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For a group G with generating set S= {s1, s2, . . . , sk}, the G-graph of G, denoted
0(G, S), is the graph whose vertices are distinct cosets of 〈si 〉 in G. Two distinct
vertices are joined by an edge when the set intersection of the cosets is nonempty.
In this paper, we study the existence of Hamiltonian and Eulerian paths and
circuits in 0(G, S).

1. Introduction

Let G be a group with a generating set S = {s1, . . . , sk}. For the subgroup 〈si 〉 of
G, define the subset T〈si 〉 of G to be a left transversal for 〈si 〉 if {x〈si 〉 | x ∈ T〈si 〉} is
precisely the set of all left cosets of 〈si 〉 in G. Associate a simple graph 0(G, S)

to (G, S) with vertex set V (0(G, S))= {x j 〈si 〉 | x j ∈ T〈si 〉}. Two distinct vertices
x j 〈si 〉 and xl〈sk〉 in V (0(G, S)) are joined by an edge if x j 〈si 〉∩ xl〈sk〉 is nonempty.
The edge set, E(0(G, S)), consists of pairs (x j 〈si 〉, xl〈sk〉). 0(G, S) defined this
way has no multiedge or loop. Bretto and Gillibert [2004] introduced 0(G, S) and
a similar graph, 0(G, S). 0(G, S) differs from 0(G, S) in that it is a multigraph
with a n-edge between two vertices x j 〈si 〉 and xl〈sk〉 when |x j 〈si 〉 ∩ xl〈sk〉| = n.
The G-graph, 0(G, S), is necessarily a subgraph of 0(G, S).

In this paper we concentrate on results for 0(G, S). Many of the results from
[Bretto and Gillibert 2004; 2005; Bretto et al. 2005; 2007] about 0(G, S) translate
easily to the simple graph 0(G, S).

Let Vi = {x j 〈si 〉 | x j ∈ T〈si 〉}. Then V (0(G, S))= ∪k
i=1Vi . The main object of

this paper is to study the existence of Hamiltonian and Eulerian paths and circuits
in 0(G, S). To this end we recall a few results from Euler. Notice that Eulerian
circuits are not considered Eulerian paths in this paper.
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Theorem 1.1 (Euler). Let 0 be a nontrivial connected graph. Then 0 has an
Eulerian circuit if and only if every vertex is of even degree.

Theorem 1.2 (Euler). Let 0 be a nontrivial connected graph. Then 0 has an
Eulerian path if and only if 0 has exactly two vertices of odd degree. Furthermore,
the path begins at one of the vertices of odd degree and terminates at the other.

2. Preliminaries

In this section, results are proved that pertain to the degrees of vertices in 0(G, S).
Recall that if S = {s1, s2, . . . , sk}, then 0(G, S) is necessarily k-partite.

Lemma 2.1. If g ∈ 〈si 〉 ∩ 〈s j 〉, then g−1
∈ 〈si 〉 ∩ 〈s j 〉.

Proof. Let g ∈ 〈si 〉∩ 〈s j 〉, then there exists m, n ∈N such that g = sm
i = sn

j . Taking
the inverse, we have g−1

= s−m
i = s−n

j . Therefore g−1
∈ 〈si 〉 ∩ 〈s j 〉. �

Theorem 2.1. Let G be a group with generating set S. Let 〈si 〉∪x2〈si 〉∪· · ·∪xki 〈si 〉

be a partition of G into cosets of 〈si 〉 and 〈s j 〉∪ y2〈s j 〉∪ · · ·∪ yk j 〈s j 〉 be a partition
of G into cosets of 〈s j 〉. Let

Vi = {〈si 〉, x2〈si 〉, . . . , xki 〈si 〉} and V j = {〈s j 〉, y2〈s j 〉, . . . , yk j 〈s j 〉}

be the appropriate subsets of the vertex set of 0(G, S). If

|〈si 〉 ∩ 〈s j 〉| = Si, j and (x〈si 〉,y〈s j 〉) ∈E(0(G, S)),

then |x〈si 〉 ∩ y〈s j 〉| = Si, j .

Proof. Let 〈si 〉 ∩ 〈s j 〉 = {e, g1, . . . , gSi, j−1}. Since g1 ∈ 〈si 〉 and g1 ∈ 〈s j 〉, there
exists m, n ∈ N such that g1 = sm

i = sn
j . Let x〈si 〉 ∈ Vi and y〈s j 〉 ∈ V j such that

(x〈si 〉, y〈s j 〉) ∈ E(0(G, S)). Then x〈si 〉 ∩ y〈s j 〉 6=∅ and there exists h such that
h = xsm′

i = ysn′
j . So

h = xsm′
i = xsm′−m

i sm
i = xsm′−m

i g1.

Therefore hg−1
1 ∈ x〈si 〉. Likewise, hg−1

1 ∈ y〈s j 〉 and hg−1
1 ∈ x〈si 〉 ∩ y〈s j 〉. By

similar arguments, {h, hg−1
1 , hg−1

2 , . . . , hg−1
Si, j−1} ⊆ x〈si 〉 ∩ y〈s j 〉.

Assume there exists g ∈ x〈si 〉∩y〈s j 〉 such that g /∈ {h, hg−1
1 , hg−1

2 , . . . , hg−1
Si, j−1}.

Since g ∈ x〈si 〉 ∩ y〈s j 〉 there exists m′′, n′′ ∈ N such that g = xsm′′
i = ysn′′

j . So

g = xsm′′
i = xsm′

i sm′′−m′
i = hsm′′−m′

i .

Therefore h−1g ∈ 〈si 〉. Likewise h−1g ∈ 〈s j 〉 and h−1g ∈ 〈si 〉 ∩ 〈s j 〉. There
exists k ∈ {0, . . . , Si, j − 1} such that h−1g = gk . Since gk ∈ 〈si 〉 ∩ 〈s j 〉, g−1

k ∈
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〈si 〉 ∩ 〈s j 〉 by Lemma 2.1. Denote g−1
k by g′k . Then g = hgk = h(g′k)

−1 and
g ∈ {h, hg−1

1 , hg−1
2 , . . . , hg−1

Si, j−1}. Therefore

{h, hg−1
1 , hg−1

2 , . . . , hg−1
Si, j−1} = x〈si 〉 ∩ y〈s j 〉,

|x〈si 〉 ∩ y〈s j 〉| = Si, j . �

Corollary 2.1. The number of edges between 〈si 〉 and V j is given by |si |/Si, j .

Proof. Let

V j = {〈s j 〉, y2〈s j 〉, . . . , yk〈s j 〉} and V ′j = {〈s j 〉, y′2〈s j 〉, . . . , y′l 〈s j 〉}

be the set that contains all vertices in V j that are adjacent to 〈si 〉. Since

(〈si 〉, y′〈s j 〉) ∈ E(0(G, S)) for all y′〈s j 〉 ∈ V ′j , |〈si 〉 ∩ y′〈s j 〉| = Si, j

by Theorem 2.1. So the number of elements in 〈si 〉 is given by |si | = Si, j · l or the
number of edges between 〈si 〉 and V j is |si |/Si, j . �

Lemma 2.2. If G is a group with generating set S = {s1, . . . , sn} and Si, j =

|〈si 〉 ∩ 〈s j 〉|, then the degree of the vertex 〈si 〉, denoted deg〈si 〉, is

deg〈si 〉 =

( n∑
j=1

|si |/Si, j

)
− |si |/Si,i .

Proof. We proceed with induction on n. Partition the vertex set of 0(G, S) into
n subsets V1, V2, . . . , Vn such that Vi = {〈si 〉, x2〈si 〉, . . . , xki 〈si 〉}. Consider the
subgraph, 01,2, of 0(G, S) induced by the vertex set V1 ∪ V2. Let deg01,2

(〈si 〉)

denote the degree of the vertex 〈si 〉 in 01,2. Then, by Corollary 2.1,

deg01,2
(〈s2〉)= |s2|/S2,1 =

( 2∑
j=1

|s2|/S2, j

)
− |s2|/S2,2.

Likewise

deg01,2
(〈s1〉)= |s1|/S1,2 =

( 2∑
j=1

|s1|/S1, j

)
− |s1|/S1,1,

and the formula holds for n = 2.
Consider the subgraph, 01,2,...,n−1, of 0(G, S) induced by the vertex set V1∪V2∪

· · · ∪ Vn−1. Let deg01,2,...,n−1
(〈si 〉) denote the degree of the vertex 〈si 〉 in 01,2,...,n−1.

Assume that the theorem holds for n− 1, that is,

deg01,2,...,n−1
(〈si 〉)=

(n−1∑
j=1

|si |/Si, j

)
− |si |/Si,i .
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Now consider the entire graph, 0(G, S). The number of edges between 〈si 〉 and
Vn is |si |/Si,n . So

deg〈si 〉 = |si |/Si,n +

(n−1∑
j=1

|si |/Si, j

)
− |si |/Si,i =

( n∑
j=1

|si |/Si, j

)
− |si |/Si,i . �

Remark 1. Notice that |si |/Si,i = 1, since Si,i = |〈si 〉 ∩ 〈si 〉| = |si |.

Corollary 2.2. If G is a group with generating set S={s1, s2, . . . , sn}, then deg〈si 〉

equals deg g〈si 〉 for all g〈si 〉 in Vi , that is, every vertex in the same vertex set has
the same degree.

Proof. Let G be a group with generating set S = {s1, s2, . . . , sn} and Si, j = |〈si 〉 ∩

〈s j 〉|. From Theorem 2.1, if g, h ∈ G such that (g〈si 〉, h〈s j 〉) ∈ E(0(G, S)), then
|g〈si 〉 ∩ h〈s j 〉| = Si, j . From Lemma 2.2,

deg g〈si 〉 =

( n∑
j=1

|g〈si 〉|

Si, j

)
− 1=

( n∑
j=1

|〈si 〉|

Si, j

)
− 1= deg〈si 〉. �

Theorem 2.2. If G is a group with generating set S = {s1, s2, . . . , sn} and Si, j =

|〈si 〉 ∩ 〈s j 〉|, then 0(G, S) is complete n-partite if and only if( n∑
j=1

|〈si 〉|

Si, j

)
− 1=

( n∑
k=1

|Vk |

)
− |Vi |.

3. Abelian groups of rank ≤ 2

In this section, we let G be an abelian group of rank ≤ 2 and let |S| = 2. G is
isomorphic to Zn × Zm for some m and n. Notice that if G is infinite then it is
isomorphic to Z≈ Z×Z1 and the theorems of this section apply.

Theorem 3.1. Let G = Zn × Zm and S = {(1, 0), (0, 1)}, then 0(G, S) has a
Hamiltonian path if and only if |m− n| ≤ 1.

Proof. (⇒) Let 0(G, S) contain a Hamiltonian path. 0(G, S) is Km,n [Daniel
≥ 2008]. Assume that n ≥m. |(1, 0)| = n and |(0, 1)| =m and V = V1∪V2 where

V1 ={a1+〈(1, 0)〉, a2+〈(1, 0)〉, . . . , am +〈(1, 0)〉} and

V2 ={b1+〈(0, 1)〉, b2+〈(1, 0)〉, . . . , bn +〈(1, 0)〉}.

Let H1 = 〈(1, 0)〉 and H2 = 〈(0, 1)〉. Since n ≥ m, any Hamiltonian path must
start with a vertex in V2, that is, bi1 + H2.

(bi1 + H2, a j1 + H1), (a j1 + H1, bi2 + H2), (bi2 + H2, a j2 + H1), . . . ,

(a jm−1 + H1, bim + H2), (bim + H2, a jm + H1), . . .
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Notice that all the vertices in V1 have been exhausted. So either the path ends
here and n = m or it ends with the edge (a jm + H1, bim+1 + H2) and n = m + 1.
Therefore |m− n| ≤ 1. The proof for m ≥ n is similar.

(⇐) Let |m− n| ≤ 1, |(1, 0)| = n, and |(0, 1)| = m. Let

a1+ H1 ∪ a2+ H1 ∪ · · · ∪ am + H1

be a partition of G into cosets of 〈(1, 0)〉 and let

b1+ H2 ∪ b2+ H2 ∪ · · · ∪ bn + H2

be a partition of G into cosets of 〈(0, 1)〉. Since 0(G, S) is Km,n , there exists an
edge between ai + H1 and b j + H2 for all i, j .

(i) m = n+1 and (a1+H1, b1+H2), (b1+H2, a2+H1), . . . , (an+H1, bn+H2),
(bn + H2, am + H1) is a Hamiltonian path.

(ii) n=m+1 and (b1+H2, a1+H1), (a1+H1, b2+H2),. . . , (bm+H2, am+H1),

(am + H1, bn + H2) is a Hamiltonian path.

(iii) m = n and (a1+H1, b1+H2), (b1+H2, a2+H1), . . . , (bn−1+H2, an+H1),
(an + H1, bn + H2) is a Hamiltonian path. �

Theorem 3.2. Let G = Zn × Zm and S = {(1, 0), (0, 1)}, then 0(G, S) has a
Hamiltonian circuit if and only if m = n.

Proof. (⇒) Let 0(G,S) contain a Hamiltonian circuit. 0(G,S) is Km,n [Daniel
≥ 2008]. |(1,0)| = n and |(0,1)| = m and V = V1 ∪ V2 where

V1 ={a1+〈(1, 0)〉, a2+〈(1, 0)〉, . . . , am +〈(1, 0)〉},

V2 ={b1+〈(0, 1)〉, b2+〈(1, 0)〉, . . . , bn +〈(1, 0)〉}.

Let H1 = 〈(1, 0)〉 and H2 = 〈(0, 1)〉. Start with a vertex in V2, that is, bi1 + H2

and trace the Hamiltonian circuit

(bi1 + H2, a j1 + H1), (a j1 + H1, bi2 + H2), (bi2 + H2, a j2 + H1), . . . ,

(a jm−1 + H1, bim + H2), (bim + H2, a jm + H1), . . .

Notice that all the vertices in V1 have been exhausted. So the path ends here and
to complete the circuit we need the edge (a jm + H1, bi1 + H2). Therefore n = m.
The proof starting with a vertex in V1 is similar.

(⇐) Let m= n and a1+H1∪a2+H1∪· · ·∪am+H1 be partition of G into cosets
of 〈(1, 0)〉 Since 0(G, S) is Km,m , there exist an edge between ai+H1 and b j+H2

for all i, j . Then (a1+ H1, b1+ H2), (b1+ H2, a2+ H1), . . . , (am + H1, bm + H2),
(bm + H2, a1+ H1) is a Hamiltonian circuit. �
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Example 1. Let G = Z3×Z3 and S = {(1, 0), (0, 1)}, then 0(G, S) = K3,3 (see
figure) and 0(G, S) contains both a Hamiltonian path and circuit.
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Theorem 3.3. Let G = Zm × Zn and S = {(1, 0), (0, 1)}, then 0(G, S) has an
Eulerian circuit if and only if m and n are both even.

Proof. (⇒) Let 0(G, S) have an Eulerian circuit. From [Daniel ≥ 2008], S1,2 =

S2,1 = 1 so deg〈(1, 0)〉 = n and deg〈(0, 1)〉 =m. Since every vertex is even, m and
n are even.

(⇐) Let m and n be even. From [Daniel ≥ 2008], 0(G, S) is Kn,m . Therefore
deg〈(1, 0)〉=m and deg〈(0, 1)〉= n. Since m and n are both even, 0(G, S) contains
an Eulerian circuit. �

Theorem 3.4. Let G = Zm × Zn and S = {(1, 0), (0, 1)}, then 0(G, S) has an
Eulerian path if and only if m is odd and n = 2 or n is odd and m = 2.

Proof. (⇒) Let 0(G, S) contain an Eulerian path. Then 0(G, S) contains exactly
2 vertices of odd degree. Since 0(G, S) is bipartite, there exists i such that Vi

contains the two vertices of odd degree.
Let V1 contains the two vertices of odd degree. S1,2= S2,1= 1 so deg〈(1, 0)〉= n,

for n odd, and deg〈(0, 1)〉 = 2. Likewise if V2 contains the two vertices of odd
degree, deg〈(1, 0)〉 = 2 and deg〈(0, 1)〉 = m, for m odd.

(⇐) First, assume m = 2 and n is odd. 0(G, S) is K2,n and deg〈(1, 0)〉 = n and
deg〈(0, 1)〉 = 2. Since |(1, 0)| = 2, then there are exactly 2 vertices of odd degree.

Now, assume instead that m is odd and n = 2. Then 0(G, S) is Km,2 and
deg〈(1, 0)〉 = 2 and deg〈(0, 1)〉 = m. Since |(0, 1)| = 2, then there are exactly 2
vertices of odd degree. Therefore 0(G, S) contains an Eulerian path. �

4. Dihedral groups

For the dihedral group, Dn , let r be a rotation of 360◦/n and let f and r f be two
different reflections. In [Daniel ≥ 2008], it was shown that 0(G, S) = K2,n for
G = Dn and S= {r, f } and that 0(G, S) is the cycle of length 2n, C2n , for G = Dn

and S = { f, r f }.

Theorem 4.1. Let G = Dn and S = { f, r f }, then 0(G, S) contains an Eulerian
circuit.
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Proof. Let V = V1 ∪ V2 such that V1 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉} and

V2 = {〈r f 〉, r〈r f 〉, r2
〈r f 〉, . . . , rn−1

〈r f 〉}.

We have 〈r f 〉 = {r f, e} so 〈r f 〉 shares an edge with 〈 f 〉 and r〈 f 〉 and deg〈r f 〉 = 2.
By Corollary 2.2, every vertex in V2 has degree 2. Likewise 〈 f 〉= { f, e}, 〈 f 〉 shares
an edge with 〈r f 〉 and rn−1

〈r f 〉 and every vertex in V1 has degree 2. Since every
vertex has degree 2, Theorem 1.1 says that 0(G, S) contains an Eulerian circuit. �

Corollary 4.1. Let G = Dn and S = { f, r f }, then 0(G, S) does not contains an
Eulerian path.

Proof. Because the degree of every vertex is 2, 0(G, S) does not contain two
vertices of odd degree. �

Theorem 4.2. Let G = Dn and S = { f, r f }, then 0(G, S) contains a Hamiltonian
circuit.

Proof. Let V = V1 ∪ V2 such that V1 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉} and

V2 = {〈r f 〉, r〈r f 〉, r2
〈r f 〉, . . . , rn−1

〈r f 〉}.

A Hamiltonian circuit is then given by
(
〈 f 〉, 〈r f 〉

)
,
(
〈r f 〉, r〈 f 〉

)
,
(
r〈 f 〉, r〈r f 〉

)
,(

r〈r f 〉, r2
〈 f 〉

)
, . . . ,

(
rn−1
〈 f 〉, rn−1

〈r f 〉
)
,
(
rn−1
〈r f 〉, 〈 f 〉

)
. �

Corollary 4.2. Let G = Dn and S = { f, r f }, then 0(G, S) contains a Hamiltonian
path.

Theorem 4.3. Let G = Dn and S = {r, f }, then 0(G, S) contains an Eulerian
circuit if and only if n is even.

Proof. (⇒) Let 0(G, S) contain an Eulerian circuit. Then every vertex must be of
even degree. Let V = V1 ∪ V2 such that

V1 = {〈r〉, f 〈r〉} and V2 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉}.

We have
〈r〉 ∩ rm

〈 f 〉 = {rm
} for all m = 0, . . . , n− 1,

so the edge (〈r〉, rm
〈 f 〉) is in 0(G, S) for m = 0, . . . , n− 1 and deg〈r〉 = n. Like-

wise
f 〈r〉 ∩ rm

〈 f 〉 = {rm f } for all m = 0, . . . , n− 1,

so the edge ( f 〈r〉, rm
〈 f 〉) is in 0(G, S) for m = 0, . . . , n − 1 and deg f 〈r〉 = n.

Therefore, n must be even.
(⇐) Assume that n is even. Then the vertices in V1 are of even degree from

above. Choose a vertex in V2, rm
〈 f 〉. rm

〈 f 〉 shares an edge with 〈r〉 and f 〈r〉.
Therefore deg rm

〈 f 〉 = 2 and every vertex in V2 is of degree 2. Since all the vertices
of 0(G, S) are of even degree, 0(G, S) contains an Eulerian circuit. �
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Theorem 4.4. Let G = Dn and S = {r, f }, then 0(G, S) contains an Eulerian path
if and only if n is odd.

Proof. (⇒) Let 0(G, S) contain an Eulerian path. Then 0(G, S) contains exactly
two vertices of odd degree. Let V = V1 ∪ V2. There are n vertices in V2 and they
are of degree 2. There are two vertices in V1 and they are of degree n. Therefore, n
must be odd.

(⇐) Assume that n is odd. Then the two vertices in V1 are of odd degree and the
n vertices in V2 are of degree 2. Therefore 0(G, S) contains an Eulerian path. �

Theorem 4.5. Let G = Dn and S = {r, f }, then 0(G, S) contains a Hamiltonian
path if and only if n = 2 or 3.

Proof. (⇒) Let 0(G, S) contain a Hamiltonian path. 0(G, S) is K2,n [Daniel
≥ 2008]. Then V = V1 ∪ V2 where

V1 = {〈r〉, f 〈r〉} and V2 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉, . . . , rn−1

〈 f 〉}.

Since n ≥ 2, any Hamiltonian path must start with a vertex in V2.(
r i1〈 f 〉, f j1〈r〉

)
,
(

f j1〈r〉, r i2〈 f 〉
)
,
(
r i2〈 f 〉, f j2〈r〉

)
, . . .

Notice that all the vertices in V1 have been exhausted. So either the path ends here
and n = 2 or it ends with the edge ( f j2〈r〉, r i3〈 f 〉) and n = 3. Therefore n = 2 or 3.

(⇐) Assume that n is 2 or 3. If n = 2 then V2 = {〈 f 〉,r〈 f 〉} and(
〈r〉, 〈 f 〉

)
,
(
〈 f 〉, f 〈r〉

)
,
(

f 〈r〉, r〈 f 〉
)

is a Hamiltonian path. If n = 3 then V2 = {〈 f 〉, r〈 f 〉, r2
〈 f 〉} and(

〈 f 〉, 〈r〉
)
,
(
〈r〉, r〈 f 〉

)
,
(
r〈 f 〉, f 〈r〉

)
,
(

f 〈r〉, r2
〈 f 〉

)
is a Hamiltonian path. �

Theorem 4.6. Let G = Dn and S = {r, f }, then 0(G, S) contains a Hamiltonian
circuit if and only if n = 2.

Proof. (⇒) Let 0(G, S) contain a Hamiltonian circuit. Start with a vertex in V2

and trace the Hamiltonian circuit

(r i1〈 f 〉, f j1〈r〉), ( f j1〈r〉, r i2〈 f 〉), (r i2〈 f 〉, f j2〈r〉), . . .

Notice that all the vertices in V1 have been exhausted so the circuit must end with
the edge ( f j2〈r〉, r i1〈 f 〉) and n must be 2. The proof starting with a vertex in V1 is
similar.

(⇐) Assume that n is 2. Then V2 = {〈 f 〉, r〈 f 〉} and
(
〈r〉, 〈 f 〉

)
,
(
〈 f 〉, f 〈r〉

)
,(

f 〈r〉, r〈 f 〉
)
,
(
r〈 f 〉, 〈r〉

)
is a Hamiltonian circuit. �
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5. Eulerian circuits and paths

Now we investigate the existence of Eulerian circuits and paths in 0(G, S) for a
generic group G.

Theorem 5.1. Let G be a group with generating set S = {s1, s2, . . . , sn} such that
|〈si 〉 ∩ 〈s j 〉| = 1 for all i 6= j ; then 0(G, S) contains an Eulerian circuit if and only
if |si | is even for all i , or n is odd.

Proof. From Lemma 2.2,

deg〈si 〉 =

( n∑
j=1

|si |/Si, j

)
− |si |/Si,i .

Also deg〈si 〉 = (n − 1)|si |, since Si, j = 1 for i 6= j . Then 0(G, S) contains an
Eulerian circuit if and only if |si | is even for all i or the number of generators, n, is
odd. �

Theorem 5.2. Let G be a group with generating set S = {s1, s2, . . . , sn} such that
|〈si 〉∩ 〈s j 〉| =m for all i 6= j , then 0(G, S) contains an Eulerian circuit if and only
if 2m|(n− 1)(|si |) for all i .

Proof. From Lemma 2.2,

deg〈si 〉 =

( n∑
j=1

|si |

Si, j

)
− |si |/Si,i .

Also, deg〈si 〉 = (n−1)|si |/m, since Si, j =m for i 6= j . Since 0(G, S) contains an
Eulerian circuit if and only if deg〈si 〉 is even for all i , then 0(G, S) contains an
Eulerian circuit if and only if 2m|(n− 1)(|si |) for all i . �

Theorem 5.3. Let G be a group with generating set S = {s1, s2, . . . , sn}, then
0(G, S) contains an Eulerian circuit if and only if

2|(n− 1)(|si |)
( n∑

j=1

1
Si, j

)
, for all i.

Proof. From Lemma 2.2,

deg〈si 〉 =

( n∑
j=1

|si |

Si, j

)
− |si |/Si,i . Si,i = |si |, deg〈si 〉 = (n− 1)(|si |)

( n∑
j=1

1
Si, j

)
.

Also, 0(G, S) contains an Eulerian circuit if and only if

2|(n− 1)(|si |)
( n∑

j=1

1
Si, j

)
, for all i. �
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Theorem 5.4. Let G be a group with generating set S= {s1, s2, . . . , sn}, if 0(G, S)

contains an Eulerian path then one of these cases apply

(i) there exists i such that |Vi | = 2 with deg〈si 〉 odd and deg〈s j 〉 even for all j 6= i ,
or

(ii) there exists i, j such that |Vi | = |V j | = 1 with deg〈si 〉 and deg〈s j 〉 odd and
deg〈sk〉 even for all k 6= i, j .

Corollary 5.1. Let G be a group with generating set S={s1, s2, . . . , sn}, if 0(G, S)

contains an Eulerian path then G is of even order or G is cyclic.

References

[Bretto and Gillibert 2004] A. Bretto and L. Gillibert, “Graphical and computational representation
of groups”, pp. 343–350 in Computational science – ICCS 2004 (Kraków, 2004), vol. IV, edited
by M. Bubak et al., Lecture Notes in Comput. Sci. 3039, Springer, Berlin, 2004. MR 2233213
Zbl 02241100

[Bretto and Gillibert 2005] A. Bretto and L. Gillibert, “Symmetry and connectivity in G-graphs”,
Electronic Notes in Discrete Mathematics 22 (2005), 481–486.

[Bretto et al. 2005] A. Bretto, L. Gillibert, and B. Laget, “Symmetric and semisymmetric graphs
construction using G-graphs”, pp. 61–67 in ISSAC’05, ACM, New York, 2005. MR 2280530

[Bretto et al. 2007] A. Bretto, A. Faisant, and L. Gillibert, “G-graphs: a new representation of
groups”, J. Symbolic Comput. 42:5 (2007), 549–560. MR 2322473

[Daniel ≥ 2008] J. Daniel, “The G-graph of a group”, to appear.

Received: 2008-02-04 Revised: 2008-04-09 Accepted: 2008-06-02

cmbauer@my.lamar.edu Department of Mathematics, Lamar University,
Beaumont, TX 77710, United States

chrissydayj@yahoo.com Electronic Engineering Technology Department, Fort Valley
State University, Fort Valley, GA 31030, United States

amrodriguez1@my.lamar.edu Department of Mathematics, Lamar University,
Beaumont, TX 77710, United States

bobby_temple7684@yahoo.com
Department of Mathematics, Lamar University,
Beaumont, TX 77710, United States

Jennifer.Daniel@lamar.edu Department of Mathematics, Lamar University,
Beaumont, TX 77710, United States


