involve a journal of mathematics

Atoms of the relative block monoid
Nicholas Baeth and Justin Hoffmeier
mathematical sciences publishers

Atoms of the relative block monoid

Nicholas Baeth and Justin Hoffmeier
(Communicated by Scott Chapman)

Let G be a finite abelian group with subgroup H and let $\mathscr{F}(G)$ denote the free abelian monoid with basis G. The classical block monoid $\mathscr{B}(G)$ is the collection of sequences in $\mathscr{F}(G)$ whose elements sum to zero. The relative block monoid $\mathscr{B}_{H}(G)$, defined by Halter-Koch, is the collection of all sequences in $\mathscr{F}(G)$ whose elements sum to an element in H. We use a natural transfer homomorphism $\theta: \mathscr{B}_{H}(G) \rightarrow \mathscr{B}(G / H)$ to enumerate the irreducible elements of $\mathscr{B}_{H}(G)$ given an enumeration of the irreducible elements of $\mathscr{B}(G / H)$.

1. Introduction

In this paper we will study the so-called block monoid and a generalization called the relative block monoid. The block monoid has been ubiquitous in the literature over the past thirty years and has been used extensively as a tool to study nonunique factorization in certain commutative rings and monoids. The relative block monoid was introduced by Halter-Koch [1992]. Our main goal in this paper is to provide an enumeration of the irreducible elements of the relative block monoid given an enumeration of the irreducible elements of a related block monoid.

In this section we offer a brief description of some central ideas in factorization theory. The quintessential reference for the study of factorization in commutative monoids — in particular block monoids - is [Geroldinger and Halter-Koch 2006, Chapters 5, 6, 7]. In Section 2, we give notations and definitions relevant to studying the relative block monoid. We conclude Section 2 by stating several known results about the relative block monoid. Section 3 provides a means of enumerating the atoms of the relative block monoid $\mathscr{B}_{H}(G)$ by considering a natural transfer homomorphism $\theta: \mathscr{B}_{H}(G) \rightarrow \mathscr{B}(G / H)$.

For our purposes, a monoid is a commutative, cancellative semigroup with identity. We will restrict our attention to reduced monoids, that is, monoids whose set of

[^0]units, H^{\times}, contains only the identity element. An element h of a reduced monoid H is said to be irreducible or an atom if whenever $h=a \cdot b$ with $a, b \in H$, then either $a=1$ or $b=1$. We denote the set of atoms of a monoid H by $\mathscr{A}(H)$. If an element $\alpha \in H$ can be written as $\alpha=a_{1} \cdots a_{k}$ with each $a_{i} \in \mathscr{A}(H)$, this factorization of α is said to have length k.

As it is often convenient to study factorization via a surjective map onto a smaller, simpler monoid, we now define transfer homomorphisms. Let H and D be reduced monoids and let $\pi: H \rightarrow D$ be a surjective monoid homomorphism. We say that π is a transfer homomorphism provided that $\pi^{-1}(1)=\{1\}$ and whenever $\pi(\alpha)=\beta_{1} \beta_{2}$ in D, there exist elements α_{1} and $\alpha_{2} \in H$ such that $\pi\left(\alpha_{1}\right)=\beta_{1}, \pi\left(\alpha_{2}\right)=\beta_{2}$, and $\alpha=\alpha_{1} \alpha_{2}$. It is known that transfer homomorphisms preserve length [Geroldinger and Halter-Koch 2006, Proposition 3.2.3]. That is, if $\pi: H \rightarrow D$ is a transfer homomorphism then all questions dealing with lengths of factorizations in H can be studied in D.

2. The relative block monoid

Let G be a finite abelian group written additively and with identity 0 . Let $\mathscr{F}(G)$ denote the free abelian monoid with basis G. That is, $\mathscr{F}(G)$ consists of all formal products $g_{1}^{n_{1}} \cdots g_{k}^{n_{k}}$ with $g_{i} \in G$ and $n_{i} \in \mathbb{N}$ with operation given by concatenation. When we write an element $g_{1}^{n_{1}} \cdots g_{k}^{n_{k}}$ of $\mathscr{B}(G)$ with exponents n_{i} larger than one, we generally assume that $g_{i} \neq g_{j}$ unless $i=j$. We define a monoid homomorphism $\sigma: \mathscr{F}(G) \rightarrow G$ by $\sigma(\alpha)=g_{1}+\cdots+g_{k}$ where $\alpha=g_{1} g_{2} \cdots g_{k}$. We also use $|\alpha|=n_{1}+n_{2}+\cdots+n_{t}$ to denote the length of α in $\mathscr{F}(G)$. We call an element α in $\mathscr{F}(G)$ a zero-sum sequence if and only if $\sigma(\alpha)=0$ in G. If α is a zero-sum sequence and if there does not exist a proper subsequence of α which is also a zerosum sequence, then we call α a minimal zero-sum sequence. The collection of all zero-sum sequences in $\mathscr{F}(G)$, with operation given by concatenation, is called the block monoid of G and is denoted $\mathscr{B}(G)$. That is,

$$
\mathscr{B}(G)=\{\alpha \in \mathscr{F}(G) \mid \sigma(\alpha)=0\} .
$$

Notice that $\mathscr{B}(G)=\operatorname{ker}(\sigma)$ and that the atoms of $\mathscr{B}(G)$ are simply the nonempty minimal zero-sum sequences. For more general groups, enumerating the atoms of the block monoid is a difficult task. In general, there is no known algorithm to enumerate all atoms of $\mathscr{B}(G)$, although there are some results for special cases of G; see [Geroldinger and Halter-Koch 2006; Ponomarenko 2004]. We will return to this question in Section 3.

When studying zero-sum sequences, the Davenport constant is an important invariant. The Davenport constant $\mathrm{D}(G)$ is defined to be the smallest positive
integer d such that if $|\alpha|=d$ with $\alpha \in \mathscr{F}(G)$ then there must exist a nonempty subsequence α^{\prime} of α such that $\sigma\left(\alpha^{\prime}\right)=0$.

Over the past thirty years, several authors have attempted to calculate $\mathrm{D}(G)$ in certain cases, but no general formula is known. What is known about the Davenport constant we summarize in the following theorem [Geroldinger and Halter-Koch 2006]. First we need to define another invariant of a finite abelian group G. If

$$
G \cong \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}}
$$

with $n_{i} \mid n_{i+1}$ and $n_{i}>1$ for each $1 \leq i<k$, we let

$$
\mathrm{d}^{*}(G)=\sum_{i=1}^{k}\left(n_{i}-1\right)
$$

Theorem 2.1. Let G be a finite abelian group. Then:
(1) $\mathrm{d}^{*}(G)+1 \leq \mathrm{D}(G) \leq|G|$;
(2) If G is a cyclic group of order n, then $\mathrm{D}(G)=n$.

We now introduce a somewhat larger submonoid of $\mathscr{F}(G)$, first defined by Halter-Koch [1992]. Let G be a finite abelian group and let H be a subgroup of G. We call an element $\alpha \in \mathscr{F}(G)$ an H-sum sequence if $\sigma(\alpha) \in H$. If α is an H-sum sequence and if there does not exist a proper subsequence of an α which is also an H-sum sequence, then α is said to be a minimal H-sum sequence. We call the collection of all H-sequences, the block monoid of G relative to H and denote it by $\mathscr{B}_{H}(G)$. Note that if $H=\{0\}$, the H -sum sequences are precisely the zero-sum sequences and hence $\mathscr{B}_{H}(G)=\mathscr{B}(G)$. In the other extreme case, if $H=G$, then $\mathscr{B}_{H}(G)=\mathscr{F}(G)$.

As we are now concerned with H -sum sequences, it is natural to define the H Davenport constant. Let G be a finite abelian group and let H be a subgroup of G . The H-Davenport constant, denoted by $\mathrm{D}_{H}(G)$, is the smallest integer d such that every sequence $\alpha \in \mathscr{F}(G)$ with $|\alpha| \geq d$ has a subsequence $\alpha^{\prime} \neq 1$ with $\sigma\left(\alpha^{\prime}\right) \in H$.

The following theorem [Halter-Koch 1992, Proposition 1] lists several known results about the relative block monoid. We are, in particular, interested in parts 2 and 3 of the theorem.

Theorem 2.2. Let G be an abelian group and let H be a subgroup of G.
(1) The embedding $\mathscr{B}_{H}(G) \hookrightarrow \mathscr{F}(G)$ is a divisor theory with class group (isomorphic to) G / H and every class contains $|H|$ primes, unless $|G|=2$ and $H=\{0\}$. If $|G|=2$ and $H=\{0\}$, then obviously $\mathscr{B}_{H}(G)=\mathscr{B}(G) \cong\left(\mathbb{N}_{0}^{2},+\right)$.
(2) The monoid homomorphism $\theta: \mathscr{B}_{H}(G) \rightarrow \mathscr{B}(G / H)$, defined by

$$
\theta\left(g_{1} \cdots g_{k}\right)=\left(g_{1}+H\right) \cdots\left(g_{k}+H\right)
$$

is a transfer homomorphism.
(3) $\mathrm{D}_{H}(G)=\sup \left\{|\alpha| \mid \alpha\right.$ is an atoms of $\left.\mathscr{B}_{H}(G)\right\}=\mathrm{D}(G / H)$.

Note that in Theorem 2.2, $|H|$ denotes the cardinality of H while $|\sigma|$ denotes the length of σ. The transfer homomorphism θ from Theorem 2.2 will be heavily used in Section 3 to enumerate the atoms of the relative block monoid.

3. Enumerating the atoms of $\mathscr{B}_{\boldsymbol{H}}(\boldsymbol{G})$

Define $N(H)$ to be the number of atoms of a monoid H. In this section we investigate $N\left(\mathscr{B}_{H}(G)\right)$. Let G be a finite abelian group and let H be a subgroup. Since $\theta: \mathscr{B}_{H}(G) \rightarrow \mathscr{B}(G / H)$, as defined in Theorem 2.2, is a transfer homomorphism, lengths of factorizations of sequences in $\mathscr{B}_{H}(G)$ can be studied in the somewhat simpler structure $\mathscr{B}(G / H)$. When G is cyclic of order $n \geq 10$, the number of minimal zero-sum sequences in $\mathscr{B}(G)$ of length $k \geq 2 n / 3$ is $\phi(n) p_{k}(n)$ where ϕ is Euler's totient function and where $p_{k}(n)$ denotes the number of partitions of n into k parts [Ponomarenko 2004, Theorem 8]. Note that by recent work of Yuan [2007, Theorem 3.1] and Savchev and Chen [2007, Proposition 10], the inequality $k \geq 2 n / 3$ can be replaced by $k \geq\lfloor n / 2\rfloor+2$ (see also [Geroldinger 2009, Corollary 7.9]). In general, there is no known formula for the number of atoms of $\mathscr{B}(G)$. However, given an enumeration of the atoms of $\mathscr{B}(G / H)$ we can calculate $N\left(\mathscr{B}_{H}(G)\right)$ exactly, as the following example illustrates.

Example 1. Let G be a finite abelian group with a subgroup H of index 2. We will calculate $N\left(\mathscr{B}_{H}(G)\right)$ as a function of $|H|$, the order of H . Write

$$
G / H=\{H, g+H\}, \quad \text { for some } g \in G \backslash H
$$

It is clear that

$$
\mathscr{A}(\mathscr{B}(G / H))=\left\{H,(g+H)^{2}\right\} .
$$

From Theorem 2.2 we know that for each atom $\alpha \in \mathscr{B}_{H}(G)$, either $\alpha \in \theta^{-1}(H)$ or $\alpha \in \theta^{-1}\left((g+H)^{2}\right)$. In the first case $|\alpha|=1$ and so $\alpha \in H$. In the second case, $\alpha=x y$ where $x, y \in g+H$, not necessarily distinct. To count the number of elements of this form, note that we are choosing two elements from the $|H|$ elements of the coset $g+H$. That is, there are $\binom{|H|+1}{2}$ elements in the preimage of $\left(g_{1}+H\right)^{2}$. Therefore,

$$
N\left(\mathscr{B}_{H}(G)\right)=|H|+\binom{|H|+1}{2}=\frac{1}{2}|H|^{2}+\frac{3}{2}|H| .
$$

In the previous example, $N\left(\mathscr{B}_{H}(G)\right)$ is a polynomial in $|H|$ with rational coefficients. We now give a series of results to establish this fact in general.

Theorem 3.1. Let G be a finite abelian group and let H be a subgroup of G. If $\alpha=\alpha_{1}^{t_{1}} \alpha_{2}^{t_{2}} \cdots \alpha_{n}^{t_{n}} \in \mathscr{B}(G / H)$ where $\alpha_{i} \neq \alpha_{j}$ whenever $i \neq j$ then

$$
\left|\theta^{-1}(\alpha)\right|=\prod_{i=1}^{n}\binom{|H|+t_{i}-1}{t_{i}}
$$

Proof. Let

$$
\alpha=\left(x_{1}+H\right)^{t_{1}}\left(x_{2}+H\right)^{t_{2}} \cdots\left(x_{n}+H\right)^{t_{n}}
$$

be a sequence in $\mathscr{P}(G / H)$ where $x_{i}+H \neq x_{j}+H$ unless $i \neq j$. Each element of $\theta^{-1}\left(x_{i}+H\right)^{t_{i}}$ looks like $y_{1} y_{2} \cdots y_{t_{i}}$ where each $y_{j} \in x_{i}+H$. We wish to count the number of such elements in $\mathscr{F}(G)$. Since $\left|\theta^{-1}\left(x_{i}+H\right)\right|=|H|$, we have $|H|$ elements from which to choose. Then to find $\left|\theta^{-1}\left(\left(x_{i}+H\right)^{t_{i}}\right)\right|$, we choose t_{i} not necessarily distinct elements from $x_{i}+H$. Thus,

$$
\left|\theta^{-1}\left(\left(x_{i}+H\right)^{t_{i}}\right)\right|=\binom{|H|+t_{i}-1}{t_{i}}
$$

Since each $x_{i}+H$ is a distinct coset representative, the elements in the preimage of $x_{i}+H$ are not in the preimage of any other coset. That is,

$$
\theta^{-1}\left(x_{i}+H\right) \cap \theta^{-1}\left(x_{j}+H\right)=\varnothing
$$

whenever $i \neq j$. To find $\left|\theta^{-1}(\alpha)\right|$, we simply multiply, which yields

$$
\left|\theta^{-1}(\alpha)\right|=\prod_{i=1}^{n}\binom{|H|+t_{i}-1}{t_{i}}
$$

Let $\alpha=\alpha_{1}^{t_{1}} \alpha_{2}^{t_{2}} \cdots \alpha_{n}^{t_{n}} \in \beta(G / H)$. We say that two sequences $\alpha_{1}^{t_{1}} \alpha_{2}^{t_{2}} \cdots \alpha_{n}^{t_{n}}$ and $\beta_{1}^{r_{1}} \beta_{2}^{r_{2}} \cdots \beta_{n}^{r_{n}} \in \mathscr{F}(G / H)$ are of similar form if
(1) $\alpha_{i} \neq \alpha_{j}$ when $i \neq j$,
(2) $\beta_{k} \neq \beta_{l}$ when $k \neq l$, and
(3) there exists some $\tau \in S_{n}$ such that $t_{i}=r_{\tau(i)}$ for all i.

As we see in the following corollary if α and β are sequences of similar form, then

$$
\left|\theta^{-1}(\alpha)\right|=\left|\theta^{-1}(\beta)\right|
$$

Corollary 3.2. Let $\alpha=\alpha_{1}^{t_{1}} \alpha_{2}^{t_{2}} \cdots \alpha_{n}^{t_{n}}$ and $\beta=\beta_{1}^{r_{1}} \beta_{2}^{r_{2}} \cdots \beta_{n}^{r_{n}} \in \mathscr{F}(G / H)$ be of similar form. Then

$$
\left|\theta^{-1}(\alpha)\right|=\left|\theta^{-1}(\beta)\right|
$$

Proof. By Theorem 3.1,

$$
\left|\theta^{-1}(\alpha)\right|=\prod_{i=1}^{n}\binom{|H|+t_{i}-1}{t_{i}} \quad \text { and } \quad\left|\theta^{-1}(\beta)\right|=\prod_{i=1}^{n}\binom{|H|+r_{i}-1}{r_{i}}
$$

By assumption, there exists a $\tau \in S_{n}$ such that $t_{i}=r_{\tau(i)}$ for all i. Thus, after an appropriate reordering, $t_{i}=r_{i}$ for all i. Hence,

$$
\left|\theta^{-1}(\alpha)\right|=\prod_{i=1}^{n}\binom{|H|+t_{i}-1}{t_{i}}=\prod_{i=1}^{n}\binom{|H|+r_{i}-1}{r_{i}}=\left|\theta^{-1}(\beta)\right|
$$

In Example 2, we will categorize the atoms of $\mathscr{B}(G / H)$ to make use of this corollary. We now give our main result. A polynomial $f \in \mathbb{Q}[X]$ is called integervalued if $f(\mathbb{Z}) \subseteq \mathbb{Z}$, and we denote $\operatorname{Int}(\mathbb{Z}) \subset \mathbb{Q}[X]$ the set of integer-valued polynomials on \mathbb{Z}. It is well-known that the polynomials $\binom{X}{n}$ form a basis of the \mathbb{Z}-module $\operatorname{Int}(\mathbb{Z})$ (see [Cahen and Chabert 1997, Proposition I.1.1]).

Theorem 3.3. Let K be a finite abelian group. There exists an integer-valued polynomial $f \in \operatorname{Int}(\mathbb{Z})$ of degree $\operatorname{deg}(f)=\mathrm{D}(K)$ with the following property: if G is a finite abelian group and $H \subseteq G$ a subgroup with $G / H \cong K$, then

$$
N\left(\mathscr{B}_{H}(G)\right)=f(|H|) .
$$

Proof. From Theorem 2.2 every atom of $\mathscr{B}_{H}(G)$ is in the preimage of an atom from $\mathscr{B}(G / H)$ under the transfer homomorphism $\theta: \mathscr{B}_{H}(G) \rightarrow \mathscr{B}(G / H)$. Let $A_{1}, A_{2}, \ldots, A_{m}$ denote the atoms of $\mathscr{B}(G / H)$. Then

$$
N\left(\mathscr{B}_{H}(G)\right)=\left|\theta^{-1}\left(A_{1}\right)\right|+\left|\theta^{-1}\left(A_{2}\right)\right|+\cdots+\left|\theta^{-1}\left(A_{m}\right)\right|
$$

since the preimages $\theta^{-1}\left(A_{i}\right)$ are pairwise disjoint. From Theorem 3.1,

$$
\left|\theta^{-1}\left(A_{i}\right)\right|=\prod_{i=1}^{n}\binom{|H|+t_{i}-1}{t_{i}}
$$

where $A_{i}=\alpha_{1}^{t_{1}} \alpha_{2}^{t_{2}} \cdots \alpha_{n}^{t_{n}}$. Since $\binom{|H|+t_{i}-1}{t_{i}}$ is a polynomial in terms of $|H|$, we know that $\prod_{i=1}^{n}\binom{|H|+t_{i}-1}{t_{i}}$ is a polynomial in terms of $|H|$. Thus,

$$
N\left(\mathscr{B}_{H}(G)\right)=\left|\theta^{-1}\left(A_{1}\right)\right|+\left|\theta^{-1}\left(A_{2}\right)\right|+\cdots+\left|\theta^{-1}\left(A_{m}\right)\right|
$$

is also a polynomial in terms of $|H|$. The definition of the Davenport constant implies that there exists an atom in $\mathscr{B}(G / H)$ with length $\mathrm{D}(G / H)=\mathrm{D}_{H}(G)$ and that no longer atom exists. Let $A_{i}=\alpha_{1}^{t_{1}} \alpha_{2}^{t_{2}} \cdots \alpha_{n}^{t_{n}} \in \mathscr{B}(G / H)$ such that $|A|=$ $\mathrm{D}(G / H)=\mathrm{D}_{H}(G)$. Then

$$
t_{1}+t_{2}+\cdots+t_{n}=\mathrm{D}_{H}(G)
$$

Since

$$
\binom{|H|+t_{i}-1}{t_{i}}=\frac{\left(|H|+t_{i}-1\right)\left(|H|+t_{i}-2\right) \cdots|H|}{t_{i}}
$$

is a polynomial in terms of $|H|$ of degree $t_{i}, \prod_{i=1}^{n}\binom{|H|+t_{i}-1}{t_{i}}$ has degree $\mathrm{D}_{H}(G)$. Since $\left|A_{j}\right| \leq \mathrm{D}_{H}(G)$ for all j, we have that

$$
N\left(\mathscr{B}_{H}(G)\right)=\left|\theta^{-1}\left(A_{1}\right)\right|+\left|\theta^{-1}\left(A_{2}\right)\right|+\cdots+\left|\theta^{-1}\left(A_{m}\right)\right|,
$$

which also has degree $\mathrm{D}_{H}(G)$.
Remark 1. If $|H|=1$, then $H=\{0\}$ and so $\mathscr{B}_{H}(G)=\mathscr{B}(G)$. In this case, $\left|\theta^{-1}\left(A_{i}\right)\right|=1$ for all i and thus $N\left(\mathscr{B}_{H}(G)\right)=N(\mathscr{B}(G))$.

We conclude with a final example, which illustrates how much larger $\mathscr{A}\left(\mathscr{B}_{H}(G)\right)$ is than $\mathscr{A}(\mathscr{B}(G / H))$.
Example 2. We calculate $N\left(\mathscr{B}_{H}(G)\right)$ where $G / H \cong \mathbb{Z} / 6 \mathbb{Z}=\{0,1,2,3,4,5\}$. Note that $\mathscr{A}(\mathscr{B}(\mathbb{Z} / 6 \mathbb{Z}))$ consists of the following twenty elements:

$$
\begin{array}{lllllll}
0 & 1^{6} & 1^{4} 2 & 1^{3} 3 & 1^{2} 2^{2} & 1^{2} 4 & 123 \\
134^{2} & 15 & 2^{3} & 2^{2} 35 & 24 & 25^{2} & 3^{2} \\
345 & 35^{3} & 4^{3} & 4^{2} 5^{2} & 45^{4} & 5^{6} &
\end{array}
$$

For each sequence $\alpha \in \mathscr{A}(\mathscr{B}(G / H))$, we compute $\left|\theta^{-1}(\alpha)\right|$. Several pairs of atoms have similar forms and thus we can reduce the number of calculations by using Corollary 3.2. By applying Theorem 3.1 we obtain, for example:

$$
\begin{gathered}
\left|\theta^{-1}\left(3^{2}\right)\right|=\binom{|H|+1}{2}=\frac{1}{2}|H|^{2}+\frac{1}{2}|H|, \\
\left|\theta^{-1}(123,345)\right|=2\binom{|H|}{1}^{3}=2|H|^{3}
\end{gathered}
$$

and

$$
\left|\theta^{-1}\left(1^{4} 2,5^{4} 4\right)\right|=2\binom{|H|+3}{4}\binom{|H|}{1}=\frac{1}{12}|H|^{5}+\frac{1}{2}|H|^{4}+\frac{11}{12}|H|^{3}+\frac{1}{2}|H|^{2}
$$

These and several similar calculations yield

$$
N\left(\mathscr{B}_{H}(G)\right)=\frac{1}{360}|H|^{6}+\frac{1}{8}|H|^{5}+\frac{185}{72}|H|^{4}+\frac{63}{8}|H|^{3}+\frac{1247}{180}|H|^{2}+\frac{5}{2}|H| .
$$

Applying this formula to the case when $|H|=1$, we find $N\left(\mathscr{B}_{H}(G)\right)=20$. If $|H|=10$, then $N\left(\mathscr{B}_{H}(G)\right)=49,565$, illustrating how quickly $\mathscr{A}\left(\mathscr{B}_{H}(G)\right)$ grows as a function of $|H|$.

Acknowledgement

The authors wish to thank the anonymous referee for many insightful comments that greatly improved this paper.

References

[Cahen and Chabert 1997] P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, vol. 48, Mathematical Surveys and Monographs, Am. Math. Soc., Providence, RI, 1997. MR 98a:13002
[Geroldinger 2009] A. Geroldinger, "Additive group theory and non-unique factorizations", in Combinatorial Number Theory and Additive Group Theory, edited by A. Geroldinger and I. Ruzsa, Birkhäuser, 2009.
[Geroldinger and Halter-Koch 2006] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, vol. 278, Pure and Applied Mathematics (Boca Raton), Chapman \& Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic theory. MR 2006k:20001 Zbl 1113.11002
[Halter-Koch 1992] F. Halter-Koch, "Relative block semigroups and their arithmetical applications", Comment. Math. Univ. Carolin. 33:3 (1992), 373-381. MR 94a:11168 Zbl 0769.11038
[Ponomarenko 2004] V. Ponomarenko, "Minimal zero sequences of finite cyclic groups", Integers 4 (2004), A24, 6 pp. (electronic). MR 2005m:11024 Zbl 1083.11015
[Savchev and Chen 2007] S. Savchev and F. Chen, "Long zero-free sequences in finite cyclic groups", Discrete Math. 307:22 (2007), 2671-2679. MR 2008m:11050
[Yuan 2007] P. Yuan, "On the index of minimal zero-sum sequences over finite cyclic groups", J. Combin. Theory Ser. A 114:8 (2007), 1545-1551. MR 2008j:11147 Zbl 1128.11011

Received: 2008-09-15 Revised: 2008-11-10 Accepted: 2008-11-12
baeth@ucmo.edu Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, United States
hoffmeier@ucmo.edu Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, United States

[^0]: MSC2000: 11P70, 20 M 14.
 Keywords: zero-sum sequences, block monoids, finite abelian groups.
 This work consists of research done as part of Justin Hoffmeier's Master's thesis at the University of Central Missouri.

