

On distances and self-dual codes over $F_q[u]/(u^t)$

Ricardo Alfaro, Stephen Bennett, Joshua Harvey and Celeste Thornburg

On distances and self-dual codes over $F_q[u]/(u^t)$

Ricardo Alfaro, Stephen Bennett, Joshua Harvey and Celeste Thornburg

(Communicated by Nigel Boston)

New metrics and distances for linear codes over the ring $\mathbb{F}_q[u]/(u^t)$ are defined, which generalize the Gray map, Lee weight, and Bachoc weight; and new bounds on distances are given. Two characterizations of self-dual codes over $\mathbb{F}_q[u]/(u^t)$ are determined in terms of linear codes over \mathbb{F}_q . An algorithm to produce such self-dual codes is also established.

1. Introduction

Many optimal codes have been obtained by studying codes over general rings rather than fields. Lately, codes over finite chain rings (of which $\mathbb{F}_q[u]/(u^t)$ is an example) have been a source of many interesting properties [Norton and Salagean 2000a; Ozbudak and Sole 2007; Dougherty et al. 2007]. Gulliver and Harada [2001] found good examples of ternary codes over \mathbb{F}_3 using a particular type of *Gray map*. Siap and Ray-Chaudhuri [2000] established a relation between codes over $\mathbb{F}_q[u]/(u^2 - a)$ and codes over \mathbb{F}_q which was used to obtain new codes over \mathbb{F}_3 and \mathbb{F}_5 . In this paper we present a certain generalization of the method used in [Gulliver and Harada 2001] and [Siap and Ray-Chaudhuri 2000], defining a family of metrics for linear codes over $\mathbb{F}_q[u]/(u^t)$ and obtaining as particular examples the *Gray map*, the *Gray weight*, the *Lee weight* and the *Bachoc weight*. For the latter, we give a new bound on the distance of those codes. It also shows that the Gray images of codes over $\mathbb{F}_2 + u\mathbb{F}_2$ are more powerful than codes obtained by the so-called u-(u+v) condition.

With these tools in hand, we study conditions for self-duality of codes over $\mathbb{F}_q[u]/(u^t)$. Norton and Salagean [2000b] studied the case of self-dual cyclic codes in terms of the generator polynomials. In this paper we study self-dual codes in terms of linear codes over \mathbb{F}_q that are obtained as images under the maps defined on the first part of the paper. We provide a way to construct many self-dual codes over \mathbb{F}_q starting from a self-dual code over $\mathbb{F}_q[u]/(u^t)$. We also study self-dual codes

Keywords: linear codes over rings, self-dual codes.

MSC2000: primary 94B05, 94B60; secondary 11T71.

This project was partially supported by the Office of Research of the University of Michigan-Flint.

in terms of the torsion codes, and provide a way to construct many self-dual codes over $\mathbb{F}_q[u]/(u^t)$ starting from a self-orthogonal code over \mathbb{F}_q . Our results contain many of the properties studied by Bachoc [1997] for self-dual codes over $\mathbb{F}_3 + u\mathbb{F}_3$.

2. Metric for codes over $\mathbb{F}_q[u]/(u^t)$

We will use R(q, t) to denote the commutative ring $\mathbb{F}_q[u]/(u^t)$. The q^t elements of this ring can be represented in two different forms, and we will use the most appropriate in each case. First, we can use the polynomial representation with indeterminate u of degree less than or equal to (t-1) with coefficients in \mathbb{F}_q , using the notation $R(q, t) = \mathbb{F}_q + u\mathbb{F}_q + u^2\mathbb{F}_q + \cdots + u^{t-1}\mathbb{F}_q$. We also use the u-ary coefficient representation as an \mathbb{F}_q -vector space.

Let $B \in M_t(\mathbb{F}_q)$ be an invertible $t \times t$ matrix, and let B act as right multiplication on R(q, t) (seen as \mathbb{F}_q -vector space). We extend this action linearly to the \mathbb{F}_q -module $(R(q, t))^n$ by concatenation of the images $\phi_B : (R(q, t))^n \to (\mathbb{F}_q)^{tn}$ given by

$$\phi_B(x_1, x_2, \ldots, x_n) = (x_1 B, x_2 B, \ldots, x_n B)$$

An easy counting argument shows that ϕ_B is an \mathbb{F}_q -module isomorphism and if *C* is a linear code over R(q, t) of length *n*, then $\phi_B(C)$ is a linear *q*-ary code of length *tn*.

Example 1. Consider the ring $R(3, 2) = \mathbb{F}_3 + u\mathbb{F}_3$ with $u^2 = 0$. Choosing

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},$$

we obtain the *Gray map* $\phi_B : (\mathbb{F}_3 + u\mathbb{F}_3)^n \to \mathbb{F}_3^{2n}$ with

$$(a+ub)B = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} b & a+b \end{pmatrix}$$

used by Gulliver and Harada [2001].

Each such matrix B induces a new metric in the code C.

Definition 1. Let C be a linear code over R(q, t). Let B be an invertible matrix in $M_t(\mathbb{F}_q)$, and let ϕ_B be the corresponding map. The B-weight of an element $x \in R(q, t), w_B(x)$, is defined as the Hamming weight of x B in $(\mathbb{F}_q)^t$. Also, the B-weight of a codeword $(x_1, \dots, x_n) \in C$ is defined as:

$$w_B(x_1,\cdots,x_n)=\sum_{i=1}^n w_B(x_i).$$

Similarly, the B-distance between two codewords in C is defined as the B-weight of their difference, and the B-distance, d_B , of the code C is defined as the minimal B-distance between any two distinct codewords.

Example 2. In the example above, the corresponding *B*-weight of an element of $\mathbb{F}_3 + u\mathbb{F}_3$ is given by

$$w_B(x) = w_B(a+ub) = w_H((a+ub)B)$$

= $w_H(b, a+b) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x = 1, 2, 2+u, 1+2u, \\ 2 & \text{otherwise,} \end{cases}$

which coincides with the Gray weight given in [Gulliver and Harada 2001].

Example 3. Consider the matrix

$$B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix};$$

the corresponding *B*-weight of an element of $\mathbb{F}_2 + u\mathbb{F}_2$ is given by

$$w_B(x) = w_B(a+ub) = w_H((a+ub)B) = w_H(a+b,b) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x = 1, 1+u, \\ 2 & \text{if } x = u, \end{cases}$$

which produces the *Lee weight* w_L for codes over $\mathbb{F}_2 + u\mathbb{F}_2$.

Example 4. Consider the matrix

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

the corresponding *B*-weight of an element of $\mathbb{F}_q + u\mathbb{F}_q$ is given by

$$w_B(x) = w_B(a+ub) = w_H((a+ub)B)$$

= $w_H(b, a) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if exactly one of } a & \text{or } b & \text{is nonzero,} \\ 2 & \text{if both } a & \text{and } b & \text{are nonzero,} \end{cases}$

which produces the Gray weight for codes in [Siap and Ray-Chaudhuri 2000].

The case $B = I_t$ corresponds to the special weight studied in [Ozbudak and Sole 2007] with regards to Gilbert–Varshamov bounds. A theorem similar to [Ozbudak and Sole 2007, Theorem 3] can be obtained using special families of matrices *B*. The definition leads immediately to the fact that ϕ_B preserves weights and distances between codewords.

When the generator matrix of a code *C* is of the form $G = (I \ M)$, *C* is called a *free code* over R(q, t). In this case, we can establish the correspondence between

the parameters of the codes; see [Siap and Ray-Chaudhuri 2000, Section 2.2]. The case of nonfree codes will be considered later in Proposition 4.

Proposition 1. Let *B* be an invertible matrix over $M_t(\mathbb{F}_q)$, let *C* be a linear free code over R(q, t) of length *n* with *B*-distance d_B , and let ϕ_B be the corresponding map. Then $\phi_B(C)$ is a linear $[tn, tk, d_B]$ -code over \mathbb{F}_q . Furthermore, the Hamming weight enumerator polynomial of the linear code $\phi_B(C)$ over \mathbb{F}_q is the same as the *B*-weight enumerator polynomial of the code *C* over R(q, t).

Proof. Since *B* is nonsingular, $\phi_B(C)$ is a linear code over \mathbb{F}_q , with the same number of codewords. A basis for $\phi_B(C)$ can be obtained from a (minimal) set of generators for *C*, say, y_1, y_2, \ldots, y_k . The set $\{u^i y_j \mid i = 0..(t-1), j = 1..k\}$ forms a set of generators for *C* as an \mathbb{F}_q -submodule. Since *C* is free and *B* is invertible, it follows that $\{\phi_B(u^i y_j) \mid i = 0..(t-1), j = 1..k\}$ are linearly independent over \mathbb{F}_q and form a basis for the linear code $\phi_B(C)$. Hence the dimension of the code $\phi_B(C)$ is *tk*. The equality of distance follows from the definition.

In matrix form, we can construct a generator matrix for the linear code $\phi_B(C)$ as follows. Let *G* be a matrix of generators for *C*. For each row $(x_1, x_2, ..., x_n)$ of *G* consider the matrix representation $(X_1, X_2, ..., X_n)$ of the elements of R(q, t) given by

$$X_{i} = \begin{pmatrix} a_{0} & a_{1} & a_{2} & \cdots & a_{t-1} \\ 0 & a_{0} & a_{1} & \cdots & a_{t-2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a_{0} \end{pmatrix}.$$

For a free code, the rows of the matrix $(X_1B, X_2B, ..., X_nB)$ produce *t* linearly independent generators for the linear code $\phi_B(C)$. Repeating this process for each row of *G*, we will obtain the *tk* generators for $\phi_B(C)$. We denote this matrix by $\phi_B(G)$. For the case of nonfree linear codes, several rows will become zero and need to be deleted from the matrix. A counting of these rows will be given in Section 3.

Some choices of B can produce some optimal ternary and quintic codes as we now illustrate.

Example 5. Consider a linear code *C* over $\mathbb{F}_3 + u\mathbb{F}_3$ of length 9 with generator matrix:

$$G = \begin{pmatrix} 1 & 0 & 0 & u & 2+u & 1+u & 1 & 0 \\ 0 & 1 & 0 & 0 & u & 2+u & 1+u & 1 \\ 0 & 0 & 1 & 0 & u & 2+u & 1+u \\ 0 & 0 & 0 & 1 & 1+u & 1 & 0 & u & 2+u \end{pmatrix}$$
$$B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Let

The *B*-weight enumerator polynomial is given by

$$1 + 98x^{7} + 206x^{8} + 412x^{9} + 780x^{10} + 1032x^{11} + 1308x^{12} + 1224x^{13} + 828x^{14} + 462x^{15} + 166x^{16} + 40x^{17} + 4x^{18}.$$

The corresponding linear ternary code $\phi_B(C)$ is an optimal ternary [18, 8, 7]-code.

Notice that if we take

$$B = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix},$$

we get a linear ternary code $\phi_B(C)$ of length 18, dimension 8, but now, with minimal distance 4. The challenge now is to look for matrices *B* that produce optimal codes.

Example 6. Consider a linear code *C* over $\mathbb{F}_5 + u\mathbb{F}_5$ of length 5 with a generator matrix:

$$G = \begin{pmatrix} 1 & 0 & 2u & 3+3u & 4 \\ 0 & 1 & 4 & 2u & 3+3u \end{pmatrix}.$$

Let

$$B = \begin{pmatrix} 3 & 0 \\ 2 & 3 \end{pmatrix}.$$

The linear \mathbb{F}_5 -code $\phi_B(C)$ is an optimal [10, 4, 6]-code, with generator matrix given by

$$\phi_B(G) = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 & 3 & 2 & 2 & 0 & 3 \\ 0 & 1 & 0 & 0 & 2 & 3 & 3 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 & 0 & 3 & 2 & 3 & 2 & 2 \\ 0 & 0 & 0 & 1 & 2 & 1 & 2 & 3 & 3 & 1 \end{pmatrix}$$

Example 7. Consider a linear code *C* over $R(5, 3) = \mathbb{F}_5 + u\mathbb{F}_5 + u^2\mathbb{F}_5$ of length 14 with generator matrix obtained by cyclic shifts of the first 5 components and cyclic shift of the last 9 components of the vector:

$$(1 \ 0 \ 0 \ 0 \ u \ 3+3u \ 2+4u \ 4u \ 0 \ 4 \ 3+u^2 \ 2+u+u^2 \ u+u^2)$$
.

Let

$$B = \begin{pmatrix} 0 & 3 & 3 \\ 0 & 0 & 4 \\ 3 & 3 & 2 \end{pmatrix}.$$

The *B*-weight enumerator polynomial is given by

$$1+24x^{16}+32x^{17}+80x^{18}+150x^{19}+158x^{20}+140x^{21}+82x^{22}+44x^{23}+14x^{24}+4x^{25}$$

and the linear \mathbb{F}_5 -code $\phi_B(C)$ is an optimal [42, 15, 16]-code over \mathbb{F}_5 .

3. Metrics using the torsion codes

A generalization of the residue and torsion codes for $\mathbb{F}_2 + u\mathbb{F}_2$ has been studied in [Norton and Salagean 2000b] where a *generator matrix* for a code *C* over R(q, t)is defined as a matrix *G* over R(q, t) whose rows span *C* and none of them can be written as a linear combination of the other rows of *G*. Recalling that two codes over R(q, t) are *equivalent* if one can be obtained from the other by permuting the coordinates or by multiplying all entries in a specified coordinate by an invertible element of R(q, t), and performing Gauss elimination (remembering not to multiply by nonunits) we can always obtain a generator matrix for a code (or equivalent code) which is in *standard form*, that is, in the form

$$G = \begin{pmatrix} I_{k_1} & B_{1,2} & B_{1,3} & B_{1,4} & \cdots & B_{1,t} & B_{1,t+1} \\ 0 & uI_{k_2} & uB_{2,3} & uB_{2,4} & \cdots & uB_{2,t} & uB_{2,t+1} \\ 0 & 0 & u^2I_{k_3} & u^2B_{3,4} & \cdots & u^2B_{3,t} & u^2B_{3,t+1} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & u^{t-1}I_{k_t} & u^{t-1}B_{t,t+1} \end{pmatrix},$$

where $B_{i,j}$ is a matrix of polynomials in $\mathbb{F}_q[u]/(u^t)$ of degrees at most j - i - 1. In fact, we can think of $B_{i,j}$ as a matrix of the form

$$B_{i,j} = A_{i,j,0} + A_{i,j,1}u + \dots + A_{i,j,j-i-1}u^{j-i-1},$$

where the matrices $A_{i,j,r}$ are matrices over the field \mathbb{F}_q .

We define the following *torsion codes* over \mathbb{F}_q :

$$C_i = \{ X \in (\mathbb{F}_q)^n \mid \exists Y \in (\langle u^i \rangle)^n \text{ with } Xu^{i-1} + Y \in C \},\$$

for $i = 1 \dots t$. It is then easy to see that these are linear q-ary codes, and we have:

Proposition 2. Let C be a linear R(q, t) code of length n, and let C_i , $i = 1 \dots t$ be the torsion codes defined above. Then

- (1) $C_1 \subseteq C_2 \subseteq \cdots \subseteq C_t$;
- (2) a generator matrix for the code C_1 is given by

$$G_1 = (I_{k_1} \ A_{1,2,0} \ A_{1,3,0} \ \cdots \ A_{1,t+1,0});$$

(3) if G_i is a generator matrix for the code C_i , then a generator matrix G_{i+1} for the code C_{i+1} is given by

$$G_{i+1} = \begin{pmatrix} G_i \\ 0 & \cdots & 0 & I_{k_{i+1}} & A_{i+1,i+2,0} & \cdots & A_{i+1,t+1,0} \end{pmatrix}$$

Proof. Let $X \in C_i$, then there exists $Y \in (\langle u^i \rangle)^n \mid z := Xu^{i-1} + Y \in C$. Then $uz \in C$. But $uz = Xu^i + uY \in C$. Hence $X \in C_{i+1}$. Now, let $X \in C_1$. Then there

exist vectors Y_i , i = 1..t - 1 over $(\mathbb{F}_q)^n$ such that $X + Y_1u + \cdots + Y_{t-1}u^{t-1} \in C$. Thus, the coefficients of X must come from independent coefficients of elements on the first row-group of the generator matrix G. A similar reasoning indicates that at each stage, the remaining generators come from the independent coefficients of elements in the next row-group of the matrix G.

Note that the code C_i has dimension $k_1 + \cdots + k_i$. The code C then contains all products $[v_1, v_2, \ldots, v_t]G$ where the components of the vectors $v_i \in (R(q, t))^{k_i}$ have degree at most t-i. The number of codewords in C is then $q^{(t)k_1+(t-1)k_2+\cdots+k_t}$, which can also be seen as $q^{k_1}q^{k_1+k_2} \ldots q^{k_1+k_2+\cdots+k_t}$. For the case $\mathbb{F}_2 + u\mathbb{F}_2$, the code C_1 is called the *residue* code, and the code $C_t = C_2$ is called the *torsion* code.

For $X \in C_i$, we know there exists $Y \in (\langle u^i \rangle)^n$ such that $Xu^{i-1} + Y \in C$. Y can be written as

$$Y = u^i \overline{Y} + \text{hot}, \quad \text{with } \overline{Y} \in \mathbb{F}_a^n,$$

where 'hot' designates higher order terms. With this notation, define the map

$$F_i: C_i \to \mathbb{F}_q^n / C_{i+1}$$

by $F_i(X) = \overline{Y} + C_{i+1}$. If two such vectors $Y_1, Y_2 \in (\langle u^i \rangle)^n$ exist, we have

 $Y_1 = u^i \overline{Y}_1 + \text{hot}$ and $Y_2 = u^i \overline{Y}_2 + \text{hot}$.

Then,

$$Y_2 - Y_1 = u^i (\overline{Y}_2 - \overline{Y}_1) + \text{hot} \in C.$$

Therefore $\overline{Y}_2 - \overline{Y}_1 \in C_{i+1}$ and F_i is well defined. It is easy to see that the maps F_i are \mathbb{F}_q -morphisms. By its very definition, it can be seen that the image of these maps consist of direct sums of the matrices $A_{i,j,r}$ in a generator matrix G for C in standard form. We then have:

Theorem 1. Let C be a code over R(q, t) with a generator matrix G in standard form. C is determined uniquely by a chain of linear codes C_i over \mathbb{F}_q and \mathbb{F}_q module homomorphisms $F_i : C_i \to \mathbb{F}_q^n/C_{i+1}$.

Example 8. If $G = (I_{k_1}A)$ then $C_1 = C_2 = \cdots = C_t$. Also $k_i = 0$ for all $i \ge 2$ and hence the code *C* has $(q^t)^{k_1}$ elements. These are called *free codes* since they are free R(q, t)-modules. Furthermore, if $A = A_0 + uB_1 + u^2B_2 + \cdots + u^{t-1}B_{t-1}$, where B_i is a matrix over \mathbb{F}_q , then C_1 determines A_0 and $F_i(C_i)$ determines B_i .

Example 9. Let

$$G = \begin{pmatrix} 1 & 0 & 2 & 2+u & 1+u+u^2 \\ 0 & 1 & 1 & 1+2u & u+u^2 \\ 0 & 0 & u & 2u & u+u^2 \\ 0 & 0 & 0 & u^2 & 2u^2 \end{pmatrix}$$

be a generator matrix for a code C over R(3, 3). The corresponding generator matrices for the linear codes are:

$$C_{1} = \begin{pmatrix} 1 & 0 & 2 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}, \quad a [5, 2, 3]\text{-code over } \mathbb{F}_{3},$$

$$C_{2} = \begin{pmatrix} 1 & 0 & 2 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \end{pmatrix}, \quad a [5, 3, 2]\text{-code over } \mathbb{F}_{3},$$

$$C_{3} = \begin{pmatrix} 1 & 0 & 2 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}, \quad a [5, 4, 1]\text{-code over } \mathbb{F}_{3},$$

and the code *C* has $(3^3)^2(3^2)^1(3)^1 = 27^3$ codewords.

Utilizing the torsion codes of C we can define a new weight on C and obtain a bound for their minimum distance.

Definition 2. Let $x \in R(q, t)$ and let p be the characteristic of the field \mathbb{F}_q . Let $i_0 = \max\{i \mid x \in \langle u^i \rangle\}$. Define the p-weight of x as $wt_p(x) = p^{i_0}$, if $x \neq 0$ and $wt_p(0) = 0$. For an element of $(R(q, t))^n$ define the p-weight as the sum of the p-weights of its coordinates.

Note. For the case $R(2, 2) = \mathbb{F}_2 + u\mathbb{F}_2$, the *p*-weight coincides with the Lee weight, and for $R(p, 2) = \mathbb{F}_p + u\mathbb{F}_p$, the *p*-weight coincides with the Bachoc weight defined in [Bachoc 1997].

Theorem 2. Let *C* be a linear code over R(q, t), and let $C_1, C_2, ..., C_t$ be the associated torsion codes over \mathbb{F}_q . Let d_i be the Hamming distance of the codes C_i , then the minimum weight *d* of the code *C* with respect to the *p*-weight satisfies

$$\min\{p^{i-1}d_i \mid i=1,..,t\} \le d \le p^{t-1}d_t$$

Proof. Let $W = (y_1, y_2, ..., y_n) \in C$ with minimum weight. Then for some *i*, $W = u^i X + Y$ with $Y \in \langle u^{i+1} \rangle$. Thus $X \in C_{i+1}$ and $wt_p(W) \ge p^i \cdot wt_H(X) \ge p^i d_{i+1}$. Now take $X_1 \in C_t$ to be a word of minimum weight d_t , then $u^{t-1}X_1 \in C$, and, by the minimality of *W*, we have $wt_p(W) \le wt_p(u^{t-1}X_1) = p^{t-1}d_t$.

It is well known [Bonnecaze and Udaya 1999; Ling and Sole 2001], that the Lee weight for a cyclic code *C* over $\mathbb{F}_2 + u\mathbb{F}_2$ is the lower bound above. Here we show an example over $\mathbb{F}_2 + u\mathbb{F}_2$ that attains the upper bound.

Example 10. Let *C* be the linear code over $\mathbb{F}_2 + u\mathbb{F}_2$, with generator matrix

$$G = \begin{pmatrix} 1 & 0 & u & 1 \\ 0 & 1 & 1+u & u \end{pmatrix}.$$

The codeword (u, u, u, u) has Lee (or 2-) weight 8, while all the other nonzero codewords have weight 4. On the other hand C_1 and C_2 are equal with generator matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$

Hence $d_1 = d_2 = 2$, and $\min\{d_1, 2d_2\} = 2 \neq d$.

Since the *p*-weight coincides with the Lee weight for codes over $\mathbb{F}_2 + u\mathbb{F}_2$, we obtain the general version for the Lee weight of those codes as a corollary of Theorem 2.

Corollary 1. *The minimum Lee weight of a code* C *over* $\mathbb{F}_2 + u\mathbb{F}_2$ *, satisfies*

$$\min\left\{d_1, 2d_2\right\} \le d \le 2d_2$$

where d_1 , d_2 are respectively the Hamming distance of the residue code C_1 and the torsion code C_2 .

Example 11. Return to Example 9 over R(3, 3) with $d_1 = 3$, $d_2 = 2$, $d_3 = 1$. Hence $3 \le d \le 9$. The first and second generators combine to form a codeword of *p*-weight 3. Hence d = 3, and in this example the minimum weight attains the lower bound.

Example 12. Let *C* be the linear code over $\mathbb{F}_3 + u\mathbb{F}_3$, with generator matrix

$$G = \begin{pmatrix} 1 & 0 & u & 2 \\ 0 & 1 & 1+u & u \end{pmatrix}.$$

There are only 4 codewords with 2 zero entries, and they have Bachoc weight (and hence p-weight) 6. There are no codewords with Bachoc weight 3, and the Bachoc distance d of the code is 4. On the other hand the associated ternary codes are

$$C_1 = C_2 = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$

Thus $d_1 = d_2 = 2$ and the Bachoc weight *d* lies strictly between the bounds given above.

Corollary 2. For free codes the *p*-weight *d* satisfies: $d_1 \le d \le p^{t-1}d_1$.

We can also use the torsion codes to study the Hamming weight of the code C. The results given here use a straightforward proof in comparison with the proof given in [Norton and Salagean 2000a].

For a code C over R(q, t) and $w \in C$, we denote $w_H(w)$ the usual Hamming weight of w. Accordingly, the minimum Hamming distance of the code will be denoted by $d_H(C)$.

Proposition 3. Let C be a linear code over R(q, t), and let $C_1, C_2, ..., C_t$ be the associated torsion codes over \mathbb{F}_q . Let d_i be the Hamming distance of the codes C_i , then the minimal Hamming weight d_H of the code C satisfies

$$dd_H = d_t \leq d_{t-1} \leq \cdots \leq d_1.$$

Proof. Since $C_i \subseteq C_{i+1}$, it follows that $d_{i+1} \leq d_i$, for i = 1..t Now let $X \in C_t$. Then $Xu^{t-1} \in C$ and hence $d_H \leq d_t$. Conversely, let w^* be a codeword in C with minimum Hamming weight d_H . Let j be the maximum integer such that u^j divides w^* . Then $w^* = u^j v$ and $z = u^{t-j-1}w^* = u^{t-1}v \in C$. Thus $\hat{v} \in C_t$, where \hat{v} denotes the canonical projection from $R(q, t)^n$ into \mathbb{F}_q^n . We then have $w_H(w^*) \geq w_H(\hat{v}) \geq d_t$, and therefore $d_H \geq d_t$.

From the above proof, the Singleton bound for C_t , and the comment after Proposition 2, we have:

Corollary 3. Let C be a linear code over R(q, t), and let $C_1, C_2, ..., C_t$ be the associated torsion codes. Then:

$$d_H \le n - (k_1 + k_2 + \dots + k_t) + 1.$$

Proposition 4. $\phi_B(C)$ is a $[nt, \sum_{i=1}^t k_i(t-i+1), d^*]$ linear code over \mathbb{F}_q , with $d^* \leq td_t$.

Proof. Since u^{i-1} divides y_j for each y_j in the *i*-th row-block of G, $u^s y_j = 0$ for $s \ge t - i + 1$. Furthermore, the generators $u^s y_j \ne 0$ for s < t - i + 1 are linearly independent. Since there are k_i such y_j , we have

$$\dim(\phi_B(C)) = \sum_{i=1}^{t} k_i (t - (i - 1)).$$

4. Self-dual codes over $\mathbb{F}_q[u]/(u^t)$ using torsion codes

Duality for codes over $\mathbb{F}_q[u]/(u^t)$ is understood with respect to the inner product $x \cdot y = \sum x_i y_i$, where $x_i, y_i \in R(q, t)$. As usual, a code is called *self-dual* if $C = C^{\perp}$, and is called *self-orthogonal* is $C \subseteq C^{\perp}$.

First, we give an examples of self-dual codes over R(q, t) of length *n* when *t* is even and *n* is a multiple of *p* (the characteristic of the field \mathbb{F}_q .) The construction mimics the C_n codes studied by Bachoc [1997] for the case t = 2.

Example 13. For *t* even, let $I = \langle u^{t/2} \rangle \subseteq R(q, t)$. Define the set:

$$D_n := \{ (x_1, x_2, \dots, x_n) \in R(q, t)^n \mid \sum_{i=1}^n x_i = 0 \text{ and } x_i - x_j \in I \text{ for all } i \neq j \}.$$

Let $X, Y \in D_n$,

$$X \cdot Y = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} (x_i - x_1)(y_i - y_1) + \sum_{i=1}^{n} x_i y_1 + \sum_{i=1}^{n} x_1 y_i - nx_1 y_1.$$

The first term is in $I^2 = 0$, the next two terms are zero by definition and the third term is zero since p|n. Thus $D_n \subseteq D_n^{\perp}$. Now, for each $i = 1 \dots n$, we can write $x_i = a + b_i$ where a is a common polynomial of degree less than t/2, and $b_i \in I$ with $\sum b_i = 0$. There are $q^{t/2}$ choices for a, and $(q^{n-1})^{t/2}$ choices for the b_i 's, thus

$$|D_n| = q^{t/2} (q^{n-1})^{t/2} = q^{nt/2},$$

and hence D_n is self-dual.

The torsion *q*-ary codes are as follows: for i = 1, ..., t/2, C_i is the code generated by the **1** word, with $d_i = n$; and for i = t/2 + 1..., t, C_i is the parity check code of length *n* and dimension n - 1, thus $d_i = 2$. Applying Theorem 2, we obtain

$$\min\{n, 2p^{t/2}\} \le d \le 2p^{t-1}.$$

But 1 and $(0, 0, ..., 0, u^{t/2}, -u^{t/2}, 0, ..., 0) \in D_n$, hence $d = \min\{n, 2p^{t/2}\}$.

We study self-orthogonal and self-dual codes over R(q, t) taking two different approaches. We look at the linear codes $\phi_B(C)$, and also look at the torsion codes corresponding to *C*.

To study the latter we need some results on the parity check matrix of these codes, which can be defined in terms of block matrices using the recurrence relation

$$D_{i,j} = \sum_{k=i+1}^{t+2-j} - B_{i,k} D_{k,j}$$

for blocks, such that $i+j \le t+1$. For blocks such that i+j=t+2, $D_{i,j} = u^{t-j+1}I_{k_j}$ for i = 2, ..., t and $D_{t+1,1} = I_{n-(k_1+k_2+...k_t)}$. All remaining blocks are 0. From here a generator matrix for the dual code can be obtained and we easily observe the following relations: $k_1(C^{\perp}) = n - (k_1 + ... + k_t)$ and $k_h(C^{\perp}) = k_{t-h+2}(C)$ for h = 2, ..., t.

A different recurrence relation for the definition of the parity check matrix is given in [Norton and Salagean 2000a].

Proposition 5. Let C be an R(q, t) code, and let C_i 's be its corresponding torsion codes. Then

$$(C^{\perp})_i = (C_{t-i+1})^{\perp}, \ i = 1..t.$$

Proof. Let $w \in (C^{\perp})_i$ and $v \in C_{t-i+1}$. Then there exists $z \in (\langle u^i \rangle)^n$ with $a := wu^{i-1} + z \in C^{\perp}$, and $y \in (\langle u^{t-i+1} \rangle)^n$ with $b := vu^{t-i} + y \in C$. Since $a \cdot b = 0$, we

have

$$0 = (wu^{i-1} + z) \cdot (vu^{t-i} + y) = (w \cdot v)u^{t-1}$$

which implies $w \cdot v = 0$, and $w \in (C_{t-i+1})^{\perp}$. So $(C^{\perp})_i \subseteq (C_{t-i+1})^{\perp}$. Looking at dimensions

$$\dim((C^{\perp})_{i}) = \sum_{j=1}^{i} k_{j}(C^{\perp}) = n - (k_{1} + \ldots + k_{t}) + \sum_{j=2}^{i} k_{t-j+2}(C)$$
$$= n - \sum_{j=1}^{t-i+1} k_{j}(C) = n - \dim(C_{t-i+1}) = \dim((C_{t-i+1})^{\perp}). \quad \Box$$

Using the generator in standard form of a code C and forming the inner products of its row-blocks we obtain:

Proposition 6. Let C be an R(q, t) code with a generator matrix in standard form. C is self-orthogonal if and only if

$$\sum_{h=0}^{k} \sum_{j=\max\{i,k\}}^{t+1} A_{i,j,h} A_{l,j,k-h}^{t} = 0, \quad \text{for each } k = 0, \dots, t - (i+l-2) - 1.$$

This gives us the first characterization of self-dual codes:

Theorem 3. Let C be an R(q, t) code; and let C_i 's be its corresponding torsion codes. The code C is self-orthogonal and $C_i = C_{t-i+1}^{\perp}$ if and only if C is self-dual.

Proof. By Proposition 5 we have $(C^{\perp})_i = C_{t-i+1}^{\perp} = C_i$ for all $i = 1 \dots t$. Furthermore, $\mathsf{rk}(C) = \dim(C_t) = \dim((C^{\perp})_t) = \mathsf{rk}(C^{\perp})$; but *C* is self-orthogonal, hence $C = C^{\perp}$. Similarly, the converse follows immediately from Proposition 5.

As an immediate consequence we have:

Corollary 4. If C is self-dual, then C_i is self-orthogonal for all $i \le (t+1)/2$.

Note that when t is odd, $C_{\lfloor (t+1)/2 \rfloor}$ is self-dual and hence n must be even. For the case t even, we can contruct self-dual codes of even or odd length.

Proposition 6 and Theorem 3 provide us with an algorithm to produce self-dual codes over R(q, t) starting from self-orthogonal codes over \mathbb{F}_q .

- (1) Take a self-orthogonal code C_1 over \mathbb{F}_q .
- (2) Define $C_t := C_1^{\perp}$.
- (3) Choose a set of self-orthogonal words $\{R_1, R_2, ..., R_l\}$ in C_t that are linearly independent from C_1 . Define

$$C_2 := \langle C_1 \cup \{R_1, R_2, \dots, R_l\} \rangle$$
 and $C_{t-1} = C_2^{\perp}$.

- (4) Repeat, if possible, the step above defining C_i and $C_{t-i+1} = C_i^{\perp}$ until you produce $C_{\lfloor (t+1)/2 \rfloor}$.
- (5) For each i = 1..t, multiply the generators of $\{C_{i+1} C_i\}$ by u^i . This will produce a self-dual code.

Additional self-dual codes are obtained as follows:

- (6) Form a generator matrix G in standard form, adding, where appropriate, variables to represent higher powers of u.
- (7) Now we find the system of equations on the defined variables arising from Proposition 6. Note that for fixed $i, l = 1 \dots t$ each k will produce a matrix equation, which in turn produces several nonlinear equations.
- (8) Write this system of equations in terms of the independent variables. There will be

$$\sum_{i=1}^{\lfloor t/2 \rfloor} \sum_{j=i}^{t-i} (t-i-j+1)k_i k_j$$

equations on

$$\sum_{i=1}^{t-1} \sum_{j=i+2}^{t+1} (j-i-1)k_i k_j \text{ total variables.}$$

(9) By Theorem 3 every solution to this system of equations will produce a selfdual code (some may be equivalent).

We now provide an example of this construction.

Example 14. Self-dual codes in R(3, 4):

Consider the self-orthogonal code

$$C_1 = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{array}\right).$$

Define

$$C_4 := C_1^{\perp} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Since there are no more self-orthogonal words in C_4 to append to C_1 , we let $C_2 := C_1$, and since $C_2^{\perp} = C_4$ we let $C_3 := C_4$. Multiplying the rows in $C_3 - C_2$ by u^2 we obtain a generator matrix for a self-dual code over R(3, 4):

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & u^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & u^2 & 0 & 0 \end{pmatrix}$$

Now we can form a generator matrix using variables to represent higher powers of u obtaining

$$\begin{pmatrix} 1 & 0 & au & bu & 1+cu+du^2+eu^3 & 2+fu+gu^2+hu^3 \\ 0 & 1 & iu & ju & 1+ku+lu^2+mu^3 & 1+nu+pu^2+qu^3 \\ 0 & 0 & u^2 & 0 & ru^3 & su^3 \\ 0 & 0 & 0 & u^2 & tu^3 & vu^3 \end{pmatrix}.$$

The equation

$$\sum_{h=0}^{k} \sum_{j=\max\{i,k\}}^{t+1} A_{i,j,h} A_{l,j,k-h}^{t} = 0$$

produces a system of equations over \mathbb{F}_q . For example, for i = 1, l = 2, k = 3 we obtain the equation

$$a + r + 2s = 0,$$

 $b + t + 2v = 0,$
 $i + r + s = 0,$
 $j + t + v = 0.$

Likewise, the remaining equations can be obtained, and we solve in terms of a set of independent variables $\{a, b, h, i, j, n, p\}$:

$$c = n,$$

$$d = ai + bj + i^{2} + j^{2} + p + 2a^{2} + 2b^{2},$$

$$e = n(ai + bj + i^{2} + j^{2} + 2n^{2} + p) + h,$$

$$f = n,$$

$$g = a^{2} + b^{2} + ai + bj + i^{2} + j^{2} + n^{2} + p,$$

$$k = 2n,$$

$$l = i^{2} + j^{2} + 2p + 2n^{2},$$

$$m = n(i^{2} + j^{2} + 2a^{2} + 2b^{2} + ai + bj) + 2h,$$

$$q = n(a^{2} + b^{2} + p + 2ai + 2bj + 2n^{2}) + h,$$

$$r = a - 2i,$$

$$s = i - a,$$

$$t = b - 2j,$$

$$v = j - b.$$

These equations allow us to generate up to 3^7 self-dual codes over R(3, 4). As an example, letting all the independent variables take the value 1 except for b = 0, we obtain the self-dual code

$$\begin{pmatrix} 1 & 0 & u & 0 & 1+u+u^3 & 2+u+u^3 \\ 0 & 1 & u & u & 1+2u+u^3 & 1+u+u^2+u^3 \\ 0 & 0 & u^2 & 0 & 2u^3 & 0 \\ 0 & 0 & 0 & u^2 & u^3 & u^3 \end{pmatrix}.$$

5. Self-dual codes over $\mathbb{F}_q[u]/(u^t)$ using linear images

As discussed in Section 2, given a code *C* over R(q, t) of length *n* and a nonsingular $t \times t$ matrix *B* over \mathbb{F}_q , we can define a linear code $\phi_B(C)$ over \mathbb{F}_q of length *nt*. In this section, we will consider an element $x \in R(q, t)$ in its polynomial representation, and will use \overline{x} for its vector representation.

Let $w = (w_1, w_2, \dots, w_n)$ be a codeword in C. Recall that

$$\phi_B(w) = (\overline{w}_1 B, \overline{w}_2 B, \dots, \overline{w}_n B).$$

Let *E* denote the square matrix

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \ddots & \\ \vdots & \ddots & & \\ 1 & & & 0 \end{pmatrix} \quad \text{over } \mathbb{F}_q.$$

Theorem 4. If *C* is self-orthogonal and $BB^T = cE$ where $c \neq 0 \in \mathbb{F}_q$, then $\phi_B(C)$ is self-orthogonal.

Proof. Let R_j denote the *j*-th row of B. Then $R_j R_k^T = c$, for all j + k < t + 2 and $R_j R_k^T = 0$, for all $j + k \ge t + 2$. If $w, v \in C$, then

$$\begin{split} \phi_B(w)\phi_B(v) \\ &= \sum_{i=1}^n \overline{w}_i B(\overline{v}_i B)^T = \sum_{i=1}^n \overline{w}_i B B^T \overline{v}_i \\ &= \sum_{i=1}^n \sum_{j,k=0}^{t-1} w_{i,j} R_{j+1} R_{k+1}^T v_{i,k} = c \sum_{i=1}^n \sum_{j+k< t}^{t-1} w_{i,j} v_{i,k} + 0 \sum_{i=1}^n \sum_{j+k\ge t}^{2t-2} w_{i,j} v_{i,k}, \end{split}$$

but since C is self-orthogonal, the sum in the first term is 0. Therefore,

$$\phi_B(w)\phi_B(v) = 0,$$

and thus $\phi_B(C)$ is self-orthogonal.

Corollary 5. If C is self-dual, $BB^T = cE$, and

$$\sum_{i=2}^{t} k_i (t-2i+2) = 0,$$

then $\phi_B(C)$ is self-dual.

Proof. Splitting the equation from the hypothesis we have

$$\sum_{i=2}^{t} k_i(t-i+1) = \sum_{i=2}^{t} k_i(i-1),$$

$$2\sum_{i=2}^{t} k_i(t-i+1) = \sum_{i=2}^{t} k_i(i-1) + \sum_{i=2}^{t} k_i(t-i+1) = \sum_{i=2}^{t} tk_i,$$

$$2\sum_{i=1}^{t} k_i(t-i+1) = 2k_1t + \sum_{i=2}^{t} tk_i.$$

Since C is self-dual, we know

$$C_1^{\perp} = C_t$$
 and $\dim(C_t) = \operatorname{rk}(C)$.

Thus,

dim
$$(C_1^{\perp}) = \mathsf{rk}(C)$$
 and $n - k_1 = \sum_{i=1}^{t} k_i$.

Therefore,

$$2\sum_{i=1}^{t} k_i(t-i+1) = nt$$

making the length of $\phi_B(C)$ twice its dimension. By Theorem 4, $\phi_B(C)$ is self-orthogonal and hence $\phi_B(C)$ is self-dual.

Let M, N be two matrices over \mathbb{F}_q . We say they are *root-equivalent* $(M \sim N)$ if M can be obtained from N by a column permutation, or a column multiplication by an element $\alpha \in \mathbb{F}_q$ such that $\alpha^2 = 1$. This implies $MM^T = NN^T$, and by the definition of ϕ_B , we obtain the following

Corollary 6. If $B \sim D$ in the hypothesis of Corollary 5 then $\phi_B(C)$ and $\phi_D(C)$ are equivalent self-dual codes.

Example 15. For R(3,3), all matrices *B* that satisfy $BB^t = cE$ are root-equivalent, and therefore produce equivalent codes. Hence we can restrict ourselves to just one such matrix, for example,

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

The cases of R(2, 2) and R(3, 3) are singular. For R(3, 4) we have 6 different classes of root-equivalent matrices.

In general, note that there exist self-dual codes A and matrices B with $BB^T \neq cE$ whose image $\phi_B(A)$ is self-dual. For example, consider the self-dual code A over R(3, 4) with a generator matrix

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1+2u+u^2 & 1+2u & 1+2u+u^2 & 1+2u & 1+2u+u^2 & 1+2u \\ 1+u^2 & 1+u^2 & 1+u^2 & 1 & 1 & 1 \\ u+u^2 & u & u & u+u^2 & u+u^2 & u \\ 0 & 0 & 0 & 0 & u^2 & 2u^2 \end{pmatrix}.$$

Passing to standard form,

$$G_1 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & u^2 & 0 & 0 & 0 & 2u^2 \\ 0 & 0 & u^2 & 0 & 0 & 2u^2 \\ 0 & 0 & 0 & u^2 & 0 & 2u^2 \\ 0 & 0 & 0 & 0 & u^2 & 2u^2 \end{pmatrix}.$$

Consider the matrix

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix},$$

for which $BB^T \neq cE$ for any c. The image code $\phi_B(A)$ is a self-dual code:

References

[Bachoc 1997] C. Bachoc, "Applications of coding theory to the construction of modular lattices", *J. Combin. Theory Ser. A* (78) (1997), pp. 92–119.

- [Bonnecaze and Udaya 1999] A. Bonnecaze and P. Udaya, "Cyclic codes and self-dual codes over $F_2 + uF_2$ ", *IEEE Trans. Inform. Theory* (45) (1999), pp. 1250–1255.
- [Dougherty et al. 2007] S. Dougherty, A. Gulliver, Y. Park, and J. Wong, "Optimal linear codes over \mathbb{Z}_m ", *J. Korean Math. Soc.* (44) (2007), pp. 1139–1162.
- [Gulliver and Harada 2001] T. A. Gulliver and M. Harada, "Codes over $F_3 + uF_3$ and improvements to the bounds on ternary linear codes", *Design, Codes and Cryptography* (**22**) (2001), pp. 89–96.
- [Ling and Sole 2001] S. Ling and P. Sole, "Duadic codes over $F_2 + uF_2$ ", AAECC (12) (2001), pp. 365–379.
- [Norton and Salagean 2000a] G. Norton and A. Salagean, "On the Hamming distance of linear codes over a finite chain ring", *IEEE Transactions on Information Theory* (**46**) (2000), pp. 1060–1067.
- [Norton and Salagean 2000b] G. Norton and A. Salagean, "On the structure of linear and cyclic codes over a finite chain ring", *AAECC* (10) (2000), pp. 489–506.
- [Ozbudak and Sole 2007] F. Ozbudak and P. Sole, "Gilbert-Varshamov type bounds for linear codes over finite chain rings", *Advances in Mathematics of Communications* (1) (2007), pp. 99–109.

[Siap and Ray-Chaudhuri 2000] I. Siap and D. Ray-Chaudhuri, "New linear codes over F_3 and F_5 and improvements on bounds.", *Design, Codes and Cryptography.* (21) (2000), pp. 223–233.

Received: 2008-08-21	Revised: 2008-12-10 Accepted: 2009-01-13
ralfaro@umflint.edu	Mathematics Department, University of Michigan–Flint, Flint, MI 48502, United States
stbennet@umflint.edu	Mathematics Department, University of Michigan–Flint, Flint, MI 48502, United States
joshuaha@umflint.edu	Mathematics Department, University of Michigan–Flint, Flint, MI 48502, United States
cthornbu@umflint.edu	Mathematics Department, University of Michigan–Flint, Flint, MI 48502, United States