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Let G be a finite abelian group with subgroup H and let F(G) denote the free
abelian monoid with basis G. The classical block monoid B(G) is the col-
lection of sequences in F(G) whose elements sum to zero. The relative block
monoid BH (G), defined by Halter-Koch, is the collection of all sequences in
F(G) whose elements sum to an element in H . We use a natural transfer ho-
momorphism θ : BH (G)→ B(G/H) to enumerate the irreducible elements of
BH (G) given an enumeration of the irreducible elements of B(G/H).

1. Introduction

In this paper we will study the so-called block monoid and a generalization called
the relative block monoid. The block monoid has been ubiquitous in the literature
over the past thirty years and has been used extensively as a tool to study nonunique
factorization in certain commutative rings and monoids. The relative block monoid
was introduced by Halter-Koch [1992]. Our main goal in this paper is to provide
an enumeration of the irreducible elements of the relative block monoid given an
enumeration of the irreducible elements of a related block monoid.

In this section we offer a brief description of some central ideas in factorization
theory. The quintessential reference for the study of factorization in commutative
monoids — in particular block monoids — is [Geroldinger and Halter-Koch 2006,
Chapters 5, 6, 7]. In Section 2, we give notations and definitions relevant to study-
ing the relative block monoid. We conclude Section 2 by stating several known
results about the relative block monoid. Section 3 provides a means of enumerating
the atoms of the relative block monoid BH (G) by considering a natural transfer
homomorphism θ :BH (G)→B(G/H).

For our purposes, a monoid is a commutative, cancellative semigroup with iden-
tity. We will restrict our attention to reduced monoids, that is, monoids whose set of
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units, H×, contains only the identity element. An element h of a reduced monoid
H is said to be irreducible or an atom if whenever h = a · b with a, b ∈ H , then
either a = 1 or b = 1. We denote the set of atoms of a monoid H by A(H). If
an element α ∈ H can be written as α = a1 · · · ak with each ai ∈ A(H), this
factorization of α is said to have length k.

As it is often convenient to study factorization via a surjective map onto a
smaller, simpler monoid, we now define transfer homomorphisms. Let H and
D be reduced monoids and let π : H → D be a surjective monoid homomor-
phism. We say that π is a transfer homomorphism provided that π−1(1) = {1}
and whenever π(α) = β1β2 in D, there exist elements α1 and α2 ∈ H such that
π(α1)= β1, π(α2)= β2, and α = α1α2. It is known that transfer homomorphisms
preserve length [Geroldinger and Halter-Koch 2006, Proposition 3.2.3]. That is, if
π : H→ D is a transfer homomorphism then all questions dealing with lengths of
factorizations in H can be studied in D.

2. The relative block monoid

Let G be a finite abelian group written additively and with identity 0. Let F(G)
denote the free abelian monoid with basis G. That is, F(G) consists of all formal
products gn1

1 · · ·g
nk
k with gi ∈G and ni ∈N with operation given by concatenation.

When we write an element gn1
1 ···g

nk
k of B(G)with exponents ni larger than one, we

generally assume that gi 6= g j unless i = j . We define a monoid homomorphism
σ : F(G) → G by σ(α) = g1 + · · · + gk where α = g1g2 · · · gk . We also use
|α| = n1 + n2 + · · · + nt to denote the length of α in F(G). We call an element
α in F(G) a zero-sum sequence if and only if σ(α) = 0 in G. If α is a zero-sum
sequence and if there does not exist a proper subsequence of α which is also a zero-
sum sequence, then we call α a minimal zero-sum sequence. The collection of all
zero-sum sequences in F(G), with operation given by concatenation, is called the
block monoid of G and is denoted B(G). That is,

B(G)= {α ∈ F(G) | σ(α)= 0}.

Notice that B(G) = ker(σ ) and that the atoms of B(G) are simply the nonempty
minimal zero-sum sequences. For more general groups, enumerating the atoms of
the block monoid is a difficult task. In general, there is no known algorithm to
enumerate all atoms of B(G), although there are some results for special cases of
G; see [Geroldinger and Halter-Koch 2006; Ponomarenko 2004]. We will return
to this question in Section 3.

When studying zero-sum sequences, the Davenport constant is an important
invariant. The Davenport constant D(G) is defined to be the smallest positive
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integer d such that if |α| = d with α ∈ F(G) then there must exist a nonempty
subsequence α′ of α such that σ(α′)= 0.

Over the past thirty years, several authors have attempted to calculate D(G) in
certain cases, but no general formula is known. What is known about the Davenport
constant we summarize in the following theorem [Geroldinger and Halter-Koch
2006]. First we need to define another invariant of a finite abelian group G. If

G ∼= Zn1 ⊕ · · ·⊕Znk ,

with ni | ni+1 and ni > 1 for each 1≤ i < k, we let

d∗(G)=
k∑

i=1

(ni − 1).

Theorem 2.1. Let G be a finite abelian group. Then:

(1) d∗(G)+ 1≤ D(G)≤ |G|;

(2) If G is a cyclic group of order n, then D(G)= n.

We now introduce a somewhat larger submonoid of F(G), first defined by
Halter-Koch [1992]. Let G be a finite abelian group and let H be a subgroup
of G. We call an element α ∈ F(G) an H-sum sequence if σ(α) ∈ H . If α is an
H -sum sequence and if there does not exist a proper subsequence of an α which
is also an H-sum sequence, then α is said to be a minimal H-sum sequence. We
call the collection of all H -sequences, the block monoid of G relative to H and
denote it by BH (G). Note that if H = {0}, the H-sum sequences are precisely
the zero-sum sequences and hence BH (G) = B(G). In the other extreme case, if
H = G, then BH (G)= F(G).

As we are now concerned with H-sum sequences, it is natural to define the H-
Davenport constant. Let G be a finite abelian group and let H be a subgroup of G.
The H-Davenport constant, denoted by DH (G), is the smallest integer d such that
every sequence α ∈F(G) with |α| ≥ d has a subsequence α′ 6= 1 with σ(α′) ∈ H .

The following theorem [Halter-Koch 1992, Proposition 1] lists several known
results about the relative block monoid. We are, in particular, interested in parts 2
and 3 of the theorem.

Theorem 2.2. Let G be an abelian group and let H be a subgroup of G.

(1) The embedding BH (G) ↪→ F(G) is a divisor theory with class group (iso-
morphic to) G/H and every class contains |H | primes, unless |G| = 2 and
H = {0}. If |G| = 2 and H = {0}, then obviously BH (G)=B(G)∼= (N2

0,+).

(2) The monoid homomorphism θ :BH (G)→B(G/H), defined by

θ(g1 · · · gk)= (g1+ H) · · · (gk + H)
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is a transfer homomorphism.

(3) DH (G)= sup{|α| | α is an atoms of BH (G)} = D(G/H).

Note that in Theorem 2.2, |H | denotes the cardinality of H while |σ | denotes
the length of σ . The transfer homomorphism θ from Theorem 2.2 will be heavily
used in Section 3 to enumerate the atoms of the relative block monoid.

3. Enumerating the atoms of BH(G)

Define N (H) to be the number of atoms of a monoid H . In this section we inves-
tigate N (BH (G)). Let G be a finite abelian group and let H be a subgroup. Since
θ : BH (G)→ B(G/H), as defined in Theorem 2.2, is a transfer homomorphism,
lengths of factorizations of sequences in BH (G) can be studied in the somewhat
simpler structure B(G/H). When G is cyclic of order n ≥ 10, the number of
minimal zero-sum sequences in B(G) of length k ≥ 2n/3 is φ(n)pk(n) where
φ is Euler’s totient function and where pk(n) denotes the number of partitions
of n into k parts [Ponomarenko 2004, Theorem 8]. Note that by recent work of
Yuan [2007, Theorem 3.1] and Savchev and Chen [2007, Proposition 10], the in-
equality k ≥ 2n/3 can be replaced by k ≥ bn/2c+ 2 (see also [Geroldinger 2009,
Corollary 7.9]). In general, there is no known formula for the number of atoms of
B(G). However, given an enumeration of the atoms of B(G/H) we can calculate
N (BH (G)) exactly, as the following example illustrates.

Example 1. Let G be a finite abelian group with a subgroup H of index 2. We
will calculate N (BH (G)) as a function of |H |, the order of H. Write

G/H = {H, g+ H}, for some g ∈ G\H.

It is clear that

A(B(G/H))= {H, (g+ H)2}.

From Theorem 2.2 we know that for each atom α ∈ BH (G), either α ∈ θ−1(H)
or α ∈ θ−1

(
(g+ H)2

)
. In the first case |α| = 1 and so α ∈ H . In the second

case, α = xy where x, y ∈ g + H , not necessarily distinct. To count the number
of elements of this form, note that we are choosing two elements from the |H |
elements of the coset g+H . That is, there are

(
|H |+1

2

)
elements in the preimage of

(g1+ H)2. Therefore,

N (BH (G))= |H | +
(
|H | + 1

2

)
=

1
2
|H |2+ 3

2
|H |.

In the previous example, N (BH (G)) is a polynomial in |H | with rational coef-
ficients. We now give a series of results to establish this fact in general.
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Theorem 3.1. Let G be a finite abelian group and let H be a subgroup of G. If
α = αt1

1 α
t2
2 · · ·α

tn
n ∈B(G/H) where αi 6= α j whenever i 6= j then

∣∣θ−1(α)
∣∣= n∏

i=1

(
|H | + ti − 1

ti

)
.

Proof. Let
α = (x1+ H)t1(x2+ H)t2 · · · (xn + H)tn

be a sequence in B(G/H) where xi + H 6= x j + H unless i 6= j . Each element
of θ−1(xi + H)ti looks like y1 y2 · · · yti where each y j ∈ xi + H . We wish to count
the number of such elements in F(G). Since

∣∣θ−1(xi + H)
∣∣ = |H |, we have |H |

elements from which to choose. Then to find
∣∣θ−1((xi + H)ti )

∣∣, we choose ti not
necessarily distinct elements from xi + H . Thus,∣∣θ−1((xi + H)ti )

∣∣= (|H | + ti − 1
ti

)
.

Since each xi + H is a distinct coset representative, the elements in the preimage
of xi + H are not in the preimage of any other coset. That is,

θ−1(xi + H)∩ θ−1(x j + H)=∅,

whenever i 6= j . To find
∣∣θ−1(α)

∣∣, we simply multiply, which yields

∣∣θ−1(α)
∣∣= n∏

i=1

(
|H | + ti − 1

ti

)
. �

Let α = αt1
1 α

t2
2 · · ·α

tn
n ∈ β(G/H). We say that two sequences αt1

1 α
t2
2 · · ·α

tn
n and

βr1
1 β

r2
2 · · ·β

rn
n ∈ F(G/H) are of similar form if

(1) αi 6= α j when i 6= j ,
(2) βk 6= βl when k 6= l, and
(3) there exists some τ ∈ Sn such that ti = rτ(i) for all i .

As we see in the following corollary if α and β are sequences of similar form, then∣∣θ−1(α)
∣∣= ∣∣θ−1(β)

∣∣ .
Corollary 3.2. Let α = αt1

1 α
t2
2 · · ·α

tn
n and β = βr1

1 β
r2
2 · · ·β

rn
n ∈ F(G/H) be of

similar form. Then ∣∣θ−1(α)
∣∣= ∣∣θ−1(β)

∣∣ .
Proof. By Theorem 3.1,∣∣θ−1(α)

∣∣= n∏
i=1

(
|H | + ti − 1

ti

)
and

∣∣θ−1(β)
∣∣= n∏

i=1

(
|H | + ri − 1

ri

)
.
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By assumption, there exists a τ ∈ Sn such that ti = rτ(i) for all i . Thus, after an
appropriate reordering, ti = ri for all i . Hence,

∣∣θ−1(α)
∣∣= n∏

i=1

(
|H | + ti − 1

ti

)
=

n∏
i=1

(
|H | + ri − 1

ri

)
=
∣∣θ−1(β)

∣∣ . �

In Example 2, we will categorize the atoms of B(G/H) to make use of this
corollary. We now give our main result. A polynomial f ∈Q[X ] is called integer-
valued if f (Z)⊆Z, and we denote Int(Z)⊂Q[X ] the set of integer-valued polyno-
mials on Z. It is well-known that the polynomials

(X
n

)
form a basis of the Z-module

Int(Z) (see [Cahen and Chabert 1997, Proposition I.1.1]).

Theorem 3.3. Let K be a finite abelian group. There exists an integer-valued
polynomial f ∈ Int(Z) of degree deg( f ) = D(K ) with the following property: if
G is a finite abelian group and H ⊆ G a subgroup with G/H ∼= K , then

N (BH (G))= f (|H |).

Proof. From Theorem 2.2 every atom of BH (G) is in the preimage of an atom
from B(G/H) under the transfer homomorphism θ : BH (G)→ B(G/H). Let
A1, A2, . . . , Am denote the atoms of B(G/H). Then

N (BH (G))=
∣∣θ−1(A1)

∣∣+ ∣∣θ−1(A2)
∣∣+ · · ·+ ∣∣θ−1(Am)

∣∣
since the preimages θ−1(Ai ) are pairwise disjoint. From Theorem 3.1,

∣∣θ−1(Ai )
∣∣= n∏

i=1

(
|H | + ti − 1

ti

)
where Ai = α

t1
1 α

t2
2 · · ·α

tn
n . Since

(
|H |+ti−1

ti

)
is a polynomial in terms of |H |, we

know that
∏n

i=1
(
|H |+ti−1

ti

)
is a polynomial in terms of |H |. Thus,

N (BH (G))=
∣∣θ−1(A1)

∣∣+ ∣∣θ−1(A2)
∣∣+ · · ·+ ∣∣θ−1(Am)

∣∣
is also a polynomial in terms of |H |. The definition of the Davenport constant
implies that there exists an atom in B(G/H) with length D(G/H) = DH (G) and
that no longer atom exists. Let Ai = α

t1
1 α

t2
2 · · ·α

tn
n ∈ B(G/H) such that |A| =

D(G/H)= DH (G). Then

t1+ t2+ · · ·+ tn = DH (G).

Since (
|H | + ti − 1

ti

)
=
(|H | + ti − 1)(|H | + ti − 2) · · · |H |

ti
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is a polynomial in terms of |H | of degree ti ,
∏n

i=1
(
|H |+ti−1

ti

)
has degree DH (G).

Since
∣∣A j

∣∣≤ DH (G) for all j , we have that

N (BH (G))=
∣∣θ−1(A1)

∣∣+ ∣∣θ−1(A2)
∣∣+ · · ·+ ∣∣θ−1(Am)

∣∣ ,
which also has degree DH (G). �

Remark 1. If |H | = 1, then H = {0} and so BH (G) = B(G). In this case,∣∣θ−1(Ai )
∣∣= 1 for all i and thus N (BH (G))= N (B(G)).

We conclude with a final example, which illustrates how much larger A(BH (G))
is than A(B(G/H)).

Example 2. We calculate N (BH (G)) where G/H ∼= Z/6Z = {0, 1, 2, 3, 4, 5}.
Note that A(B(Z/6Z)) consists of the following twenty elements:

0 16 142 133 1222 124 123
1342 15 23 2235 24 252 32

345 353 43 4252 454 56

For each sequence α ∈A(B(G/H)), we compute
∣∣θ−1(α)

∣∣. Several pairs of atoms
have similar forms and thus we can reduce the number of calculations by using
Corollary 3.2. By applying Theorem 3.1 we obtain, for example:∣∣θ−1(32)

∣∣= (|H | + 1
2

)
=

1
2
|H |2+

1
2
|H |,

∣∣θ−1(123, 345)
∣∣= 2

(
|H |
1

)3

= 2|H |3,

and

∣∣θ−1(142, 544)
∣∣= 2

(
|H | + 3

4

)(
|H |
1

)
=

1
12
|H |5+

1
2
|H |4+

11
12
|H |3+

1
2
|H |2.

These and several similar calculations yield

N (BH (G))=
1

360
|H |6+

1
8
|H |5+

185
72
|H |4+

63
8
|H |3+

1247
180
|H |2+

5
2
|H |.

Applying this formula to the case when |H | = 1, we find N (BH (G)) = 20. If
|H | = 10, then N (BH (G))= 49, 565, illustrating how quickly A (BH (G)) grows
as a function of |H |.
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