
inv lve
a journal of mathematics

mathematical sciences publishers

2008 Vol. 1, No. 2

Invariant polynomials and minimal zero sequences
Bryson W. Finklea, Terri Moore,

Vadim Ponomarenko and Zachary J. Turner





INVOLVE 1:2(2008)

Invariant polynomials and minimal zero sequences
Bryson W. Finklea, Terri Moore,

Vadim Ponomarenko and Zachary J. Turner

(Communicated by Scott Chapman)

A connection is developed between polynomials invariant under abelian permu-
tation of their variables and minimal zero sequences in a finite abelian group.
This connection is exploited to count the number of minimal invariant polyno-
mials for various abelian groups.

1. Introduction

Invariant theory has a long and beautiful history, with early work by Hilbert [1893]
and Noether [1915]. Classically, it is concerned with polynomials over R or C that
are invariant over certain permutations of their variables. For an introduction to
this subject, see any of [Dolgachev 2003; Neusel and Smith 2002; Olver 1999].

Minimal zero sequences (also called minimal zero-sum sequences) have also
been the subject of considerable study (for example, see [Chapman et al. 2001; Gao
and Geroldinger 1999; Geroldinger and Schneider 1992; Mazur 1992; van Emde
Boas and Kruyswijk 1967]). They are multisets of elements from a fixed finite
abelian group G subject to the restriction that the sum (according to multiplicity)
must be zero in G. This forms a semigroup under the multiset sum operation. For
an introduction, see one of [Caro 1996; Gao and Geroldinger 2006; Geroldinger
and Halter-Koch 2006; Halter-Koch 1997].

Our main result, Theorem 1, connects these two areas of mathematics. Let G
be a finite abelian group, and let I be the subalgebra of the polynomial ring on the
|G| variables that is invariant under the variable permutation induced by G. We
provide a canonical representation for I under which the natural set of generators
are bijective with minimal zero sequences of G. Since the 1948 paper of Strom
[1948], which settled the case where G has rank one, only partial progress [Kraft
and Procesi 1996; Schmid 1991] has been made in this area.
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Theorem 1. There exists a canonical set of generators of I in bijective correspon-
dence with the set of minimal zero sequences of G, where generators of degree k
correspond to sequences of cardinality k.

2. Applications

Our result permits us to count canonical generators of I more efficiently, both by
degree and in total. These results, found in Table 11, use minimal zero sequence
counting algorithms such as that found in [Finklea et al.≥ 2008] which recursively
finds zero-free sequences. We are thus able to extend the table found in [Strom
1948] substantially. The total number of canonical generators for cyclic G (the
rightmost column of Table 1) is extended in Table 2.2 We can similarly report the
total number of canonical generators for some groups of the form Zm⊕Zn in Table
3. Some of these are of rank one and also appear in Table 1; they are included for
completeness.

The relation between these two areas has great potential for mutual benefit. For
example, two conjectures of Elashvili, as stated in [Harris and Wehlau 2006], have
already been partially proved in [Ponomarenko 2004] and fully proved in [Yuan
2007], by considering Theorem 1.

3. Proof of main theorem

Fix the finite abelian group G=Zn1⊕Zn2⊕· · ·⊕Znk . We consider the polynomial
ring in the variables xg, for each g ∈ G. We let h ∈ G act on the variables via
h : xg→ xh+g. Let I denote the subring that is invariant under all |G| such actions,
and equivalently invariant under the k actions

e1 = (−1, 0, . . . , 0),

e2 = (0,−1, . . . , 0), . . . ,

ek = (0, 0, . . . ,−1).

(The actions are chosen to be the negatives of the standard basis for technical
reasons, to be evident later. These elements generate G.)

We will describe a degree-preserving change of variables that will preserve I.
After this change, the group action on the original variables will act on the new
canonical variables as scalar multiplication.

1Space considerations limit the size of these tables; larger versions are
available (together with the software used to generate them) up to Z64 at
http://www-rohan.sdsu.edu/˜vadim/research.html

2These results, through other methods, were also found by A. Elashvili and V. Tsiskaridze
[Elashvili and Tsiskaridze ≥ 2008]. Their unpublished data matches ours, and equally continues
to Z64.
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G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Z1 1 1
Z2 1 1 2
Z3 1 1 2 4
Z4 1 2 2 2 7
Z5 1 2 4 4 4 15

Z6 1 3 6 6 2 2 20
Z7 1 3 8 12 12 6 6 48
Z8 1 4 10 18 16 8 4 4 65
Z9 1 4 14 26 32 18 12 6 6 119
Z10 1 5 16 36 48 32 12 8 4 4 166

Z11 1 5 20 50 82 70 50 30 20 10 10 348
Z12 1 6 24 64 104 84 36 20 12 8 4 4 367
Z13 1 6 28 84 168 180 132 84 60 36 24 12 12 827
Z14 1 7 32 104 216 242 162 96 42 30 18 12 6 6 974
Z15 1 7 38 130 306 388 264 120 88 56 40 24 16 8 8 1494

Table 1. Number of canonical generators of I, by degree.

For all m ∈N, we set εm = e
2π
√
−1

m , where e is the usual transcendental 2.718 . . . .
We will need two well-known properties (for example, see [Ahlfors 1978] or [Dav-
enport 2000]).

Z1 1 Z16 2135 Z31 280352 Z46 7581158
Z2 2 Z17 3913 Z32 295291 Z47 10761816
Z3 4 Z18 4038 Z33 405919 Z48 9772607
Z4 7 Z19 7936 Z34 508162 Z49 15214301
Z5 15 Z20 8247 Z35 674630 Z50 15826998
Z6 20 Z21 12967 Z36 708819 Z51 20930012
Z7 48 Z22 17476 Z37 1230259 Z52 23378075
Z8 65 Z23 29162 Z38 1325732 Z53 34502651
Z9 119 Z24 28065 Z39 1709230 Z54 32192586
Z10 166 Z25 49609 Z40 1868565 Z55 44961550
Z11 348 Z26 59358 Z41 3045109 Z56 47162627
Z12 367 Z27 83420 Z42 2804474 Z57 63662925
Z13 827 Z28 97243 Z43 4694718 Z58 74515122
Z14 974 Z29 164967 Z44 4695997 Z59 102060484
Z15 1494 Z30 152548 Z45 5902561 Z60 85954379

Table 2. Total number of canonical generators for G = Zn .
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Z2 Z3 Z4 Z5 Z6 Z7

Z2 5 20 39 166 253 974
Z3 20 69 367 1494 2642 12967
Z4 39 367 1107 8247 19463 97243
Z5 166 1494 8247 31029 152548 674630
Z6 253 2642 19463 152548 390861 2804474
Z7 974 12967 97243 674630 2804474 9540473

Table 3. Total number of canonical generators for G = Zm ⊕Zn .

Proposition 1. Let εm be as above. Then

(1) (εm)
k
= 1 if and only if m divides k.

(2) Let j ∈ Z. Then
m−1∑
k=0
(εm)

jk
=

{
m, if m divides j ;
0, otherwise.

For g ∈G, we use (g)i ∈Z to denote the projection of g onto the i-th coordinate
(for 1≤ i ≤ k). For each h ∈ G, we define new variables yh via:

yh =
∑
g∈G

( k∏
i=1

(εni )
(g)i (h)i

)
xg.

The inverse change of basis is given explicitly below; hence this basis change
is degree-preserving.

Lemma 1. For all g ∈ G we have

xg =
1
|G|

∑
h∈G

( k∏
j=1

(εn j )
(h) j (−(g) j )

)
yh .

Proof. We substitute for yh into the right hand side to get:

1
|G|

∑
h∈G

( k∏
j=1

(εn j )
(h) j (−(g) j )

)∑
g′∈G

( k∏
i=1

(εni )
(g′)i (h)i

)
xg′ =

1
|G|

∑
g′∈G

xg′
∑
h∈G

( k∏
i=1

(εni )
(h)i ((g′)i−(g)i )

)
=

1
|G|

∑
g′∈G

xg′

{
|G|, if g = g′;
0, otherwise.

}
In the last step, if g = g′, then each term in the innermost product is 1. Otherwise,
for somew, we have (g′)w−(g)w 6= 0. We now collect the summands nw at a time,
where the w-th coordinate assumes all possible values and the other coordinates
are fixed. We pull out the common factors and apply Proposition 1 to get 0. �

Under the canonical basis {yh}, the k actions permuting the variables act as
scalar multiplication.
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Lemma 2. e j : yh→ (εn j )
(h) j yh .

Proof. We have

e j (yh)=
∑
g∈G

( k∏
i=1

(εni )
(g)i (h)i

)
xg+e j

=

∑
(g+e j )∈G

( k∏
i=1

(εni )
(g+e j−e j )i (h)i

)
xg+e j =

∑
g∈G

( k∏
i=1

(εni )
(g−e j )i (h)i

)
xg

= yh(εn j )
−(e j ) j (h) j = yh(εn j )

(h) j . �

An immediate consequence of the above is that e j : ya
h → (εn j )

a(h) j ya
h . More

generally, we can calculate the effect of e j on an arbitrary monomial.

Lemma 3. For constant α, e j : α
∏

h∈G
yah

h →

(
(εn j )

∑
h∈G

ah(h) j)
α
∏

h∈G
yah

h .

Observe that under the canonical basis all invariant polynomials may be writ-
ten as the sum of invariant monomials. Further, each invariant monomial may be
written as the product of invariant monomials. Hence, there is a canonical set of
generators of I under the canonical basis, namely the set of irreducible invariant
monomials.

Consider an irreducible monomial
∏

h∈G
yah

h . We must have

∑
h∈G

ah(h) j ≡ 0 (mod n j )

for each j . Combining these j requirements, we get∑
h∈G

ahh = 0,

where 0 is the zero element in G. Therefore, we can consider the ah as multiplic-
ities for each element h ∈ G, and since the sum is zero we have a zero sequence.
Further, this must be a minimal zero sequence by the irreducibility of the generator.
Conversely, every minimal zero sequence yields an irreducible monomial.
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