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New metrics and distances for linear codes over the ring Fq [u]/(ut ) are de-
fined, which generalize the Gray map, Lee weight, and Bachoc weight; and
new bounds on distances are given. Two characterizations of self-dual codes
over Fq [u]/(ut ) are determined in terms of linear codes over Fq . An algorithm
to produce such self-dual codes is also established.

1. Introduction

Many optimal codes have been obtained by studying codes over general rings rather
than fields. Lately, codes over finite chain rings (of which Fq [u]/(ut) is an example)
have been a source of many interesting properties [Norton and Salagean 2000a;
Ozbudak and Sole 2007; Dougherty et al. 2007]. Gulliver and Harada [2001] found
good examples of ternary codes over F3 using a particular type of Gray map. Siap
and Ray-Chaudhuri [2000] established a relation between codes over Fq [u]/(u2

−

a) and codes over Fq which was used to obtain new codes over F3 and F5. In
this paper we present a certain generalization of the method used in [Gulliver and
Harada 2001] and [Siap and Ray-Chaudhuri 2000], defining a family of metrics for
linear codes over Fq [u]/(ut) and obtaining as particular examples the Gray map,
the Gray weight, the Lee weight and the Bachoc weight. For the latter, we give
a new bound on the distance of those codes. It also shows that the Gray images
of codes over F2 + uF2 are more powerful than codes obtained by the so-called
u-(u+v) condition.

With these tools in hand, we study conditions for self-duality of codes over
Fq [u]/(ut). Norton and Salagean [2000b] studied the case of self-dual cyclic codes
in terms of the generator polynomials. In this paper we study self-dual codes in
terms of linear codes over Fq that are obtained as images under the maps defined on
the first part of the paper. We provide a way to construct many self-dual codes over
Fq starting from a self-dual code over Fq [u]/(ut). We also study self-dual codes
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in terms of the torsion codes, and provide a way to construct many self-dual codes
over Fq [u]/(ut) starting from a self-orthogonal code over Fq . Our results contain
many of the properties studied by Bachoc [1997] for self-dual codes over F3+uF3.

2. Metric for codes over Fq[u]/(ut)

We will use R(q, t) to denote the commutative ring Fq [u]/(ut). The q t elements
of this ring can be represented in two different forms, and we will use the most
appropriate in each case. First, we can use the polynomial representation with
indeterminate u of degree less than or equal to (t−1) with coefficients in Fq , using
the notation R(q, t) = Fq + uFq + u2Fq + · · · + ut−1Fq . We also use the u-ary
coefficient representation as an Fq -vector space.

Let B ∈ Mt(Fq) be an invertible t × t matrix, and let B act as right multipli-
cation on R(q, t) (seen as Fq -vector space). We extend this action linearly to the
Fq -module (R(q, t))n by concatenation of the images φB : (R(q, t))n → (Fq)

tn

given by

φB(x1, x2, . . . , xn)= (x1 B, x2 B, . . . , xn B)

An easy counting argument shows that φB is an Fq -module isomorphism and if
C is a linear code over R(q, t) of length n, then φB(C) is a linear q-ary code of
length tn.

Example 1. Consider the ring R(3, 2)= F3+ uF3 with u2
= 0. Choosing

B =
(

0 1
1 1

)
,

we obtain the Gray map φB : (F3+ uF3)
n
→ F2n

3 with

(a+ ub)B =
(
a b

) (0 1
1 1

)
=
(
b a+ b

)
used by Gulliver and Harada [2001].

Each such matrix B induces a new metric in the code C.

Definition 1. Let C be a linear code over R(q, t). Let B be an invertible matrix
in Mt(Fq), and let φB be the corresponding map. The B-weight of an element
x ∈ R(q, t), wB(x), is defined as the Hamming weight of x B in (Fq)

t . Also, the
B-weight of a codeword (x1, · · · , xn) ∈ C is defined as:

wB(x1, · · · , xn)=

n∑
i=1

wB(xi ).
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Similarly, the B-distance between two codewords in C is defined as the B-weight
of their difference, and the B-distance, dB , of the code C is defined as the minimal
B-distance between any two distinct codewords.

Example 2. In the example above, the corresponding B-weight of an element of
F3+ uF3 is given by

wB(x)= wB(a+ ub)= wH ((a+ ub)B)

= wH (b, a+ b)=


0 if x = 0,
1 if x = 1, 2, 2+ u, 1+ 2u,
2 otherwise,

which coincides with the Gray weight given in [Gulliver and Harada 2001].

Example 3. Consider the matrix

B =
(

1 0
1 1

)
;

the corresponding B-weight of an element of F2+ uF2 is given by

wB(x)= wB(a+ ub)= wH ((a+ ub)B)= wH (a+ b, b)=


0 if x = 0,
1 if x = 1, 1+ u,
2 if x = u,

which produces the Lee weight wL for codes over F2+ uF2.

Example 4. Consider the matrix

B =
(

0 1
1 0

)
;

the corresponding B-weight of an element of Fq + uFq is given by

wB(x)= wB(a+ ub)= wH ((a+ ub)B)

= wH (b, a)=


0 if x = 0,
1 if exactly one of a or b is nonzero,
2 if both a and b are nonzero,

which produces the Gray weight for codes in [Siap and Ray-Chaudhuri 2000].

The case B= It corresponds to the special weight studied in [Ozbudak and Sole
2007] with regards to Gilbert–Varshamov bounds. A theorem similar to [Ozbudak
and Sole 2007, Theorem 3] can be obtained using special families of matrices B.
The definition leads immediately to the fact that φB preserves weights and distances
between codewords.

When the generator matrix of a code C is of the form G = (I M), C is called a
free code over R(q, t). In this case, we can establish the correspondence between
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the parameters of the codes; see [Siap and Ray-Chaudhuri 2000, Section 2.2]. The
case of nonfree codes will be considered later in Proposition 4.

Proposition 1. Let B be an invertible matrix over Mt(Fq), let C be a linear free
code over R(q, t) of length n with B-distance dB , and let φB be the corresponding
map. Then φB(C) is a linear [tn, tk, dB]-code over Fq . Furthermore, the Hamming
weight enumerator polynomial of the linear code φB(C) over Fq is the same as the
B-weight enumerator polynomial of the code C over R(q, t).

Proof. Since B is nonsingular, φB(C) is a linear code over Fq , with the same
number of codewords. A basis for φB(C) can be obtained from a (minimal) set of
generators for C , say, y1, y2, . . . , yk . The set {ui y j | i = 0..(t−1), j = 1..k} forms
a set of generators for C as an Fq -submodule. Since C is free and B is invertible,
it follows that {φB(ui y j ) | i = 0..(t − 1), j = 1..k} are linearly independent over
Fq and form a basis for the linear code φB(C). Hence the dimension of the code
φB(C) is tk. The equality of distance follows from the definition. �

In matrix form, we can construct a generator matrix for the linear code φB(C)
as follows. Let G be a matrix of generators for C. For each row (x1, x2, . . . , xn) of
G consider the matrix representation (X1, X2, . . . , Xn) of the elements of R(q, t)
given by

X i =


a0 a1 a2 · · · at−1

0 a0 a1 · · · at−2

· · · · · · · · · · · · · · ·

0 0 0 · · · a0

 .
For a free code, the rows of the matrix (X1 B, X2 B, . . . , Xn B) produce t linearly
independent generators for the linear code φB(C). Repeating this process for each
row of G, we will obtain the tk generators for φB(C). We denote this matrix by
φB(G). For the case of nonfree linear codes, several rows will become zero and
need to be deleted from the matrix. A counting of these rows will be given in
Section 3.

Some choices of B can produce some optimal ternary and quintic codes as we
now illustrate.

Example 5. Consider a linear code C over F3 + uF3 of length 9 with generator
matrix:

G =


1 0 0 0 u 2+u 1+u 1 0
0 1 0 0 0 u 2+u 1+u 1
0 0 1 0 1 0 u 2+u 1+u
0 0 0 1 1+u 1 0 u 2+u


Let

B =
(

0 1
1 1

)
.
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The B-weight enumerator polynomial is given by

1+ 98x7
+ 206x8

+ 412x9
+ 780x10

+ 1032x11
+ 1308x12

+ 1224x13

+828x14
+ 462x15

+ 166x16
+ 40x17

+ 4x18.

The corresponding linear ternary code φB(C) is an optimal ternary [18, 8, 7]-
code.

Notice that if we take

B =
(

1 2
1 0

)
,

we get a linear ternary code φB(C) of length 18, dimension 8, but now, with mini-
mal distance 4. The challenge now is to look for matrices B that produce optimal
codes.

Example 6. Consider a linear code C over F5 + uF5 of length 5 with a generator
matrix:

G =
(

1 0 2u 3+3u 4
0 1 4 2u 3+3u

)
.

Let

B =
(

3 0
2 3

)
.

The linear F5-code φB(C) is an optimal [10, 4, 6]-code, with generator matrix
given by

φB(G)=


1 0 0 0 2 3 2 2 0 3
0 1 0 0 2 3 3 1 2 1
0 0 1 0 0 3 2 3 2 2
0 0 0 1 2 1 2 3 3 1

 .
Example 7. Consider a linear code C over R(5, 3)= F5+uF5+u2F5 of length 14
with generator matrix obtained by cyclic shifts of the first 5 components and cyclic
shift of the last 9 components of the vector:(

1 0 0 0 0 u 3+ 3u 2+ 4u 4u 0 4 3+ u2 2+ u+ u2 u+ u2
)
.

Let

B =

0 3 3
0 0 4
3 3 2

 .
The B-weight enumerator polynomial is given by

1+24x16
+32x17

+80x18
+150x19

+158x20
+140x21

+82x22
+44x23

+14x24
+4x25

and the linear F5-code φB(C) is an optimal [42, 15, 16]-code over F5.
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3. Metrics using the torsion codes

A generalization of the residue and torsion codes for F2+ uF2 has been studied in
[Norton and Salagean 2000b] where a generator matrix for a code C over R(q, t)
is defined as a matrix G over R(q, t) whose rows span C and none of them can be
written as a linear combination of the other rows of G. Recalling that two codes
over R(q, t) are equivalent if one can be obtained from the other by permuting the
coordinates or by multiplying all entries in a specified coordinate by an invertible
element of R(q, t), and performing Gauss elimination (remembering not to multi-
ply by nonunits) we can always obtain a generator matrix for a code (or equivalent
code) which is in standard form, that is, in the form

G =


Ik1 B1,2 B1,3 B1,4 · · · B1,t B1,t+1

0 uIk2 u B2,3 u B2,4 · · · u B2,t u B2,t+1

0 0 u2 Ik3 u2 B3,4 · · · u2 B3,t u2 B3,t+1

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · ut−1 Ikt ut−1 Bt,t+1

 ,
where Bi, j is a matrix of polynomials in Fq [u]/(ut) of degrees at most j − i − 1.
In fact, we can think of Bi, j as a matrix of the form

Bi, j = Ai, j,0+ Ai, j,1u+ · · ·+ Ai, j, j−i−1u j−i−1,

where the matrices Ai, j,r are matrices over the field Fq .
We define the following torsion codes over Fq :

Ci = {X ∈ (Fq)
n
| ∃ Y ∈ (〈ui

〉)n wi th Xui−1
+ Y ∈ C},

for i = 1 . . . t . It is then easy to see that these are linear q-ary codes, and we have:

Proposition 2. Let C be a linear R(q, t) code of length n, and let Ci , i = 1 . . . t
be the torsion codes defined above. Then

(1) C1 ⊆ C2 ⊆ · · · ⊆ Ct ;

(2) a generator matrix for the code C1 is given by

G1 =
(
Ik1 A1,2,0 A1,3,0 · · · A1,t+1,0

)
;

(3) if Gi is a generator matrix for the code Ci , then a generator matrix Gi+1 for
the code Ci+1 is given by

Gi+1 =

(
Gi

0 · · · 0 Iki+1 Ai+1,i+2,0 · · · Ai+1,t+1,0

)
.

Proof. Let X ∈ Ci , then there exists Y ∈ (〈ui
〉)n | z := Xui−1

+ Y ∈ C. Then
uz ∈ C. But uz = Xui

+ uY ∈ C. Hence X ∈ Ci+1. Now, let X ∈ C1. Then there
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exist vectors Yi , i = 1..t − 1 over (Fq)
n such that X + Y1u+ · · · + Yt−1ut−1

∈ C.
Thus, the coefficients of X must come from independent coefficients of elements
on the first row-group of the generator matrix G. A similar reasoning indicates that
at each stage, the remaining generators come from the independent coefficients of
elements in the next row-group of the matrix G. �

Note that the code Ci has dimension k1 + · · · + ki . The code C then contains
all products [v1, v2, . . . , vt ]G where the components of the vectors vi ∈ (R(q, t))ki

have degree at most t−i. The number of codewords in C is then q(t)k1+(t−1)k2+···+kt ,
which can also be seen as qk1qk1+k2 . . . qk1+k2+···kt . For the case F2+uF2, the code
C1 is called the residue code, and the code Ct = C2 is called the torsion code.

For X ∈ Ci , we know there exists Y ∈ (〈ui
〉)n such that Xui−1

+ Y ∈ C. Y can
be written as

Y = ui Y + hot, with Y ∈ Fn
q ,

where ‘hot’ designates higher order terms. With this notation, define the map

Fi : Ci → Fn
q/Ci+1

by Fi (X)= Y +Ci+1. If two such vectors Y1, Y2 ∈ (〈ui
〉)n exist, we have

Y1 = ui Y 1+ hot and Y2 = ui Y 2+ hot .

Then,
Y2− Y1 = ui (Y 2− Y 1)+ hot ∈ C.

Therefore Y 2 − Y 1 ∈ Ci+1 and Fi is well defined. It is easy to see that the maps
Fi are Fq -morphisms. By its very definition, it can be seen that the image of these
maps consist of direct sums of the matrices Ai, j,r in a generator matrix G for C in
standard form. We then have:

Theorem 1. Let C be a code over R(q, t) with a generator matrix G in standard
form. C is determined uniquely by a chain of linear codes Ci over Fq and Fq -
module homomorphisms Fi : Ci → Fn

q/Ci+1.

Example 8. If G = (Ik1 A) then C1 = C2 = · · · = Ct . Also ki = 0 for all i ≥ 2
and hence the code C has (q t)k1 elements. These are called free codes since they
are free R(q, t)-modules. Furthermore, if A= A0+u B1+u2 B2+· · ·+ut−1 Bt−1,
where Bi is a matrix over Fq , then C1 determines A0 and Fi (Ci ) determines Bi .

Example 9. Let

G =


1 0 2 2+u 1+u+u2

0 1 1 1+2u u+u2

0 0 u 2u u+u2

0 0 0 u2 2u2
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be a generator matrix for a code C over R(3, 3). The corresponding generator
matrices for the linear codes are:

C1 =

(
1 0 2 2 1
0 1 1 1 0

)
, a [5, 2, 3]-code over F3,

C2 =

1 0 2 2 1
0 1 1 1 0
0 0 1 2 1

 , a [5, 3, 2]-code over F3,

C3 =


1 0 2 2 1
0 1 1 1 0
0 0 1 2 1
0 0 0 1 2

 , a [5, 4, 1]-code over F3,

and the code C has (33)2(32)1(3)1 = 273 codewords.

Utilizing the torsion codes of C we can define a new weight on C and obtain a
bound for their minimum distance.

Definition 2. Let x ∈ R(q, t) and let p be the characteristic of the field Fq . Let
i0 = max{i | x ∈ 〈ui

〉}. Define the p-weight of x as wtp(x) = pi0 , if x 6= 0 and
wtp(0) = 0. For an element of (R(q, t))n define the p-weight as the sum of the
p-weights of its coordinates.

Note. For the case R(2, 2)= F2+uF2, the p-weight coincides with the Lee weight,
and for R(p, 2)=Fp+uFp, the p-weight coincides with the Bachoc weight defined
in [Bachoc 1997].

Theorem 2. Let C be a linear code over R(q, t), and let C1,C2, . . . ,Ct be the
associated torsion codes over Fq . Let di be the Hamming distance of the codes Ci ,
then the minimum weight d of the code C with respect to the p-weight satisfies

min {pi−1di | i = 1, .., t} ≤ d ≤ pt−1dt .

Proof. Let W = (y1, y2, . . . , yn) ∈ C with minimum weight. Then for some i ,
W =ui X+Y with Y ∈〈ui+1

〉. Thus X ∈Ci+1 andwtp(W )≥ pi
·wtH (X)≥ pi di+1.

Now take X1 ∈ Ct to be a word of minimum weight dt , then ut−1 X1 ∈ C , and, by
the minimality of W , we have wtp(W )≤ wtp(ut−1 X1)= pt−1dt . �

It is well known [Bonnecaze and Udaya 1999; Ling and Sole 2001], that the
Lee weight for a cyclic code C over F2+ uF2 is the lower bound above. Here we
show an example over F2+ uF2 that attains the upper bound.

Example 10. Let C be the linear code over F2+ uF2, with generator matrix

G =
(

1 0 u 1
0 1 1+u u

)
.
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The codeword (u, u, u, u) has Lee (or 2-) weight 8, while all the other nonzero
codewords have weight 4. On the other hand C1 and C2 are equal with generator
matrix

G =
(

1 0 0 1
0 1 1 0

)
.

Hence d1 = d2 = 2, and min{d1, 2d2} = 2 6= d.

Since the p-weight coincides with the Lee weight for codes over F2 + uF2,
we obtain the general version for the Lee weight of those codes as a corollary of
Theorem 2.

Corollary 1. The minimum Lee weight of a code C over F2+ uF2, satisfies

min {d1, 2d2} ≤ d ≤ 2d2

where d1, d2 are respectively the Hamming distance of the residue code C1 and the
torsion code C2.

Example 11. Return to Example 9 over R(3, 3) with d1= 3, d2= 2, d3= 1. Hence
3≤d≤9. The first and second generators combine to form a codeword of p-weight
3. Hence d = 3, and in this example the minimum weight attains the lower bound.

Example 12. Let C be the linear code over F3+ uF3, with generator matrix

G =
(

1 0 u 2
0 1 1+u u

)
.

There are only 4 codewords with 2 zero entries, and they have Bachoc weight (and
hence p-weight) 6. There are no codewords with Bachoc weight 3, and the Bachoc
distance d of the code is 4. On the other hand the associated ternary codes are

C1 = C2 =

(
1 0 0 2
0 1 1 0

)
.

Thus d1 = d2 = 2 and the Bachoc weight d lies strictly between the bounds given
above.

Corollary 2. For free codes the p-weight d satisfies: d1 ≤ d ≤ pt−1d1.

We can also use the torsion codes to study the Hamming weight of the code C.
The results given here use a straightforward proof in comparison with the proof
given in [Norton and Salagean 2000a].

For a code C over R(q, t) and w ∈ C , we denote wH (w) the usual Hamming
weight of w. Accordingly, the minimum Hamming distance of the code will be
denoted by dH (C).
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Proposition 3. Let C be a linear code over R(q, t), and let C1,C2, . . . ,Ct be the
associated torsion codes over Fq . Let di be the Hamming distance of the codes Ci ,
then the minimal Hamming weight dH of the code C satisfies

ddH = dt ≤ dt−1 ≤ · · · ≤ d1.

Proof. Since Ci ⊆ Ci+1, it follows that di+1 ≤ di , for i = 1..t Now let X ∈ Ct .

Then Xut−1
∈ C and hence dH ≤ dt . Conversely, let w∗ be a codeword in C

with minimum Hamming weight dH . Let j be the maximum integer such that
u j divides w∗. Then w∗ = u jv and z = ut− j−1w∗ = ut−1v ∈ C. Thus v̂ ∈ Ct ,
where v̂ denotes the canonical projection from R(q, t)n into Fn

q . We then have
wH (w

∗)≥ wH (v̂)≥ dt , and therefore dH ≥ dt . �

From the above proof, the Singleton bound for Ct , and the comment after Propo-
sition 2, we have:

Corollary 3. Let C be a linear code over R(q, t), and let C1,C2, . . . ,Ct be the
associated torsion codes. Then:

dH ≤ n− (k1+ k2+ · · · kt)+ 1.

Proposition 4. φB(C) is a [ nt,
∑t

i=1 ki (t − i + 1) , d∗] linear code over Fq , with
d∗ ≤ tdt .

Proof. Since ui−1 divides y j for each y j in the i-th row-block of G, us y j = 0 for
s ≥ t − i + 1. Furthermore, the generators us y j 6= 0 for s < t − i + 1 are linearly
independent. Since there are ki such y j , we have

dim(φB(C))=
t∑

i=1

ki
(
t − (i − 1)

)
. �

4. Self-dual codes over Fq[u]/(ut) using torsion codes

Duality for codes over Fq [u]/(ut) is understood with respect to the inner product
x ·y=

∑
xi yi , where xi , yi ∈ R(q, t).As usual, a code is called self-dual if C=C⊥,

and is called self-orthogonal is C ⊆ C⊥.
First, we give an examples of self-dual codes over R(q, t) of length n when t is

even and n is a multiple of p (the characteristic of the field Fq .) The construction
mimics the Cn codes studied by Bachoc [1997] for the case t = 2.

Example 13. For t even, let I = 〈ut/2
〉 ⊆ R(q, t). Define the set:

Dn := {(x1, x2, . . . , xn) ∈ R(q, t)n |
n∑

i=1

xi = 0 and xi − x j ∈ I for all i 6= j}.
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Let X, Y ∈ Dn ,

X · Y =
n∑

i=1

xi yi =

n∑
i=1

(xi − x1)(yi − y1)+

n∑
i=1

xi y1+

n∑
i=1

x1 yi − nx1 y1.

The first term is in I 2
= 0, the next two terms are zero by definition and the third

term is zero since p|n. Thus Dn ⊆ D⊥n . Now, for each i = 1 . . . n, we can write
xi = a + bi where a is a common polynomial of degree less than t/2, and bi ∈ I
with

∑
bi = 0. There are q t/2 choices for a, and (qn−1)t/2 choices for the bi ’s,

thus
|Dn| = q t/2(qn−1)t/2 = qnt/2,

and hence Dn is self-dual.
The torsion q-ary codes are as follows: for i = 1, . . . t/2, Ci is the code gener-

ated by the 1 word, with di = n; and for i = t/2+ 1 . . . t, Ci is the parity check
code of length n and dimension n−1, thus di = 2. Applying Theorem 2, we obtain

min {n, 2pt/2
} ≤ d ≤ 2pt−1.

But 1 and (0, 0, . . . , 0, ut/2,−ut/2, 0, . . . , 0) ∈ Dn , hence d =min {n, 2pt/2
}.

We study self-orthogonal and self-dual codes over R(q, t) taking two different
approaches. We look at the linear codes φB(C), and also look at the torsion codes
corresponding to C.

To study the latter we need some results on the parity check matrix of these
codes, which can be defined in terms of block matrices using the recurrence relation

Di, j =

t+2− j∑
k=i+1

−Bi,k Dk, j

for blocks, such that i+ j≤ t+1. For blocks such that i+ j= t+2, Di, j =ut− j+1 Ik j

for i = 2, . . . , t and Dt+1,1 = In−(k1+k2+...kt ). All remaining blocks are 0. From
here a generator matrix for the dual code can be obtained and we easily observe
the following relations: k1(C⊥)= n− (k1+ . . .+ kt) and kh(C⊥)= kt−h+2(C) for
h = 2, . . . , t .

A different recurrence relation for the definition of the parity check matrix is
given in [Norton and Salagean 2000a].

Proposition 5. Let C be an R(q, t) code, and let Ci ’s be its corresponding torsion
codes. Then

(C⊥)i = (Ct−i+1)
⊥, i = 1..t.

Proof. Let w ∈ (C⊥)i and v ∈ Ct−i+1. Then there exists z ∈ (〈ui
〉)n with a :=

wui−1
+ z ∈C⊥, and y ∈ (〈ut−i+1

〉)n with b := vut−i
+ y ∈C. Since a ·b= 0, we
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have
0= (wui−1

+ z) · (vut−i
+ y)= (w · v)ut−1,

which implies w · v = 0, and w ∈ (Ct−i+1)
⊥. So (C⊥)i ⊆ (Ct−i+1)

⊥. Looking at
dimensions

dim((C⊥)i )=
i∑

j=1

k j (C⊥)= n− (k1+ . . .+ kt)+

i∑
j=2

kt− j+2(C)

= n−
t−i+1∑

j=1

k j (C)= n− dim(Ct−i+1)= dim((Ct−i+1)
⊥). �

Using the generator in standard form of a code C and forming the inner products
of its row-blocks we obtain:

Proposition 6. Let C be an R(q, t) code with a generator matrix in standard form.
C is self-orthogonal if and only if

k∑
h=0

t+1∑
j=max{i,k}

Ai, j,h At
l, j,k−h = 0, for each k = 0, . . . , t − (i + l − 2)− 1.

This gives us the first characterization of self-dual codes:

Theorem 3. Let C be an R(q, t) code; and let Ci ’s be its corresponding torsion
codes. The code C is self-orthogonal and Ci =C⊥t−i+1 if and only if C is self-dual.

Proof. By Proposition 5 we have (C⊥)i = C⊥t−i+1 = Ci for all i = 1 . . . t. Further-
more, rk(C) = dim(Ct) = dim((C⊥)t) = rk(C⊥); but C is self-orthogonal, hence
C = C⊥. Similarly, the converse follows immediately from Proposition 5. �

As an immediate consequence we have:

Corollary 4. If C is self-dual, then Ci is self-orthogonal for all i ≤ (t + 1)/2.

Note that when t is odd, Cb(t+1)/2c is self-dual and hence n must be even. For
the case t even, we can contruct self-dual codes of even or odd length.

Proposition 6 and Theorem 3 provide us with an algorithm to produce self-dual
codes over R(q, t) starting from self-orthogonal codes over Fq .

(1) Take a self-orthogonal code C1 over Fq .

(2) Define Ct := C⊥1 .

(3) Choose a set of self-orthogonal words {R1, R2, ..., Rl} in Ct that are linearly
independent from C1. Define

C2 := 〈C1 ∪ {R1, R2, . . . , Rl}〉 and Ct−1 = C⊥2 .
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(4) Repeat, if possible, the step above defining Ci and Ct−i+1 = C⊥i until you
produce Cb(t+1)/2c.

(5) For each i = 1..t , multiply the generators of {Ci+1 − Ci } by ui . This will
produce a self-dual code.

Additional self-dual codes are obtained as follows:

(6) Form a generator matrix G in standard form, adding, where appropriate, vari-
ables to represent higher powers of u.

(7) Now we find the system of equations on the defined variables arising from
Proposition 6. Note that for fixed i, l = 1 . . . t each k will produce a matrix
equation, which in turn produces several nonlinear equations.

(8) Write this system of equations in terms of the independent variables. There
will be

bt/2c∑
i=1

t−i∑
j=i

(t − i − j + 1)ki k j

equations on

t−1∑
i=1

t+1∑
j=i+2

( j − i − 1)ki k j total variables.

(9) By Theorem 3 every solution to this system of equations will produce a self-
dual code (some may be equivalent).

We now provide an example of this construction.

Example 14. Self-dual codes in R(3, 4) :

Consider the self-orthogonal code

C1 =

(
1 0 0 0 1 2
0 1 0 0 1 1

)
.

Define

C4 := C⊥1 =


1 0 0 0 1 2
0 1 0 0 1 1
0 0 1 0 0 0
0 0 0 1 0 0

 .
Since there are no more self-orthogonal words in C4 to append to C1, we let C2 :=

C1, and since C⊥2 = C4 we let C3 := C4. Multiplying the rows in C3 −C2 by u2

we obtain a generator matrix for a self-dual code over R(3, 4):
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1 0 0 0 1 2
0 1 0 0 1 1
0 0 u2 0 0 0
0 0 0 u2 0 0


Now we can form a generator matrix using variables to represent higher powers

of u obtaining
1 0 au bu 1+cu+du2

+eu3 2+ f u+gu2
+hu3

0 1 iu ju 1+ku+lu2
+mu3 1+nu+pu2

+qu3

0 0 u2 0 ru3 su3

0 0 0 u2 tu3 vu3

 .
The equation

k∑
h=0

t+1∑
j=max{i,k}

Ai, j,h At
l, j,k−h = 0

produces a system of equations over Fq . For example, for i = 1, l = 2, k = 3 we
obtain the equation

a+ r + 2s = 0,
b+ t + 2v = 0,

i + r + s = 0,
j + t + v = 0.

Likewise, the remaining equations can be obtained, and we solve in terms of a
set of independent variables {a, b, h, i, j, n, p}:

c = n,
d = ai + bj + i2

+ j2
+ p+ 2a2

+ 2b2,

e = n(ai + bj + i2
+ j2
+ 2n2

+ p)+ h,
f = n,
g = a2

+ b2
+ ai + bj + i2

+ j2
+ n2
+ p,

k = 2n,
l = i2

+ j2
+ 2p+ 2n2,

m = n(i2
+ j2
+ 2a2

+ 2b2
+ ai + bj)+ 2h,

q = n(a2
+ b2
+ p+ 2ai + 2bj + 2n2)+ h,

r = a− 2i,
s = i − a,
t = b− 2 j,
v = j − b.
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These equations allow us to generate up to 37 self-dual codes over R(3, 4). As an
example, letting all the independent variables take the value 1 except for b= 0, we
obtain the self-dual code

1 0 u 0 1+u+u3 2+u+u3

0 1 u u 1+2u+u3 1+u+u2
+u3

0 0 u2 0 2u3 0
0 0 0 u2 u3 u3

 .
5. Self-dual codes over Fq[u]/(ut) using linear images

As discussed in Section 2, given a code C over R(q, t) of length n and a nonsingular
t × t matrix B over Fq , we can define a linear code φB(C) over Fq of length
nt. In this section, we will consider an element x ∈ R(q, t) in its polynomial
representation, and will use x for its vector representation.

Let w = (w1, w2, . . . , wn) be a codeword in C . Recall that

φB(w)= (w1 B, w2 B, . . . , wn B).

Let E denote the square matrix
1 1 · · · 1

1 1 . .
.

... . .
.

1 0

 over Fq .

Theorem 4. If C is self-orthogonal and B BT
= cE where c 6= 0∈ Fq , then φB(C)

is self-orthogonal.

Proof. Let R j denote the j-th row of B. Then R j RT
k = c, for all j + k < t+2 and

R j RT
k = 0, for all j + k ≥ t + 2. If w, v ∈ C , then

φB(w)φB(v)

=

n∑
i=1

wi B(vi B)T =
n∑

i=1

wi B BT vi

=

n∑
i=1

t−1∑
j,k=0

wi, j R j+1 RT
k+1vi,k = c

n∑
i=1

t−1∑
j+k<t

wi, jvi,k + 0
n∑

i=1

2t−2∑
j+k≥t

wi, jvi,k,

but since C is self-orthogonal, the sum in the first term is 0. Therefore,

φB(w)φB(v)= 0,

and thus φB(C) is self-orthogonal. �



192 R. ALFARO, S. BENNETT, J. HARVEY AND C. THORNBURG

Corollary 5. If C is self-dual, B BT
= cE , and

t∑
i=2

ki (t − 2i + 2)= 0,

then φB(C) is self-dual.

Proof. Splitting the equation from the hypothesis we have
t∑

i=2

ki (t − i + 1)=
t∑

i=2

ki (i − 1),

2
t∑

i=2

ki (t − i + 1)=
t∑

i=2

ki (i − 1) +
t∑

i=2

ki (t − i + 1)=
t∑

i=2

tki ,

2
t∑

i=1

ki (t − i + 1)= 2k1t +
t∑

i=2

tki .

Since C is self-dual, we know

C⊥1 = Ct and dim(Ct)= rk(C).

Thus,

dim(C⊥1 )= rk(C) and n− k1 =

t∑
i=1

ki .

Therefore,

2
t∑

i=1

ki (t − i + 1)= nt,

making the length of φB(C) twice its dimension. By Theorem 4, φB(C) is self-
orthogonal and hence φB(C) is self-dual. �

Let M, N be two matrices over Fq . We say they are root-equivalent (M ∼ N ) if
M can be obtained from N by a column permutation, or a column multiplication
by an element α ∈ Fq such that α2

= 1. This implies M MT
= N N T , and by the

definition of φB , we obtain the following

Corollary 6. If B∼ D in the hypothesis of Corollary 5 then φB(C) and φD(C) are
equivalent self-dual codes.

Example 15. For R(3,3), all matrices B that satisfy B B t
= cE are root-equivalent,

and therefore produce equivalent codes. Hence we can restrict ourselves to just one
such matrix, for example,

B =

 1 1 0
0 2 1
1 1 1

 .
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The cases of R(2, 2) and R(3, 3) are singular. For R(3, 4) we have 6 different
classes of root-equivalent matrices.

In general, note that there exist self-dual codes A and matrices B with B BT
6=

cE whose image φB(A) is self-dual. For example, consider the self-dual code A
over R(3, 4) with a generator matrix

G =


1 1 1 1 1 1

1+2u+u2 1+2u 1+2u+u2 1+2u 1+2u+u2 1+2u
1+u2 1+u2 1+u2 1 1 1
u+u2 u u u+u2 u+u2 u

0 0 0 0 u2 2u2

 .
Passing to standard form,

G1 =


1 1 1 1 1 1
0 u2 0 0 0 2u2

0 0 u2 0 0 2u2

0 0 0 u2 0 2u2

0 0 0 0 u2 2u2

 .
Consider the matrix

B =


1 0 0 0
1 2 1 1
0 1 2 1
2 1 1 0

 ,
for which B BT

6= cE for any c. The image code φB(A) is a self-dual code:

φB(A)=



1 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 2 0 1 1
0 1 0 0 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 2 2 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2
0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 2 0 2 2
0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 2 1 2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 2 0 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 2 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 2 0 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 2 1 2



.
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