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For a connected graph G of order n, the detour distance D(u, v) between two
vertices u and v in G is the length of a longest u− v path in G. A Hamiltonian
labeling of G is a function c : V (G)→ N such that |c(u)− c(v)| + D(u, v)≥ n
for every two distinct vertices u and v of G. The value hn(c) of a Hamiltonian
labeling c of G is the maximum label (functional value) assigned to a vertex of
G by c; while the Hamiltonian labeling number hn(G) of G is the minimum
value of Hamiltonian labelings of G. Hamiltonian labeling numbers of some
well-known classes of graphs are determined. Sharp upper and lower bounds
are established for the Hamiltonian labeling number of a connected graph. The
corona cor(F) of a graph F is the graph obtained from F by adding exactly one
pendant edge at each vertex of F . For each integer k ≥ 3, let Hk be the set of
connected graphs G for which there exists a Hamiltonian graph H of order k
such that H ⊂ G ⊆ cor(H). It is shown that 2k − 1 ≤ hn(G) ≤ k(2k − 1) for
each G ∈Hk and that both bounds are sharp.

1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is the
length of a shortest path between these two vertices. The eccentricity e(v) of a
vertex v in G is the maximum distance from v to a vertex of G. The radius rad(G)
of G is the minimum eccentricity among the vertices of G, while the diameter
diam(G) of G is the maximum eccentricity among the vertices of G. A vertex v
with e(v) = rad(G) is called a central vertex of G. If d(u, v) = diam(G), then u
and v are antipodal vertices of G.

For a connected graph G with diameter d , an antipodal coloring of a connected
graph G is defined in [Chartrand et al. 2002a] as an assignment c : V (G)→ N of
colors to the vertices of G such that

|c(u)− c(v)| + d(u, v)≥ d,

MSC2000: primary 05C12, 05C45; secondary 05C78, 05C15.
Keywords: Hamiltonian labeling, detour distance.
Willem Renzema’s research was supported in part by Lee Honors College Dean’s Summer Research
Award Program at Western Michigan University.

95



96 WILLEM RENZEMA AND PING ZHANG

for every two distinct vertices u and v of G. In the case of paths of order n ≥ 2,
this gives

|c(u)− c(v)| + d(u, v)≥ n− 1.

Antipodal colorings of paths gave rise to the more general Hamiltonian colorings
of graphs defined in terms of another distance parameter.

The detour distance D(u, v) between two vertices u and v in a connected graph
G is the length of a longest path between these two vertices. A u−v path of length
D(u, v) is a u− v detour. Thus if G is a connected graph of order n, then

d(u, v)≤ D(u, v)≤ n− 1,

for every two vertices u and v in G, and

D(u, v)= n− 1,

if and only if G contains a Hamiltonian u−v path. Furthermore d(u, v)= D(u, v)
for every two vertices u and v in G if and only if G is a tree. As with standard
distance, the detour distance is a metric on the vertex set of a connected graph.

A Hamiltonian coloring of a connected graph G of order n is a coloring

c : V (G)→ N

of G such that
|c(u)− c(v)| + D(u, v)≥ n− 1,

for every two distinct vertices u and v of G. Consequently, if u and v are distinct
vertices such that |c(u)− c(v)| = k for some Hamiltonian coloring c of G, then
there is a u − v path in G missing at most k vertices of G. The value hc(c) of
a Hamiltonian coloring c of G is the maximum color assigned to a vertex of G.
The Hamiltonian chromatic number of G is the minimum value of Hamiltonian
colorings of G. Hamiltonian colorings of graphs have been studied in [Chartrand
et al. 2002b; 2005a; 2005b; Nebeský 2003; 2006].

For a connected graph G with diameter d , a radio labeling of G is defined in
[Chartrand et al. 2001] as an assignment c : V (G)→N of labels to the vertices of
G such that

|c(u)− c(v)| + d(u, v)≥ d + 1,

for every two distinct vertices u and v of G. Thus for a radio labeling of a graph,
colors assigned to adjacent vertices of G must differ by at least d , colors assigned
to two vertices at distance 2 must differ by at least d − 1, and so on, up to two
vertices at distance d (that is, antipodal vertices), whose colors are only required
to differ. The value rn(c) of a radio labeling c of G is the maximum color assigned
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to a vertex of G. The radio number of G is the minimum value of a radio labeling
of G. In the case of paths of order n ≥ 2, this gives

|c(u)− c(v)| + d(u, v)≥ n.

In a similar manner, radio labelings of paths and detour distance in graphs give rise
to a related labeling, which we introduce in this work.

A Hamiltonian labeling of a connected graph G of order n is an assignment
c : V (G)→ N of labels to the vertices of G such that

|c(u)− c(v)| + D(u, v)≥ n,

for every two distinct vertices u and v of G. Therefore, in a Hamiltonian labeling
of G, every two vertices are assigned distinct labels and two vertices u and v can
be assigned consecutive labels in G only if G contains a Hamiltonian u− v path.
We can assume that every Hamiltonian labeling of a graph uses the integer 1 as one
of its labels. The value hn(c) of a Hamiltonian labeling c of G is the maximum
label assigned to a vertex of G by c, that is, hn(c) = max{c(v) : v ∈ V (G)}. The
Hamiltonian labeling number hn(G) of G is the minimum value of Hamiltonian
labelings of G, that is, hn(G)=min{hn(c)}, where the minimum is taken over all
Hamiltonian labelings c of G. A Hamiltonian labeling c of G with value hn(c)=
hn(G) is called a minimum Hamiltonian labeling of G. Therefore,

hn(G)≥ n. (1)

for every connected graph G of order n.
To illustrate these concepts, we consider the Petersen graph P . It is known

that χ(P) = hc(P) = 3. In fact, it is observed in [Chartrand et al. 2005a] that
every proper coloring of P is also a Hamiltonian coloring. On the other hand,
since the order of P is 10, it follows that hn(P)≥ 10. Observe that D(u, v)= 8 if
uv ∈ E(G) and D(u, v)= 9 if uv /∈ E(G). Thus if c is a Hamiltonian labeling of P ,
then |c(u)−c(v)| ≥ 2 if uv ∈ E(G) and |c(u)−c(v)| ≥ 1 if uv /∈ E(G). Therefore,
the labeling shown in Figure 1 is a Hamiltonian labeling and so hn(P)= 10.

2. Bounds for Hamiltonian labeling numbers of graphs

It is convenient to introduce some notation. For a Hamiltonian labeling c of a graph
G, an ordering u1, u2, . . . , un of the vertices of G is called the c-ordering of G if

1= c(u1) < c(u2) < . . . < c(un)= hn(c).

We refer to [Chartrand and Zhang 2008] for graph theory notation and terminol-
ogy not described in this paper. In order to establish a relationship between the
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Figure 1. A Hamiltonian labeling of the Petersen graph.

Hamiltonian chromatic number and Hamiltonian labeling number of a connected
graph, we first present a lemma.

Lemma 2.1. Every connected graph of order n ≥ 3 with Hamiltonian labeling
number n is 2-connected.

Proof. Assume, to the contrary, that there exists a connected graph G of order n≥3
with hn(G) = n such that G is not 2-connected. Then G contains a cut-vertex v.
Let c be a minimum Hamiltonian labeling of G and let v1, v2, . . . , vn be the c-
ordering of the vertices of G, where then 1 = c(v1) < c(v2) < . . . < c(vn) = n.
Thus c(vi ) = i for 1 ≤ i ≤ n. Let u ∈ V (G) such that u and v are consecutive in
the c-ordering. Thus {u, v} = {v j , v j+1} for some integer j with 1 ≤ j ≤ n − 1.
Hence D(v j , v j+1)≤ n− 2. However then,

|c(v j )− c(v j+1)| + D(v j , v j+1)≤ n− 1,

which contradicts the fact that c is a Hamiltonian labeling of G. �

The corollary below now follows immediately.

Corollary 2.2. No connected graph of order n ≥ 3 with Hamiltonian labeling
number n contains a bridge.

While hc(K1)= hn(K1)= 1 and hc(K2)= 1 and hn(K2)= 2, hc(G) and hn(G)
must differ by at least 2 for every connected graph G of order 3 or more. In fact,
the following result provides upper and lower bounds for the Hamiltonian labeling
number of a connected graph in terms of its order and Hamiltonian chromatic
number.

Theorem 2.3. For every connected graph G of order n ≥ 3,

hc(G)+ 2≤ hn(G)≤ hc(G)+ (n− 1).
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Proof. We first show that hn(G) ≥ hc(G)+ 2. Let c be a minimum Hamiltonian
labeling of G and let v1, v2, . . . , vn be the c-ordering of the vertices of G, where
then 1= c(v1) < c(v2) < . . . < c(vn)= hn(c). Define a coloring c∗ of G by

c∗(vi )=


1 if i = 1,
c(vi )− 1 if 2≤ i ≤ n− 1,
c(vi )− 2 if i = n.

We show that c∗ is a Hamiltonian coloring of G. Let vi , v j ∈ V (G), where

1≤ i < j ≤ n.

We consider two cases.
Case 1. i = 1. Suppose first that 2≤ j ≤ n− 2. Then

|c∗(v j )− c∗(v1)| + D(v j , v1)= c(v j )− c(v1)− 1+ D(v j , v1)≥ n− 1.

Next suppose that j = n. Then

|c∗(vn)− c∗(v1)| + D(vn, v1)= c(vn)− c(v1)− 2+ D(vn, v1)

= c(vn)− 3+ D(vn, v1).

If c(vn)≥ n+1, then c(vn)−3+D(vn, v1)≥ n−1. If c(vn)= n, then v1vn is not a
bridge by Corollary 2.2 and so D(vn, v1)≥ 2. Thus c(vn)−3+D(vn, v1)≥ n−1.

Case 2. i ≥ 2. In this case,

|c∗(v j )−c∗(vi )|+D(v j , vi )=

{
c(v j )−c(vi )+D(v j , vi ), if j ≤ n−1,
c(v j )−c(vi )−1+D(v j , vi ), if j = n,

(2)

which is greater than or equal to c(v j )− c(vi )−1+ D(v j , vi )≥ n−1. Thus c∗ is
a Hamiltonian coloring of G, as claimed. Therefore,

hc(G)≤ hc(c∗)= hn(c)− 2= hn(G)− 2,

and so hn(G)≥ hc(G)+ 2.
Next, we show that hn(G)≤ hc(G)+ (n−1). Let c′ be a Hamiltonian coloring

of G such that hc(c′)= hc(G). We may assume that V (G)= {v1, v2, . . . , vn} such
that

1= c′(v1)≤ c′(v2)≤ . . .≤ c′(vn)= hc(c′).

Define a labeling c′′ of G by c′′(vi )= c′(vi )+ (i − 1) for 1≤ i ≤ n. Let v j and vk

be two distinct vertices of G. Then

|c′′(v j )− c′′(vk)| + D(v j , vk)= |c′(v j )− c′(vk)| + | j − k| + D(v j , vk)

≥ (n− 1)+ | j − k| ≥ n,
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and so c′′ is a Hamiltonian labeling of G. Since hn(c′′)= hc(c)+(n−1), it follows
that hn(G)≤ hc(G)+ (n− 1). �

While the upper and lower bounds in Theorem 2.3 are sharp (as we will see
later), both inequalities in Theorem 2.3 can be strict. For example, consider the
Petersen graph P of order n = 10 and hn(P)= 10. Thus

5= hc(P)+ 2< hn(P) < hc(P)+ (n− 1)= 12.

In fact, more can be said. The following result was established in [Chartrand et al.
2005a].

Theorem 2.4 [Chartrand et al. 2005a]. If G is a Hamiltonian graph of order n≥ 3,
then hc(G)≤ n−2. Furthermore, for each pair k, n of integers with 1≤ k ≤ n−2,
there is a Hamiltonian graph of order n with Hamiltonian chromatic number k.

On the other hand, every Hamiltonian graph of order n has Hamiltonian labeling
number n, as we show next.

Proposition 2.5. If G is a Hamiltonian graph of order n ≥ 3, then hn(G)= n.

Proof. Let C : v1, v2, . . . , vn+1 = v1 be a Hamiltonian cycle of G. Define
the labeling c of G by c(vi ) = i for 1 ≤ i ≤ n. Let i, j be two integers with
1 ≤ i < j ≤ n. If j − i ≤ n/2, then D(vi , v j ) ≥ n− ( j − i); while if j − i > n/2,
then D(vi , v j )≥ j − i . In either case, |c(vi )− c(v j )|+ D(vi , v j )≥ n. Thus c is a
Hamiltonian labeling and so hn(G)= n by Equation (1). �

The converse of Proposition 2.5 is not true. For example, it is well known that
the Petersen graph P is a nonHamiltonian graph of order 10 but hn(P) = 10.
Whether there exists a connected graph G of order n ≥ 3 with hn(G) = n that is
neither a Hamiltonian graph nor the Petersen graph is not known. The following
realization result is a consequence of Theorem 2.4 and Proposition 2.5.

Corollary 2.6. For each pair k, n of integers with 2 ≤ k ≤ n − 1, there exists a
Hamiltonian graph G of order n such that hn(G)= hc(G)+ k.

In the remainder of this section, we consider the complete bipartite graphs Kr,s

of order n = r + s ≥ 3, where 1 ≤ r ≤ s. The Hamiltonian chromatic number of
a complete bipartite graph has been determined in [Chartrand et al. 2005a]. For
positive integers r and s with r ≤ s and r + s ≥ 3,

hc(Kr,s)=


r if r = s,

(s− 1)2+ 1 if 1= r < s,
(s− 1)2− (r − 1)2 if 2≤ r < s.

(3)

If r ≥ 2, then Kr,r is Hamiltonian and so hn(Kr,r ) = n = 2r by Proposition 2.5.
Thus, we may assume that r < s, beginning with r = 1.
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Theorem 2.7. For each integer n ≥ 3,

hn(K1,n−1)= n+ (n− 2)2.

Proof. Let G = K1,n−1 with vertex set {v, v1, v2, . . . , vn−1}, where v is the central
vertex of G. By Equation (3) and Theorem 2.3, it suffices to show that

hn(G)≥ n+ (n− 2)2.

Let c be a minimum Hamiltonian labeling of G. Since no two vertices of G can
be labeled the same, we may assume that

c(v1) < c(v2) < . . . < c(vn−1).

We consider three cases.
Case 1. c(v)= 1. Since D(v1, v)= 1 and D(vi , vi+1)= 2 for 1 ≤ i ≤ n− 2, it

follows that c(v1)≥ n and

c(vi+1)≥ c(vi )+ (n− 2)≥ c(v1)+ i(n− 2)≥ n+ i(n− 2)

for all 1≤ i ≤ n− 2. This implies that

c(vn−1)≥ n+ (n− 2)(n− 2)= n+ (n− 2)2.

Therefore, hn(G)= hn(c)≥ n+ (n− 2)2.
Case 2. c(v)= hn(c). Then 1= c(v1) < c(v2) < . . . < c(vn−1) < c(v). For each

i with 2≤ i ≤ n− 1, it follows that

c(vi )≥ c(v1)+ (i − 1)(n− 2)= 1+ (i − 1)(n− 2).

In particular, c(vn−1)≥ 1+ (n− 2)2. Thus

c(v)≥ c(vn−1)+ n− 1= n+ (n− 2)2.

Therefore, hn(G)= hn(c)≥ n+ (n− 2)2.
Case 3. c(v j ) < c(v) < c(v j+1) for some j with 1≤ j ≤ n− 2. Thus

c(v j )≥ 1+ ( j − 1)(n− 2),

c(v)≥ c(v j )+ n− 1≥ n+ ( j − 1)(n− 2),

c(v j+1)≥ c(v)+ n− 1≥ 2n− 1+ ( j − 1)(n− 2).

This implies that

c(vn−1) ≥ (n− j − 2)(n− 2)+ c(v j+1)

≥ (n− j − 2)(n− 2)+ (2n− 1)+ ( j − 1)(n− 2)

= 2n− 1+ (n− 3)(n− 2)= n+ 1+ (n− 2)2 > n+ (n− 2)2.

In each case, we have hn(G)≥ n+ (n− 2)2. �
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We now consider Kr,s , where 2 ≤ r < s, with partite sets V1 and V2 such that
|V1| = r and |V2| = s. Then

D(u, v)=


2r − 2= n− s+ r − 2 if u, v ∈ V1,

2r − 1= n− s+ r − 1 if uv ∈ E(Kr,s),

2r = n− s+ r if u, v ∈ V2.

Consequently, if c is a Hamiltonian labeling of Kr,s (r < s), then

|c(u)− c(v)| ≥


s− r + 2 if u, v ∈ V1,

s− r + 1 if uv ∈ E(Kr,s),

s− r if u, v ∈ V2.

Theorem 2.8. For integers r and s with 2≤ r < s,

hn(Kr,s)= (s− 1)2− (r − 1)2+ s+ r − 1.

Proof. By Equation (3) and Theorem 2.3, it suffices to show that

hn(Kr,s)≥ (s− 1)2− (r − 1)2+ s+ r − 1.

Let V1 = {u1, u2, . . . , ur } and V2 = {v1, v2, . . . , vs} be the partite sets of Kr,s , and
let c be a Hamiltonian labeling of Kr,s and let w1, w2, . . . , wr+s be the c-ordering
of the vertices of Kr,s . We define a V1-block of Kr,s to be a set

A = {wα, wα+1, . . . , wβ},

where 1≤ α ≤ β ≤ r + s, such that A⊆ V1, wα−1 ∈ V2 if α > 1, and wβ+1 ∈ V2 if
β < r + s. A V2-block of Kr,s is defined similarly. Let

A1, A2, . . . , Ap (p ≥ 1)

be the distinct V1-blocks of Kr,s such that if

w′ ∈ Ai , w′′ ∈ A j ,

where 1≤ i < j ≤ p, then c(w′) < c(w′′). If p ≥ 2, then Kr,s contains V2-blocks
B1, B2, . . . , Bp−1 such that for each integer i (1 ≤ i ≤ p − 1) and for w′ ∈ Ai ,
w ∈ Bi , w′′ ∈ Ai+1, it follows that

c(w′) < c(w) < c(w′′).

The graph Kr,s may contain up to two additional V2-blocks, namely B0 and Bp

such that if y ∈ B0 and y′ ∈ A1, then c(y) < c(y′); while if z ∈ Ap and z′ ∈ Bp,
then c(z) < c(z′). If p = 1, then at least one of B0 and B1 must exist. Hence Kr,s

contains p V1-blocks and p− 1+ t V2-blocks, where t ∈ {0, 1, 2}. Consequently,
there are exactly

(a) r − p distinct pairs {wi , wi+1} of vertices, both of which belong to V1;
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(b) 2p− 2+ t distinct pairs {wi , wi+1} of vertices, exactly one of which belongs
to V1;

(c) s − (p− 1+ t) distinct pairs {wi , wi+1} of vertices, both of which belong to
V2.

Since (1) the colors of every two vertices wi and wi+1, both of which belong
to V1, must differ by at least s− r + 2, (2) the colors of every two vertices wi and
wi+1, exactly one of which belongs to V1, must differ by at least s − r + 1, and
(3) the colors of every two vertices wi and wi+1, both of which belong to V2, must
differ by at least s− r , it follows that

c(wr+s)≥ 1+(r−p)(s−r+2)+(2p−2+t)(s−r+1)+(s−(p−1+t))(s−r)

= (s−1)2−(r−1)2+s+r−1+t.
(4)

Since hn(Kr,s)≤ (s−1)2− (r−1)2+ s+r−1 and t ≥ 0, it follows that t = 0 and
that hn(Kr,s)= (s− 1)2− (r − 1)2+ s+ r − 1. �

Combining Proposition 2.5 and Theorems 2.7 and 2.8, we obtain the following.

Corollary 2.9. For integers r and s with 1≤ r ≤ s,

hn(Kr,s)=


r + s if r = s,
(s− 1)2+ s+ 1 if r = 1 and s ≥ 2,
(s− 1)2− (r − 1)2+ r + s− 1 if 2≤ r < s.

3. Hamiltonian labeling numbers of subgraphs of coronas of Hamiltonian
graphs

A common question in graph theory concerns how the value of a parameter is
affected by making a small change in the graph. If G is a Hamiltonian graph
and u and v are two nonadjacent vertices of G, then G + uv is also Hamiltonian
and so hn(G) = hn(G + uv). On the other hand, if we add a pendant edge to a
Hamiltonian graph G producing a nonHamiltonian graph H , then the Hamiltonian
labeling number of H can be significantly larger than that of G, as we show in this
section. We begin with those graphs obtained from a cycle or a complete graph by
adding a single pendant edge.

Theorem 3.1. If G is the graph of order n ≥ 5 obtained from Cn−1 by adding a
pendant edge, then hn(G)= 2n− 2.

Proof. Let C : v1, v2, . . . , vn−1, v1 and let vn−1vn be the pendant edge of G. We
first show that hn(G)≤ 2n− 2. Define a labeling c0 of G by

c0(vi )=

{
2i if 1≤ i ≤ n− 1,

1 if i = n.
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We show that c0 is a Hamiltonian labeling. First let

vi , v j ∈ V (C),

where 1≤ i < j ≤ n− 1. If j − i ≥ n−1
2 , then D(vi , v j )= j − i and so

|c0(vi )− c0(v j )| + D(vi , v j )= |2i − 2 j | + ( j − i)= 3( j − i)

≥ 3
(n− 1

2

)
=

3n
2
−

3
2
≥ n,

since n ≥ 3. If j − i ≤ n−1
2 , then D(vi , v j )= (n− 1)− ( j − i) and so

|c0(vi )− c0(v j )| + D(vi , v j )= 2( j − i)+ [(n− 1)− ( j − i)]

= n− 1+ ( j − i)≥ n.

Next, we consider each pair vi , vn where 1 ≤ i ≤ n − 1. Since D(vi , vn) ≥ n − i
and |c0(vi )− c0(vn)| ≥ 2i − 1, it follows that

|c0(vi )− c0(vn)| + D(vi , vn)≥ n+ i − 1≥ n.

Therefore, c0 is a Hamiltonian labeling, as claimed.
Next, we show that hn(G)≥ 2n−2. Let c be a minimum Hamiltonian labeling

of G. First, we make some observations.

(a) For each pair i, j with 1 ≤ i 6= j ≤ n− 1, D(vi , v j ) ≤ n− 2 and so |c(vi )−

c(v j )| ≥ 2.

(b) For each i with i ∈ {1, n− 2}, D(vn, vi )= n− 1 and so |c(vn)− c(vi )| ≥ 1.

(c) For each i with 1 ≤ i ≤ n − 1 and i /∈ {1, n − 2}, D(vn, vi ) ≤ n − 2 and so
|c(vn)− c(vi )| ≥ 2.

Let u1, u2, . . . , un be the c-ordering of the vertices of G and let

X = {c(ui+1)− c(ui ) : 1≤ i ≤ n− 1}.

By observations (a)–(c), at most two terms in X are 1. If at most one term in X
is 1, then hn(c) = c(un) ≥ 1+ 1+ 2(n − 2) = 2n − 2. If at least one term in X
is 3 or more, then hn(c) = c(un) ≥ 1+ 1+ 1+ 3+ 2(n − 4) = 2n − 2. Thus we
may assume that exactly two terms in X are 1 and the remaining terms in X are 2.
Then vn = ui for some i with 2 ≤ i ≤ n− 1 and {v1, vn−2} = {ui−1, ui+1}, where
c(ui )−c(ui−1)= c(ui+1)−c(ui )= 1. This implies that vn−1= u j for some j with
1 ≤ j ≤ n and j 6= i . If 2 ≤ j ≤ n− 1, then {u j−1, u j+1} 6= {v1, vn−2}; if j = 1,
then u2 /∈ {v1, vn−2}, for otherwise

|c(vn−1)− c(vn)| + D(vn−1, vn)≤ |c(vn−1)− c(u2)| + |c(u2)− c(vn)| + 1

≤ 2+ 1+ 1= 4< n,



HAMILTONIAN LABELINGS OF GRAPHS 105

which is impossible; if j = n, then un−1 /∈ {v1, vn−2}, for otherwise

|c(vn−1)− c(vn)| + D(vn−1, vn)≤ |c(vn−1)− c(un−1)| + |c(un−1)− c(vn)| + 1

≤ 2+ 1+ 1= 4< n,

again, which is impossible. Therefore, for each j with 1 ≤ j ≤ n, there exists
k ∈ { j−1, j+1} such that uk /∈ {v1, vn−2}. Assume, without loss of generality, that
u j−1 /∈ {v1, vn−2}. Since D(u j−1, u j )≤ n−3, it follows that c(u j )− c(u j−1)≥ 3,
which is impossible since each term in X is at most 2. Thus, hn(G)≥ 2n− 2. �

Theorem 3.2. If G is the graph of order n ≥ 4 obtained from Kn−1 by adding a
pendant edge, then hn(G)= 2n− 3.

Proof. Let V (Kn−1) = {v1, v2, . . . , vn−1} and let G be obtained from Kn−1 by
adding the pendant edge vn−1vn . We first show that hn(G) ≤ 2n − 3. Define a
labeling c0 of G by

c0(v)=

{
2i − 1 if v = vi for 1≤ i ≤ n− 1,

2 if v = vn .

For each pair i, j of integers with 1≤ i 6= j ≤ n− 1,

D(vi , v j )= n− 2 and |c0(vi )− c0(v j )| ≥ 2.

For each i with 1≤ i ≤ n− 2,

D(vn, vi )= n− 1 and |c0(vn)− c0(vi )| ≥ 1.

Furthermore, D(vn, vn−1)= 1 and

|c0(vn)− c0(vn−1)| ≥ (2n− 3)− 2= 2n− 5≥ n− 1

for n ≥ 4. In each case,

D(vi , v j )+ |c0(vi )− c0(v j )| ≥ n,

for all i, j with 1 ≤ i 6= j ≤ n. Therefore, c0 is a Hamiltonian labeling and so
hn(G)≤ hn(c0)= c0(vn−1)= 2n− 3.

Next, we show that hn(G)≥ 2n−3. Let c be a minimum Hamiltonian labeling
of G. Suppose that the vertices of Kn−1 in G can be ordered as u1, u2, . . . , un−1

such that c(u1) < c(u2) < . . . < c(un−1). Since

D(ui , u j )= n− 2

for 1≤ i < j ≤ n− 1, it follows that

|c(ui )− c(u j )| = c(u j )− c(ui )≥ 2.
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This implies that

hn(c)≥ c(un−1)≥ 1+ 2(n− 2)= 2n− 3.

Therefore, hn(G)≥ 2n− 3. �

Let G be a connected graph containing an edge e that is not a bridge. Then
G− e is connected. For every two distinct vertices u and v in G− e, the length of
a longest u − v path in G − e does not exceed the length of a longest u − v path
in G. Thus every Hamiltonian labeling of G − e is a Hamiltonian labeling of G.
This observation yields the following useful lemma.

Lemma 3.3. If F is a connected subgraph of a connected graph G, then

hn(G)≤ hn(F).

The following is a consequence of Theorems 3.1 and 3.2 and Lemma 3.3.

Corollary 3.4. Let H be a Hamiltonian graph of order n− 1 ≥ 3. If G is a graph
obtained from H by adding a pendant edge, then

2n− 3≤ hn(G)≤ 2n− 2.

Proof. Let C be a Hamiltonian cycle in H . If H = Cn−1, then hn(G)= 2n− 2 by
Theorem 3.1; while if H = Kn−1, then hn(G) = 2n − 3 by Theorem 3.2. Thus,
we may assume that H 6= Cn−1 and H 6= Kn−1. Let F be the graph obtained
from Kn−1 by adding a pendant edge and F ′ be the graph obtained from Cn−1 by
adding a pendant edge. Then G can be obtained from F by deleting nonbridge
edges and F ′ can be obtained from G by deleting nonbridge edges. It then follows
by Lemma 3.3 that hn(F)≤ hn(G)≤ hn(F ′) and so 2n−3≤ hn(G)≤ 2n−2. �

In fact, there exists a Hamiltonian graph H of order n − 1 such that adding
a pendant edge at a vertex x of H produces a graph G with hn(G) = 2n − 3
but adding a pendant edge at a different vertex y of H produces a graph F with
hn(F) = 2n− 2. For example, let H be the Hamiltonian graph obtained from the
cycle C : v1, v2, . . . , vn−1, v1 of order n− 1 ≥ 4 by adding the edge v1vn−2. If G
is formed from H by adding a pendant edge at vn−1, then hn(G) = 2n− 3; while
if F is formed from H by adding the pendant edge v1, then hn(F)= 2n− 2.

In order to study graphs obtained from a Hamiltonian graph by adding pendant
edges, we first establish some additional definitions and notation. For a graph
F , the corona cor(F) of F is that graph obtained from F by adding exactly one
pendant edge at each vertex of F . For a connected graph G, the core C(G) of G is
obtained from G by successively deleting vertices of degree 1 until none remain.
Thus, if G is a tree, then its core is K1; while if G is not a tree, then the core of
G is the induced subgraph F of maximum order with δ(F) ≥ 2. For each integer
k ≥ 3, let Hk be the set of nonHamiltonian graphs that can be obtained from a
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Hamiltonian graph of order k by adding pendant edges to this graph in such a
way that at most one pendant edge is added to each vertex of the graph. Thus if
G ∈Hk , then there is a Hamiltonian graph H of order k such that G is a connected
subgraph of cor(H) whose core is H . We now establish lower and upper bounds
for the Hamiltonian labeling number of a graph in Hk in terms of the integer k and
the order of the graph, beginning with a lower bound.

Theorem 3.5. Let G ∈Hk be a graph of order n and k+ 1≤ n ≤ 2k. Then

hn (G)≥ (n− 1)(n− k)+ (2k− n).

Proof. Suppose that H is a Hamiltonian graph of order k≥3 and that H ∼=C(G).
If H � Kk , then G can be obtained from some graph F ∈Hk by deleting nonbridge
edges from F , where C(F) ∼= Kk , and V (G − H) = V (F − Kk). That is, G and
F possess the same end-vertices. It then follows by Lemma 3.3 that

hn (F)≤ hn(G).

Therefore, it suffices to show that

hn (F)≥ (n− 1)(n− k)+ (2k− n).

Let V (F) = U ∪W , where U = V (Kk) and W = V (F)−U . First we make
some observations:

(a) If x, y ∈U , then D(x, y)= k− 1.

(b) If x, y ∈W , then D(x, y)= k+ 1.

(c) If x ∈U and y ∈W , then D(x, y)=1 if xy ∈ E(F) and D(x, y)= k otherwise.

Let c be a minimum Hamiltonian labeling of F and let v1, v2, . . . , vn be the c-
ordering of the vertices of F . We define the four subsets Su, Sw, Su,w, and Sw,u of
V (F) as follows:

Su = {vi : vi−1, vi ∈U for 2≤ i ≤ n},

Sw = {vi : vi−1, vi ∈W for 2≤ i ≤ n},

Su,w = {vi : vi−1 ∈U and vi ∈W for 2≤ i ≤ n},

Sw,u = {vi : vi−1 ∈W and vi ∈U for 2≤ i ≤ n}.

Let |Su| = nu , |Sw| = nw, |Su,w| = nu,w, |Sw,u| = nw,u . Since

Su ∪ Sw ∪ Su,w ∪ Sw,u = V (F)−{v1},

it follows that
nu + nw + nu,w + nw,u = n− 1. (5)

For each integer i with 2≤ i ≤ n,
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(A) if vi ∈ Su , then c(vi )− c(vi−1)≥ n− k+ 1 by (a);

(B) if vi ∈ Sw, then c(vi )− c(vi−1)≥ n− k− 1 by (b);

(C) if vi ∈ Su ∪ Sw, then either c(vi )− c(vi−1)≥ n− 1 or c(vi )− c(vi−1)≥ n− k
by (iii), and so c(vi )− c(vi−1)≥ n− k in this case.

It then follows by (A)–(C) and (5) that

hn(c)= c(vn)≥ 1+ nu(n− k+ 1)+ nw(n− k− 1)+ (nu,w + nw,u)(n− k)

= 1+ (nu + nw + nu,w + nw,u)(n− k)+ (nu − nw)

= 1+ (n− 1)(n− k)+ (nu − nw).

We claim that nu − nw ≥ 2k− n− 1. Since

Su ∪ Su,w = {vi : vi−1 ∈U for 2≤ i ≤ n},

it follows that

|Su ∪ Su,w| =

{
|U | − 1 if vn ∈U ,
|U | otherwise;

and so
nu + nu,w = k or nu + nu,w = k− 1. (6)

Since

Sw ∪ Su,w = {vi : vi ∈W for 2≤ i ≤ n}

=

{
W −{v1} if v1 ∈W,
W otherwise,

it follows that

nw + nu,w = n− k or nw + nu,w = n− k− 1. (7)

By Equations (6) and (7), we obtain

nu − nw = (nu + nu,w)− (nw + nu,w)≥ (k− 1)− (n− k)= 2k− n− 1,

as claimed. Therefore,

hn(G)= hn(c)≥ 1+ (n− 1)(n− k)+ (nu − nw)≥ (n− 1)(n− k)+ (2k− n).

This completes the proof. �

Theorem 3.6. Let G ∈Hk be a graph of order n and k+ 2≤ n ≤ 2k. Then

hn (G)≤ 1+ n+ (n− k− 1)2+ (k− 2)(n− k+ 1).
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Proof. Suppose that H is a Hamiltonian graph of order k ≥ 3 and that H ∼= C(G).
If H � Ck , then Ck can be obtained from H by deleting edges. Thus there exists
F ∈Hk such that C(F)∼=Ck and F can be obtained from G by deleting edges that
are not bridges. It then follows by Lemma 3.3 that

hn (G)≤ hn(F).

Therefore, we may assume that H ∼= Ck : x1, x2, . . . , xk, x1. Now let

X = {x1, x2, . . . , xk} and Y = V (G)− X = {y1, y2, . . . , yn−k}

such that yi is adjacent to x ji , for 1≤ i ≤ n− k, and 1= j1 < j2 < . . . < jn−k ≤ k.
For each i with 1≤ i ≤ n− k, let

gi = ji+1− ji − 1, (8)

where jn−k+1= j1; that is, gi is the number of vertices of degree 2 between x ji and
x ji+1 on Ck . Thus if x ji yi ∈ E(G), then x ji+gi+1 yi+1 ∈ E(G), for 1 ≤ i ≤ n − k,
and

n−k∑
i=1

gi = 2k− n.

Now define the labeling c of G by

c(v)=


1 if v = xk,

1+ n− k if v = y1,

c(yi−1)+ (n− k− 1)+ gi−1 if v = yi and 2≤ i ≤ n− k,
c(yn−k)+ n− k+ gn−k if v = x1,

c(x j−1)+ (n− k+ 1) if v = x j and 2≤ j ≤ k− 1.

(9)

Thus the c-ordering of the vertices of G is

xk, y1, y2, . . . , yn−k, x1, x2, . . . , xk−1,

and by Equation (9)

c(xk)= 1,

c(yi )= 1+ n− k+ (i − 1)(n− k− 1)+
i−1∑
`=1

g` for 1≤ i ≤ n− k,

c(x1)= 1+ n+ (n− k− 1)2,

c(x j )= 1+ n+ (n− k− 1)2+ ( j − 1)(n− k+ 1) for 2≤ j ≤ k− 1.

(10)

Therefore, the value of c is

hn(c)= c(xk−1)= 1+ n+ (n− k− 1)2+ (k− 2)(n− k+ 1).
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Thus it remains to show that c is a Hamiltonian labeling of G. First, we make some
observations. Let u, v ∈ V (G), where u 6= v.

(α) If u= xi and v= x j where 1≤ i 6= j≤k, then D(u, v)=max{|i− j |, k−|i− j |}.

(β) If u = yi and v = y j where 1≤ i < j ≤ n− k, then

D(u, v)= 2+max

 j − i +
j−1∑
`=i

g`, k−
(

j − i +
j−1∑
`=i

g`

) .
(γ ) If u = xi , v ∈ Y , and vx j ∈ E(G) where 1 ≤ i, j ≤ k (possibly i = j), then

D(u, v)= 1 if i = j and D(u, v)= 1+max{|i − j |, k− |i − j |} if i 6= j .

We show that
D(u, v)+ |c(u)− c(v)| ≥ n, (11)

for every pair u, v of distinct vertices of G. We consider three cases.
Case 1. u, v ∈ X . Let u = xi and v = x j , where 1 ≤ i, j ≤ k. We may assume,

without loss of generality, that i < j . If j = k, then

|c(xi )− c(x j )| = c(xi )− c(xk)

= [1+ n+ (n− k− 1)2+ (i − 1)(n− k+ 1)] − 1≥ n,

and so condition (11) is satisfied. Thus we may assume that j 6= k.
If j − i = 1, then D(xi , x j )= k− 1 and |c(xi )− c(x j )| = n− k+ 1. Thus (11)

holds in this case. If j − i ≥ k
2 , then

D(xi , x j )+ |c(xi )− c(x j )| = c(x j )− c(xi )+ D(xi , x j )

= ( j − i)(n− k+ 1)+ ( j − i)= ( j − i)(n− k+ 2)

≥
k
2
(n− k+ 2)= k

(
n− k

2
+ 1

)
≥ 2k ≥ n.

If 2≤ j − i ≤ k
2 , then

D(xi , x j )+ |c(xi )− c(x j )| = c(x j )− c(xi )+ D(xi , x j )

= ( j − i)(n− k+ 1)+ (k− ( j − i))

= ( j − i)(n− k)+ k

≥ 2(n− k)+ k = 2n− k ≥ n.

Case 2. u, v ∈ Y . Let u = yi and v = y j , where 1 ≤ i, j ≤ n − k. We may
assume, without loss of generality, that i < j . Then

|c(yi )− c(y j )| = c(y j )− c(yi )= ( j − i)(n− k− 1)+
j−1∑
`=i

g`.
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If j − i +
∑ j−1

`=i g` ≥ k
2 , then

D(yi , y j )= 2+ j − i +
j−1∑
`=i

g`

by (β), and so

D(yi , y j )+ |c(yi )− c(y j )| = ( j − i)(n− k− 1)+
( j−1∑
`=i

g`

)
+ 2+ j − i +

( j−1∑
`=i

g`

)
≥ ( j − i)(n− k− 1)+ 2+ ( j − i)+ [k− 2( j − i)]

= ( j − i)(n− k− 2)+ k+ 2≥ n.

If 1≤ j − i +
∑ j−1

`=i g` ≤ k
2 , then

D(yi , y j )= 2+ k−
(

j − i +
j−1∑
`=i

g`

)
by (β), and so

D(yi , y j )+ |c(yi )− c(y j )| = ( j − i)(n− k− 1)+
( j−1∑
`=i

g`

)
+ 2+ k−

(
j − i +

j−1∑
`=i

g`

)
= ( j − i)(n− k− 2)+ k+ 2

≥ n− k− 2+ k+ 2= n.

Case 3. One of u and v is in X and the other is in Y , say u ∈ X and v ∈ Y . Let
u = xi and v = y j , where 1≤ i ≤ k and 1≤ j ≤ n− k. We consider two subcases,
according to whether xi y j ∈ E(G) or xi y j 6∈ E(G).

Subcase 3.1. xi y j ∈ E(G). We proceed by induction to show that

c(xi )− c(y j )≥ n− 1

when xi y j ∈ E(G). For i = j = 1,

|c(x1)− c(y1)| = c(x1)− c(y1)= [1+ n+ (n− k− 1)2] − (1+ n− k)

= (n− k− 1)2+ k ≥ n− 1 for n ≥ k+ 2.

Assume that c(xi )− c(y j ) ≥ n − 1. Since xi+1+g j y j+1 ∈ E(G) by (8), we show
that c(xi+1+g j )− c(y j+1)≥ n− 1. Observe that

c(xi+1+g j )= c(xi )+(g j+1)(n−k+1) and c(y j+1)= c(y j )+(n−k−1)+g j .
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It then follows by the induction hypothesis that

c(xi+1+g j )− c(y j+1) ≥ n− 1+ (g j + 1)(n− k+ 1)− (n− k− 1)− g j

= n+ 1+ g j (n− k)≥ n− 1.

Therefore if xi y j ∈ E(G), then |c(xi )− c(y j )| + D(xi , y j )≥ n− 1+ 1= n. Thus
condition (11) is satisfied.

Subcase 3.2. xi y j 6∈ E(G). Then i 6= j . By (8), if y j xm ∈ E(G), then

j−1∑
`=1

g` = m− j,

and

D(xi , y j )+ |c(xi )− c(y j )| = c(xi )− c(y j )+ D(xi , xm)+ 1 (12)

= (n− k− 1)2+ (i − j)(n− k)+ i + j − (m− j)+ k− 1+ D(xi , xm)

= [(n− k− 1)2+ (i − j)(n− k)+ k+ 2 j − 1] + (i −m)+ D(xi , xm).

Now observe, if i > j , then (i − j)(n− k)+ k ≥ n; whereas if 1≤ i < j ≤ n− k,
then

(n− k− 1)2+ (i − j)(n− k)+ k+ 2 j − 1

= [(n− k)2− 2(n− k)] + i(n− k)− j (n− k− 2)+ k

≥ [(n− k)2− 2(n− k)] + i(n− k)− [(n− k)2− 2(n− k)] + k ≥ n.

Therefore, by Equation (12)

D(xi , y j )+ |c(xi )− c(y j )| ≥ n+ (i −m)+ D(xi , xm). (13)

We then have three possible situations. If i > m, then i − m > 0 and so by
condition (13), (11) is satisfied. If m > i and m− i ≥ k/2, then D(xi , xm)=m− i
and so by (13)

D(xi , y j )+ |c(xi )− c(y j )| ≥ n+ (i −m)+ (m− i)= n.

Finally, if m > i and m− i ≤ k/2, then D(xi , xm)= k− (m− i) and so from (13)

D(xi , y j )+ |c(xi )− c(y j )| ≥ n+ (i −m)+ [k− (m− i)]

= n+ k− 2(m− i)≥ n+ k− k = n.

For each situation, condition (11) is satisfied. Therefore c is a Hamiltonian labeling
of G. �

We now present two corollaries of Theorems 3.5 and 3.6.
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Corollary 3.7. If G is a graph of order n that is the corona of a Hamiltonian
graph, then

hn(G)=
(

n
2

)
.

Proof. Suppose that H is a Hamiltonian graph of order k ≥ 3 and that G = cor(H).
Then the order of G is n = 2k. We show that

hn(G)=
(

n
2

)
= k(2k− 1).

If H 6=Ck and H 6=Kk , then G can be obtained from cor(Kk) by deleting nonbridge
edges and cor(Ck) can be obtained from G by deleting edges that are not bridges.
It then follows by Lemma 3.3 that

hn(cor(Kk))≤ hn(G)≤ hn
(
cor(Ck)

)
.

Therefore, it suffices to show that

k(2k− 1)≤ hn
(
cor(Kk)

)
and hn

(
cor(Ck)

)
≤ k(2k− 1).

From Theorems 3.5 and 3.6, we find that

hn(cor(Kk))≥ (2k− 1)(2k− k)+ (2k− 2k)= k(2k− 1)

and

hn(cor(Ck))≤ 1+ 2k+ (2k− k− 1)2+ (k− 2)(2k− k+ 1)

= 1+ 2k+ k2
− 2k+ 1+ k2

− k− 2= k(2k− 1).

Therefore, hn(G)= k(2k− 1). �

Corollary 3.8. For each graph G ∈Hk ,

2k− 1≤ hn (G)≤ k(2k− 1).

Proof. Let
f (x)= (x − 1)(x − k)+ (2k− x),

for k+ 1≤ x ≤ 2k and let

g(x)= 1+ x + (x − k− 1)2+ (k− 2)(x − k+ 1),

for k+2≤ x ≤ 2k. Let G ∈Hk be a graph of order n where k+1≤ n ≤ 2k. Then
by Corollary 3.4 and Theorems 3.5 and 3.6,

f (n)≤ hn (G)≤ g(n).
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Since each f (x) and g(x) is an increasing function in its domain, it follows that
f (x) ≥ f (k + 1) = 2k − 1 and g(x) ≤ g(2k) = k(2k − 1), implying the desired
result. �

Both lower and upper bound in Corollary 3.8 are sharp. For example, if G ′ ∈Hk

is a graph of order k + 1 whose core is Kk , then hn (G ′) = 2n − 3 = 2k − 1 by
Theorem 3.2; while if G ′′ ∈Hk is a graph of order 2k whose core is Kk , then

hn (G ′′)=
(

n
2

)
= k(2k− 1)

by Corollary 3.7.
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