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For a connected graph G of order n, the detour distance D(u, v) between two
vertices # and v in G is the length of a longest u — v path in G. A Hamiltonian
labeling of G is a function ¢ : V(G) — N such that |c(u) — c(v)| + D(u,v) > n
for every two distinct vertices u and v of G. The value hn(c) of a Hamiltonian
labeling ¢ of G is the maximum label (functional value) assigned to a vertex of
G by c; while the Hamiltonian labeling number hn(G) of G is the minimum
value of Hamiltonian labelings of G. Hamiltonian labeling numbers of some
well-known classes of graphs are determined. Sharp upper and lower bounds
are established for the Hamiltonian labeling number of a connected graph. The
corona cor(F) of a graph F is the graph obtained from F by adding exactly one
pendant edge at each vertex of F. For each integer k > 3, let ¥, be the set of
connected graphs G for which there exists a Hamiltonian graph H of order k
such that H C G C cor(H). It is shown that 2k — 1 < hn(G) < k(2k — 1) for
each G € 3(; and that both bounds are sharp.

1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is the
length of a shortest path between these two vertices. The eccentricity e(v) of a
vertex v in G is the maximum distance from v to a vertex of G. The radius rad(G)
of G is the minimum eccentricity among the vertices of G, while the diameter
diam(G) of G is the maximum eccentricity among the vertices of G. A vertex v
with e(v) = rad(G) is called a central vertex of G. If d(u,v) = diam(G), then u
and v are antipodal vertices of G.

For a connected graph G with diameter d, an antipodal coloring of a connected
graph G is defined in [Chartrand et al. 2002a] as an assignment ¢ : V(G) — N of
colors to the vertices of G such that

lc(u) —c@)|+d(u,v) = d,
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for every two distinct vertices u and v of G. In the case of paths of order n > 2,
this gives

lcw)—c@)|+dm,v) >n—1.

Antipodal colorings of paths gave rise to the more general Hamiltonian colorings
of graphs defined in terms of another distance parameter.

The detour distance D(u, v) between two vertices u and v in a connected graph
G is the length of a longest path between these two vertices. A u —o path of length
D(u,v) is a u — v detour. Thus if G is a connected graph of order n, then

d(u,v) SD(M,U)SI’[—I,
for every two vertices u and v in G, and
D(u,v)=n—1,

if and only if G contains a Hamiltonian u — v path. Furthermore d(u, v) = D(u, v)
for every two vertices # and v in G if and only if G is a tree. As with standard
distance, the detour distance is a metric on the vertex set of a connected graph.

A Hamiltonian coloring of a connected graph G of order n is a coloring

c:V(G)—>N

of G such that
lc(u) —c(@)|+D(u,v) >n—1,

for every two distinct vertices # and v of G. Consequently, if u and » are distinct
vertices such that |c(#) — c(v)| = k for some Hamiltonian coloring ¢ of G, then
there is a u — v path in G missing at most k vertices of G. The value hc(c) of
a Hamiltonian coloring ¢ of G is the maximum color assigned to a vertex of G.
The Hamiltonian chromatic number of G is the minimum value of Hamiltonian
colorings of G. Hamiltonian colorings of graphs have been studied in [Chartrand
et al. 2002b; 2005a; 2005b; Nebesky 2003; 2006].

For a connected graph G with diameter d, a radio labeling of G is defined in
[Chartrand et al. 2001] as an assignment ¢ : V(G) — N of labels to the vertices of
G such that

lc() —c@)|+d(u,v) =d+1,

for every two distinct vertices # and v of G. Thus for a radio labeling of a graph,
colors assigned to adjacent vertices of G must differ by at least d, colors assigned
to two vertices at distance 2 must differ by at least d — 1, and so on, up to two
vertices at distance d (that is, antipodal vertices), whose colors are only required
to differ. The value r(c) of a radio labeling ¢ of G is the maximum color assigned
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to a vertex of G. The radio number of G is the minimum value of a radio labeling
of G. In the case of paths of order n > 2, this gives

lc(u) —c()| +d(u,v) = n.

In a similar manner, radio labelings of paths and detour distance in graphs give rise
to a related labeling, which we introduce in this work.

A Hamiltonian labeling of a connected graph G of order n is an assignment
¢ : V(G) — N of labels to the vertices of G such that

le(u) —c@)|+ D(u,v) = n,

for every two distinct vertices u# and v of G. Therefore, in a Hamiltonian labeling
of G, every two vertices are assigned distinct labels and two vertices u and v can
be assigned consecutive labels in G only if G contains a Hamiltonian u — v path.
We can assume that every Hamiltonian labeling of a graph uses the integer 1 as one
of its labels. The value hn(c) of a Hamiltonian labeling ¢ of G is the maximum
label assigned to a vertex of G by c, that is, hn(c) = max{c(v) : v € V(G)}. The
Hamiltonian labeling number hn(G) of G is the minimum value of Hamiltonian
labelings of G, that is, hn(G) = min{hn(c)}, where the minimum is taken over all
Hamiltonian labelings ¢ of G. A Hamiltonian labeling ¢ of G with value hn(c) =
hn(G) is called a minimum Hamiltonian labeling of G. Therefore,

hn(G) > n. (1)

for every connected graph G of order n.

To illustrate these concepts, we consider the Petersen graph P. It is known
that y (P) = hc(P) = 3. In fact, it is observed in [Chartrand et al. 2005a] that
every proper coloring of P is also a Hamiltonian coloring. On the other hand,
since the order of P is 10, it follows that hn(P) > 10. Observe that D(u, v) = 8 if
uv € E(G) and D(u,v) =9 if uv ¢ E(G). Thus if ¢ is a Hamiltonian labeling of P,
then |c(u) —c(v)| > 2 if uv € E(G) and |c(u) —c(v)| > 1 if uv ¢ E(G). Therefore,
the labeling shown in Figure 1 is a Hamiltonian labeling and so hn(P) = 10.

2. Bounds for Hamiltonian labeling numbers of graphs

It is convenient to introduce some notation. For a Hamiltonian labeling c of a graph
G, an ordering uy, us, ..., u, of the vertices of G is called the c-ordering of G if

I =c(uy) <c(up) <...<c(uy)=hn(c).

We refer to [Chartrand and Zhang 2008] for graph theory notation and terminol-
ogy not described in this paper. In order to establish a relationship between the
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Figure 1. A Hamiltonian labeling of the Petersen graph.

Hamiltonian chromatic number and Hamiltonian labeling number of a connected
graph, we first present a lemma.

Lemma 2.1. Every connected graph of order n > 3 with Hamiltonian labeling
number n is 2-connected.

Proof. Assume, to the contrary, that there exists a connected graph G of order n > 3
with hn(G) = n such that G is not 2-connected. Then G contains a cut-vertex v.
Let ¢ be a minimum Hamiltonian labeling of G and let vy, 02, ..., v, be the c-
ordering of the vertices of G, where then 1 = c(vy) < c(v2) < ... < c(v,) = n.
Thus ¢(v;) =i for 1 <i <n. Let u € V(G) such that # and v are consecutive in
the c-ordering. Thus {u,v} = {v;, v;41} for some integer j with 1 < j <n —1.
Hence D(v;j,v;4+1) <n —2. However then,

lcj) —c@j+)|+D@j,vj1) =n—1,
which contradicts the fact that ¢ is a Hamiltonian labeling of G. 0
The corollary below now follows immediately.

Corollary 2.2. No connected graph of order n > 3 with Hamiltonian labeling
number n contains a bridge.

While he(K ) =hn(K;) =1 and he(K;,) = 1 and hn(K3) = 2, he(G) and hn(G)
must differ by at least 2 for every connected graph G of order 3 or more. In fact,
the following result provides upper and lower bounds for the Hamiltonian labeling
number of a connected graph in terms of its order and Hamiltonian chromatic
number.

Theorem 2.3. For every connected graph G of order n > 3,

he(G) +2 < hn(G) < he(G) + (n — 1).
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Proof. We first show that hn(G) > hc(G) 4+ 2. Let ¢ be a minimum Hamiltonian
labeling of G and let vy, vy, ..., v, be the c-ordering of the vertices of G, where
then 1 =c(vy) <c(v2) <... < c(v,) =hn(c). Define a coloring ¢* of G by

1 ifi =1,
cwi)=1 clw)—1 if2<i<n-—1,
c(v;))—2 ifi =n.
We show that ¢* is a Hamiltonian coloring of G. Let v;, v; € V(G), where

1<i<j<n.

‘We consider two cases.
Case 1. i = 1. Suppose first that 2 < j <n — 2. Then

lc* () = c* )|+ D), v1) =c(v;) —c(v)) =1+ D(j,01) >n—1.
Next suppose that j = n. Then

|C*(Dn) - C*(Ul)| + D(vy, v1) = c(vy) — c(v1) =2+ D(vy, 01)
= c(vn) =3+ D(vy, v1).

If c(v,) >n+1, then ¢(v,) —3+ D (v, 01) >n—1. If ¢c(v,) =n, then vv, is not a
bridge by Corollary 2.2 and so D(v,, v1) > 2. Thus c(v,) —3+4+ D(v,, v;) >n—1.
Case 2. i > 2. In this case,

c(vj)—c(;)+D(v;,v;), if j <n—1,

|ﬁwﬂ—ﬁ@m+D@ﬁ“9:IC@»—dmy4+D@ﬁmL it j=n,

2)

which is greater than or equal to c(v;) —c(v;) =1+ D(vj,v;) >n—1. Thus c* is
a Hamiltonian coloring of G, as claimed. Therefore,

he(G) < he(c*) =hn(c) — 2 =hn(G) — 2,

and so hn(G) > he(G) + 2.

Next, we show that hn(G) < hc(G) + (n — 1). Let ¢’ be a Hamiltonian coloring
of G such that hc(¢’) = he(G). We may assume that V(G) = {01, v2, ..., 0,} such
that

1=c(01) < (v2) ... < (vy) =he(c).
Define a labeling ¢” of G by ¢”(v;) =c’(v;)+ (i —1) for 1 <i <n. Leto; and vy
be two distinct vertices of G. Then
Ic" () — ")+ D, o) = 1" (v)) — ')+ 1j — k| + D(vj, vg)
>m—1)+|j—k|=n,
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and so ¢” is a Hamiltonian labeling of G. Since hn(¢”) =hc(c)+ (n — 1), it follows
that hn(G) < he(G) + (n —1). O

While the upper and lower bounds in Theorem 2.3 are sharp (as we will see
later), both inequalities in Theorem 2.3 can be strict. For example, consider the
Petersen graph P of order n = 10 and hn(P) = 10. Thus

5=hc(P)+2 <hn(P) <hc(P)+(n—1)=12.

In fact, more can be said. The following result was established in [Chartrand et al.
2005a].

Theorem 2.4 [Chartrand et al. 2005a]. If G is a Hamiltonian graph of order n > 3,
then hc(G) < n—2. Furthermore, for each pair k, n of integers with 1 <k <n-—2,
there is a Hamiltonian graph of order n with Hamiltonian chromatic number k.

On the other hand, every Hamiltonian graph of order n has Hamiltonian labeling
number n, as we show next.

Proposition 2.5. If G is a Hamiltonian graph of order n > 3, then hn(G) = n.

Proof. Let C : v1,02,...,0,41 = 01 be a Hamiltonian cycle of G. Define
the labeling ¢ of G by c(v;) =i for 1 <i < n. Leti,j be two integers with
I<i<j=<nlIfj—i<n/2 then D(v;,v;) >n—(j—i); whileif j —i > n/2,
then D(v;,v;) > j —i. In either case, [c(v;) —c(v;)|+ D(v;,vj) >n. Thuscisa
Hamiltonian labeling and so hn(G) = n by Equation (1). O

The converse of Proposition 2.5 is not true. For example, it is well known that
the Petersen graph P is a nonHamiltonian graph of order 10 but hn(P) = 10.
Whether there exists a connected graph G of order n > 3 with hn(G) = n that is
neither a Hamiltonian graph nor the Petersen graph is not known. The following
realization result is a consequence of Theorem 2.4 and Proposition 2.5.

Corollary 2.6. For each pair k, n of integers with 2 < k < n — 1, there exists a
Hamiltonian graph G of order n such that hn(G) = hc(G) + k.

In the remainder of this section, we consider the complete bipartite graphs K,
of order n = r +s > 3, where 1 <r <. The Hamiltonian chromatic number of
a complete bipartite graph has been determined in [Chartrand et al. 2005a]. For
positive integers r and s with r <s and r +s > 3,

r ifr=s,
he(K, ) = (s—1*+1 ifl=r<s, (3)
s—D>=@F—-1)?% if2<r<s.

If r > 2, then K, , is Hamiltonian and so hn(K, ,) = n = 2r by Proposition 2.5.
Thus, we may assume that » < s, beginning with r = 1.
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Theorem 2.7. For each integer n > 3,
hn(K,u-1) = n + (n — 2)°.

Proof. Let G = K ,— with vertex set {v, v1, 02, ..., 0,1}, Where v is the central
vertex of G. By Equation (3) and Theorem 2.3, it suffices to show that

hn(G) > n+ (n—2)>%.

Let ¢ be a minimum Hamiltonian labeling of G. Since no two vertices of G can
be labeled the same, we may assume that

c(vy) <c() <...<c(v,-1).

We consider three cases.
Case 1. ¢(v) = 1. Since D(v1,v) =1 and D(v;,v;41) =2for1 <i <n—2,it
follows that c(v;) > n and

cit1))=c)+m—=2)=cw)+in—=2)=n+i(n—2)
for all 1 <i <n — 2. This implies that
cn_1)=n+mn—-2)n—2)=n+ (n—2)>

Therefore, hn(G) = hn(c) > n + (n —2)%.
Case 2. c(v) =hn(c). Then 1 =c(vy) <c(v2) <...<c(vy—1) <c(v). For each
i with 2 <j <n —1, it follows that

cw)=cloD)+(E—-1Dn-2)=14+@G—-1)n—-2).
In particular, c(v,_1) > 1+ (n —2)%. Thus
c()>clon_1)+n—1=n+(1n-2)>.
Therefore, hn(G) = hn(c) > n + (n —2)°.
Case 3. c(vj) <c(v) <c(vjy1) for some j with 1 < j <n—2. Thus
cj) =14+ -Dn-2),
c@)=c))+n—1=2n+(—-1Dn-2),
cjt1)=2c)+n—-122n—-14(j - 1)(n—2).
This implies that
cp-1) =2 (n—j—2)(n—2)+c(j41)
>n—j=2)n-=2)+Cn-1)+( - D0 -2)
=2—1+m-3Yn—-2)=n+14+m—-2)*>n+xn—-2)>

In each case, we have hn(G) > n + (n — 2)2. OJ
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We now consider K, 5, where 2 < r < s, with partite sets V; and V, such that
|Vi| =r and |V,| = s. Then

2r—2=n—s+r—2 ifu,v eV,
Du,v)=12r—1=n—s+r—1 ifuv € E(K,;),
2r=n—s+r ifu,v € V.

Consequently, if ¢ is a Hamiltonian labeling of K, ; (r < s), then

s—r+2 ifu,oeVy,
|C(l/£) —C(U)l > S —}"+1 ifuv € E(Kr,s):
s—r ifu,veV,.

Theorem 2.8. For integers r and s with2 <r <,
hn(K,)=@6—1)2=0F—1)>+s4+r—1.
Proof. By Equation (3) and Theorem 2.3, it suffices to show that
hn(K, ) > (s — D= —1)>+s+r—1.
Let Vi ={ui,ua,...,u,} and Vo ={v1, 02, ..., vs} be the partite sets of K, 5, and
let ¢ be a Hamiltonian labeling of K, ; and let w1, wa, ..., w,4+4 be the c-ordering
of the vertices of K, ;. We define a Vi-block of K, s to be a set
A ={wy, Wgy1, ..., we},
where 1 <a <f <r+s,suchthat AC Vi, w,_1 € V2 if a > 1, and wpyy € V; if
B <r+s. A Vy-block of K, is defined similarly. Let
A, Ay, .. A, (p21)
be the distinct Vi-blocks of K, ; such that if
w e, w'eAj,

where 1 <i < j < p, then c(w’) < c(w”). If p > 2, then K, ; contains V,-blocks
Bi, By, ..., B, such that for each integer i (I <i < p — 1) and for v’ € A;,
w € B;, w’ € A; 4, it follows that

c(w) < c(w) < c(w").

The graph K, ¢ may contain up to two additional V>-blocks, namely By and B,
such that if y € By and y" € Ay, then ¢(y) < c(y'); whileif z € A, and 2’ € B),,
then c(z) < ¢(z'). If p =1, then at least one of By and B; must exist. Hence K,
contains p Vi-blocks and p — 1+t V;-blocks, where ¢ € {0, 1, 2}. Consequently,
there are exactly

(a) r — p distinct pairs {w;, w;+1} of vertices, both of which belong to Vi;
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(b) 2p — 2+ ¢ distinct pairs {w;, w;+1} of vertices, exactly one of which belongs
to Vi,

(¢) s — (p — 1 +41) distinct pairs {w;, w;+1} of vertices, both of which belong to
Va.

Since (1) the colors of every two vertices w; and w;1, both of which belong
to Vi, must differ by at least s — r 4+ 2, (2) the colors of every two vertices w; and
w;+1, exactly one of which belongs to V|, must differ by at least s —r + 1, and
(3) the colors of every two vertices w; and w; 1, both of which belong to V;, must
differ by at least s — r, it follows that

c(wris) = 14+ —p)(s—r+2)+Q2p—2+1)(s—r+1)+(s—(p—141))(s—r)

4
= (=1’ =(r=1)"Fs+r—1+41. @)

Since hn(K,,) < (s —1)>*— (r —1)>+s+r — 1 and ¢ > 0, it follows that # = 0 and
that hn(K,,) = (s — 1)7 = (- = 2+ +7— 1. 0

Combining Proposition 2.5 and Theorems 2.7 and 2.8, we obtain the following.

Corollary 2.9. For integersr and s with 1 <r <,

r+s ifr=s,
hn(K, ) =1 (s—1)>+s+1 ifr=1ands > 2,
s—1D>=@—=1)>+r+s—1 if2<r<s.

3. Hamiltonian labeling numbers of subgraphs of coronas of Hamiltonian
graphs

A common question in graph theory concerns how the value of a parameter is
affected by making a small change in the graph. If G is a Hamiltonian graph
and u and v are two nonadjacent vertices of G, then G + uv is also Hamiltonian
and so hn(G) = hn(G + uv). On the other hand, if we add a pendant edge to a
Hamiltonian graph G producing a nonHamiltonian graph H, then the Hamiltonian
labeling number of H can be significantly larger than that of G, as we show in this
section. We begin with those graphs obtained from a cycle or a complete graph by
adding a single pendant edge.

Theorem 3.1. If G is the graph of order n > 5 obtained from C,_1 by adding a
pendant edge, then hn(G) = 2n — 2.

Proof. Let C :v1,03,...,0,—1,01 and let v,_;0, be the pendant edge of G. We
first show that hn(G) < 2n — 2. Define a labeling ¢y of G by

2 ifl<i<n—1,
Rl PRI
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We show that ¢( is a Hamiltonian labeling. First let

vi,v; € V(C),

wherelfi<j§n—1.Ifj—iz%,thenD(vi,vj)zj—iandso

lco(vi) — o)+ D(vi,v;) =12 —2j|+(j —i) =3(j —i)

() =55

sincen>3.1If j—i < ”gl,then D(vj,vj)=(n—1)—(j—i)andso

lco(i) —co)|+ Di,v;) =2 —i)+[(n—1)— (G —i)]
=n—14+(—i)>n.

Next, we consider each pair v;, v, where 1 <i <n — 1. Since D(v;,v,) >n—1i
and |co(v;) — co(vn)| = 2i — 1, it follows that

lco(vi) — co(Va)| + D(vi,v,) >n+i—1>n.

Therefore, cg is a Hamiltonian labeling, as claimed.
Next, we show that hn(G) > 2n — 2. Let ¢ be a minimum Hamiltonian labeling
of G. First, we make some observations.

(a) For each pairi, j with1 <i # j<n-—1, D(v;,v;) <n—2and so |c(v;) —
c(vj)] =2.
(b) Foreachi withi € {1,n —2}, D(v,,v;) =n — 1 and so |c(v,) — c(v;)| > 1.
(c) Foreachi with 1 <i <n—1andi ¢ {l,n—2}, D(v,,v;) <n—2 and so
lc(vn) —c(v;)] = 2.
Let uy, us, ..., u, be the c-ordering of the vertices of G and let
X ={c(ujr1)—c(u;):1<i<n-—1}.
By observations (a)—(c), at most two terms in X are 1. If at most one term in X
is 1, then hn(c) = c(u,) > 14+ 1+ 2(n —2) = 2n — 2. If at least one term in X
is 3 or more, then hn(c) = c(u,) > 14+14+14+3+2(n —4) = 2n — 2. Thus we
may assume that exactly two terms in X are 1 and the remaining terms in X are 2.
Then v, = u; for some i with2 <i <n —1 and {v1, v,—2} = {u;—1, u;+1}, where
c(u;)—c(ui—1) =c(uj+1) —c(u;) = 1. This implies that v,_; = u; for some j with
l<j<nandj#i If2<j<n—1 then {uj_1,ujn1} # {vr, vama)sif j =1,
then u;, ¢ {v, v,—2}, for otherwise

Ic(vn—l) - C(Un)| + D(Un—la Un) = |C(Un—l) - C(“2)| + |C(M2) - C(Un)l +1
<241+1=4<n,
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which is impossible; if j = n, then u,_; ¢ {v1, v,—2}, for otherwise
|C(l)n_1) - C(Dn)| + D(Un—la Dn) = |C(Un—1) - C(”n—l)| + |C(Mn—1) - C(Dn)l +1
<2+1+1=4<n,

again, which is impossible. Therefore, for each j with 1 < j < n, there exists
ke{j—1, j+1}suchthat u ¢ {0, v,—2}. Assume, without loss of generality, that
uj_1 & {v1,0,-2}. Since D(u;_1,uj;) <n—3, it follows that c(u;) —c(u;_1) > 3,
which is impossible since each term in X is at most 2. Thus, hn(G) >2n —2. [

Theorem 3.2. If G is the graph of order n > 4 obtained from K,_, by adding a
pendant edge, then hn(G) = 2n — 3.

Proof. Let V(K,—1) = {v1,02,...,0,-1} and let G be obtained from K,_; by
adding the pendant edge v,_1v,. We first show that hn(G) < 2n — 3. Define a
labeling ¢y of G by

2i—1 ifo=v;forl <i<n-—1,
co(v) =

2 if v =v,.

For each pair i, j of integers with 1 <i # j <n —1,

D(v;,vj)=n—2 and |[co(v;) —co(v;)] = 2.
For each i with 1 <i <n —2,

Dy, vi))=n—1 and |co(va) —co(vi)| = 1.
Furthermore, D(v,,, v,,—1) = 1 and

lco(wn) —con-1)| = (2n=3)=2=2n—-5=n—1
for n > 4. In each case,
D(v;,v;)+ lco(v;) — co(v))| = n,

for all i, j with 1 <i # j < n. Therefore, c¢o is a Hamiltonian labeling and so
hn(G) < hn(cy) = co(vy—1) =2n — 3.

Next, we show that hn(G) > 2n — 3. Let ¢ be a minimum Hamiltonian labeling
of G. Suppose that the vertices of K,,_1 in G can be ordered as uy, us, ..., u,—|
such that c(u;) < c(up) < ... <c(uy—_1). Since

D(u,-,uj) =n-—2

for1 <i < j <n-—1, it follows that

le(ui) —c(uj)| =c(u;) —c(u;) = 2.
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This implies that
hn(c) > c(up—1) > 14+2(n—2)=2n—3.
Therefore, hn(G) > 2n — 3. O

Let G be a connected graph containing an edge e that is not a bridge. Then
G — e is connected. For every two distinct vertices u and v in G — e, the length of
a longest u — v path in G — e does not exceed the length of a longest u — v path
in G. Thus every Hamiltonian labeling of G — e is a Hamiltonian labeling of G.
This observation yields the following useful lemma.

Lemma 3.3. If F is a connected subgraph of a connected graph G, then
hn(G) < hn(F).
The following is a consequence of Theorems 3.1 and 3.2 and Lemma 3.3.

Corollary 3.4. Let H be a Hamiltonian graph of order n — 1 > 3. If G is a graph
obtained from H by adding a pendant edge, then

2n—3 <hn(G) <2n—2.

Proof. Let C be a Hamiltonian cycle in H. If H = C,,_1, then hn(G) = 2n — 2 by
Theorem 3.1; while if H = K,,_1, then hn(G) = 2n — 3 by Theorem 3.2. Thus,
we may assume that H # C,_1; and H # K,_;. Let F be the graph obtained
from K,_; by adding a pendant edge and F’ be the graph obtained from C,,_; by
adding a pendant edge. Then G can be obtained from F by deleting nonbridge
edges and F’ can be obtained from G by deleting nonbridge edges. It then follows
by Lemma 3.3 that hn(F) < hn(G) <hn(F’) and so 2n —3 <hn(G) <2n—2. O

In fact, there exists a Hamiltonian graph H of order n — 1 such that adding
a pendant edge at a vertex x of H produces a graph G with hn(G) = 2n — 3
but adding a pendant edge at a different vertex y of H produces a graph F with
hn(F) = 2n — 2. For example, let H be the Hamiltonian graph obtained from the
cycle C :vy,02,...,0,-1,0;1 of order n — 1 > 4 by adding the edge v10,—». If G
is formed from H by adding a pendant edge at v,_1, then hn(G) = 2n — 3; while
if F is formed from H by adding the pendant edge v, then hn(F) = 2n — 2.

In order to study graphs obtained from a Hamiltonian graph by adding pendant
edges, we first establish some additional definitions and notation. For a graph
F, the corona cor(F) of F is that graph obtained from F by adding exactly one
pendant edge at each vertex of F. For a connected graph G, the core C(G) of G is
obtained from G by successively deleting vertices of degree 1 until none remain.
Thus, if G is a tree, then its core is K;; while if G is not a tree, then the core of
G is the induced subgraph F of maximum order with J(F) > 2. For each integer
k > 3, let #; be the set of nonHamiltonian graphs that can be obtained from a
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Hamiltonian graph of order k by adding pendant edges to this graph in such a
way that at most one pendant edge is added to each vertex of the graph. Thus if
G € ¥y, then there is a Hamiltonian graph H of order k such that G is a connected
subgraph of cor(H) whose core is H. We now establish lower and upper bounds
for the Hamiltonian labeling number of a graph in €}, in terms of the integer k and
the order of the graph, beginning with a lower bound.

Theorem 3.5. Let G € ¥} be a graph of order n and k + 1 <n < 2k. Then
hn (G) > (n—1)(n — k) + 2k —n).

Proof.  Suppose that H is a Hamiltonian graph of order k > 3 and that H = C(G).
If H 2 K, then G can be obtained from some graph F € ¥, by deleting nonbridge
edges from F, where C(F) = Ky, and V(G — H) = V(F — K}). That is, G and
F possess the same end-vertices. It then follows by Lemma 3.3 that

hn (F) < hn(G).
Therefore, it suffices to show that
hn (F) > (n—1)(n — k) + 2k — n).
Let V(F) =U UW, where U = V(K}) and W = V(F) — U. First we make

some observations:

(a) Ifx,ye U, then D(x,y)=k—1.

(b) If x,y € W, then D(x,y)=k+ 1.

(c) IfxeU and y e W, then D(x, y)=1if xy € E(F) and D(x, y) =k otherwise.

Let ¢ be a minimum Hamiltonian labeling of F' and let vy, v, ..., v, be the c-
ordering of the vertices of F. We define the four subsets S, S,,, Sy, and S, ,, of
V(F) as follows:
Sy ={v; :vi_1,v; €U for2 <i <n},
S =1{v;: vi_1,0; € Wfor2 <i <n},
Suw=1{v; 1 vi-1 €U and v; € W for 2 <i <n},

Swu=1{vi:vi-cyeWandv; eU for2 <i <nj}.
Let |Sy| =ny, |Sw| =1y, |Su,w| =Ny,w, |Sw,u| =Ny,u- Since
Su USw ) Su,w USw,u = V(F) - {Ul},

it follows that
nu+nw+nu,w+nw,u=n_1- (5

For each integer i with 2 <i <n,
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(A) ifv; € Sy, then c(v;) —c(vi—1) =n—k+1Dby (a);
(B) if v; € Sy, then c(v;) —c(vi—1) = n—k — 1 by (b);

(C) if v; € S, US,, then either c(v;) —c(vij—1) >n—1orc(v;) —c(vj—1) >n—k
by (iii), and so c(v;) — c¢(v;j—1) > n — k in this case.

It then follows by (A)—(C) and (5) that

hn(c) =c(,) > 14+n,m—k+1)+n,(n —k — 1)+ (nyp +nyu)(n—k)
=14 (n,+ny + 1y +nw,u)(n —k)+ (n, — ny)
=1l+m—-1)n—-k)+ (n, —ny).

We claim that n, —n,, > 2k —n — 1. Since
Sy, USu’w ={v;:v;_1€eUfor2<i<n},

it follows that

[U|—-1 ifv, €U,
S, US = i
1Su U Sl < |U| otherwise;
and so
Ny +ny = korn,+ Ny,w = k—1. (6)
Since

SwUSuw=1{vi: vieWfor2<i<n}

. W—{l)l} ifl)1€W,
lw otherwise,

it follows that
ny+n,,=n—korn,+n,,=n—k—1. (7)
By Equations (6) and (7), we obtain
M = 1y = (1) = 1y +110) = (k= 1) = (1 = k) = 2k —n — 1,
as claimed. Therefore,
hn(G)=hn(c) > 1+ n—-1)(n —k)+ (n, —ny) > (n—1)(n —k)+ 2k —n).
This completes the proof. O
Theorem 3.6. Let G € ¥, be a graph of order n and k +2 <n < 2k. Then

hn(G)<l4+n+m—k—172+k—=2)(n—k+1).



HAMILTONIAN LABELINGS OF GRAPHS 109

Proof. Suppose that H is a Hamiltonian graph of order £ > 3 and that H = C(G).
If H 22 Cy, then Cy can be obtained from H by deleting edges. Thus there exists
F € ¥ such that C(F) = Cy and F can be obtained from G by deleting edges that
are not bridges. It then follows by Lemma 3.3 that

hn (G) < hn(F).
Therefore, we may assume that H = Cy, : x1, X2, ..., Xx, x1. Now let
X={xi,x2,....,x} and Y =V(G)—X={y1,y2, -, Yn—k}

such that y; is adjacent to x,, for | <i <n—k,and 1 = ji < jp <... < ju—x <k.
Foreachi with1 <i <n —k, let

g =Jjirn—Jji— 1L, (8)

where j,_x1 = ji; thatis, g; is the number of vertices of degree 2 between x j, and
Xj.,, on C. Thus if x;,y; € E(G), then xj,1¢,+1Vi+1 € E(G), for 1 <i <n —k,
and

n—k
Zg,' =2k —n.
i=1

Now define the labeling ¢ of G by

1 if o = xp,
1+n—k if o =y,
cw)y=3 cic)+m—k—1)+g— ifo=yand2<i<n-—k, ©)
c(Vn—t) +n—k+gni if o =xy,
cxj_)+n—k+1) ifo=x;jand2<j<k-—1.

Thus the c-ordering of the vertices of G is

Xks Y15 Y25 -« o5 Yn—k> X15 X2, « - -, Xk—1,
and by Equation (9)
() =1, -
c(y,»):1+n—k+(i—1)(n—k—1)+;zl:gg forl <i<n-—k, (10)

cx)=1l4+n+m—k—1)>2,
c(xj):1+n+(n—k—1)2+(j—1)(n—k+1) for2<j<k-—1.
Therefore, the value of c is

hn(e)=cOy_)=1+n+n—k—1)>+&—-2)(n—k+1).
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Thus it remains to show that ¢ is a Hamiltonian labeling of G. First, we make some
observations. Let u, v € V(G), where u # v.

(a) Ifu=x; andv =x; where 1 <i # j <k, then D(u, v) =max{|i—j|, k—|i—jl}.
(B) fu=y; andv =y; where 1 <i < j <n—k, then

Jj—1

j—1
D(u,v) =2+ max j—i+2gg,k—(j—i+2gg)
=i

=i
(y) fu=x;,veY,and vx; € E(G) where 1 <i, j <k (possibly i = j), then
D(u,v)=1ifi =jand D(u,v) =14+ max{|i — jl,k—|i —j|}ifi #j.
We show that
D(u,v) + |c(u) — c(v)| = n, (1D

for every pair u, v of distinct vertices of G. We consider three cases.
Case 1. u,v € X. Letu = x; and v = x;, where 1 <i, j < k. We may assume,
without loss of generality, that i < j. If j =k, then

le(xi) —c(xj)] = c(x;) —c(xx)
=[l+n+m—k—1)*+G—Dm—k+1)]—1>n,
and so condition (11) is satisfied. Thus we may assume that j # k.
If j—i=1,then D(x;,x;) =k —1and |c(x;) —c(x;)| =n—k+ 1. Thus (11)
holds in this case. If j —i > %, then
D(xi, x;) + le(xi) — c(xj)| = c(x;) — c(xi) + D(xi, x;)
=(-i)n—k+D)+(G—-i)={G—-i)n—k+2)

—k
(n—k+2)=k(nT+1) > 2%k > n.

.. k
If2§J—l§§,then

D(x;j, x;) + |c(xi) — c(x;)| = c(x;) — c(xi) + D(xi, x;)
= —-Dm—k+D)+*k—-(—1i)
= —Dm—k)+k
>2n—k)+k=2n—k>n.

Case2. u,v €Y. Letu =y; and v = y;, where 1 <1i, j <n—k. We may
assume, without loss of generality, that i < j. Then

j—1
lc(vi) — eI =) —c) =G = —k=1)+ D g.

=i
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If j—i+ Y1} g =%, then

j—1
DOy, y)=2+j—i+> g
(=i

by (f), and so

Jj—1 j—1
D(yi, ) + e — el = (G — ) —k— 1) + (ng) +2+4j—i+ (ng)
> (=) —k—1)+2+( —i)+k—2(j — )]

— (- —k=2)+k+2>n.

Iflfj—i—i—Zé;ilggf%,then

j—1
D(yi,yj) =2+k— (j —i+2g5)
(=i

by (f), and so

Jj—1 j—1
D(yi, y) + le(i) —cpl = (G — i) —k— 1) + (Zgg) +24k— (j —i+2g5)
(=i (=i
=(—-i)n—k=2)+k+2
>n—k—-2+k+2=n.

Case 3. One of u and v is in X and the otherisinY, sayu € X andv € Y. Let
u=x;ando =y;, where ] <i <kand 1< j<n—k. We consider two subcases,
according to whether x;y; € E(G) or x;y; &€ E(G).

Subcase 3.1. x;y; € E(G). We proceed by induction to show that

c(xj) —cyj)=zn—1
when x;y; € E(G). Fori = j =1,

lc(x1) — el =c@x) —c(y) =[1+n+m—k—1)*1— (1 +n—k)
=(m—k—1)2+k>n—1forn>k+2.

Assume that c(x;) —c(y;) > n — 1. Since X;414¢;¥j+1 € E(G) by (8), we show
that c(x;4144;) —c(yj+1) = n — 1. Observe that

c(Xit14g) =cri)+(gj+Dn—k+1) and c(yj1) =c(y))+n—k-1)+g;.
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It then follows by the induction hypothesis that

c(itryg) —cQjr) Zn—1+ @+ D —k+1) - —k—-1)—g;
=n+1+gin—k)=n—-1.
Therefore if x;y; € E(G), then |c(x;) —c(y;)|+ D(x;, y;) >n—1+1=n. Thus
condition (11) is satisfied.
Subcase 3.2. x;y; € E(G). Theni # j. By (8), if y;x,, € E(G), then
—1

gr=m-—j,
1

~.

S
Il

and
D(x;, yj)+lc(xi) —c(yj)| = c(xi) —c(yj) + D(x;, xn) + 1 (12)
=(m—k=1>+G— -k +i+j—m—j)+k—1+Dx;,xn)
=[n—k—=12+G—j)n—k)+k+2j— 11+ G —m)+ D(x;, xp).

Now observe, if i > j, then (i — j)(n — k) +k > n; whereas if 1 <i < j <n —k,
then

n—k—172+G—jn—k) +k+2j—1
=[n—k?-2m—k)]+i(ln—k)— j(n—k —2)+k
>[(n—k)Y? =2 —k)]+i(n—k) —[(n —k)> =2(n—k)]|+k > n.
Therefore, by Equation (12)
D(x;, yj) +le(xi)) —c(yj)| = n+ (i —m) + D(x;, Xp). (13)

We then have three possible situations. If i > m, then i —m > 0 and so by
condition (13), (11) is satisfied. If m > i and m —i > k/2, then D(x;, x,,) =m —i
and so by (13)

D(xi, yj) +le(xi)) —c(yp)l =n+ @@ —m)+ (m—i) =n.
Finally, if m > i and m —i <k/2, then D(x;, x,,) =k — (m — i) and so from (13)

D(xi, yj)+lc(x;)) —c(yj)l = n+ (@ —m) + [k — (m —1i)]
=n+k—-2m—i)>n+k—k=n.

For each situation, condition (11) is satisfied. Therefore ¢ is a Hamiltonian labeling
of G. Il

We now present two corollaries of Theorems 3.5 and 3.6.
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Corollary 3.7. If G is a graph of order n that is the corona of a Hamiltonian

graph, then
n
hn(G) = .
n6)=(3)

Proof. Suppose that H is a Hamiltonian graph of order & > 3 and that G = cor(H).
Then the order of G is n = 2k. We show that

hn(G) = (’;) — k(2k —1).

If H # Cy and H # K}, then G can be obtained from cor(Ky) by deleting nonbridge
edges and cor(Cy) can be obtained from G by deleting edges that are not bridges.
It then follows by Lemma 3.3 that

hn(cor(K)) < hn(G) < hn(cor(Cy)).
Therefore, it suffices to show that
k(2k — 1) < hn(cor(Ky)) and hn(cor(Cy)) < k(2k —1).
From Theorems 3.5 and 3.6, we find that

hn(cor(Ky)) > (2k — 1)(2k — k) + (2k — 2k) = k(2k — 1)

and
hn(cor(Cy)) < 142k+ Qk—k— 1>+ (k —2)Ck —k +1)
=142k+k>=2k+1+k>—k—2=kQk—1).
Therefore, hn(G) = k(2k — 1). O

Corollary 3.8. For each graph G € ¥y,
2k—1<hn(G) <k(k—1).

Proof. Let
F(x) = =D —k)+ 2k —x),
fork+1 <x <2k and let
g)=1+x+@x—k—=1>+k-2)(x —k+1),

for k+2 <x <2k. Let G € ¥} be a graph of order n where k+ 1 <n <2k. Then
by Corollary 3.4 and Theorems 3.5 and 3.6,

f(n) =<hn(G) < g(n).
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Since each f(x) and g(x) is an increasing function in its domain, it follows that
f(x) > fk+1)=2k—1and g(x) < g(2k) = k(2k — 1), implying the desired
result. (]

Both lower and upper bound in Corollary 3.8 are sharp. For example, if G’ € ¥,
is a graph of order k + 1 whose core is Kj, then hn (G') = 2n —3 = 2k — 1 by
Theorem 3.2; while if G” € ¥ is a graph of order 2k whose core is Ky, then

hn (G") = (’;) — k(2k —1)
by Corollary 3.7.
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