invelve a journal of mathematics

Paths and circuits in \mathbb{G}-graphs
Christa Marie Bauer, Chrissy Konecia Johnson, Alys Monell Rodriguez, Bobby Dean Temple and Jennifer Renee Daniel

Paths and circuits in \mathbb{G}-graphs

Christa Marie Bauer, Chrissy Konecia Johnson, Alys Monell Rodriguez, Bobby Dean Temple and Jennifer Renee Daniel

(Communicated by Scott Chapman)

For a group G with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, the \mathbb{G}-graph of G, denoted $\Gamma(G, S)$, is the graph whose vertices are distinct cosets of $\left\langle s_{i}\right\rangle$ in G. Two distinct vertices are joined by an edge when the set intersection of the cosets is nonempty. In this paper, we study the existence of Hamiltonian and Eulerian paths and circuits in $\Gamma(G, S)$.

1. Introduction

Let G be a group with a generating set $S=\left\{s_{1}, \ldots, s_{k}\right\}$. For the subgroup $\left\langle s_{i}\right\rangle$ of G, define the subset $T_{\left\langle s_{i}\right\rangle}$ of G to be a left transversal for $\left\langle s_{i}\right\rangle$ if $\left\{x\left\langle s_{i}\right\rangle \mid x \in T_{\left\langle s_{i}\right\rangle}\right\}$ is precisely the set of all left cosets of $\left\langle s_{i}\right\rangle$ in G. Associate a simple graph $\Gamma(G, S)$ to (G, S) with vertex set $V(\Gamma(G, S))=\left\{x_{j}\left\langle s_{i}\right\rangle \mid x_{j} \in T_{\left\langle s_{i}\right\rangle}\right\}$. Two distinct vertices $x_{j}\left\langle s_{i}\right\rangle$ and $x_{l}\left\langle s_{k}\right\rangle$ in $V(\Gamma(G, S))$ are joined by an edge if $x_{j}\left\langle s_{i}\right\rangle \cap x_{l}\left\langle s_{k}\right\rangle$ is nonempty. The edge set, $E(\Gamma(G, S))$, consists of pairs $\left(x_{j}\left\langle s_{i}\right\rangle, x_{l}\left\langle s_{k}\right\rangle\right) . \Gamma(G, S)$ defined this way has no multiedge or loop. Bretto and Gillibert [2004] introduced $\Gamma(G, S)$ and a similar graph, $\bar{\Gamma}(G, S) . \bar{\Gamma}(G, S)$ differs from $\Gamma(G, S)$ in that it is a multigraph with a n-edge between two vertices $x_{j}\left\langle s_{i}\right\rangle$ and $x_{l}\left\langle s_{k}\right\rangle$ when $\left|x_{j}\left\langle s_{i}\right\rangle \cap x_{l}\left\langle s_{k}\right\rangle\right|=n$. The \mathbb{G}-graph, $\Gamma(G, S)$, is necessarily a subgraph of $\bar{\Gamma}(G, S)$.

In this paper we concentrate on results for $\Gamma(G, S)$. Many of the results from [Bretto and Gillibert 2004; 2005; Bretto et al. 2005; 2007] about $\bar{\Gamma}(G, S)$ translate easily to the simple graph $\Gamma(G, S)$.

Let $V_{i}=\left\{x_{j}\left\langle s_{i}\right\rangle \mid x_{j} \in T_{\left\langle s_{i}\right\rangle}\right\}$. Then $V(\Gamma(G, S))=\cup_{i=1}^{k} V_{i}$. The main object of this paper is to study the existence of Hamiltonian and Eulerian paths and circuits in $\Gamma(G, S)$. To this end we recall a few results from Euler. Notice that Eulerian circuits are not considered Eulerian paths in this paper.

MSC2000: 05C25, 20F05.
Keywords: Groups, graphs, generators.
All authors are partially supported by the MAA under its National Research Experience for Undergraduates Program which is funded by the National Science Foundation, the National Security Agency, and the Moody Foundation.

Theorem 1.1 (Euler). Let Γ be a nontrivial connected graph. Then Γ has an Eulerian circuit if and only if every vertex is of even degree.

Theorem 1.2 (Euler). Let Γ be a nontrivial connected graph. Then Γ has an Eulerian path if and only if Γ has exactly two vertices of odd degree. Furthermore, the path begins at one of the vertices of odd degree and terminates at the other.

2. Preliminaries

In this section, results are proved that pertain to the degrees of vertices in $\Gamma(G, S)$. Recall that if $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, then $\Gamma(G, S)$ is necessarily k-partite.

Lemma 2.1. If $g \in\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle$, then $g^{-1} \in\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle$.
Proof. Let $g \in\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle$, then there exists $m, n \in \mathbb{N}$ such that $g=s_{i}^{m}=s_{j}^{n}$. Taking the inverse, we have $g^{-1}=s_{i}^{-m}=s_{j}^{-n}$. Therefore $g^{-1} \in\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle$.
Theorem 2.1. Let G be a group with generating set S. Let $\left\langle s_{i}\right\rangle \cup x_{2}\left\langle s_{i}\right\rangle \cup \cdots \cup x_{k_{i}}\left\langle s_{i}\right\rangle$ be a partition of G into cosets of $\left\langle s_{i}\right\rangle$ and $\left\langle s_{j}\right\rangle \cup y_{2}\left\langle s_{j}\right\rangle \cup \cdots \cup y_{k_{j}}\left\langle s_{j}\right\rangle$ be a partition of G into cosets of $\left\langle s_{j}\right\rangle$. Let

$$
V_{i}=\left\{\left\langle s_{i}\right\rangle, x_{2}\left\langle s_{i}\right\rangle, \ldots, x_{k_{i}}\left\langle s_{i}\right\rangle\right\} \quad \text { and } \quad V_{j}=\left\{\left\langle s_{j}\right\rangle, y_{2}\left\langle s_{j}\right\rangle, \ldots, y_{k_{j}}\left\langle s_{j}\right\rangle\right\}
$$

be the appropriate subsets of the vertex set of $\Gamma(G, S)$. If

$$
\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle\right|=S_{i, j} \quad \text { and } \quad\left(x\left\langle s_{i}\right\rangle, y\left\langle s_{j}\right\rangle\right) \in E(\Gamma(G, S)),
$$

then $\left|x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle\right|=S_{i, j}$.
Proof. Let $\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle=\left\{e, g_{1}, \ldots, g_{S_{i, j}-1}\right\}$. Since $g_{1} \in\left\langle s_{i}\right\rangle$ and $g_{1} \in\left\langle s_{j}\right\rangle$, there exists $m, n \in \mathbb{N}$ such that $g_{1}=s_{i}^{m}=s_{j}^{n}$. Let $x\left\langle s_{i}\right\rangle \in V_{i}$ and $y\left\langle s_{j}\right\rangle \in V_{j}$ such that $\left(x\left\langle s_{i}\right\rangle, y\left\langle s_{j}\right\rangle\right) \in E(\Gamma(G, S))$. Then $x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle \neq \varnothing$ and there exists h such that $h=x s_{i}^{m^{\prime}}=y s_{j}^{n^{\prime}}$. So

$$
h=x s_{i}^{m^{\prime}}=x s_{i}^{m^{\prime}-m} s_{i}^{m}=x s_{i}^{m^{\prime}-m} g_{1} .
$$

Therefore $h g_{1}^{-1} \in x\left\langle s_{i}\right\rangle$. Likewise, $h g_{1}^{-1} \in y\left\langle s_{j}\right\rangle$ and $h g_{1}^{-1} \in x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle$. By similar arguments, $\left\{h, h g_{1}^{-1}, h g_{2}^{-1}, \ldots, h g_{S_{i, j}-1}^{-1}\right\} \subseteq x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle$.

Assume there exists $g \in x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle$ such that $g \notin\left\{h, h g_{1}^{-1}, h g_{2_{2 \prime \prime}}^{-1}, \ldots, h g_{S_{i, j}-1}^{-1}\right\}$. Since $g \in x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle$ there exists $m^{\prime \prime}, n^{\prime \prime} \in \mathbb{N}$ such that $g=x s_{i}^{m^{\prime \prime}}=y s_{j}^{n^{\prime \prime}}$. So

$$
g=x s_{i}^{m^{\prime \prime}}=x s_{i}^{m^{\prime}} s_{i}^{m^{\prime \prime}-m^{\prime}}=h s_{i}^{m^{\prime \prime}-m^{\prime}} .
$$

Therefore $h^{-1} g \in\left\langle s_{i}\right\rangle$. Likewise $h^{-1} g \in\left\langle s_{j}\right\rangle$ and $h^{-1} g \in\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle$. There exists $k \in\left\{0, \ldots, S_{i, j}-1\right\}$ such that $h^{-1} g=g_{k}$. Since $g_{k} \in\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle, g_{k}^{-1} \in$
$\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle$ by Lemma 2.1. Denote g_{k}^{-1} by g_{k}^{\prime}. Then $g=h g_{k}=h\left(g_{k}^{\prime}\right)^{-1}$ and $g \in\left\{h, h g_{1}^{-1}, h g_{2}^{-1}, \ldots, h g_{S_{i, j}-1}^{-1}\right\}$. Therefore

$$
\begin{aligned}
\left\{h, h g_{1}^{-1}, h g_{2}^{-1}, \ldots, h g_{S_{i, j}-1}^{-1}\right\} & =x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle \\
\left|x\left\langle s_{i}\right\rangle \cap y\left\langle s_{j}\right\rangle\right| & =S_{i, j}
\end{aligned}
$$

Corollary 2.1. The number of edges between $\left\langle s_{i}\right\rangle$ and V_{j} is given by $\left|s_{i}\right| / S_{i, j}$.
Proof. Let

$$
V_{j}=\left\{\left\langle s_{j}\right\rangle, y_{2}\left\langle s_{j}\right\rangle, \ldots, y_{k}\left\langle s_{j}\right\rangle\right\} \quad \text { and } \quad V_{j}^{\prime}=\left\{\left\langle s_{j}\right\rangle, y_{2}^{\prime}\left\langle s_{j}\right\rangle, \ldots, y_{l}^{\prime}\left\langle s_{j}\right\rangle\right\}
$$

be the set that contains all vertices in V_{j} that are adjacent to $\left\langle s_{i}\right\rangle$. Since

$$
\left(\left\langle s_{i}\right\rangle, y^{\prime}\left\langle s_{j}\right\rangle\right) \in E(\Gamma(G, S)) \quad \text { for all } y^{\prime}\left\langle s_{j}\right\rangle \in V_{j}^{\prime},\left|\left\langle s_{i}\right\rangle \cap y^{\prime}\left\langle s_{j}\right\rangle\right|=S_{i, j}
$$

by Theorem 2.1. So the number of elements in $\left\langle s_{i}\right\rangle$ is given by $\left|s_{i}\right|=S_{i, j} \cdot l$ or the number of edges between $\left\langle s_{i}\right\rangle$ and V_{j} is $\left|s_{i}\right| / S_{i, j}$.
Lemma 2.2. If G is a group with generating set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and $S_{i, j}=$ $\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle\right|$, then the degree of the vertex $\left\langle s_{i}\right\rangle$, denoted $\operatorname{deg}\left\langle s_{i}\right\rangle$, is

$$
\operatorname{deg}\left\langle s_{i}\right\rangle=\left(\sum_{j=1}^{n}\left|s_{i}\right| / S_{i, j}\right)-\left|s_{i}\right| / S_{i, i}
$$

Proof. We proceed with induction on n. Partition the vertex set of $\Gamma(G, S)$ into n subsets $V_{1}, V_{2}, \ldots, V_{n}$ such that $V_{i}=\left\{\left\langle s_{i}\right\rangle, x_{2}\left\langle s_{i}\right\rangle, \ldots, x_{k_{i}}\left\langle s_{i}\right\rangle\right\}$. Consider the subgraph, $\Gamma_{1,2}$, of $\Gamma(G, S)$ induced by the vertex set $V_{1} \cup V_{2}$. Let $\operatorname{deg}_{\Gamma_{1,2}}\left(\left\langle s_{i}\right\rangle\right)$ denote the degree of the vertex $\left\langle s_{i}\right\rangle$ in $\Gamma_{1,2}$. Then, by Corollary 2.1,

$$
\operatorname{deg}_{\Gamma_{1,2}}\left(\left\langle s_{2}\right\rangle\right)=\left|s_{2}\right| / S_{2,1}=\left(\sum_{j=1}^{2}\left|s_{2}\right| / S_{2, j}\right)-\left|s_{2}\right| / S_{2,2}
$$

Likewise

$$
\operatorname{deg}_{\Gamma_{1,2}}\left(\left\langle s_{1}\right\rangle\right)=\left|s_{1}\right| / S_{1,2}=\left(\sum_{j=1}^{2}\left|s_{1}\right| / S_{1, j}\right)-\left|s_{1}\right| / S_{1,1}
$$

and the formula holds for $n=2$.
Consider the subgraph, $\Gamma_{1,2, \ldots, n-1}$, of $\Gamma(G, S)$ induced by the vertex set $V_{1} \cup V_{2} \cup$ $\cdots \cup V_{n-1}$. Let $\operatorname{deg}_{\Gamma_{1,2, \ldots, n-1}}\left(\left\langle s_{i}\right\rangle\right)$ denote the degree of the vertex $\left\langle s_{i}\right\rangle$ in $\Gamma_{1,2, \ldots, n-1}$. Assume that the theorem holds for $n-1$, that is,

$$
\operatorname{deg}_{\Gamma_{1,2, \ldots, n-1}}\left(\left\langle s_{i}\right\rangle\right)=\left(\sum_{j=1}^{n-1}\left|s_{i}\right| / S_{i, j}\right)-\left|s_{i}\right| / S_{i, i}
$$

Now consider the entire graph, $\Gamma(G, S)$. The number of edges between $\left\langle s_{i}\right\rangle$ and V_{n} is $\left|s_{i}\right| / S_{i, n}$. So

$$
\operatorname{deg}\left\langle s_{i}\right\rangle=\left|s_{i}\right| / S_{i, n}+\left(\sum_{j=1}^{n-1}\left|s_{i}\right| / S_{i, j}\right)-\left|s_{i}\right| / S_{i, i}=\left(\sum_{j=1}^{n}\left|s_{i}\right| / S_{i, j}\right)-\left|s_{i}\right| / S_{i, i}
$$

Remark 1. Notice that $\left|s_{i}\right| / S_{i, i}=1$, since $S_{i, i}=\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{i}\right\rangle\right|=\left|s_{i}\right|$.
Corollary 2.2. If G is a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, then $\operatorname{deg}\left\langle s_{i}\right\rangle$ equals $\operatorname{deg} g\left\langle s_{i}\right\rangle$ for all $g\left\langle s_{i}\right\rangle$ in V_{i}, that is, every vertex in the same vertex set has the same degree.

Proof. Let G be a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and $S_{i, j}=\mid\left\langle s_{i}\right\rangle \cap$ $\left\langle s_{j}\right\rangle \mid$. From Theorem 2.1, if $g, h \in G$ such that $\left(g\left\langle s_{i}\right\rangle, h\left\langle s_{j}\right\rangle\right) \in E(\Gamma(G, S))$, then $\left|g\left\langle s_{i}\right\rangle \cap h\left\langle s_{j}\right\rangle\right|=S_{i, j}$. From Lemma 2.2,

$$
\operatorname{deg} g\left\langle s_{i}\right\rangle=\left(\sum_{j=1}^{n} \frac{\left|g\left\langle s_{i}\right\rangle\right|}{S_{i, j}}\right)-1=\left(\sum_{j=1}^{n} \frac{\left|\left\langle s_{i}\right\rangle\right|}{S_{i, j}}\right)-1=\operatorname{deg}\left\langle s_{i}\right\rangle .
$$

Theorem 2.2. If G is a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and $S_{i, j}=$ $\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle\right|$, then $\Gamma(G, S)$ is complete n-partite if and only if

$$
\left(\sum_{j=1}^{n} \frac{\left|\left\langle s_{i}\right\rangle\right|}{S_{i, j}}\right)-1=\left(\sum_{k=1}^{n}\left|V_{k}\right|\right)-\left|V_{i}\right| .
$$

3. Abelian groups of rank ≤ 2

In this section, we let G be an abelian group of rank ≤ 2 and let $|S|=2 . G$ is isomorphic to $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ for some m and n. Notice that if G is infinite then it is isomorphic to $\mathbb{Z} \approx \mathbb{Z} \times \mathbb{Z}_{1}$ and the theorems of this section apply.
Theorem 3.1. Let $G=\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ and $S=\{(1,0),(0,1)\}$, then $\Gamma(G, S)$ has a Hamiltonian path if and only if $|m-n| \leq 1$.

Proof. (\Rightarrow) Let $\Gamma(G, S)$ contain a Hamiltonian path. $\Gamma(G, S)$ is $K_{m, n}$ [Daniel $\geq 2008]$. Assume that $n \geq m .|(1,0)|=n$ and $|(0,1)|=m$ and $V=V_{1} \cup V_{2}$ where

$$
\begin{aligned}
& V_{1}=\left\{a_{1}+\langle(1,0)\rangle, a_{2}+\langle(1,0)\rangle, \ldots, a_{m}+\langle(1,0)\rangle\right\} \text { and } \\
& V_{2}=\left\{b_{1}+\langle(0,1)\rangle, b_{2}+\langle(1,0)\rangle, \ldots, b_{n}+\langle(1,0)\rangle\right\}
\end{aligned}
$$

Let $H_{1}=\langle(1,0)\rangle$ and $H_{2}=\langle(0,1)\rangle$. Since $n \geq m$, any Hamiltonian path must start with a vertex in V_{2}, that is, $b_{i_{1}}+H_{2}$.

$$
\begin{aligned}
\left(b_{i_{1}}+H_{2}, a_{j_{1}}+H_{1}\right),\left(a_{j_{1}}+H_{1},\right. & \left.b_{i_{2}}+H_{2}\right),\left(b_{i_{2}}+H_{2}, a_{j_{2}}+H_{1}\right), \ldots \\
& \left(a_{j_{m-1}}+H_{1}, b_{i_{m}}+H_{2}\right),\left(b_{i_{m}}+H_{2}, a_{j_{m}}+H_{1}\right), \ldots
\end{aligned}
$$

Notice that all the vertices in V_{1} have been exhausted. So either the path ends here and $n=m$ or it ends with the edge $\left(a_{j_{m}}+H_{1}, b_{i_{m+1}}+H_{2}\right)$ and $n=m+1$. Therefore $|m-n| \leq 1$. The proof for $m \geq n$ is similar.
(\Leftarrow) Let $|m-n| \leq 1,|(1,0)|=n$, and $|(0,1)|=m$. Let

$$
a_{1}+H_{1} \cup a_{2}+H_{1} \cup \cdots \cup a_{m}+H_{1}
$$

be a partition of G into cosets of $\langle(1,0)\rangle$ and let

$$
b_{1}+H_{2} \cup b_{2}+H_{2} \cup \cdots \cup b_{n}+H_{2}
$$

be a partition of G into cosets of $\langle(0,1)\rangle$. Since $\Gamma(G, S)$ is $K_{m, n}$, there exists an edge between $a_{i}+H_{1}$ and $b_{j}+H_{2}$ for all i, j.
(i) $m=n+1$ and $\left(a_{1}+H_{1}, b_{1}+H_{2}\right),\left(b_{1}+H_{2}, a_{2}+H_{1}\right), \ldots,\left(a_{n}+H_{1}, b_{n}+H_{2}\right)$, $\left(b_{n}+H_{2}, a_{m}+H_{1}\right)$ is a Hamiltonian path.
(ii) $n=m+1$ and $\left(b_{1}+H_{2}, a_{1}+H_{1}\right),\left(a_{1}+H_{1}, b_{2}+H_{2}\right), \ldots,\left(b_{m}+H_{2}, a_{m}+H_{1}\right)$, $\left(a_{m}+H_{1}, b_{n}+H_{2}\right)$ is a Hamiltonian path.
(iii) $m=n$ and $\left(a_{1}+H_{1}, b_{1}+H_{2}\right),\left(b_{1}+H_{2}, a_{2}+H_{1}\right), \ldots,\left(b_{n-1}+H_{2}, a_{n}+H_{1}\right)$, $\left(a_{n}+H_{1}, b_{n}+H_{2}\right)$ is a Hamiltonian path.

Theorem 3.2. Let $G=\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ and $S=\{(1,0),(0,1)\}$, then $\Gamma(G, S)$ has a Hamiltonian circuit if and only if $m=n$.

Proof. (\Rightarrow) Let $\Gamma(G, S)$ contain a Hamiltonian circuit. $\Gamma(G, S)$ is $K_{m, n}$ [Daniel $\geq 2008]$. $|(1,0)|=n$ and $|(0,1)|=m$ and $V=V_{1} \cup V_{2}$ where

$$
\begin{aligned}
& V_{1}=\left\{a_{1}+\langle(1,0)\rangle, a_{2}+\langle(1,0)\rangle, \ldots, a_{m}+\langle(1,0)\rangle\right\}, \\
& V_{2}=\left\{b_{1}+\langle(0,1)\rangle, b_{2}+\langle(1,0)\rangle, \ldots, b_{n}+\langle(1,0)\rangle\right\} .
\end{aligned}
$$

Let $H_{1}=\langle(1,0)\rangle$ and $H_{2}=\langle(0,1)\rangle$. Start with a vertex in V_{2}, that is, $b_{i_{1}}+H_{2}$ and trace the Hamiltonian circuit

$$
\begin{aligned}
\left(b_{i_{1}}+H_{2}, a_{j_{1}}+H_{1}\right),\left(a_{j_{1}}+H_{1},\right. & \left.b_{i_{2}}+H_{2}\right),\left(b_{i_{2}}+H_{2}, a_{j_{2}}+H_{1}\right), \ldots \\
& \left(a_{j_{m-1}}+H_{1}, b_{i_{m}}+H_{2}\right),\left(b_{i_{m}}+H_{2}, a_{j_{m}}+H_{1}\right), \ldots
\end{aligned}
$$

Notice that all the vertices in V_{1} have been exhausted. So the path ends here and to complete the circuit we need the edge $\left(a_{j_{m}}+H_{1}, b_{i_{1}}+H_{2}\right)$. Therefore $n=m$. The proof starting with a vertex in V_{1} is similar.
(\Leftarrow) Let $m=n$ and $a_{1}+H_{1} \cup a_{2}+H_{1} \cup \cdots \cup a_{m}+H_{1}$ be partition of G into cosets of $\langle(1,0)\rangle$ Since $\Gamma(G, S)$ is $K_{m, m}$, there exist an edge between $a_{i}+H_{1}$ and $b_{j}+H_{2}$ for all i, j. Then $\left(a_{1}+H_{1}, b_{1}+H_{2}\right),\left(b_{1}+H_{2}, a_{2}+H_{1}\right), \ldots,\left(a_{m}+H_{1}, b_{m}+H_{2}\right)$, ($b_{m}+H_{2}, a_{1}+H_{1}$) is a Hamiltonian circuit.

Example 1. Let $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and $S=\{(1,0),(0,1)\}$, then $\Gamma(G, S)=K_{3,3}$ (see figure) and $\Gamma(G, S)$ contains both a Hamiltonian path and circuit.

Theorem 3.3. Let $G=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and $S=\{(1,0),(0,1)\}$, then $\Gamma(G, S)$ has an Eulerian circuit if and only if m and n are both even.

Proof. (\Rightarrow) Let $\Gamma(G, S)$ have an Eulerian circuit. From [Daniel \geq 2008], $S_{1,2}=$ $S_{2,1}=1$ so $\operatorname{deg}\langle(1,0)\rangle=n$ and $\operatorname{deg}\langle(0,1)\rangle=m$. Since every vertex is even, m and n are even.
(\Leftarrow) Let m and n be even. From [Daniel ≥ 2008], $\Gamma(G, S)$ is $K_{n, m}$. Therefore $\operatorname{deg}\langle(1,0)\rangle=m$ and $\operatorname{deg}\langle(0,1)\rangle=n$. Since m and n are both even, $\Gamma(G, S)$ contains an Eulerian circuit.

Theorem 3.4. Let $G=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and $S=\{(1,0),(0,1)\}$, then $\Gamma(G, S)$ has an Eulerian path if and only if m is odd and $n=2$ or n is odd and $m=2$.
Proof. (\Rightarrow) Let $\Gamma(G, S)$ contain an Eulerian path. Then $\Gamma(G, S)$ contains exactly 2 vertices of odd degree. Since $\Gamma(G, S)$ is bipartite, there exists i such that V_{i} contains the two vertices of odd degree.

Let V_{1} contains the two vertices of odd degree. $S_{1,2}=S_{2,1}=1$ so $\operatorname{deg}\langle(1,0)\rangle=n$, for n odd, and $\operatorname{deg}\langle(0,1)\rangle=2$. Likewise if V_{2} contains the two vertices of odd degree, $\operatorname{deg}\langle(1,0)\rangle=2$ and $\operatorname{deg}\langle(0,1)\rangle=m$, for m odd.
(\Leftarrow) First, assume $m=2$ and n is odd. $\Gamma(G, S)$ is $K_{2, n}$ and $\operatorname{deg}\langle(1,0)\rangle=n$ and $\operatorname{deg}\langle(0,1)\rangle=2$. Since $|(1,0)|=2$, then there are exactly 2 vertices of odd degree.

Now, assume instead that m is odd and $n=2$. Then $\Gamma(G, S)$ is $K_{m, 2}$ and $\operatorname{deg}\langle(1,0)\rangle=2$ and $\operatorname{deg}\langle(0,1)\rangle=m$. Since $|(0,1)|=2$, then there are exactly 2 vertices of odd degree. Therefore $\Gamma(G, S)$ contains an Eulerian path.

4. Dihedral groups

For the dihedral group, D_{n}, let r be a rotation of $360^{\circ} / n$ and let f and $r f$ be two different reflections. In [Daniel ≥ 2008], it was shown that $\Gamma(G, S)=K_{2, n}$ for $G=D_{n}$ and $S=\{r, f\}$ and that $\Gamma(G, S)$ is the cycle of length $2 n, C_{2 n}$, for $G=D_{n}$ and $S=\{f, r f\}$.
Theorem 4.1. Let $G=D_{n}$ and $S=\{f, r f\}$, then $\Gamma(G, S)$ contains an Eulerian circuit.

Proof. Let $V=V_{1} \cup V_{2}$ such that $V_{1}=\left\{\langle f\rangle, r\langle f\rangle, r^{2}\langle f\rangle, \ldots, r^{n-1}\langle f\rangle\right\}$ and

$$
V_{2}=\left\{\langle r f\rangle, r\langle r f\rangle, r^{2}\langle r f\rangle, \ldots, r^{n-1}\langle r f\rangle\right\} .
$$

We have $\langle r f\rangle=\{r f, e\}$ so $\langle r f\rangle$ shares an edge with $\langle f\rangle$ and $r\langle f\rangle$ and $\operatorname{deg}\langle r f\rangle=2$. By Corollary 2.2, every vertex in V_{2} has degree 2. Likewise $\langle f\rangle=\{f, e\},\langle f\rangle$ shares an edge with $\langle r f\rangle$ and $r^{n-1}\langle r f\rangle$ and every vertex in V_{1} has degree 2 . Since every vertex has degree 2 , Theorem 1.1 says that $\Gamma(G, S)$ contains an Eulerian circuit.

Corollary 4.1. Let $G=D_{n}$ and $S=\{f, r f\}$, then $\Gamma(G, S)$ does not contains an Eulerian path.

Proof. Because the degree of every vertex is $2, \Gamma(G, S)$ does not contain two vertices of odd degree.

Theorem 4.2. Let $G=D_{n}$ and $S=\{f, r f\}$, then $\Gamma(G, S)$ contains a Hamiltonian circuit.

Proof. Let $V=V_{1} \cup V_{2}$ such that $V_{1}=\left\{\langle f\rangle, r\langle f\rangle, r^{2}\langle f\rangle, \ldots, r^{n-1}\langle f\rangle\right\}$ and

$$
V_{2}=\left\{\langle r f\rangle, r\langle r f\rangle, r^{2}\langle r f\rangle, \ldots, r^{n-1}\langle r f\rangle\right\} .
$$

A Hamiltonian circuit is then given by $(\langle f\rangle,\langle r f\rangle),(\langle r f\rangle, r\langle f\rangle),(r\langle f\rangle, r\langle r f\rangle)$, $\left(r\langle r f\rangle, r^{2}\langle f\rangle\right), \ldots,\left(r^{n-1}\langle f\rangle, r^{n-1}\langle r f\rangle\right),\left(r^{n-1}\langle r f\rangle,\langle f\rangle\right)$.

Corollary 4.2. Let $G=D_{n}$ and $S=\{f, r f\}$, then $\Gamma(G, S)$ contains a Hamiltonian path.

Theorem 4.3. Let $G=D_{n}$ and $S=\{r, f\}$, then $\Gamma(G, S)$ contains an Eulerian circuit if and only if n is even.
Proof. (\Rightarrow) Let $\Gamma(G, S)$ contain an Eulerian circuit. Then every vertex must be of even degree. Let $V=V_{1} \cup V_{2}$ such that

$$
V_{1}=\{\langle r\rangle, f\langle r\rangle\} \text { and } V_{2}=\left\{\langle f\rangle, r\langle f\rangle, r^{2}\langle f\rangle, \ldots, r^{n-1}\langle f\rangle\right\} .
$$

We have

$$
\langle r\rangle \cap r^{m}\langle f\rangle=\left\{r^{m}\right\} \quad \text { for all } m=0, \ldots, n-1,
$$

so the edge $\left(\langle r\rangle, r^{m}\langle f\rangle\right)$ is in $\Gamma(G, S)$ for $m=0, \ldots, n-1$ and $\operatorname{deg}\langle r\rangle=n$. Likewise

$$
f\langle r\rangle \cap r^{m}\langle f\rangle=\left\{r^{m} f\right\} \quad \text { for all } m=0, \ldots, n-1,
$$

so the edge $\left(f\langle r\rangle, r^{m}\langle f\rangle\right)$ is in $\Gamma(G, S)$ for $m=0, \ldots, n-1$ and $\operatorname{deg} f\langle r\rangle=n$. Therefore, n must be even.
(\Leftarrow) Assume that n is even. Then the vertices in V_{1} are of even degree from above. Choose a vertex in $V_{2}, r^{m}\langle f\rangle . r^{m}\langle f\rangle$ shares an edge with $\langle r\rangle$ and $f\langle r\rangle$. Therefore $\operatorname{deg} r^{m}\langle f\rangle=2$ and every vertex in V_{2} is of degree 2 . Since all the vertices of $\Gamma(G, S)$ are of even degree, $\Gamma(G, S)$ contains an Eulerian circuit.

Theorem 4.4. Let $G=D_{n}$ and $S=\{r, f\}$, then $\Gamma(G, S)$ contains an Eulerian path if and only if n is odd.

Proof. (\Rightarrow) Let $\Gamma(G, S)$ contain an Eulerian path. Then $\Gamma(G, S)$ contains exactly two vertices of odd degree. Let $V=V_{1} \cup V_{2}$. There are n vertices in V_{2} and they are of degree 2. There are two vertices in V_{1} and they are of degree n. Therefore, n must be odd.
(\Leftarrow) Assume that n is odd. Then the two vertices in V_{1} are of odd degree and the n vertices in V_{2} are of degree 2. Therefore $\Gamma(G, S)$ contains an Eulerian path.

Theorem 4.5. Let $G=D_{n}$ and $S=\{r, f\}$, then $\Gamma(G, S)$ contains a Hamiltonian path if and only if $n=2$ or 3 .

Proof. (\Rightarrow) Let $\Gamma(G, S)$ contain a Hamiltonian path. $\Gamma(G, S)$ is $K_{2, n}$ [Daniel $\geq 2008]$. Then $V=V_{1} \cup V_{2}$ where

$$
V_{1}=\{\langle r\rangle, f\langle r\rangle\} \text { and } V_{2}=\left\{\langle f\rangle, r\langle f\rangle, r^{2}\langle f\rangle, \ldots, r^{n-1}\langle f\rangle\right\} .
$$

Since $n \geq 2$, any Hamiltonian path must start with a vertex in V_{2}.

$$
\left(r^{i_{1}}\langle f\rangle, f^{j_{1}}\langle r\rangle\right),\left(f^{j_{1}}\langle r\rangle, r^{i_{2}}\langle f\rangle\right),\left(r^{i_{2}}\langle f\rangle, f^{j_{2}}\langle r\rangle\right), \ldots
$$

Notice that all the vertices in V_{1} have been exhausted. So either the path ends here and $n=2$ or it ends with the edge $\left(f^{j_{2}}\langle r\rangle, r^{i_{3}}\langle f\rangle\right)$ and $n=3$. Therefore $n=2$ or 3 .
(\Leftarrow) Assume that n is 2 or 3. If $n=2$ then $V_{2}=\{\langle f\rangle, r\langle f\rangle\}$ and

$$
(\langle r\rangle,\langle f\rangle),(\langle f\rangle, f\langle r\rangle),(f\langle r\rangle, r\langle f\rangle)
$$

is a Hamiltonian path. If $n=3$ then $V_{2}=\left\{\langle f\rangle, r\langle f\rangle, r^{2}\langle f\rangle\right\}$ and

$$
(\langle f\rangle,\langle r\rangle),(\langle r\rangle, r\langle f\rangle),(r\langle f\rangle, f\langle r\rangle),\left(f\langle r\rangle, r^{2}\langle f\rangle\right)
$$

is a Hamiltonian path.
Theorem 4.6. Let $G=D_{n}$ and $S=\{r, f\}$, then $\Gamma(G, S)$ contains a Hamiltonian circuit if and only if $n=2$.

Proof. (\Rightarrow) Let $\Gamma(G, S)$ contain a Hamiltonian circuit. Start with a vertex in V_{2} and trace the Hamiltonian circuit

$$
\left(r^{i_{1}}\langle f\rangle, f^{j_{1}}\langle r\rangle\right),\left(f^{j_{1}}\langle r\rangle, r^{i_{2}}\langle f\rangle\right),\left(r^{i_{2}}\langle f\rangle, f^{j_{2}}\langle r\rangle\right), \ldots
$$

Notice that all the vertices in V_{1} have been exhausted so the circuit must end with the edge $\left(f^{j_{2}}\langle r\rangle, r^{i_{1}}\langle f\rangle\right)$ and n must be 2 . The proof starting with a vertex in V_{1} is similar.
(\Leftarrow) Assume that n is 2. Then $V_{2}=\{\langle f\rangle, r\langle f\rangle\}$ and $(\langle r\rangle,\langle f\rangle),(\langle f\rangle, f\langle r\rangle)$, $(f\langle r\rangle, r\langle f\rangle),(r\langle f\rangle,\langle r\rangle)$ is a Hamiltonian circuit.

5. Eulerian circuits and paths

Now we investigate the existence of Eulerian circuits and paths in $\Gamma(G, S)$ for a generic group G.
Theorem 5.1. Let G be a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ such that $\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle\right|=1$ for all $i \neq j$; then $\Gamma(G, S)$ contains an Eulerian circuit if and only if $\left|s_{i}\right|$ is even for all i, or n is odd.
Proof. From Lemma 2.2,

$$
\operatorname{deg}\left\langle s_{i}\right\rangle=\left(\sum_{j=1}^{n}\left|s_{i}\right| / S_{i, j}\right)-\left|s_{i}\right| / S_{i, i}
$$

Also $\operatorname{deg}\left\langle s_{i}\right\rangle=(n-1)\left|s_{i}\right|$, since $S_{i, j}=1$ for $i \neq j$. Then $\Gamma(G, S)$ contains an Eulerian circuit if and only if $\left|s_{i}\right|$ is even for all i or the number of generators, n, is odd.

Theorem 5.2. Let G be a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ such that $\left|\left\langle s_{i}\right\rangle \cap\left\langle s_{j}\right\rangle\right|=m$ for all $i \neq j$, then $\Gamma(G, S)$ contains an Eulerian circuit if and only if $2 m \mid(n-1)\left(\left|s_{i}\right|\right)$ for all i.
Proof. From Lemma 2.2,

$$
\operatorname{deg}\left\langle s_{i}\right\rangle=\left(\sum_{j=1}^{n} \frac{\left|s_{i}\right|}{S_{i, j}}\right)-\left|s_{i}\right| / S_{i, i}
$$

Also, $\operatorname{deg}\left\langle s_{i}\right\rangle=(n-1)\left|s_{i}\right| / m$, since $S_{i, j}=m$ for $i \neq j$. Since $\Gamma(G, S)$ contains an Eulerian circuit if and only if $\operatorname{deg}\left\langle s_{i}\right\rangle$ is even for all i, then $\Gamma(G, S)$ contains an Eulerian circuit if and only if $2 m \mid(n-1)\left(\left|s_{i}\right|\right)$ for all i.

Theorem 5.3. Let G be a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, then $\Gamma(G, S)$ contains an Eulerian circuit if and only if

$$
2 \left\lvert\,(n-1)\left(\left|s_{i}\right|\right)\left(\sum_{j=1}^{n} \frac{1}{S_{i, j}}\right)\right., \quad \text { for all } i
$$

Proof. From Lemma 2.2,

$$
\operatorname{deg}\left\langle s_{i}\right\rangle=\left(\sum_{j=1}^{n} \frac{\left|s_{i}\right|}{S_{i, j}}\right)-\left|s_{i}\right| / S_{i, i} . \quad S_{i, i}=\left|s_{i}\right|, \quad \operatorname{deg}\left\langle s_{i}\right\rangle=(n-1)\left(\left|s_{i}\right|\right)\left(\sum_{j=1}^{n} \frac{1}{S_{i, j}}\right) .
$$

Also, $\Gamma(G, S)$ contains an Eulerian circuit if and only if

$$
2 \left\lvert\,(n-1)\left(\left|s_{i}\right|\right)\left(\sum_{j=1}^{n} \frac{1}{S_{i, j}}\right)\right., \quad \text { for all } i
$$

Theorem 5.4. Let G be a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, if $\Gamma(G, S)$ contains an Eulerian path then one of these cases apply
(i) there exists i such that $\left|V_{i}\right|=2$ with $\operatorname{deg}\left\langle s_{i}\right\rangle$ odd and $\operatorname{deg}\left\langle s_{j}\right\rangle$ even for all $j \neq i$, or
(ii) there exists i, j such that $\left|V_{i}\right|=\left|V_{j}\right|=1$ with $\operatorname{deg}\left\{s_{i}\right\rangle$ and $\operatorname{deg}\left\langle s_{j}\right\rangle$ odd and $\operatorname{deg}\left\langle s_{k}\right\rangle$ even for all $k \neq i, j$.
Corollary 5.1. Let G be a group with generating set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, if $\Gamma(G, S)$ contains an Eulerian path then G is of even order or G is cyclic.

References

[Bretto and Gillibert 2004] A. Bretto and L. Gillibert, "Graphical and computational representation of groups", pp. 343-350 in Computational science - ICCS 2004 (Kraków, 2004), vol. IV, edited by M. Bubak et al., Lecture Notes in Comput. Sci. 3039, Springer, Berlin, 2004. MR 2233213 Zbl 02241100
[Bretto and Gillibert 2005] A. Bretto and L. Gillibert, "Symmetry and connectivity in G-graphs", Electronic Notes in Discrete Mathematics 22 (2005), 481-486.
[Bretto et al. 2005] A. Bretto, L. Gillibert, and B. Laget, "Symmetric and semisymmetric graphs construction using G-graphs", pp. 61-67 in ISSAC'05, ACM, New York, 2005. MR 2280530
[Bretto et al. 2007] A. Bretto, A. Faisant, and L. Gillibert, " G-graphs: a new representation of groups", J. Symbolic Comput. $42: 5$ (2007), 549-560. MR 2322473
[Daniel ≥ 2008] J. Daniel, "The \mathbb{G}-graph of a group", to appear.
Received: 2008-02-04 Revised: 2008-04-09 Accepted: 2008-06-02

cmbauer@my.lamar.edu	Department of Mathematics, Lamar University, Beaumont, TX 77710, United States
chrissydayj@yahoo.com	Electronic Engineering Technology Department, Fort Valley amrodriguez1@my.lamar.edu University, Fort Valley, GA 31030, United States
	Department of Mathematics, Lamar University, Beaumont, TX 77710, United States

bobby_temple7684@yahoo.com
Department of Mathematics, Lamar University, Beaumont, TX 77710, United States

Jennifer.Daniel@lamar.edu Department of Mathematics, Lamar University, Beaumont, TX 77710, United States

