\bullet
 involvea journal of mathematics

Hamiltonian labelings of graphs
Willem Renzema and Ping Zhang

Hamiltonian labelings of graphs

Willem Renzema and Ping Zhang

(Communicated by Ron Gould)

For a connected graph G of order n, the detour distance $D(u, v)$ between two vertices u and v in G is the length of a longest $u-v$ path in G. A Hamiltonian labeling of G is a function $c: V(G) \rightarrow \mathbb{N}$ such that $|c(u)-c(v)|+D(u, v) \geq n$ for every two distinct vertices u and v of G. The value hn (c) of a Hamiltonian labeling c of G is the maximum label (functional value) assigned to a vertex of G by c; while the Hamiltonian labeling number $\mathrm{hn}(G)$ of G is the minimum value of Hamiltonian labelings of G. Hamiltonian labeling numbers of some well-known classes of graphs are determined. Sharp upper and lower bounds are established for the Hamiltonian labeling number of a connected graph. The corona $\operatorname{cor}(F)$ of a graph F is the graph obtained from F by adding exactly one pendant edge at each vertex of F. For each integer $k \geq 3$, let \mathscr{H}_{k} be the set of connected graphs G for which there exists a Hamiltonian graph H of order k such that $H \subset G \subseteq \operatorname{cor}(H)$. It is shown that $2 k-1 \leq \mathrm{hn}(G) \leq k(2 k-1)$ for each $G \in \mathscr{H}_{k}$ and that both bounds are sharp.

1. Introduction

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest path between these two vertices. The eccentricity $e(v)$ of a vertex v in G is the maximum distance from v to a vertex of G. The radius $\operatorname{rad}(G)$ of G is the minimum eccentricity among the vertices of G, while the diameter $\operatorname{diam}(G)$ of G is the maximum eccentricity among the vertices of G. A vertex v with $e(v)=\operatorname{rad}(G)$ is called a central vertex of G. If $d(u, v)=\operatorname{diam}(G)$, then u and v are antipodal vertices of G.

For a connected graph G with diameter d, an antipodal coloring of a connected graph G is defined in [Chartrand et al. 2002a] as an assignment $c: V(G) \rightarrow \mathbb{N}$ of colors to the vertices of G such that

$$
|c(u)-c(v)|+d(u, v) \geq d,
$$

[^0]for every two distinct vertices u and v of G. In the case of paths of order $n \geq 2$, this gives
$$
|c(u)-c(v)|+d(u, v) \geq n-1
$$

Antipodal colorings of paths gave rise to the more general Hamiltonian colorings of graphs defined in terms of another distance parameter.

The detour distance $D(u, v)$ between two vertices u and v in a connected graph G is the length of a longest path between these two vertices. A $u-v$ path of length $D(u, v)$ is a $u-v$ detour. Thus if G is a connected graph of order n, then

$$
d(u, v) \leq D(u, v) \leq n-1
$$

for every two vertices u and v in G, and

$$
D(u, v)=n-1
$$

if and only if G contains a Hamiltonian $u-v$ path. Furthermore $d(u, v)=D(u, v)$ for every two vertices u and v in G if and only if G is a tree. As with standard distance, the detour distance is a metric on the vertex set of a connected graph.

A Hamiltonian coloring of a connected graph G of order n is a coloring

$$
c: V(G) \rightarrow \mathbb{N}
$$

of G such that

$$
|c(u)-c(v)|+D(u, v) \geq n-1
$$

for every two distinct vertices u and v of G. Consequently, if u and v are distinct vertices such that $|c(u)-c(v)|=k$ for some Hamiltonian coloring c of G, then there is a $u-v$ path in G missing at most k vertices of G. The value hc (c) of a Hamiltonian coloring c of G is the maximum color assigned to a vertex of G. The Hamiltonian chromatic number of G is the minimum value of Hamiltonian colorings of G. Hamiltonian colorings of graphs have been studied in [Chartrand et al. 2002b; 2005a; 2005b; Nebeský 2003; 2006].

For a connected graph G with diameter d, a radio labeling of G is defined in [Chartrand et al. 2001] as an assignment $c: V(G) \rightarrow \mathbb{N}$ of labels to the vertices of G such that

$$
|c(u)-c(v)|+d(u, v) \geq d+1
$$

for every two distinct vertices u and v of G. Thus for a radio labeling of a graph, colors assigned to adjacent vertices of G must differ by at least d, colors assigned to two vertices at distance 2 must differ by at least $d-1$, and so on, up to two vertices at distance d (that is, antipodal vertices), whose colors are only required to differ. The value $\mathrm{rn}(c)$ of a radio labeling c of G is the maximum color assigned
to a vertex of G. The radio number of G is the minimum value of a radio labeling of G. In the case of paths of order $n \geq 2$, this gives

$$
|c(u)-c(v)|+d(u, v) \geq n .
$$

In a similar manner, radio labelings of paths and detour distance in graphs give rise to a related labeling, which we introduce in this work.

A Hamiltonian labeling of a connected graph G of order n is an assignment $c: V(G) \rightarrow \mathbb{N}$ of labels to the vertices of G such that

$$
|c(u)-c(v)|+D(u, v) \geq n,
$$

for every two distinct vertices u and v of G. Therefore, in a Hamiltonian labeling of G, every two vertices are assigned distinct labels and two vertices u and v can be assigned consecutive labels in G only if G contains a Hamiltonian $u-v$ path. We can assume that every Hamiltonian labeling of a graph uses the integer 1 as one of its labels. The value $\mathrm{hn}(c)$ of a Hamiltonian labeling c of G is the maximum label assigned to a vertex of G by c, that is, $\operatorname{hn}(c)=\max \{c(v): v \in V(G)\}$. The Hamiltonian labeling number $\operatorname{hn}(G)$ of G is the minimum value of Hamiltonian labelings of G, that is, $\mathrm{hn}(G)=\min \{\mathrm{hn}(c)\}$, where the minimum is taken over all Hamiltonian labelings c of G. A Hamiltonian labeling c of G with value $\mathrm{hn}(c)=$ $\mathrm{hn}(G)$ is called a minimum Hamiltonian labeling of G. Therefore,

$$
\begin{equation*}
\operatorname{hn}(G) \geq n . \tag{1}
\end{equation*}
$$

for every connected graph G of order n.
To illustrate these concepts, we consider the Petersen graph P. It is known that $\chi(P)=\mathrm{hc}(P)=3$. In fact, it is observed in [Chartrand et al. 2005a] that every proper coloring of P is also a Hamiltonian coloring. On the other hand, since the order of P is 10 , it follows that $\mathrm{hn}(P) \geq 10$. Observe that $D(u, v)=8$ if $u v \in E(G)$ and $D(u, v)=9$ if $u v \notin E(G)$. Thus if c is a Hamiltonian labeling of P, then $|c(u)-c(v)| \geq 2$ if $u v \in E(G)$ and $|c(u)-c(v)| \geq 1$ if $u v \notin E(G)$. Therefore, the labeling shown in Figure 1 is a Hamiltonian labeling and so $\mathrm{hn}(P)=10$.

2. Bounds for Hamiltonian labeling numbers of graphs

It is convenient to introduce some notation. For a Hamiltonian labeling c of a graph G, an ordering $u_{1}, u_{2}, \ldots, u_{n}$ of the vertices of G is called the c-ordering of G if

$$
1=c\left(u_{1}\right)<c\left(u_{2}\right)<\ldots<c\left(u_{n}\right)=\mathrm{hn}(c) .
$$

We refer to [Chartrand and Zhang 2008] for graph theory notation and terminology not described in this paper. In order to establish a relationship between the

Figure 1. A Hamiltonian labeling of the Petersen graph.

Hamiltonian chromatic number and Hamiltonian labeling number of a connected graph, we first present a lemma.

Lemma 2.1. Every connected graph of order $n \geq 3$ with Hamiltonian labeling number n is 2-connected.

Proof. Assume, to the contrary, that there exists a connected graph G of order $n \geq 3$ with $\mathrm{hn}(G)=n$ such that G is not 2 -connected. Then G contains a cut-vertex v. Let c be a minimum Hamiltonian labeling of G and let $v_{1}, v_{2}, \ldots, v_{n}$ be the c ordering of the vertices of G, where then $1=c\left(v_{1}\right)<c\left(v_{2}\right)<\ldots<c\left(v_{n}\right)=n$. Thus $c\left(v_{i}\right)=i$ for $1 \leq i \leq n$. Let $u \in V(G)$ such that u and v are consecutive in the c-ordering. Thus $\{u, v\}=\left\{v_{j}, v_{j+1}\right\}$ for some integer j with $1 \leq j \leq n-1$. Hence $D\left(v_{j}, v_{j+1}\right) \leq n-2$. However then,

$$
\left|c\left(v_{j}\right)-c\left(v_{j+1}\right)\right|+D\left(v_{j}, v_{j+1}\right) \leq n-1,
$$

which contradicts the fact that c is a Hamiltonian labeling of G.
The corollary below now follows immediately.
Corollary 2.2. No connected graph of order $n \geq 3$ with Hamiltonian labeling number n contains a bridge.

While $\mathrm{hc}\left(K_{1}\right)=\mathrm{hn}\left(K_{1}\right)=1$ and $\mathrm{hc}\left(K_{2}\right)=1$ and $\mathrm{hn}\left(K_{2}\right)=2$, $\mathrm{hc}(G)$ and $\mathrm{hn}(G)$ must differ by at least 2 for every connected graph G of order 3 or more. In fact, the following result provides upper and lower bounds for the Hamiltonian labeling number of a connected graph in terms of its order and Hamiltonian chromatic number.

Theorem 2.3. For every connected graph G of order $n \geq 3$,

$$
\operatorname{hc}(G)+2 \leq \operatorname{hn}(G) \leq \operatorname{hc}(G)+(n-1) .
$$

Proof. We first show that $\mathrm{hn}(G) \geq \mathrm{hc}(G)+2$. Let c be a minimum Hamiltonian labeling of G and let $v_{1}, v_{2}, \ldots, v_{n}$ be the c-ordering of the vertices of G, where then $1=c\left(v_{1}\right)<c\left(v_{2}\right)<\ldots<c\left(v_{n}\right)=\mathrm{hn}(c)$. Define a coloring c^{*} of G by

$$
c^{*}\left(v_{i}\right)= \begin{cases}1 & \text { if } i=1 \\ c\left(v_{i}\right)-1 & \text { if } 2 \leq i \leq n-1 \\ c\left(v_{i}\right)-2 & \text { if } i=n\end{cases}
$$

We show that c^{*} is a Hamiltonian coloring of G. Let $v_{i}, v_{j} \in V(G)$, where

$$
1 \leq i<j \leq n .
$$

We consider two cases.
Case 1. $i=1$. Suppose first that $2 \leq j \leq n-2$. Then

$$
\left|c^{*}\left(v_{j}\right)-c^{*}\left(v_{1}\right)\right|+D\left(v_{j}, v_{1}\right)=c\left(v_{j}\right)-c\left(v_{1}\right)-1+D\left(v_{j}, v_{1}\right) \geq n-1 .
$$

Next suppose that $j=n$. Then

$$
\begin{aligned}
\left|c^{*}\left(v_{n}\right)-c^{*}\left(v_{1}\right)\right|+D\left(v_{n}, v_{1}\right) & =c\left(v_{n}\right)-c\left(v_{1}\right)-2+D\left(v_{n}, v_{1}\right) \\
& =c\left(v_{n}\right)-3+D\left(v_{n}, v_{1}\right) .
\end{aligned}
$$

If $c\left(v_{n}\right) \geq n+1$, then $c\left(v_{n}\right)-3+D\left(v_{n}, v_{1}\right) \geq n-1$. If $c\left(v_{n}\right)=n$, then $v_{1} v_{n}$ is not a bridge by Corollary 2.2 and so $D\left(v_{n}, v_{1}\right) \geq 2$. Thus $c\left(v_{n}\right)-3+D\left(v_{n}, v_{1}\right) \geq n-1$.

Case 2. $i \geq 2$. In this case,

$$
\left|c^{*}\left(v_{j}\right)-c^{*}\left(v_{i}\right)\right|+D\left(v_{j}, v_{i}\right)= \begin{cases}c\left(v_{j}\right)-c\left(v_{i}\right)+D\left(v_{j}, v_{i}\right), & \text { if } j \leq n-1, \tag{2}\\ c\left(v_{j}\right)-c\left(v_{i}\right)-1+D\left(v_{j}, v_{i}\right), & \text { if } j=n,\end{cases}
$$

which is greater than or equal to $c\left(v_{j}\right)-c\left(v_{i}\right)-1+D\left(v_{j}, v_{i}\right) \geq n-1$. Thus c^{*} is a Hamiltonian coloring of G, as claimed. Therefore,

$$
\operatorname{hc}(G) \leq \operatorname{hc}\left(c^{*}\right)=\operatorname{hn}(c)-2=\operatorname{hn}(G)-2,
$$

and so $\mathrm{hn}(G) \geq \mathrm{hc}(G)+2$.
Next, we show that $\mathrm{hn}(G) \leq \mathrm{hc}(G)+(n-1)$. Let c^{\prime} be a Hamiltonian coloring of G such that hc $\left(c^{\prime}\right)=\operatorname{hc}(G)$. We may assume that $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

$$
1=c^{\prime}\left(v_{1}\right) \leq c^{\prime}\left(v_{2}\right) \leq \ldots \leq c^{\prime}\left(v_{n}\right)=\operatorname{hc}\left(c^{\prime}\right) .
$$

Define a labeling $c^{\prime \prime}$ of G by $c^{\prime \prime}\left(v_{i}\right)=c^{\prime}\left(v_{i}\right)+(i-1)$ for $1 \leq i \leq n$. Let v_{j} and v_{k} be two distinct vertices of G. Then

$$
\begin{aligned}
\left|c^{\prime \prime}\left(v_{j}\right)-c^{\prime \prime}\left(v_{k}\right)\right|+D\left(v_{j}, v_{k}\right) & =\left|c^{\prime}\left(v_{j}\right)-c^{\prime}\left(v_{k}\right)\right|+|j-k|+D\left(v_{j}, v_{k}\right) \\
& \geq(n-1)+|j-k| \geq n,
\end{aligned}
$$

and so $c^{\prime \prime}$ is a Hamiltonian labeling of G. Since $\mathrm{hn}\left(c^{\prime \prime}\right)=\mathrm{hc}(c)+(n-1)$, it follows that $\mathrm{hn}(G) \leq \operatorname{hc}(G)+(n-1)$.

While the upper and lower bounds in Theorem 2.3 are sharp (as we will see later), both inequalities in Theorem 2.3 can be strict. For example, consider the Petersen graph P of order $n=10$ and $\operatorname{hn}(P)=10$. Thus

$$
5=\operatorname{hc}(P)+2<\operatorname{hn}(P)<\operatorname{hc}(P)+(n-1)=12 .
$$

In fact, more can be said. The following result was established in [Chartrand et al. 2005a].

Theorem 2.4 [Chartrand et al. 2005a]. If G is a Hamiltonian graph of order $n \geq 3$, then $\mathrm{hc}(G) \leq n-2$. Furthermore, for each pair k, n of integers with $1 \leq k \leq n-2$, there is a Hamiltonian graph of order n with Hamiltonian chromatic number k.

On the other hand, every Hamiltonian graph of order n has Hamiltonian labeling number n, as we show next.

Proposition 2.5. If G is a Hamiltonian graph of order $n \geq 3$, then $\operatorname{hn}(G)=n$.
Proof. Let $C: v_{1}, v_{2}, \ldots, v_{n+1}=v_{1}$ be a Hamiltonian cycle of G. Define the labeling c of G by $c\left(v_{i}\right)=i$ for $1 \leq i \leq n$. Let i, j be two integers with $1 \leq i<j \leq n$. If $j-i \leq n / 2$, then $D\left(v_{i}, v_{j}\right) \geq n-(j-i)$; while if $j-i>n / 2$, then $D\left(v_{i}, v_{j}\right) \geq j-i$. In either case, $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right|+D\left(v_{i}, v_{j}\right) \geq n$. Thus c is a Hamiltonian labeling and so $\mathrm{hn}(G)=n$ by Equation (1).

The converse of Proposition 2.5 is not true. For example, it is well known that the Petersen graph P is a nonHamiltonian graph of order 10 but $\mathrm{hn}(P)=10$. Whether there exists a connected graph G of order $n \geq 3$ with $\operatorname{hn}(G)=n$ that is neither a Hamiltonian graph nor the Petersen graph is not known. The following realization result is a consequence of Theorem 2.4 and Proposition 2.5.

Corollary 2.6. For each pair k, n of integers with $2 \leq k \leq n-1$, there exists a Hamiltonian graph G of order n such that $\mathrm{hn}(G)=\mathrm{hc}(G)+k$.

In the remainder of this section, we consider the complete bipartite graphs $K_{r, s}$ of order $n=r+s \geq 3$, where $1 \leq r \leq s$. The Hamiltonian chromatic number of a complete bipartite graph has been determined in [Chartrand et al. 2005a]. For positive integers r and s with $r \leq s$ and $r+s \geq 3$,

$$
\operatorname{hc}\left(K_{r, s}\right)=\left\{\begin{array}{cl}
r & \text { if } r=s, \tag{3}\\
(s-1)^{2}+1 & \text { if } 1=r<s, \\
(s-1)^{2}-(r-1)^{2} & \text { if } 2 \leq r<s .
\end{array}\right.
$$

If $r \geq 2$, then $K_{r, r}$ is Hamiltonian and so $\mathrm{hn}\left(K_{r, r}\right)=n=2 r$ by Proposition 2.5. Thus, we may assume that $r<s$, beginning with $r=1$.

Theorem 2.7. For each integer $n \geq 3$,

$$
\operatorname{hn}\left(K_{1, n-1}\right)=n+(n-2)^{2}
$$

Proof. Let $G=K_{1, n-1}$ with vertex set $\left\{v, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$, where v is the central vertex of G. By Equation (3) and Theorem 2.3, it suffices to show that

$$
\operatorname{hn}(G) \geq n+(n-2)^{2}
$$

Let c be a minimum Hamiltonian labeling of G. Since no two vertices of G can be labeled the same, we may assume that

$$
c\left(v_{1}\right)<c\left(v_{2}\right)<\ldots<c\left(v_{n-1}\right) .
$$

We consider three cases.
Case 1. $c(v)=1$. Since $D\left(v_{1}, v\right)=1$ and $D\left(v_{i}, v_{i+1}\right)=2$ for $1 \leq i \leq n-2$, it follows that $c\left(v_{1}\right) \geq n$ and

$$
c\left(v_{i+1}\right) \geq c\left(v_{i}\right)+(n-2) \geq c\left(v_{1}\right)+i(n-2) \geq n+i(n-2)
$$

for all $1 \leq i \leq n-2$. This implies that

$$
c\left(v_{n-1}\right) \geq n+(n-2)(n-2)=n+(n-2)^{2} .
$$

Therefore, $\mathrm{hn}(G)=\mathrm{hn}(c) \geq n+(n-2)^{2}$.
Case 2. $c(v)=\mathrm{hn}(c)$. Then $1=c\left(v_{1}\right)<c\left(v_{2}\right)<\ldots<c\left(v_{n-1}\right)<c(v)$. For each i with $2 \leq i \leq n-1$, it follows that

$$
c\left(v_{i}\right) \geq c\left(v_{1}\right)+(i-1)(n-2)=1+(i-1)(n-2)
$$

In particular, $c\left(v_{n-1}\right) \geq 1+(n-2)^{2}$. Thus

$$
c(v) \geq c\left(v_{n-1}\right)+n-1=n+(n-2)^{2}
$$

Therefore, $\operatorname{hn}(G)=\operatorname{hn}(c) \geq n+(n-2)^{2}$.
Case 3. $c\left(v_{j}\right)<c(v)<c\left(v_{j+1}\right)$ for some j with $1 \leq j \leq n-2$. Thus

$$
\begin{aligned}
c\left(v_{j}\right) & \geq 1+(j-1)(n-2), \\
c(v) & \geq c\left(v_{j}\right)+n-1 \geq n+(j-1)(n-2), \\
c\left(v_{j+1}\right) & \geq c(v)+n-1 \geq 2 n-1+(j-1)(n-2) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
c\left(v_{n-1}\right) & \geq(n-j-2)(n-2)+c\left(v_{j+1}\right) \\
& \geq(n-j-2)(n-2)+(2 n-1)+(j-1)(n-2) \\
& =2 n-1+(n-3)(n-2)=n+1+(n-2)^{2}>n+(n-2)^{2}
\end{aligned}
$$

In each case, we have $\mathrm{hn}(G) \geq n+(n-2)^{2}$.

We now consider $K_{r, s}$, where $2 \leq r<s$, with partite sets V_{1} and V_{2} such that $\left|V_{1}\right|=r$ and $\left|V_{2}\right|=s$. Then

$$
D(u, v)= \begin{cases}2 r-2=n-s+r-2 & \text { if } u, v \in V_{1} \\ 2 r-1=n-s+r-1 & \text { if } u v \in E\left(K_{r, s}\right) \\ 2 r=n-s+r & \text { if } u, v \in V_{2}\end{cases}
$$

Consequently, if c is a Hamiltonian labeling of $K_{r, s}(r<s)$, then

$$
|c(u)-c(v)| \geq \begin{cases}s-r+2 & \text { if } u, v \in V_{1} \\ s-r+1 & \text { if } u v \in E\left(K_{r, s}\right) \\ s-r & \text { if } u, v \in V_{2}\end{cases}
$$

Theorem 2.8. For integers r and s with $2 \leq r<s$,

$$
\operatorname{hn}\left(K_{r, s}\right)=(s-1)^{2}-(r-1)^{2}+s+r-1
$$

Proof. By Equation (3) and Theorem 2.3, it suffices to show that

$$
\operatorname{hn}\left(K_{r, s}\right) \geq(s-1)^{2}-(r-1)^{2}+s+r-1
$$

Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ be the partite sets of $K_{r, s}$, and let c be a Hamiltonian labeling of $K_{r, s}$ and let $w_{1}, w_{2}, \ldots, w_{r+s}$ be the c-ordering of the vertices of $K_{r, s}$. We define a V_{1}-block of $K_{r, s}$ to be a set

$$
A=\left\{w_{\alpha}, w_{\alpha+1}, \ldots, w_{\beta}\right\}
$$

where $1 \leq \alpha \leq \beta \leq r+s$, such that $A \subseteq V_{1}, w_{\alpha-1} \in V_{2}$ if $\alpha>1$, and $w_{\beta+1} \in V_{2}$ if $\beta<r+s$. A V_{2}-block of $K_{r, s}$ is defined similarly. Let

$$
A_{1}, A_{2}, \ldots, A_{p} \quad(p \geq 1)
$$

be the distinct V_{1}-blocks of $K_{r, s}$ such that if

$$
w^{\prime} \in A_{i}, \quad w^{\prime \prime} \in A_{j}
$$

where $1 \leq i<j \leq p$, then $c\left(w^{\prime}\right)<c\left(w^{\prime \prime}\right)$. If $p \geq 2$, then $K_{r, s}$ contains V_{2}-blocks $B_{1}, B_{2}, \ldots, B_{p-1}$ such that for each integer $i(1 \leq i \leq p-1)$ and for $w^{\prime} \in A_{i}$, $w \in B_{i}, w^{\prime \prime} \in A_{i+1}$, it follows that

$$
c\left(w^{\prime}\right)<c(w)<c\left(w^{\prime \prime}\right)
$$

The graph $K_{r, s}$ may contain up to two additional V_{2}-blocks, namely B_{0} and B_{p} such that if $y \in B_{0}$ and $y^{\prime} \in A_{1}$, then $c(y)<c\left(y^{\prime}\right)$; while if $z \in A_{p}$ and $z^{\prime} \in B_{p}$, then $c(z)<c\left(z^{\prime}\right)$. If $p=1$, then at least one of B_{0} and B_{1} must exist. Hence $K_{r, s}$ contains $p V_{1}$-blocks and $p-1+t V_{2}$-blocks, where $t \in\{0,1,2\}$. Consequently, there are exactly
(a) $r-p$ distinct pairs $\left\{w_{i}, w_{i+1}\right\}$ of vertices, both of which belong to V_{1};
(b) $2 p-2+t$ distinct pairs $\left\{w_{i}, w_{i+1}\right\}$ of vertices, exactly one of which belongs to V_{1};
(c) $s-(p-1+t)$ distinct pairs $\left\{w_{i}, w_{i+1}\right\}$ of vertices, both of which belong to V_{2}.

Since (1) the colors of every two vertices w_{i} and w_{i+1}, both of which belong to V_{1}, must differ by at least $s-r+2$, (2) the colors of every two vertices w_{i} and w_{i+1}, exactly one of which belongs to V_{1}, must differ by at least $s-r+1$, and (3) the colors of every two vertices w_{i} and w_{i+1}, both of which belong to V_{2}, must differ by at least $s-r$, it follows that

$$
\begin{align*}
c\left(w_{r+s}\right) & \geq 1+(r-p)(s-r+2)+(2 p-2+t)(s-r+1)+(s-(p-1+t))(s-r) \\
& =(s-1)^{2}-(r-1)^{2}+s+r-1+t . \tag{4}
\end{align*}
$$

Since $\operatorname{hn}\left(K_{r, s}\right) \leq(s-1)^{2}-(r-1)^{2}+s+r-1$ and $t \geq 0$, it follows that $t=0$ and that $\operatorname{hn}\left(K_{r, s}\right)=(s-1)^{2}-(r-1)^{2}+s+r-1$.

Combining Proposition 2.5 and Theorems 2.7 and 2.8, we obtain the following.
Corollary 2.9. For integers r and s with $1 \leq r \leq s$,

$$
\operatorname{hn}\left(K_{r, s}\right)= \begin{cases}r+s & \text { if } r=s, \\ (s-1)^{2}+s+1 & \text { if } r=1 \text { and } s \geq 2, \\ (s-1)^{2}-(r-1)^{2}+r+s-1 & \text { if } 2 \leq r<s .\end{cases}
$$

3. Hamiltonian labeling numbers of subgraphs of coronas of Hamiltonian graphs

A common question in graph theory concerns how the value of a parameter is affected by making a small change in the graph. If G is a Hamiltonian graph and u and v are two nonadjacent vertices of G, then $G+u v$ is also Hamiltonian and so $\mathrm{hn}(G)=\mathrm{hn}(G+u v)$. On the other hand, if we add a pendant edge to a Hamiltonian graph G producing a nonHamiltonian graph H, then the Hamiltonian labeling number of H can be significantly larger than that of G, as we show in this section. We begin with those graphs obtained from a cycle or a complete graph by adding a single pendant edge.
Theorem 3.1. If G is the graph of order $n \geq 5$ obtained from C_{n-1} by adding a pendant edge, then $\mathrm{hn}(G)=2 n-2$.
Proof. Let $C: v_{1}, v_{2}, \ldots, v_{n-1}, v_{1}$ and let $v_{n-1} v_{n}$ be the pendant edge of G. We first show that $\mathrm{hn}(G) \leq 2 n-2$. Define a labeling c_{0} of G by

$$
c_{0}\left(v_{i}\right)= \begin{cases}2 i & \text { if } 1 \leq i \leq n-1 \\ 1 & \text { if } i=n\end{cases}
$$

We show that c_{0} is a Hamiltonian labeling. First let

$$
v_{i}, v_{j} \in V(C),
$$

where $1 \leq i<j \leq n-1$. If $j-i \geq \frac{n-1}{2}$, then $D\left(v_{i}, v_{j}\right)=j-i$ and so

$$
\begin{aligned}
\left|c_{0}\left(v_{i}\right)-c_{0}\left(v_{j}\right)\right|+D\left(v_{i}, v_{j}\right) & =|2 i-2 j|+(j-i)=3(j-i) \\
& \geq 3\left(\frac{n-1}{2}\right)=\frac{3 n}{2}-\frac{3}{2} \geq n,
\end{aligned}
$$

since $n \geq 3$. If $j-i \leq \frac{n-1}{2}$, then $D\left(v_{i}, v_{j}\right)=(n-1)-(j-i)$ and so

$$
\begin{aligned}
\left|c_{0}\left(v_{i}\right)-c_{0}\left(v_{j}\right)\right|+D\left(v_{i}, v_{j}\right) & =2(j-i)+[(n-1)-(j-i)] \\
& =n-1+(j-i) \geq n .
\end{aligned}
$$

Next, we consider each pair v_{i}, v_{n} where $1 \leq i \leq n-1$. Since $D\left(v_{i}, v_{n}\right) \geq n-i$ and $\left|c_{0}\left(v_{i}\right)-c_{0}\left(v_{n}\right)\right| \geq 2 i-1$, it follows that

$$
\left|c_{0}\left(v_{i}\right)-c_{0}\left(v_{n}\right)\right|+D\left(v_{i}, v_{n}\right) \geq n+i-1 \geq n .
$$

Therefore, c_{0} is a Hamiltonian labeling, as claimed.
Next, we show that $\mathrm{hn}(G) \geq 2 n-2$. Let c be a minimum Hamiltonian labeling of G. First, we make some observations.
(a) For each pair i, j with $1 \leq i \neq j \leq n-1, D\left(v_{i}, v_{j}\right) \leq n-2$ and so $\mid c\left(v_{i}\right)-$ $c\left(v_{j}\right) \mid \geq 2$.
(b) For each i with $i \in\{1, n-2\}, D\left(v_{n}, v_{i}\right)=n-1$ and so $\left|c\left(v_{n}\right)-c\left(v_{i}\right)\right| \geq 1$.
(c) For each i with $1 \leq i \leq n-1$ and $i \notin\{1, n-2\}, D\left(v_{n}, v_{i}\right) \leq n-2$ and so $\left|c\left(v_{n}\right)-c\left(v_{i}\right)\right| \geq 2$.

Let $u_{1}, u_{2}, \ldots, u_{n}$ be the c-ordering of the vertices of G and let

$$
X=\left\{c\left(u_{i+1}\right)-c\left(u_{i}\right): 1 \leq i \leq n-1\right\} .
$$

By observations (a)-(c), at most two terms in X are 1. If at most one term in X is 1 , then $\mathrm{hn}(c)=c\left(u_{n}\right) \geq 1+1+2(n-2)=2 n-2$. If at least one term in X is 3 or more, then $\mathrm{hn}(c)=c\left(u_{n}\right) \geq 1+1+1+3+2(n-4)=2 n-2$. Thus we may assume that exactly two terms in X are 1 and the remaining terms in X are 2 . Then $v_{n}=u_{i}$ for some i with $2 \leq i \leq n-1$ and $\left\{v_{1}, v_{n-2}\right\}=\left\{u_{i-1}, u_{i+1}\right\}$, where $c\left(u_{i}\right)-c\left(u_{i-1}\right)=c\left(u_{i+1}\right)-c\left(u_{i}\right)=1$. This implies that $v_{n-1}=u_{j}$ for some j with $1 \leq j \leq n$ and $j \neq i$. If $2 \leq j \leq n-1$, then $\left\{u_{j-1}, u_{j+1}\right\} \neq\left\{v_{1}, v_{n-2}\right\}$; if $j=1$, then $u_{2} \notin\left\{v_{1}, v_{n-2}\right\}$, for otherwise

$$
\begin{aligned}
\left|c\left(v_{n-1}\right)-c\left(v_{n}\right)\right|+D\left(v_{n-1}, v_{n}\right) & \leq\left|c\left(v_{n-1}\right)-c\left(u_{2}\right)\right|+\left|c\left(u_{2}\right)-c\left(v_{n}\right)\right|+1 \\
& \leq 2+1+1=4<n,
\end{aligned}
$$

which is impossible; if $j=n$, then $u_{n-1} \notin\left\{v_{1}, v_{n-2}\right\}$, for otherwise

$$
\begin{aligned}
\left|c\left(v_{n-1}\right)-c\left(v_{n}\right)\right|+D\left(v_{n-1}, v_{n}\right) & \leq\left|c\left(v_{n-1}\right)-c\left(u_{n-1}\right)\right|+\left|c\left(u_{n-1}\right)-c\left(v_{n}\right)\right|+1 \\
& \leq 2+1+1=4<n
\end{aligned}
$$

again, which is impossible. Therefore, for each j with $1 \leq j \leq n$, there exists $k \in\{j-1, j+1\}$ such that $u_{k} \notin\left\{v_{1}, v_{n-2}\right\}$. Assume, without loss of generality, that $u_{j-1} \notin\left\{v_{1}, v_{n-2}\right\}$. Since $D\left(u_{j-1}, u_{j}\right) \leq n-3$, it follows that $c\left(u_{j}\right)-c\left(u_{j-1}\right) \geq 3$, which is impossible since each term in X is at most 2 . Thus, $\operatorname{hn}(G) \geq 2 n-2$.

Theorem 3.2. If G is the graph of order $n \geq 4$ obtained from K_{n-1} by adding a pendant edge, then $\mathrm{hn}(G)=2 n-3$.

Proof. Let $V\left(K_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and let G be obtained from K_{n-1} by adding the pendant edge $v_{n-1} v_{n}$. We first show that $\mathrm{hn}(G) \leq 2 n-3$. Define a labeling c_{0} of G by

$$
c_{0}(v)= \begin{cases}2 i-1 & \text { if } v=v_{i} \text { for } 1 \leq i \leq n-1 \\ 2 & \text { if } v=v_{n}\end{cases}
$$

For each pair i, j of integers with $1 \leq i \neq j \leq n-1$,

$$
D\left(v_{i}, v_{j}\right)=n-2 \quad \text { and } \quad\left|c_{0}\left(v_{i}\right)-c_{0}\left(v_{j}\right)\right| \geq 2
$$

For each i with $1 \leq i \leq n-2$,

$$
D\left(v_{n}, v_{i}\right)=n-1 \quad \text { and } \quad\left|c_{0}\left(v_{n}\right)-c_{0}\left(v_{i}\right)\right| \geq 1
$$

Furthermore, $D\left(v_{n}, v_{n-1}\right)=1$ and

$$
\left|c_{0}\left(v_{n}\right)-c_{0}\left(v_{n-1}\right)\right| \geq(2 n-3)-2=2 n-5 \geq n-1
$$

for $n \geq 4$. In each case,

$$
D\left(v_{i}, v_{j}\right)+\left|c_{0}\left(v_{i}\right)-c_{0}\left(v_{j}\right)\right| \geq n
$$

for all i, j with $1 \leq i \neq j \leq n$. Therefore, c_{0} is a Hamiltonian labeling and so $\operatorname{hn}(G) \leq \operatorname{hn}\left(c_{0}\right)=c_{0}\left(v_{n-1}\right)=2 n-3$.

Next, we show that $\mathrm{hn}(G) \geq 2 n-3$. Let c be a minimum Hamiltonian labeling of G. Suppose that the vertices of K_{n-1} in G can be ordered as $u_{1}, u_{2}, \ldots, u_{n-1}$ such that $c\left(u_{1}\right)<c\left(u_{2}\right)<\ldots<c\left(u_{n-1}\right)$. Since

$$
D\left(u_{i}, u_{j}\right)=n-2
$$

for $1 \leq i<j \leq n-1$, it follows that

$$
\left|c\left(u_{i}\right)-c\left(u_{j}\right)\right|=c\left(u_{j}\right)-c\left(u_{i}\right) \geq 2
$$

This implies that

$$
\mathrm{hn}(c) \geq c\left(u_{n-1}\right) \geq 1+2(n-2)=2 n-3 .
$$

Therefore, $\mathrm{hn}(G) \geq 2 n-3$.
Let G be a connected graph containing an edge e that is not a bridge. Then $G-e$ is connected. For every two distinct vertices u and v in $G-e$, the length of a longest $u-v$ path in $G-e$ does not exceed the length of a longest $u-v$ path in G. Thus every Hamiltonian labeling of $G-e$ is a Hamiltonian labeling of G. This observation yields the following useful lemma.
Lemma 3.3. If F is a connected subgraph of a connected graph G, then

$$
\operatorname{hn}(G) \leq \operatorname{hn}(F) .
$$

The following is a consequence of Theorems 3.1 and 3.2 and Lemma 3.3.
Corollary 3.4. Let H be a Hamiltonian graph of order $n-1 \geq 3$. If G is a graph obtained from H by adding a pendant edge, then

$$
2 n-3 \leq \operatorname{hn}(G) \leq 2 n-2 .
$$

Proof. Let C be a Hamiltonian cycle in H. If $H=C_{n-1}$, then $\mathrm{hn}(G)=2 n-2$ by Theorem 3.1; while if $H=K_{n-1}$, then $\mathrm{hn}(G)=2 n-3$ by Theorem 3.2. Thus, we may assume that $H \neq C_{n-1}$ and $H \neq K_{n-1}$. Let F be the graph obtained from K_{n-1} by adding a pendant edge and F^{\prime} be the graph obtained from C_{n-1} by adding a pendant edge. Then G can be obtained from F by deleting nonbridge edges and F^{\prime} can be obtained from G by deleting nonbridge edges. It then follows by Lemma 3.3 that $\mathrm{hn}(F) \leq \mathrm{hn}(G) \leq \mathrm{hn}\left(F^{\prime}\right)$ and so $2 n-3 \leq \mathrm{hn}(G) \leq 2 n-2$.

In fact, there exists a Hamiltonian graph H of order $n-1$ such that adding a pendant edge at a vertex x of H produces a graph G with $\operatorname{hn}(G)=2 n-3$ but adding a pendant edge at a different vertex y of H produces a graph F with $\mathrm{hn}(F)=2 n-2$. For example, let H be the Hamiltonian graph obtained from the cycle $C: v_{1}, v_{2}, \ldots, v_{n-1}, v_{1}$ of order $n-1 \geq 4$ by adding the edge $v_{1} v_{n-2}$. If G is formed from H by adding a pendant edge at v_{n-1}, then $\operatorname{hn}(G)=2 n-3$; while if F is formed from H by adding the pendant edge v_{1}, then $\mathrm{hn}(F)=2 n-2$.

In order to study graphs obtained from a Hamiltonian graph by adding pendant edges, we first establish some additional definitions and notation. For a graph F, the corona $\operatorname{cor}(F)$ of F is that graph obtained from F by adding exactly one pendant edge at each vertex of F. For a connected graph G, the core $C(G)$ of G is obtained from G by successively deleting vertices of degree 1 until none remain. Thus, if G is a tree, then its core is K_{1}; while if G is not a tree, then the core of G is the induced subgraph F of maximum order with $\delta(F) \geq 2$. For each integer $k \geq 3$, let \mathscr{H}_{k} be the set of nonHamiltonian graphs that can be obtained from a

Hamiltonian graph of order k by adding pendant edges to this graph in such a way that at most one pendant edge is added to each vertex of the graph. Thus if $G \in \mathscr{H}_{k}$, then there is a Hamiltonian graph H of order k such that G is a connected subgraph of $\operatorname{cor}(H)$ whose core is H. We now establish lower and upper bounds for the Hamiltonian labeling number of a graph in \mathscr{H}_{k} in terms of the integer k and the order of the graph, beginning with a lower bound.

Theorem 3.5. Let $G \in \mathscr{H}_{k}$ be a graph of order n and $k+1 \leq n \leq 2 k$. Then

$$
\operatorname{hn}(G) \geq(n-1)(n-k)+(2 k-n)
$$

Proof. Suppose that H is a Hamiltonian graph of order $k \geq 3$ and that $H \cong C(G)$. If $H \not \not 二 K_{k}$, then G can be obtained from some graph $F \in \mathscr{H}_{k}$ by deleting nonbridge edges from F, where $C(F) \cong K_{k}$, and $V(G-H)=V\left(F-K_{k}\right)$. That is, G and F possess the same end-vertices. It then follows by Lemma 3.3 that

$$
\mathrm{hn}(F) \leq \mathrm{hn}(G)
$$

Therefore, it suffices to show that

$$
\operatorname{hn}(F) \geq(n-1)(n-k)+(2 k-n)
$$

Let $V(F)=U \cup W$, where $U=V\left(K_{k}\right)$ and $W=V(F)-U$. First we make some observations:
(a) If $x, y \in U$, then $D(x, y)=k-1$.
(b) If $x, y \in W$, then $D(x, y)=k+1$.
(c) If $x \in U$ and $y \in W$, then $D(x, y)=1$ if $x y \in E(F)$ and $D(x, y)=k$ otherwise.

Let c be a minimum Hamiltonian labeling of F and let $v_{1}, v_{2}, \ldots, v_{n}$ be the c ordering of the vertices of F. We define the four subsets $S_{u}, S_{w}, S_{u, w}$, and $S_{w, u}$ of $V(F)$ as follows:

$$
\begin{aligned}
S_{u} & =\left\{v_{i}: v_{i-1}, v_{i} \in U \text { for } 2 \leq i \leq n\right\}, \\
S_{w} & =\left\{v_{i}: v_{i-1}, v_{i} \in W \text { for } 2 \leq i \leq n\right\}, \\
S_{u, w} & =\left\{v_{i}: v_{i-1} \in U \text { and } v_{i} \in W \text { for } 2 \leq i \leq n\right\}, \\
S_{w, u} & =\left\{v_{i}: v_{i-1} \in W \text { and } v_{i} \in U \text { for } 2 \leq i \leq n\right\} .
\end{aligned}
$$

Let $\left|S_{u}\right|=n_{u},\left|S_{w}\right|=n_{w},\left|S_{u, w}\right|=n_{u, w},\left|S_{w, u}\right|=n_{w, u}$. Since

$$
S_{u} \cup S_{w} \cup S_{u, w} \cup S_{w, u}=V(F)-\left\{v_{1}\right\}
$$

it follows that

$$
\begin{equation*}
n_{u}+n_{w}+n_{u, w}+n_{w, u}=n-1 \tag{5}
\end{equation*}
$$

For each integer i with $2 \leq i \leq n$,
(A) if $v_{i} \in S_{u}$, then $c\left(v_{i}\right)-c\left(v_{i-1}\right) \geq n-k+1$ by (a);
(B) if $v_{i} \in S_{w}$, then $c\left(v_{i}\right)-c\left(v_{i-1}\right) \geq n-k-1$ by (b);
(C) if $v_{i} \in S_{u} \cup S_{w}$, then either $c\left(v_{i}\right)-c\left(v_{i-1}\right) \geq n-1$ or $c\left(v_{i}\right)-c\left(v_{i-1}\right) \geq n-k$ by (iii), and so $c\left(v_{i}\right)-c\left(v_{i-1}\right) \geq n-k$ in this case.

It then follows by (A)-(C) and (5) that

$$
\begin{aligned}
\operatorname{hn}(c) & =c\left(v_{n}\right) \geq 1+n_{u}(n-k+1)+n_{w}(n-k-1)+\left(n_{u, w}+n_{w, u}\right)(n-k) \\
& =1+\left(n_{u}+n_{w}+n_{u, w}+n_{w, u}\right)(n-k)+\left(n_{u}-n_{w}\right) \\
& =1+(n-1)(n-k)+\left(n_{u}-n_{w}\right) .
\end{aligned}
$$

We claim that $n_{u}-n_{w} \geq 2 k-n-1$. Since

$$
S_{u} \cup S_{u, w}=\left\{v_{i}: v_{i-1} \in U \text { for } 2 \leq i \leq n\right\}
$$

it follows that

$$
\left|S_{u} \cup S_{u, w}\right|= \begin{cases}|U|-1 & \text { if } v_{n} \in U \\ |U| & \text { otherwise }\end{cases}
$$

and so

$$
\begin{equation*}
n_{u}+n_{u, w}=k \text { or } n_{u}+n_{u, w}=k-1 \tag{6}
\end{equation*}
$$

Since

$$
\begin{aligned}
S_{w} \cup S_{u, w} & =\left\{v_{i}: \quad v_{i} \in W \text { for } 2 \leq i \leq n\right\} \\
& = \begin{cases}W-\left\{v_{1}\right\} & \text { if } v_{1} \in W \\
W & \text { otherwise },\end{cases}
\end{aligned}
$$

it follows that

$$
\begin{equation*}
n_{w}+n_{u, w}=n-k \text { or } n_{w}+n_{u, w}=n-k-1 \tag{7}
\end{equation*}
$$

By Equations (6) and (7), we obtain

$$
n_{u}-n_{w}=\left(n_{u}+n_{u, w}\right)-\left(n_{w}+n_{u, w}\right) \geq(k-1)-(n-k)=2 k-n-1
$$

as claimed. Therefore,

$$
\operatorname{hn}(G)=\operatorname{hn}(c) \geq 1+(n-1)(n-k)+\left(n_{u}-n_{w}\right) \geq(n-1)(n-k)+(2 k-n)
$$

This completes the proof.
Theorem 3.6. Let $G \in \mathscr{H}_{k}$ be a graph of order n and $k+2 \leq n \leq 2 k$. Then

$$
\operatorname{hn}(G) \leq 1+n+(n-k-1)^{2}+(k-2)(n-k+1)
$$

Proof. Suppose that H is a Hamiltonian graph of order $k \geq 3$ and that $H \cong C(G)$. If $H \not \equiv C_{k}$, then C_{k} can be obtained from H by deleting edges. Thus there exists $F \in \mathscr{H}_{k}$ such that $C(F) \cong C_{k}$ and F can be obtained from G by deleting edges that are not bridges. It then follows by Lemma 3.3 that

$$
\mathrm{hn}(G) \leq \mathrm{hn}(F)
$$

Therefore, we may assume that $H \cong C_{k}: x_{1}, x_{2}, \ldots, x_{k}, x_{1}$. Now let

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \quad \text { and } \quad Y=V(G)-X=\left\{y_{1}, y_{2}, \ldots, y_{n-k}\right\}
$$

such that y_{i} is adjacent to $x_{j_{i}}$, for $1 \leq i \leq n-k$, and $1=j_{1}<j_{2}<\ldots<j_{n-k} \leq k$. For each i with $1 \leq i \leq n-k$, let

$$
\begin{equation*}
g_{i}=j_{i+1}-j_{i}-1 \tag{8}
\end{equation*}
$$

where $j_{n-k+1}=j_{1}$; that is, g_{i} is the number of vertices of degree 2 between $x_{j_{i}}$ and $x_{j_{i+1}}$ on C_{k}. Thus if $x_{j_{i}} y_{i} \in E(G)$, then $x_{j_{i}+g_{i}+1} y_{i+1} \in E(G)$, for $1 \leq i \leq n-k$, and

$$
\sum_{i=1}^{n-k} g_{i}=2 k-n
$$

Now define the labeling c of G by

$$
c(v)= \begin{cases}1 & \text { if } v=x_{k} \tag{9}\\ 1+n-k & \text { if } v=y_{1} \\ c\left(y_{i-1}\right)+(n-k-1)+g_{i-1} & \text { if } v=y_{i} \text { and } 2 \leq i \leq n-k \\ c\left(y_{n-k}\right)+n-k+g_{n-k} & \text { if } v=x_{1} \\ c\left(x_{j-1}\right)+(n-k+1) & \text { if } v=x_{j} \text { and } 2 \leq j \leq k-1\end{cases}
$$

Thus the c-ordering of the vertices of G is

$$
x_{k}, y_{1}, y_{2}, \ldots, y_{n-k}, x_{1}, x_{2}, \ldots, x_{k-1}
$$

and by Equation (9)

$$
\begin{align*}
& c\left(x_{k}\right)=1 \\
& c\left(y_{i}\right)=1+n-k+(i-1)(n-k-1)+\sum_{\ell=1}^{i-1} g_{\ell} \text { for } 1 \leq i \leq n-k \tag{10}\\
& c\left(x_{1}\right)=1+n+(n-k-1)^{2} \\
& c\left(x_{j}\right)=1+n+(n-k-1)^{2}+(j-1)(n-k+1) \text { for } 2 \leq j \leq k-1 .
\end{align*}
$$

Therefore, the value of c is

$$
\operatorname{hn}(c)=c\left(x_{k-1}\right)=1+n+(n-k-1)^{2}+(k-2)(n-k+1)
$$

Thus it remains to show that c is a Hamiltonian labeling of G. First, we make some observations. Let $u, v \in V(G)$, where $u \neq v$.
(α) If $u=x_{i}$ and $v=x_{j}$ where $1 \leq i \neq j \leq k$, then $D(u, v)=\max \{|i-j|, k-|i-j|\}$.
(β) If $u=y_{i}$ and $v=y_{j}$ where $1 \leq i<j \leq n-k$, then

$$
D(u, v)=2+\max \left\{j-i+\sum_{\ell=i}^{j-1} g_{\ell}, k-\left(j-i+\sum_{\ell=i}^{j-1} g_{\ell}\right)\right\}
$$

(γ) If $u=x_{i}, v \in Y$, and $v x_{j} \in E(G)$ where $1 \leq i, j \leq k$ (possibly $i=j$), then $D(u, v)=1$ if $i=j$ and $D(u, v)=1+\max \{|i-j|, k-|i-j|\}$ if $i \neq j$.

We show that

$$
\begin{equation*}
D(u, v)+|c(u)-c(v)| \geq n \tag{11}
\end{equation*}
$$

for every pair u, v of distinct vertices of G. We consider three cases.
Case 1. $u, v \in X$. Let $u=x_{i}$ and $v=x_{j}$, where $1 \leq i, j \leq k$. We may assume, without loss of generality, that $i<j$. If $j=k$, then

$$
\begin{aligned}
\left|c\left(x_{i}\right)-c\left(x_{j}\right)\right| & =c\left(x_{i}\right)-c\left(x_{k}\right) \\
& =\left[1+n+(n-k-1)^{2}+(i-1)(n-k+1)\right]-1 \geq n
\end{aligned}
$$

and so condition (11) is satisfied. Thus we may assume that $j \neq k$.
If $j-i=1$, then $D\left(x_{i}, x_{j}\right)=k-1$ and $\left|c\left(x_{i}\right)-c\left(x_{j}\right)\right|=n-k+1$. Thus (11) holds in this case. If $j-i \geq \frac{k}{2}$, then

$$
\begin{aligned}
D\left(x_{i}, x_{j}\right)+\left|c\left(x_{i}\right)-c\left(x_{j}\right)\right| & =c\left(x_{j}\right)-c\left(x_{i}\right)+D\left(x_{i}, x_{j}\right) \\
& =(j-i)(n-k+1)+(j-i)=(j-i)(n-k+2) \\
& \geq \frac{k}{2}(n-k+2)=k\left(\frac{n-k}{2}+1\right) \geq 2 k \geq n
\end{aligned}
$$

If $2 \leq j-i \leq \frac{k}{2}$, then

$$
\begin{aligned}
D\left(x_{i}, x_{j}\right)+\left|c\left(x_{i}\right)-c\left(x_{j}\right)\right| & =c\left(x_{j}\right)-c\left(x_{i}\right)+D\left(x_{i}, x_{j}\right) \\
& =(j-i)(n-k+1)+(k-(j-i)) \\
& =(j-i)(n-k)+k \\
& \geq 2(n-k)+k=2 n-k \geq n
\end{aligned}
$$

Case 2. $u, v \in Y$. Let $u=y_{i}$ and $v=y_{j}$, where $1 \leq i, j \leq n-k$. We may assume, without loss of generality, that $i<j$. Then

$$
\left|c\left(y_{i}\right)-c\left(y_{j}\right)\right|=c\left(y_{j}\right)-c\left(y_{i}\right)=(j-i)(n-k-1)+\sum_{\ell=i}^{j-1} g_{\ell}
$$

If $j-i+\sum_{\ell=i}^{j-1} g_{\ell} \geq \frac{k}{2}$, then

$$
D\left(y_{i}, y_{j}\right)=2+j-i+\sum_{\ell=i}^{j-1} g_{\ell}
$$

by (β), and so

$$
\begin{aligned}
D\left(y_{i}, y_{j}\right)+\left|c\left(y_{i}\right)-c\left(y_{j}\right)\right| & =(j-i)(n-k-1)+\left(\sum_{\ell=i}^{j-1} g_{\ell}\right)+2+j-i+\left(\sum_{\ell=i}^{j-1} g_{\ell}\right) \\
& \geq(j-i)(n-k-1)+2+(j-i)+[k-2(j-i)] \\
& =(j-i)(n-k-2)+k+2 \geq n
\end{aligned}
$$

If $1 \leq j-i+\sum_{\ell=i}^{j-1} g_{\ell} \leq \frac{k}{2}$, then

$$
D\left(y_{i}, y_{j}\right)=2+k-\left(j-i+\sum_{\ell=i}^{j-1} g_{\ell}\right)
$$

by (β), and so

$$
\begin{aligned}
D\left(y_{i}, y_{j}\right)+\left|c\left(y_{i}\right)-c\left(y_{j}\right)\right| & =(j-i)(n-k-1)+\left(\sum_{\ell=i}^{j-1} g_{\ell}\right)+2+k-\left(j-i+\sum_{\ell=i}^{j-1} g_{\ell}\right) \\
& =(j-i)(n-k-2)+k+2 \\
& \geq n-k-2+k+2=n
\end{aligned}
$$

Case 3. One of u and v is in X and the other is in Y, say $u \in X$ and $v \in Y$. Let $u=x_{i}$ and $v=y_{j}$, where $1 \leq i \leq k$ and $1 \leq j \leq n-k$. We consider two subcases, according to whether $x_{i} y_{j} \in E(G)$ or $x_{i} y_{j} \notin E(G)$.

Subcase 3.1. $x_{i} y_{j} \in E(G)$. We proceed by induction to show that

$$
c\left(x_{i}\right)-c\left(y_{j}\right) \geq n-1
$$

when $x_{i} y_{j} \in E(G)$. For $i=j=1$,

$$
\begin{aligned}
\left|c\left(x_{1}\right)-c\left(y_{1}\right)\right|=c\left(x_{1}\right)-c\left(y_{1}\right) & =\left[1+n+(n-k-1)^{2}\right]-(1+n-k) \\
& =(n-k-1)^{2}+k \geq n-1 \text { for } n \geq k+2
\end{aligned}
$$

Assume that $c\left(x_{i}\right)-c\left(y_{j}\right) \geq n-1$. Since $x_{i+1+g_{j}} y_{j+1} \in E(G)$ by (8), we show that $c\left(x_{i+1+g_{j}}\right)-c\left(y_{j+1}\right) \geq n-1$. Observe that
$c\left(x_{i+1+g_{j}}\right)=c\left(x_{i}\right)+\left(g_{j}+1\right)(n-k+1) \quad$ and $\quad c\left(y_{j+1}\right)=c\left(y_{j}\right)+(n-k-1)+g_{j}$.

It then follows by the induction hypothesis that

$$
\begin{aligned}
c\left(x_{i+1+g_{j}}\right)-c\left(y_{j+1}\right) & \geq n-1+\left(g_{j}+1\right)(n-k+1)-(n-k-1)-g_{j} \\
& =n+1+g_{j}(n-k) \geq n-1 .
\end{aligned}
$$

Therefore if $x_{i} y_{j} \in E(G)$, then $\left|c\left(x_{i}\right)-c\left(y_{j}\right)\right|+D\left(x_{i}, y_{j}\right) \geq n-1+1=n$. Thus condition (11) is satisfied.

Subcase 3.2. $x_{i} y_{j} \notin E(G)$. Then $i \neq j$. By (8), if $y_{j} x_{m} \in E(G)$, then

$$
\sum_{\ell=1}^{j-1} g_{\ell}=m-j
$$

and

$$
\begin{align*}
& D\left(x_{i}, y_{j}\right)+\left|c\left(x_{i}\right)-c\left(y_{j}\right)\right|=c\left(x_{i}\right)-c\left(y_{j}\right)+D\left(x_{i}, x_{m}\right)+1 \tag{12}\\
& =(n-k-1)^{2}+(i-j)(n-k)+i+j-(m-j)+k-1+D\left(x_{i}, x_{m}\right) \\
& =\left[(n-k-1)^{2}+(i-j)(n-k)+k+2 j-1\right]+(i-m)+D\left(x_{i}, x_{m}\right) .
\end{align*}
$$

Now observe, if $i>j$, then $(i-j)(n-k)+k \geq n$; whereas if $1 \leq i<j \leq n-k$, then

$$
\begin{aligned}
(n-k-1)^{2} & +(i-j)(n-k)+k+2 j-1 \\
& =\left[(n-k)^{2}-2(n-k)\right]+i(n-k)-j(n-k-2)+k \\
& \geq\left[(n-k)^{2}-2(n-k)\right]+i(n-k)-\left[(n-k)^{2}-2(n-k)\right]+k \geq n .
\end{aligned}
$$

Therefore, by Equation (12)

$$
\begin{equation*}
D\left(x_{i}, y_{j}\right)+\left|c\left(x_{i}\right)-c\left(y_{j}\right)\right| \geq n+(i-m)+D\left(x_{i}, x_{m}\right) . \tag{13}
\end{equation*}
$$

We then have three possible situations. If $i>m$, then $i-m>0$ and so by condition (13), (11) is satisfied. If $m>i$ and $m-i \geq k / 2$, then $D\left(x_{i}, x_{m}\right)=m-i$ and so by (13)

$$
D\left(x_{i}, y_{j}\right)+\left|c\left(x_{i}\right)-c\left(y_{j}\right)\right| \geq n+(i-m)+(m-i)=n .
$$

Finally, if $m>i$ and $m-i \leq k / 2$, then $D\left(x_{i}, x_{m}\right)=k-(m-i)$ and so from (13)

$$
\begin{aligned}
D\left(x_{i}, y_{j}\right)+\left|c\left(x_{i}\right)-c\left(y_{j}\right)\right| & \geq n+(i-m)+[k-(m-i)] \\
& =n+k-2(m-i) \geq n+k-k=n .
\end{aligned}
$$

For each situation, condition (11) is satisfied. Therefore c is a Hamiltonian labeling of G.

We now present two corollaries of Theorems 3.5 and 3.6.

Corollary 3.7. If G is a graph of order n that is the corona of a Hamiltonian graph, then

$$
\operatorname{hn}(G)=\binom{n}{2}
$$

Proof. Suppose that H is a Hamiltonian graph of order $k \geq 3$ and that $G=\operatorname{cor}(H)$. Then the order of G is $n=2 k$. We show that

$$
\operatorname{hn}(G)=\binom{n}{2}=k(2 k-1)
$$

If $H \neq C_{k}$ and $H \neq K_{k}$, then G can be obtained from $\operatorname{cor}\left(K_{k}\right)$ by deleting nonbridge edges and $\operatorname{cor}\left(C_{k}\right)$ can be obtained from G by deleting edges that are not bridges. It then follows by Lemma 3.3 that

$$
\operatorname{hn}\left(\operatorname{cor}\left(K_{k}\right)\right) \leq \operatorname{hn}(G) \leq \operatorname{hn}\left(\operatorname{cor}\left(C_{k}\right)\right)
$$

Therefore, it suffices to show that

$$
k(2 k-1) \leq \operatorname{hn}\left(\operatorname{cor}\left(K_{k}\right)\right) \text { and } \operatorname{hn}\left(\operatorname{cor}\left(C_{k}\right)\right) \leq k(2 k-1)
$$

From Theorems 3.5 and 3.6, we find that

$$
\operatorname{hn}\left(\operatorname{cor}\left(K_{k}\right)\right) \geq(2 k-1)(2 k-k)+(2 k-2 k)=k(2 k-1)
$$

and

$$
\begin{aligned}
\operatorname{hn}\left(\operatorname{cor}\left(C_{k}\right)\right) & \leq 1+2 k+(2 k-k-1)^{2}+(k-2)(2 k-k+1) \\
& =1+2 k+k^{2}-2 k+1+k^{2}-k-2=k(2 k-1)
\end{aligned}
$$

Therefore, $\operatorname{hn}(G)=k(2 k-1)$.
Corollary 3.8. For each graph $G \in \mathscr{H}_{k}$,

$$
2 k-1 \leq \operatorname{hn}(G) \leq k(2 k-1)
$$

Proof. Let

$$
f(x)=(x-1)(x-k)+(2 k-x)
$$

for $k+1 \leq x \leq 2 k$ and let

$$
g(x)=1+x+(x-k-1)^{2}+(k-2)(x-k+1)
$$

for $k+2 \leq x \leq 2 k$. Let $G \in \mathscr{H}_{k}$ be a graph of order n where $k+1 \leq n \leq 2 k$. Then by Corollary 3.4 and Theorems 3.5 and 3.6,

$$
f(n) \leq \operatorname{hn}(G) \leq g(n)
$$

Since each $f(x)$ and $g(x)$ is an increasing function in its domain, it follows that $f(x) \geq f(k+1)=2 k-1$ and $g(x) \leq g(2 k)=k(2 k-1)$, implying the desired result.

Both lower and upper bound in Corollary 3.8 are sharp. For example, if $G^{\prime} \in \mathscr{H}_{k}$ is a graph of order $k+1$ whose core is K_{k}, then $\mathrm{hn}\left(G^{\prime}\right)=2 n-3=2 k-1$ by Theorem 3.2; while if $G^{\prime \prime} \in \mathscr{H}_{k}$ is a graph of order $2 k$ whose core is K_{k}, then

$$
\operatorname{hn}\left(G^{\prime \prime}\right)=\binom{n}{2}=k(2 k-1)
$$

by Corollary 3.7.

Acknowledgements

We are grateful to the referee whose valuable suggestions resulted in an improved paper.

References

[Chartrand and Zhang 2008] G. Chartrand and P. Zhang, Chromatic graph theory, Chapman \& Hall/CRC, Boca Raton, FL, 2008.
[Chartrand et al. 2001] G. Chartrand, D. Erwin, P. Zhang, and F. Harary, "Radio labelings of graphs", Bull. Inst. Combin. Appl. 33 (2001), 77-85. MR 2003d:05185 Zbl 0989.05102
[Chartrand et al. 2002a] G. Chartrand, D. Erwin, and P. Zhang, "Radio antipodal colorings of graphs", Math. Bohem. 127:1 (2002), 57-69. MR 2003b:05065 Zbl 0995.05056
[Chartrand et al. 2002b] G. Chartrand, L. Nebeský, and P. Zhang, "Bounds for the Hamiltonian chromatic number of a graph", pp. 113-125 in Proceedings of the Thirty-third Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2002), vol. 157, 2002. MR 2004e:05062 Zbl 1029.05059
[Chartrand et al. 2005a] G. Chartrand, L. Nebeský, and P. Zhang, "Hamiltonian colorings of graphs", Discrete Appl. Math. 146:3 (2005), 257-272. MR 2005i:05061 Zbl 1056.05054
[Chartrand et al. 2005b] G. Chartrand, L. Nebesky, and P. Zhang, "On Hamiltonian colorings of graphs", Discrete Math. 290:2-3 (2005), 133-143. MR 2006a:05058 Zbl 1059.05046
[Nebeský 2003] L. Nebeský, "Hamiltonian colorings of graphs with long cycles", Math. Bohem. 128:3 (2003), 263-275. MR 2004h:05051 Zbl 1050.05055
[Nebeský 2006] L. Nebeský, "The Hamiltonian chromatic number of a connected graph without large Hamiltonian-connected subgraphs", Czech. Math. J. 56:2 (2006), 317-338. MR 2007k:05125

Received: 2008-08-21 Revised: Accepted: 2008-11-15
Wille.a.renzema@wmich.edu Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, United States

Ping.zhang@wmich.edu Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, United States

[^0]: MSC2000: primary 05C12, 05C45; secondary 05C78, 05C15.
 Keywords: Hamiltonian labeling, detour distance.
 Willem Renzema's research was supported in part by Lee Honors College Dean's Summer Research Award Program at Western Michigan University.

