between the two minima. Our theorems show that one of the minima
is positive and the other is negative, and, under certain conditions, the saddle point
solution is also positive. We provide two separate criteria that guarantee a second
positive solution.

The theorems in [Brown et al. 1981] and [Henderson and Thompson 2000] are
representative of two different approaches to very similar problems, so it is of
some interest to provide an explicit comparison of these theorems. In Section 6
we provide such a comparison for the positone PDE case. In particular, we show
that the conditions in [Drábek and Robinson 2006], where the main theorem of
[Henderson and Thompson 2000] is generalized to the PDE case, are more general
than those in [Brown et al. 1981].

2. Preliminaries

The expression u ∈ C2(0, 1)
⋂

C [0, 1] is called a lower solution of Equation (1)
if

u′′+ f (u)≥ 0, u(0)≤ 0, u(1)≤ 0.

Upper solutions are defined similarly with reversed inequalities.
Since f is a bounded continuous function it is straightforward to show the J

is a C1 functional that satisfies the Palais–Smale condition, and that the following
minimization and mountain pass lemmas are true [Struwe 1990].

Lemma 2.1. Suppose that u and u are lower and upper solutions of Equation (1),
respectively, and suppose that u ≤ u on [0, 1]. Then J achieves a local minimum
at some critical point u ∈

[
u, u

]
:= {u ∈ H 1

0 (0, 1) : u ≤ u ≤ u}.

See [Struwe 1990, Theorem 2.4] for an elegant proof.

Lemma 2.2. Suppose that u and u are lower and upper solutions of (1), respec-
tively, and suppose that u1, u2 are distinct local minima of J in

[
u, u

]
. Then there
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is a third critical point of J , u3 ∈
[
u, u

]
, which satisfies

J (u3)= c = inf
γ∈0

sup
t∈[0,1]

J (γ (t)),

where 0 := {γ ∈ C([0, 1] ,
[
u, u

]
) : γ (0)= u1, γ (1)= u2}.

Note that our solutions must be symmetric about x = 1/2, and it will often
be convenient to look at the problem over the interval [0, 1/2] with the condition
u′(1/2)= 0.

With the given construction of lower and upper solutions it is also possible to
construct proofs using degree theory. The connection between upper and lower
solutions and degree theory is developed nicely in [Amann 1976; Shivaji 1987],
and is used in [Brown et al. 1981; Castro and Shivaji 1998; Drábek and Robinson
2006; Robinson and Rudd 2006], and many related papers.

3. The ideal case

In this section we perform a detailed analysis of an important special case. We
study Equation (1) assuming that f is a step function with description

f (u) :=

{
k, u < 1,

K , u ≥ 1.
(2)

We will identify a region of the (k, K ) plane where this ideal problem has three
solutions. For points in the region where k > 0 all three solutions are positive.
For points in the region where k < 0 it will always be the case that one solution is
positive, one solution is negative, and the third solution is either sign-changing or
positive. We will characterize the subregion where two of the solutions are positive
and one is negative.

The solution of the ideal problem can be broken into two pieces corresponding
to the subintervals where u < 1 and u ≥ 1. Let u = u1 on {x : u(x) < 1}, so
u1 = − kx2/2+ ax + b, where we choose b = 0 in order to satisfy u(0) = 0. Let
u = u2 on {x : u(x) ≥ 1}, so u2 = − K x2/2+ cx + d, where c = K/2 in order to
satisfy u′(1/2)= 0.

A solution whose maximum does not exceed 1 will satisfy

u ≡ u1 = −
k
2

x2
+

k
2

x,

where we have chosen a = k/2 in order to guarantee u′1(1/2)= 0. If k > 0, then u
is positive with 1≥max u= k/8. Of course, if k ≤ 0, then u is nonpositive. Hence,
a solution with max u ≤ 1 exists if and only if k ≤ 8.

It remains to discover solutions whose maximum exceeds 1. This necessitates
K >0, else the solution would never have an interior maximum above 1. In order to
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explicitly construct these solutions we must satisfy continuity conditions by finding
an x0 ∈ (0, 1/2) such that u1(x0)= 1= u2(x0). We must also satisfy a smoothness
condition u′1(x0) = u′2(x0). The smoothness condition can be used to solve for a,
which can then be substituted into the first continuity condition to get(k

2
− K

)
x2

0 +
K
2

x0− 1= 0.

Basic curve sketching techniques from calculus show that this equation has exactly
one root x0 ∈ [0, 1/2] when (k, K ) is on the upper branch of the parabola

K 2
− 16K + 8k = 0,

the graph of K = 8+ 2
√

16− 2k. We will refer to this curve as 01. When (k, K )
lies above 01 then we get two roots. Once (k, K ) has been chosen we can easily
use the second continuity condition to solve for d . The two solutions thus obtained
are either both positive or one is positive and one is sign-changing. Distinguishing
between the latter two possibilities reduces to determining when the initial slope of
the solution is nonnegative. This can be done for a particular (k, K ) by using the
conditions above to solve for a = u′(0). To discover the condition that separates
the sign-changing case from the positive case, we set a = 0 and solve. This curve,
call it 02, is described by

K =
(8+ 2

√
−2k)k

k+ 8
, −∞< k < − 8.

It is straightforward to show that 02 lies above 01, and that the two curves are
asymptotic as k → −∞. If a pair (k, K ) lies on 01, then the ideal problem has
exactly one positive solution. If the pair lies above 01 and below 02, then the
problem has two positive solutions. If the pair lies above 02, then the problem has
one positive solution and one sign-changing solution.

4. A three solutions theorem

In this section we see that the ideal case generalizes in a straightforward way.

Theorem 4.1. Let (k, K ) be a point on the curve 01, let 0 < b, and suppose that
f : R→ R is a bounded continuous function such that

(a) f (0) < 0,

(b) kb ≤ f (u), for u < b,

(c) f (u)≥ K b, for b ≤ u ≤ Mb,

where M is the maximum of the solution to Equation (1) assuming the ideal con-
ditions (2). Then the boundary value problem (1) has at least three symmetric
solutions, one of which is positive and one of which is negative.
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Proof. We use symmetry to reduce the argument to the half interval [0, 1/2], with
the boundary conditions u(0)= 0 and u′(1/2)= 0. As a further simplification we
rescale the problem so that, without loss of generality, b = 1. Simply let v = u/b
and note that v′′ + f (bv)/b = 0, and that f (·) := f (b ·)/b satisfies f (v) ≥ k for
v ≥ 1, etc.

It is easy to check that u1 ≡ 0 and u2 = − Cx(1 − x)/2 are upper solu-
tions, where C is chosen so that f (u) < C for all u. It is also easy to check
that u1 = − kx(1− x)/2 is a lower solution. Now consider the positive function
u 2 = ψ , where ψ is the solution of

ψ ′′ =

{
−k, ψ < 1,

−K , ψ ≥ 1,
ψ(0)= 0, ψ ′(1/2)= 0,

as described in Section 3. Let M := max[0,1/2] ψ = ψ(1/2). It follows that
f (u 2)≥ K at points where ψ ≥ 1, where 1 ≤ ψ ≤ M , and that f (ψ) ≥ k where
ψ < 1, where 0≤ ψ < 1. Hence u 2 is a positive lower solution.

Theorem 4.1c implies C > K , so we have u′′2 < u′′2, u2(0) = u 2(0) = 0, and
u′2(1/2) = u′2(1/2) = 0. A simple comparison implies that u 2 ≤ u2. Other com-
parisons are easy, and lead to u1 ≤ u1 ≤ u 2 ≤ u2 in [0, 1/2].

Applying the variational methods described in Section 2 we infer the existence
of three solutions. The solution lying in the generalized interval

[
u1, u1

]
is clearly

negative, and the solution lying in the generalized interval
[
u 2, u2

]
is clearly pos-

itive. The third solution, the saddle point solution, cannot be easily described
without further conditions on f . �

5. Criteria for two positive solutions

In this section we state criteria that guarantee two positive solutions. Since our
interest is in positive solutions we assume throughout this section, without loss
of generality, that f (u) = f (0) for u ≤ 0. This introduces the convenience that
Equation (1) has a unique nonpositive solution satisfying u′′+ f (0)= 0, so every
other solution must be either sign-changing or positive.

In the ideal problem we get two positive solutions when k≥ −8. The analogous
result follows for the more general problem.

Theorem 5.1. Let (k, K ) be a point on the curve 01, let 0 < a < b, and suppose
that f : R→ R is a bounded continuous function such that

(a) f (0) < 0,

(b) kb ≤ f (u), for u ≤ b,

(c) f (u)≥ K b, for b ≤ u ≤ Mb,

(d) −8a ≤ f (u)≤ 0 for 0≤ u ≤ a,
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where M is the maximum of the solution to (1) assuming the ideal conditions (2).
Then (1) has two positive solutions.

Proof. Without loss of generality, rescale the problem so that a = 1. Apply
Theorem 4.1 to get three solutions, one of which is negative, one of which is
positive, and one of which is not yet well described. Let u be this third solution
and observe, as above, that u must have positive values somewhere on its domain.
By Theorem 5.1d, u cannot achieve a positive maximum below height a = 1. In
fact, if x1 is the first point where u(x) = 1, then u′′ ≥ 0 on [0, x1] implies that
u′(x1) > 0, so u must achieve a maximum strictly above 1.

Suppose that u′(0)≤0, and compare u to v=4x2. We know that u(0)=0=v(0),
u′(0) ≤ 0 = v′(0), and u′′ ≤ 8 = v′′ on {x : u(x) < 1}. It follows that u ≤ v at
least until the first point where u = 1, which cannot happen until after v reaches
1. But v ≤ 1 on [0, 1/2], so u cannot achieve a maximum greater than 1. This
is a contradiction, so it must be that u′(0) > 0. A similar comparison leads to a
contradiction if u(x) = 0 and u′(x) ≤ 0 at any other point x ∈ (0, 1/2). Thus u
must be positive. �

It is interesting to note that for the analogous PDE problem on the unit ball,
there is no theorem similar to Theorem 5.1. In fact, for any k < 0, it is possible
to construct a sign-changing third solution for the ideal case [Robinson and Rudd
2006].

For k < − 8 we have seen that the ideal problem has two positive solutions for
(k, K ) in the region above 01 and below 02. One might conjecture, and at one
time these authors did, that the general problem will have two positive solutions
if the K in Theorem 4.1 satisfies K ≤ (8+ 2

√
−2k)k/(k+ 8). It turns out that an

explicit counterexample can be constructed, as we shall soon demonstrate. How-
ever, the next theorem shows that an alternative upper bound on K does guarantee
the existence of two positive solutions.

Theorem 5.2. Let (k, K ) be a point on the curve 01 with k < − 8, let 0 < a < b,
and suppose that f : R→ R is a bounded continuous function such that

(a) ka ≤ f (u) < 0 for 0≤ u ≤ a,

(b) kb ≤ f (u), for u ≤ b,

(c) f (u)≥ K b, for b ≤ u ≤ Mb,

(d) f (u) < 16ka/(k+ 8) for all u,

where M is the maximum of the solution to Equation (1) assuming the ideal condi-
tions of (2). Then (1) has two positive solutions.

Proof. Rescale the problem so that, without loss of generality, a = 1. Let u repre-
sent the third solution as in the previous proof. Once again we use a comparison
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argument to show that assuming u′(0)≤ 0 leads to a contradiction. The case where
we assume u(x)= 0 and u′(x)≤ 0 leads to a similar contradiction.

Let k < − 8 be fixed, and consider a family of comparison functions indexed
by t ∈

[
t0,
√
−2/k

]
,

vt :=


−

k
2

x2, x ∈ [0, t] ,

−kt (x − t)−
k
2

t2, x ∈ [t, xt ] ,

−
Kt

2
x2, x ∈

[
xt ,

1
2

]
,

where

t0 :=
1
2
+

1
2k

√
k2+ 8k, xt :=

kt2
− 2

2kt
, Kt =

2k2t2

kt2− kt − 2
.

This function can be visualized in three pieces: the first is a parabola emerging
from the origin with 0 slope, the second is a tangent line to the parabola at the point
(t,−kt2/2), and the third is a parabolic cap that meets the tangent line smoothly at
(xt , 1) and then reaches a critical point at x = 1/2. t0 describes the t value such that
xt = 1/2, and thus describes the infimum of the t values such that this comparison
function makes sense, and, not coincidentally, identifies a vertical asymptote for
Kt . Computing two derivatives with respect to x , except at x = t and x = xt , we
see that

v′′t :=


−k, x ∈ [0, t) ,

0, x ∈ (t, xt),

−Kt , x ∈ (xt ,
1
2 ].

Recall, as in the previous proof, that u must reach a positive maximum above
1 at some point. How do u and vt compare? If u′(0) ≤ 0, then u ≤ − kx2/2
on
[
0,
√
−2/k

]
, because u′′ ≤ − k while u < 1, and −kx2/2 reaches height 1 at

√
−2/k. It is clearly possible to adjust the choice of t so that xt represents the first

point where u(x) = 1. Since u′′ ≥ 0 on [0, xt ], u(t) ≤ vt(t), and u(xt) = vt(xt)

it follows that u ≤ vt on [0, xt ] and that u′(xt) ≥ v
′
t(xt) > 0. By the mean value

theorem, there is an x ∈ (xt , 1/2) such that

−u′′(x)= −
u′
( 1

2

)
− u′(xt)

1
2 − xt

=
u′(xt)
1
2 − xt

≥
v′(xt)
1
2 − xt

= Kt .

Elementary calculus reveals that Kt achieves a minimum of

Kt =
16k

k+ 8
, at t = −

4
k
.
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Thus
−u′′(x)≥ 16k/(k+ 8) > f (u(x)),

and so a contradiction has been reached. �

It is important to note that 16k/(k+ 8)<(8+ 2
√
−2k)k/(k+ 8) for k<−8, and

so the comparison functions, vt , satisfy the conditions of Theorem 4.1 and the ad-
ditional restriction −v′′t < (8+ 2

√
−2k)k/(k+ 8). Since the inequality is strict we

can slightly modify vt so that it has negative slope at 0, and is thus sign-changing,
but still satisfies conditions Theorem 5.2a–c, as well as the given estimate on its
second derivative. This provides the counterexample to the conjecture, expressed
above, that 02 provides a boundary guaranteeing two positive solutions for the
general case.

Finally, if f is to satisfy the conditions of Theorem 5.2, and if C represents
the upper bound for f , then we must have 8+ 2

√
16− 2k ≤ C < 16k/(k+ 8).

A careful comparison of expressions on the left and right of this inequality shows
that their graphs cross in the (k, K ) plane at the point (−24, 24). Thus Theorem
5.2 is only applicable for −24 < k < − 8. It seems reasonable to conjecture that
finer estimates and comparison arguments will discover criteria for two positive
solutions when k < − 24.

6. A comparison of solvability conditions

The methods and results in [Brown et al. 1981] and [Henderson and Thompson
2000] represent two different, and complimentary, approaches to similar problems.
The more obvious differences are that [Henderson and Thompson 2000] does not
impose the same monotonicity and smoothness conditions used in [Brown et al.
1981], and is, in that sense, more general. On the other hand the results in [Brown
et al. 1981] deal with both the ODE and PDE cases, and take good advantage of
the more restrictive conditions to prove more precise results, especially in the ODE
case.

The relationship between the solvability conditions in the two papers is not as
obvious. In this section we explore that relationship. In particular we prove that
if the conditions in [Brown et al. 1981] are satisfied, then so are the conditions in
[Henderson and Thompson 2000]. In order to demonstrate this in some generality
we consider the PDE case,

1u+ λ f (u)= 0 in D, u|∂D = 0, (3)

where D⊂Rn is a smooth bounded domain and f : [0,∞)→ [0,∞) is continuous.
[Henderson and Thompson 2000] presented purely ODE results, but their work
is generalized in [Drábek and Robinson 2006], so we will actually compare the
conditions in [Brown et al. 1981] and [Drábek and Robinson 2006].
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It is helpful to begin by defining several constants. First, let m :=maxD φ, where
φ is the unique positive solution of

1φ+ 1= 0 in D, φ|∂D = 0.

Second, consider the problem

1ψ + K h(ψ)= 0 in D, φ|∂D = 0, (4)

where h(u) ≡ 0 when u < 1 and h(u) ≡ 1 when u ≥ 1. It is proved in [Drábek
and Robinson 2006] that there is a minimal positive K such that Equation (4) has
a positive solution, and we assume throughout the arguments below that K is this
minimal constant. Let M :=maxD ψ .

Drábek and Robinson [2006] proved that (3) has three nonnegative solutions if

(a) λ f (u) < ka on [0, a],

(b) λ f (u)≥ K b on [b,Mb],

(c) λ f (u)≤ kc on [0, c],

where 0< a < b < Mb < c and k := 1/m.
Before stating the solvability conditions in [Brown et al. 1981] we describe yet

another constant. Consider a subdomain �⊂⊂ D and consider

1η+χ� = 0 in D, η|∂D = 0.

Define M2 := [inf� η]−1. Observe that v = M2η satisfies

1v+M2χ� = 0 in D, η|∂D = 0,

with v ≥ 1 on �. In particular we have 1v + M2h(v) ≥ 0, so v is a positive
lower solution for (4). Combining this with a simple constant upper solution we
can show that (4) has a positive solution when M2 is substituted for K . Since K is
the minimal constant with this property we see that K ≤ M2. For a more detailed
discussion of K and its properties see [Drábek and Robinson 2006].

Brown et al. [1981] proved that (3) has three nonnegative solutions if f is a
smooth and bounded function, which is increasing on

[
0, c′

]
, and which satisfies

M2

(
l2

f (l2)

)
≤ λ≤min

{
M1

(
l1

f (l1)

)
,M3

(
c′

f (l1)

)}
, (5)

where 0< l1 < l2 < c′.
In order to compare solvability conditions it remains to do a careful reading

of the proof in [Brown et al. 1981] to see how the constants are chosen and how
they compare to those in [Drábek and Robinson 2006]. First, it turns out that
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M1 = M3 = 1/m. Hence, the inequality

λ≤ M1

(
l1

f (l1)

)
,

implies that λ f (a) ≤ ka if we substitute l1 = a and k = 1/m. Moreover, the
monotonicity assumption on f leads to λ f (u)≤ ka for u in [0, a]. The inequality

M2

(
l2

f (l2)

)
≤ λ,

leads us to K b≤λ f (b),where we have substituted l2= b and M2≥ K . Once again
monotonicity implies that K b ≤ λ f (u), for u ∈

[
b, c′

]
. Substituting M3 = 1/m,

b = l2, and c = c′ into the inequality

M2

(
l2

f (l2)

)
≤ M3

(
c′

f (l2)

)
,

gives mM2b ≤ c, and thus c ≥ mK b. By the definition of m we know that
Kφ(x)≤ mK for all x ∈ D. Also, 1(Kφ) = − K ≤ −K h(ψ) = 1ψ in D ,
with strict inequality over the set D \�, so the maximum principle implies that
Kφ(x) > ψ(x) in D. Hence K m > M , and so c > Mb.

So far we have used Equation (5) to verify conditions (a) and (b) on page 131 for
Equation (3) having nonnegative solutions, with the modest exception of obtaining
a strict inequality for condition (a). The purpose of the strict inequality in [Drábek
and Robinson 2006] is to guarantee that the intermediate lower solution is strict,
which helps in distinguishing the three different solutions. This hair can easily
be split by allowing equality and then using the monotonicity condition on f to
recover. Finally, condition (c) follows easily from the fact that f is bounded.
Hence the solvability conditions in [Brown et al. 1981] imply those in [Drábek
and Robinson 2006].
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