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We discuss properties of the Julia and Fatou sets of the derivative of the Weier-
strass elliptic ℘ function. We find triangular lattices for which the Julia set is
the whole sphere, or which have superattracting fixed or period two points. We
study the parameter space of the derivative of the Weierstrass elliptic function on
triangular lattices and explain the symmetries of that space.

1. Introduction

The study of complex dynamical systems began in the early 1900s with the work of
mathematicians such as Fatou [1919; 1920a; 1920b] and Julia [1918]. These works
focused on the iteration of rational functions, although Fatou later published articles
on the iteration of entire functions [1926]. Much more recently, Devaney and Keen
[1988] published the first paper investigating the dynamics of a transcendental
meromorphic function. Since then, it has been well established that transcendental
meromorphic functions can exhibit dynamical behavior distinct from that of rational
maps [Baker et al. 1991a; 1991b; 1992; Bergweiler 1993; Devaney and Keen 1988;
1989; Erëmenko and Lyubich 1992]. (See also the references in the next paragraph.)

Studies on the dynamical, measure-theoretic, and topological properties of iter-
ated elliptic functions have appeared in [Hawkins 2006; Hawkins and Koss 2002;
2004; 2005; Hawkins and Look 2006; Kotus 2006; Kotus and Urbański 2003; 2004].
Of these, the first five deal with the Weierstrass elliptic ℘-function, which satisfies
some strong algebraic identities that influence the resulting dynamical behavior.
Even within an equivalence class of lattice shape, changing the size or orientation of
the lattice can drastically change the dynamics of the Weierstrass elliptic function.
Most of the work investigating the dynamics of parametrized families of elliptic
functions has involved the study of the Weierstrass function.
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In this paper, we investigate the dynamics of the derivative of the Weierstrass
elliptic function, focusing mainly on triangular lattices. Although the Weierstrass
elliptic function and its derivative share some of the same algebraic properties,
moving from the order two elliptic function ℘ to the order three function ℘ ′

changes many of the dynamical properties. For example, on a triangular lattice
�, ℘� has three distinct critical values, but ℘ ′� only has two. As the postcritical
orbits strongly influence the dynamical properties of an iterated family, ℘� and ℘ ′�
exhibit different types of behavior.

Here, we construct lattices for which the Julia set of ℘ ′� is the entire sphere,
and we also construct lattices for which ℘ ′� has a superattracting fixed point or
a superattracting period two cycle. We also investigate the symmetries of the
parameter space arising from all triangular lattices.

The paper is organized as follows. In Sections 2 and 3 we give background
on the dynamics of meromorphic functions and lattices in the plane. In Section
4, we define the function that we study, the derivative of the Weierstrass elliptic
function, and discuss the location of the critical points and critical values of this
function. In Section 5 we discuss the symmetries of the Fatou and Julia sets that
arise from the algebraic properties of these elliptic functions. Section 6 focuses on
the postcritical set of ℘ ′� when � is a triangular lattice. In this section, we construct
many triangular lattices � for which the postcritical set ℘ ′� exhibits especially nice
behavior.

In Section 7 we discuss parametrizing the derivative of the Weierstrass elliptic
function over all triangular lattices. We find a subset of this parameter space which
gives a reduced holomorphic family, and we discuss symmetries of parameter space
that arise from other dynamical properties of this family of maps.

2. Background on the dynamics of meromorphic functions

Let f : C→ C∞ be a meromorphic function where C∞ = C∪{∞} is the Riemann
sphere. The Fatou set F( f ) is the set of points z ∈ C∞ such that { f n

: n ∈ N} is
defined and normal in some neighborhood of z. The Julia set is the complement of
the Fatou set on the sphere, J ( f )= C∞ \ F( f ). Notice that

C∞ \
⋃

n≥0
f −n(∞)

is the largest open set where all iterates are defined. If f has at least one pole that
is not an omitted value, then ⋃

n≥0
f −n(∞)
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has more than two elements. Since

f (C∞ \
⋃

n≥0
f −n(∞))⊂ C∞ \

⋃
n≥0

f −n(∞),

Montel’s theorem implies that

J ( f )=
⋃

n≥0
f −n(∞).

Let Crit f denote the set of critical points of f , that is,

Crit f = {z : f ′(z)= 0}.

If z0 is a critical point then f (z0) is a critical value. The postcritical set of f is:

P( f )=
⋃

n≥0
f n(Crit f ).

A point z0 is periodic of period p if there exists a p ≥ 1 such that f p(z0)= z0.
We also call the set {z0, f (z0), . . . , f p−1(z0)} a p-cycle. The multiplier of a point
z0 of period p is the derivative ( f p)′(z0). A periodic point z0 is classified as
attracting, repelling, or neutral if |( f p)′(z0)| is less than, greater than, or equal to
1, respectively. If |( f p)′(z0)| = 0 then z0 is called a superattracting periodic point.
As in the case of rational maps, the Julia set is the closure of the repelling periodic
points [Baker et al. 1991a].

Suppose U is a connected component of the Fatou set. We say that U is prepe-
riodic if there exists n > m ≥ 0 such that f n(U )= f m(U ), and the minimum of
n−m= p for all such n,m is the period of the cycle. Although elliptic functions with
a finite number of critical values are meromorphic, it turns out that the classification
of periodic components of the Fatou set is no more complicated than that of rational
maps of the sphere. Periodic components of the Fatou set of these elliptic functions
may be attracting domains, parabolic domains, Siegel disks, or Herman rings [Baker
et al. 1992; Erëmenko and Lyubich 1992; Hawkins and Koss 2002].

Let

C = {U0,U1, . . .Up−1}

be a periodic cycle of components of F( f ). If C is a cycle of immediate attractive
basins or parabolic domains, then

U j ∩Crit f 6=∅ for some 0≤ j ≤ p− 1.

If C is a cycle of Siegel disks or Herman rings, then

∂U j ⊂
⋃

n≥0
f n(Crit f ) for all 0≤ j ≤ p− 1.
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In particular, critical points are required for any type of preperiodic Fatou compo-
nent.

3. Lattices in the plane

Let ω1, ω2 ∈ C \ {0} be such that ω2/ω1 /∈ R. We define a lattice of points in the
complex plane by

�= [ω1, ω2] := {mω1+ nω2 : m, n ∈ Z}.

Different sets of vectors can generate the same lattice �. If �= [ω1, ω2], then any
other generators η1, η2 of � are obtained by multiplying the vector (ω1, ω2) by the
matrix

A =
(

a b
c d

)
with a, b, c, d ∈ Z and ad − bc = 1. The values ω3 = ω1+ω2 and ω4 =

1
2ω3 will

be used later in this paper.
We can view � as a group acting on C by translation, each ω ∈� inducing the

transformation of C:
Tω : z 7→ z+ω.

Definition 3.1. A closed, connected subset Q of C is defined to be a fundamental
region for � if

(i) for each z ∈ C, Q contains at least one point in the same �-orbit as z;

(ii) no two points in the interior of Q are in the same �-orbit.

If Q is any fundamental region for �, then for any s ∈ C, the set

Q+ s = {z+ s : z ∈ Q}

is also a fundamental region. Usually (but not always) we choose Q to be a
polygon with a finite number of parallel sides, in which case we call Q a period
parallelogram for �.

Frequently we refer to types of lattices by the shapes of the corresponding period
parallelograms. If � is a lattice, and k 6= 0 is any complex number, then k� is
also a lattice defined by taking kω for each ω ∈�; k� is said to be similar to �.
Similarity is an equivalence relation between lattices, and an equivalence class of
lattices is called a shape.

Let � denote the set of complex numbers ω for all ω ∈ �. Then � is also a
lattice. If � = �, � is called a real lattice. There are two special lattice shapes:
square and triangular. A square lattice is a lattice with the property that i�=�. A
triangular lattice is a lattice with the property that ε�=�, where ε is a cube root
of unity; such a lattice forms a pattern of equilateral triangles throughout the plane.
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A triangular lattice is in the horizontal position if the main axis of the rhombus is
parallel to the real axis, and vertical if the main axis is parallel to the imaginary
axis.

Among all lattices, those having the most regular period parallelograms are
distinguished in many respects. For example, results on how the lattice shape
influences the dynamics of the Weierstrass elliptic function can be found in [Hawkins
2006; Hawkins and Koss 2002; 2004; 2005; Hawkins and Look 2006].

4. The derivative of the Weierstrass elliptic function

For any z ∈ C and any lattice �, the Weierstrass elliptic function is defined by

℘�(z)=
1
z2 +

∑
ω∈�\{0}

( 1
(z−ω)2

−
1
ω2

)
.

Replacing every z by −z in the definition we see that ℘� is an even function. It is
well-known that ℘� is meromorphic and is periodic with respect to �.

The derivative of the Weierstrass elliptic function is given by

℘ ′�(z)=−2
∑
ω∈�

1
(z−ω)3

.

It is also an elliptic function and is periodic with respect to �. It is clear from the
series definition that ℘ ′� is an odd function. In addition, ℘ ′� is also meromorphic,
with poles of order three at lattice points.

The Weierstrass elliptic function and its derivative are related by the differential
equation

(℘ ′�(z))
2
= 4(℘�(z))3− g2℘�(z)− g3, (1)

where

g2(�)= 60
∑

ω∈�\{0}

ω−4 and g3(�)= 140
∑

ω∈�\{0}

ω−6.

The numbers g2(3) and g3(3) are invariants of the lattice 3 in the following sense:
if g2(3)= g2(3

′) and g3(3)= g3(3
′), then 3=3′. Furthermore, given any g2

and g3 such that g3
2 − 27g2

3 6= 0 there exists a lattice 3 having g2 = g2(3) and
g3 = g3(3) as its invariants. If 3 is a square lattice then g2 = 0, and if 3 is a
triangular lattice, g3 = 0 [Du Val 1973].

It will be useful to have an expression for ℘ ′′�, the second derivative of the
Weierstrass elliptic function for a given lattice �. Starting with

℘ ′�(z)=−2
∑
�

(z−ω)−3,
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we differentiate term by term to find that

℘ ′′�(z)= 6
∑
�

(z−ω)−4.

Further, using (1), we have

℘ ′′�(z)= 6(℘�(z))2−
g2(�)

2
. (2)

The Weierstrass elliptic function, its derivatives, and the lattice invariants satisfy
the following homogeneity properties.

Proposition 4.1. For any lattice � and for any m ∈ C \ {0},

℘m�(mz)= m−2℘�(z),

℘ ′m�(mz)= m−3℘ ′�(z),

℘ ′′m�(mz)= m−4℘ ′′�(z),

g2(m�)= m−4g2(�),

g3(m�)= m−6g3(�).

Verification of the homogeneity properties can be seen by substitution into the series
definitions.

The homogeneity property of ℘ ′� influences the behavior of ℘ ′� under iteration.

Corollary 4.2. If � is any lattice then

(℘ ′�)
n(−z)=−(℘ ′�)

n(z).

Proof. Since � = −� for any lattice, the result follows from the homogeneity
property in Proposition 4.1. �

Critical points and values play an important role in complex dynamics, so it is
useful for us to be able to locate these points for ℘� and ℘ ′�. From [Du Val 1973],
we see that the critical points of ℘� lie exactly on the half lattice points of �; that is,
on ω j/2+� for j ∈ {1, 2, 3}. We discuss the critical points for ℘ ′� in the following
proposition.

Proposition 4.3 [Du Val 1973]. The critical points of ℘ ′ are the points where
℘2(z)= g2/12. Further, the critical values of ℘ ′ are ±{−g3± (g2/3)3/2}1/2.

Proof. We have ℘ ′′(z) = 6(℘ (z))2− g2/2 from (2). Solving ℘ ′′(z) = 0 gives us
that ℘ ′ has critical points in the four congruence classes where (℘ (z))2 = g2/12.

The critical values of ℘ ′ are found by solving

4(℘ (z))3− g2℘(z)− ((℘ ′(z))2+ g3)= 0
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for ℘ ′(z) as follows. Substitution of ±
√

g2/12 for ℘(z) and simplification lead to

−
1
3 g3/2

2 =±
√

3((℘ ′(z))2+ g3).

Squaring both sides and rearranging terms shows that

g2
3
− 27((℘ ′(z))2+ g3)

2
= 0,

and by solving for ℘ ′(z), we see that the critical values of ℘ ′(z) are

±
(
−g3± (g2/3)3/2

)1/2
. �

The critical values are distinct unless the lattice is triangular.

Corollary 4.4. If � is triangular then � has exactly two equivalence classes of
critical points at±(1/3)ω3+�=±(1/3)(ω1+ω2)+�=±(2/3)ω4+� and two
distinct critical values at ±

√
−g3.

Proof. We note that if � is triangular then the critical points coincide in pairs with
the zeros of ℘�(z). These points occur at the points at the center of the equilateral
triangles determined by the lattice,±(1/3)ω3+�=±(2/3)ω4+�. Since g2(�)=0
for triangular lattices there are only two critical values by Proposition 4.3. �

5. Properties of the Julia and Fatou sets of ℘′
�

We begin our investigation of the dynamics of ℘ ′� for an arbitrary lattice � with an
examination of the symmetries that arise in the Julia and Fatou sets.

Theorem 5.1. Let � be any lattice.

(i) F(℘ ′�)= F(℘ ′�)+� and J (℘ ′�)= J (℘ ′�)+�.

(ii) F(℘ ′�)=−1F(℘ ′�) and J (℘ ′�)=−1J (℘ ′�).

(iii) F(℘ ′
�
)= F(℘ ′�) and J (℘ ′

�
)= J (℘ ′�).

(iv) If � is square, then F(℘ ′�)= i F(℘ ′�) and J (℘ ′�)= i J (℘ ′�).

(v) If � is triangular, then εF(℘ ′�)= F(℘ ′�) and εJ (℘ ′�)= J (℘ ′�) where ε is a
cube root of unity.

Proof. The proof of (i) follows immediately from the periodicity of ℘ ′� with respect
to �.

For (ii), let z ∈ F(℘ ′�). By definition, (℘ ′�)
n(z) exists and is normal for all n.

Let U be a neighborhood of z such that {(℘ ′�)
n(U )} forms a normal family. Let

V =−U . By Corollary 4.2, we have that (℘ ′�)
n(V )=−(℘ ′�)

n(U ) for all n≥ 1 and
thus {(℘ ′�)

n(V )} forms a normal family. The proof of the converse is identical. So
z ∈ F(℘ ′�) if and only if −z ∈ F(℘ ′�), and the Fatou set is symmetric with respect
to the origin. This of course forces the Julia set to be symmetric with respect to the
origin as well.
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To prove (iii), define φ(z)= z. We see that φ ◦℘ ′� =℘
′

�
◦φ for all lattices �, so

for a general lattice the map ℘ ′� is conjugate to ℘ ′
�

, and the Julia sets are conjugate
under φ.

For (iv), we know that square lattices satisfy i�=�. Using Proposition 4.1, we
have

(℘ ′�)
n(−i z)= (℘ ′i�)

n(−i z)=−i(℘ ′�)
n(z).

for all n ≥ 0. Thus the Julia set and the Fatou set of a square lattice must be
symmetric with respect to rotation by π/2.

A similar application of the homogeneity lemma proves (v). If ε is a cube
root of one, then so is ε2

= 1/ε; thus ε2� = �. Then from Proposition 4.1,
℘ ′�(ε

2z)= ℘ ′
ε2�
(ε2z)= ℘ ′�(z); by induction, (℘ ′�)

n(ε2z)= (℘ ′�)
n(z). �

In addition to a basic Julia set pattern repeating on each fundamental region, we
also see symmetry within the period parallelogram.

Proposition 5.2. For the lattice � = [ω1, ω2], J (℘ ′�) and F(℘ ′�) are symmetric
with respect to the half lattice points ω1/2+�, ω2/2+�, and (ω1+ω2)/2+�.

Proof. This follows easily from Theorem 5.1 (i), (ii). We have z ∈ J (℘ ′�) if and
only if −z+� ∈ J (℘ ′�), and a half lattice point must lie between z and −z+�
for any element of the lattice. �

6. Postcritical orbits

Recall from Proposition 4.3 that the critical points of ℘ ′ are the points where
℘2(u)= g2/12. Our next result shows that multiplying the lattice � by k changes
the location of the critical points from a� to ka�.

Theorem 6.1. Let � be a lattice and suppose a� is a critical point of ℘ ′�. Then
ka� is a critical point of ℘ ′k�.

Proof. Suppose a� is a critical point for ℘ ′�; that is, assume that [℘�(a�)]2 =
g2(�)/12. From Proposition 4.1, we have g2(k�)= k−4g2(�) and

[℘k�(ka�)]2 =
[ 1

k2℘�(a�)
]2
=

1
k4 [℘�(a�)]

2
=

g2(�)

k412
=

g2(k�)
12

.

Thus if a� is a critical point of ℘ ′�, then ka� is a critical point of ℘ ′k�. �

We will use the notation ak� to denote the critical point ka� for ℘ ′k�.
From Corollary 4.4, we know that triangular lattices are distinguished by the

fact that they have exactly two critical values. We restrict our attention to triangular
lattices throughout the rest of the paper. In particular, the postcritical orbits of ℘ ′�
are related in an especially nice way when � is a triangular lattice.
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Proposition 6.2. If� is a triangular lattice then P(℘ ′�) is contained in two forward
invariant sets: one set

α =
⋃

n≥0
(℘ ′�)

n(a�),

and the set eiπα. (These sets are not necessarily disjoint.)

Proof. The proof follows from the application of Corollaries 4.2 and 4.4. �

Let 3 be the lattice generated by g2 = 0, g3 = −4. We call 3 the standard
triangular lattice, and we reserve the symbol 3 to denote this particular lattice
throughout the rest of this paper. Then 3 is a triangular lattice in the horizontal
position. Let λ1, λ2 be a pair of generators for this lattice such that λ1 is in the first
quadrant and λ2 is its conjugate in the fourth quadrant. Using Mathematica or the
tables in [Milne-Thomson 1950], we can estimate λ1≈2.1+1.2i and λ2≈2.1−1.2i .
Define λ3 = λ1+λ2 and λ4 = (1/2)(λ1+λ2)= (1/2)λ3. Note that both λ3 and λ4

are real. Recall from Corollary 4.4 that for a general triangular lattice �, the critical
points are ±(2/3)ω4; let a3 = (2/3)λ4 so that a3 is a critical point of ℘ ′3. For the
lattice k3, let kλn denote the lattice points for n = 1, 2, 3, and let ak3 denote the
critical point ka3. Theorem 6.1 gives that ak3 = (2k/3)λ4. Since any triangular
lattice � can be written as �= k3 for some k, our discussion will now focus on
the lattice 3.

We begin with a lemma explaining how multiplying the standard triangular lattice
3 by certain values of k changes the critical values of ℘ ′k3. The lemma will be
useful in finding lattices for which the postcritical orbit is especially simple.

Lemma 6.3. Let 3 be the standard triangular lattice, j be a nonzero integer, and
choose k such that k4

= (2/j)(−2/λ3). Then ℘ ′k3(ka3)= ( j/2)kλ3. That is, ℘ ′k3
maps the critical point ak3 to the critical value ( j/2)kλ3.

Proof. Note that ℘ ′3(a3)=−
√
−g3(3)=−2. By Proposition 4.1,

℘ ′k3(ka3)=
1
k3 ℘

′

3(a3).

Multiplying by k/k gives

k
k4℘

′

3(a3)=
−2k

2
j
×
−2
λ3

=
j
2

kλ3,

as desired. �

We can use Lemma 6.3 to find values of k so that ℘ ′k3 has critical values located
at either lattice points or half lattice points.

http://www.wolfram.com/
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Lemma 6.4. Let3 be the standard triangular lattice, and let j be an even, nonzero
integer. Choose k such that k4

= (2/j)(−2/λ3). Then ℘ ′k3 maps the critical point
ak3 to a lattice point of k3.

Proof. We know from Lemma 6.3 that ℘ ′k3(ka3)= ( j/2)kλ3. Because j is even,
( j/2)kλ3 is a lattice point of k3. �

Lemma 6.5. Let 3 be the standard triangular lattice, and let j be an odd integer.
Choose k such that k4

= (2/j)(−2/λ3). Then ℘ ′k3 maps the critical point ak3 to a
half lattice point of k3.

Proof. We know from Lemma 6.3 that ℘ ′k3(ka3) = ( j/2)kλ3. Because j is odd,
( j/2)kλ3 is a half lattice point of k3. �

We can use the previous lemmas to find lattices for which all of the critical points
are prepoles and thus lie in the Julia set.

Theorem 6.6. Let 3 be the standard triangular lattice, and choose k so that
k4
= (2/j)(−2/λ3) for some nonzero integer j . Then the Julia set of ℘ ′k3 is C∞.

Proof. Suppose j is odd. By Lemma 6.5, ℘ ′k3(ka3) lands on a half lattice point of
k3. Recall that the critical points of ℘ lie at half lattice points; thus

℘ ′k3(℘
′

k3(ka3))= 0.

Then ak3 is a prepole, and by Corollary 4.2 so is −ak3. Then the postcritical set
{0,∞} is a finite subset of J (℘ ′k3), and thus J (℘ ′k3)= C∞.

Now suppose j is even. By Lemma 6.4, ℘ ′k3(ka3) lands on a lattice point of k3.
But the lattice points of k3 are the poles of ℘ ′k3, so ℘ ′k3(ka3) is a pole. Again we
have a finite postcritical set contained in J (℘ ′k3), and thus J (℘ ′k3)= C∞. �

Next, we focus on finding specific values of k which will map critical points to
critical points, which we can use to find examples where the Julia set is not the
entire sphere. We begin with a lemma that describes how to map critical points to
integer multiples of critical points.

Lemma 6.7. Let 3 be the standard triangular lattice and m be a nonzero integer.
Choose k such that k4

= (−2/ma3). Then ℘ ′k3(ak3)= mak3.

Proof. By Proposition 4.1, ℘ ′k3(ka3)= (1/k3)℘ ′3(a3). Again, we multiply by k/k
and have

k
k4℘

′

3(a3)=
−2k
−2/ma3

= mka3 = mak3,

as desired. �

The role of the integer m is similar to that of the integer j in Lemma 6.3: different
values of m give rise to different consequences.



DERIVATIVE OF WEIERSTRASS ELLIPTIC FUNCTION 277

Lemma 6.8. Let 3 be the standard triangular lattice, and let m be a nonzero
integer of the form 3n. Choose k such that k4

= (−2/ma3). Then ℘ ′k3(ka3) lands
on a lattice point of k3.

Proof. From Lemma 6.7, ℘ ′k3(ka3)= mak3. Then mak3 = 3n(2/3)λ4 = nλ3. �

Note that this is the same case as in Lemma 6.4.
Next, we show that if m has the form 3n+ 1 then ℘ ′k3 has two superattracting

fixed points.

Lemma 6.9. Let 3 be the standard triangular lattice, and let m be a nonzero
integer of the form 3n+ 1. Choose k such that k4

= (−2/ma3). Then mak3 and
−mak3 are superattracting fixed points for ℘ ′k3.

Proof. We know from Lemma 6.7 that ℘ ′k3(ka3)=mak3. Because m has the form
3n+ 1,

mak3 = (3n+ 1)ak3 = 3n 1
3 kλ3+

2
3 kλ4 = nkλ3+

2
3 kλ4 ∼=

2
3 kλ4 = ak3.

Hence we see that mak3 and ak3 are in the same residue class and thus map to the
same point. Thus

℘ ′k3(mak3)= ℘
′

k3(ak3)= mak3,

and we see that mak3 is a superattracting fixed point of ℘ ′k3. Since ℘ ′k3 is odd,
−mak3 is also a superattracting fixed point of ℘ ′k3 �

On the other hand, if m has the form 3n − 1 then ℘ ′k3 has a superattracting
two-cycle.

Lemma 6.10. Let 3 be the standard triangular lattice, and let m be a nonzero inte-
ger of the form 3n− 1. Choose k such that k4

= (−2/ma3). Then {mak3,−mak3}

form a superattracting 2-cycle for ℘ ′k3.

Proof. We know from Lemma 6.7 that ℘ ′k3(ka3)= mak3. Since m has the form
3n− 1,

mak3 = (3n− 1)ak3 = 3n 1
3 kλ3−

2
3 kλ4 = nkλ3−

2
3 kλ4 ∼=−

2
3 kλ4 =−ak3.

Thus we have that mak3 and −ak3 are congruent (mod k3). Then, by Proposition
4.1, we see that ℘ ′k3(mak3) = ℘

′

k3(−ak3) = −℘
′

k3(ak3) = −mak3. Similarly,
℘ ′k3(−mak3)= mak3, and we have a superattracting 2-cycle. �

The next theorem follows immediately from the previous two lemmas.

Theorem 6.11. Let 3 be the standard triangular lattice, and choose k so that
k4
= (−2/ma3) for some nonzero integer m. Then if m is of the form 3n − 1 or

3n+ 1 the Fatou set of ℘ ′k3 is nonempty.
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Figure 1. Example with a superattracting 2-cycle.

To illustrate Lemma 6.10, consider Figure 1. In this graph we use Mathematica
to draw the Julia and Fatou set of ℘ ′k3 with k chosen so that k4

= (−2/ma3), where
m = −1 and 3 is the standard triangular lattice. Thus we have a superattracting
2-cycle {ak3,−ak3}. The Fatou set is colored blue, and the Julia set is yellow.
The points of the 2-cycle, at z ≈ ±1.532 + 0i , are shown as red dots, and a
period parallelogram is also displayed for reference. For this lattice, we have
g3(k�)≈−2.348.

We note that the sign of k influences the orientation of the lattice. If k4 is positive,
then two of the values of k are real, one positive and one negative, and the other two
values are pure imaginary, with one positive and one negative. When k is real, the
lattice k3 is triangular in the horizontal orientation, and when k is pure imaginary,
the lattice k3 is triangular in the vertical orientation.

If k4 is negative then the values of k are complex; two lie on the line y = x and
two on the line y = −x . For such values of k, the lattice k3 is no longer a real
lattice. One such example is shown is Figure 2, where we are in the setting of
Lemma 6.9, and we have chosen k such that k4

= (−2/ma3) and m = 1. In this
case, we have two superattracting fixed points. Note for future reference that this
lattice has g3(k�)≈−2.348i .

The method of the last few results has been to start with a lattice � and choose
a k value so that k� maps a critical point ak� to another critical point, resulting
in superattracting fixed points or superattracting two-cycles. The next proposition
shows that it is impossible to construct superattracting cycles of length n > 2 in
this way.

http://www.wolfram.com/
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Figure 2. Example with two superattracting fixed points.

Proposition 6.12. Let � be a triangular lattice with critical points t1 and t2. Sup-
pose ℘ ′�(t1)= t2. If t1 ∼= t2(mod �), t2 is a superattracting fixed point. If t1 and t2
are not congruent, t2 and −t2 form a superattracting 2-cycle.

Proof. Case 1: t1 ∼= t2 (mod �). We know that ℘ ′�(t1) = t2. Further, by the
congruence of t1 and t2, ℘ ′�(t2) = ℘

′

�(t1) = t2. Thus t2 is a superattracting fixed
point.

Case 2: t1 6∼= t2(mod �). Because we are dealing with a triangular lattice, we
know that there are only two congruence classes of critical points. From Corollary
4.2, we also know that ℘ ′�(−t1) = −℘ ′�(t1); thus t1 and −t1 do not map to the
same point, and therefore must be in different congruence classes. Since there are
only two congruence classes of critical points, and since both t2 and −t1 are not
congruent to t1, we see that t2 ∼=−t1(mod �).

Again, we know that ℘ ′�(t1) = t2. Further, by the congruence of −t1 and t2,
℘ ′�(t2)= ℘

′

�(−t1)=−℘ ′�(t1)=−t2. By Corollary 4.2, we also have ℘ ′�(−t2)=
−℘ ′�(t2)= t2. Thus we have a superattracting 2-cycle. �

For example, Proposition 6.12 says that we can’t have a superattracting three cycle
that contains two critical points.

7. Parameter space

Next, we study the parameter space for the elliptic functions ℘ ′� for triangular
lattices �. The theory of holomorphic families was introduced by Mañé et al.
[1983], refined by McMullen [2000], generalized to the setting of meromorphic
maps with finite singular set by Keen and Kotus [1997], and discussed for the
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Weierstrass elliptic function in [Hawkins and Koss 2004] and [Hawkins and Look
2006].

We begin with the definition of parameter space for triangular lattices.

Definition 7.1. Given g2=0, we define g3−space to be the set of points g3∈C\{0}
which represent the triangular lattice 0 determined by g2 = 0 and g3, and therefore
the function ℘0.

Let 0(0, g3) denote the lattice determined by g2 = 0 and g3 ∈ C \ {0}. Then the
map:

F : C \ {0}×C→ C∞

given by F(g3, z)= ℘ ′0(0,g3)
(z) is holomorphic in g3 and meromorphic in z. This

defines a holomorphic family of meromorphic functions; we say that the holomor-
phic family of meromorphic maps parametrized over a complex manifold M is
reduced if for all triangular lattices 0 6=� in M , ℘ ′0 and ℘ ′� are not conformally
conjugate. In the current setting, g3-space is not reduced; the next results distinguish
the symmetries of parameter space arising from conjugacy from the symmetries
that occur for other reasons.

We first describe the possible conformal conjugacies that can occur between two
maps ℘ ′� and ℘ ′0 when � and 0 are triangular lattices.

Lemma 7.2. If ℘ ′0 is conformally conjugate to ℘ ′� via a Möbius map φ, then
φ(z)= az and φ(0)=�.

Proof. Assume that φ(z) = (az + b)/(cz + d) and φ ◦℘ ′0(z) = ℘
′

� ◦ φ(z) for all
z ∈ C. Then φ(∞) = ∞ (since neither ℘ ′� nor ℘ ′0 is defined precisely at that
point); that is, φ takes C onto C. This means that c = 0 and φ is affine. Therefore
φ(z)= az+ b with a 6= 0; we have φ(0)= b ∈� since it must be a pole of ℘ ′�.

Since critical points must be mapped to critical points under φ, the critical values
are mapped to critical values as well. The critical values of ℘ ′0 are c0 =

√
−g3(0)

and −c0, and the critical values of ℘ ′3 are c� =
√
−g3(�) and −c�. First, if the

critical values are mapped in the order φ(c0)= c� and φ(−c0)=−c�, then

ac0 + b = c� and − ac0 + b =−c�;

therefore b = 0. If the critical values are mapped with the opposite pairing then
b = 0 as well. Therefore b = 0, φ(z) = az, and φ induces a group isomorphism
between C/0 and C/�; in particular a0 =�. �

Rotating a lattice by eiπ/2 results in conformal conjugacy.

Theorem 7.3. If � is any triangular lattice and i� = 0, then ℘0 and ℘� are
conformally conjugate via the map φ(z) = i z. Further, g3(0) = −g3(�). If
{z1, . . . , zn} is a cycle of length n with multiplier β under ℘ ′� then {i z1, . . . , i zn} is
a cycle of length n with multiplier β under ℘ ′i�.
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Proof. We need to show that φ ◦℘ ′�(z)= ℘
′

0 ◦φ(z). From Proposition 4.1,

℘ ′0(i z)= ℘ ′i�(i z)= i−3℘ ′�(z)= i℘ ′�(z).

Also from Proposition 4.1, we have

g3(0)= g3(i�)= i−6g3(�)=−g3(�).

Now assume that z1, . . . , zn is a cycle of length n under ℘ ′�. From Proposition
4.1, for 1≤ j ≤ n we have

℘ ′i�(i z j )=
1
i3℘

′

�(z j )= i℘ ′�(z j )= i z j+1.

Therefore {i z1, . . . , i zn} is a cycle of length n under ℘ ′i�.
Also, from Proposition 4.1, we have

℘ ′′i�(i z)= i−4℘ ′′�(z)= ℘
′′

�(z),

so the cycles have the same multiplier. �

Although each g3 ∈C\{0} corresponds to a unique lattice, the conjugacy given in
Theorem 7.3 leads to eπ i rotational symmetry in g3-space coming from conformal
conjugacy of the mappings. Therefore g3-space is not a reduced space.

Theorem 7.4. For triangular lattices 01 6= 02, ℘ ′01
is conformally conjugate to

℘ ′02
if and only if 01 =±i02 .

Proof. (⇐): By Theorem 7.3, if 02 = eπ i/201, then ℘ ′01
is conformally conjugate

to ℘ ′02
.

(⇒): Suppose that ℘ ′01
is conformally conjugate to ℘ ′02

. Then the conjugating
map is of the form φ(z)=az by Lemma 7.2, and we write 02=a01. It follows from
Proposition 4.1 that g3(02)= a−6g3(01). The critical values for a triangular lattice
always satisfy c1 =−c2 =

√
−g3, by Corollary 4.4. Then φ(c01)= ac01 =±c02 .

But

ac01 = a
√
−g3(01)= a

√
−g3

(1
a
02
)
= a

√
−a6g3(02)= a4c02,

and a4
=±1.

If a4
= −1 then a = emπ i/4 for m = 1, 3, 5, or 7. Then a℘ ′01

(z) = ℘ ′a01
(az).

However, from Proposition 4.1,

℘ ′a01
(az)= a−3℘ ′01

(z),

which would imply that a4
= 1, a contradiction.

If a = ±1 then 02 = 01. The only cases remaining are when a2
= −1, which

gives the result. �



282 JEFF GOLDSMITH AND LORELEI KOSS

-7.5 -5 -2.5 0 2.5 5 7.5

-7.5

-5

-2.5

0

2.5

5

7.5

Figure 3. g3-space showing g3 =−2.348 and g3 =−2.348i .

Corollary 7.5. For triangular lattices, the sector of g3-space such that

−
π

2
< Arg g3 ≤

π

2

is a reduced holomorphic family of meromorphic maps.

Proof. By Proposition 4.1, g3(01)= g3(i02)= i−6g3(0)=−g3(02). �

In Figure 3 we have drawn a portion of g3-space centered at the origin using
Mathematica. We color each value in the g3-plane according to the behavior of
the stationary point a� for ℘ ′�(0,g3)

. We know that the behavior of the orbits of the
critical points a� and−a� are related by Proposition 6.2, so it suffices to investigate
the orbit of a�. Red points are values of g3 where a� is drawn to a fixed point; blue
points are values of g3 where a� is drawn to a 2-cycle; and green points are values
of g3 where a� is drawn to a 3-cycle. If no cycle was ascertained by Mathematica,
then g3 is colored orange. For reference, we have also labeled the g3 values in
Figure 3 that correspond to the examples shown in Figures 1 and 2.

We observe the eπ i rotational symmetry in g3-space predicted by Corollary 7.5.
However, we also notice eπ i/2 rotational symmetry of shape, but not color, that
does not relate to conformal conjugacy. Our next few results explain this symmetry.

First, we show that for k = eπ i/4, the Fatou set of ℘ ′k� is the Fatou set of ℘ ′�
rotated by k.

Theorem 7.6. Let � be any triangular lattice. Then eπ i/4 F(℘ ′�)= F(℘ ′eπ i/4�
) and

g3(eπ i/4�)= ig3(�).
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Figure 4. Region of g3-space near g3 = 2.348 (left); near g3 =

2.348i (right).

Proof. Using Proposition 4.1, we have

℘ ′eπ i/4�(e
π i/4z)= e−3π i/4℘ ′�(z)=−eπ i/4℘ ′�(z),

and thus
(℘ ′eπ i/4�)

n(eπ i/4z)= (−1)neπ i/4(℘ ′�)
n(z).

If U is a neighborhood of z such that {(℘ ′�)
n(U )} forms a normal family, then

V = eiπ/4U is a neighborhood of eiπ/4z such that {(℘ ′eπ i/4�
)n(eπ i/4V )} forms a

normal family.
Proposition 4.1 gives that g3(eπ i/4�)= ig3(�). �

In fact, we can say much more about the behavior of periodic orbits. For example,
we see that under rotation by eiπ/2 in g3-space, red regions become blue, meaning
that all 1-cycles become 2-cycles. However, some blue regions rotate to red regions,
while other blue regions remain blue under rotation. We show a close-up of this
phenomenon in Figure 4. The next three theorems explain what happens to periodic
orbits as we rotate by eiπ/2 in g3-space.

We begin by showing that cycles of odd length n turn into cycles of length 2n
when the lattice is rotated by eiπ/4.

Theorem 7.7. If {z j }
n
j=1 is a cycle of odd length under ℘ ′� and k = eiπ/4, then

{(−1) j+1kz j (mod n)}
2n
j=1

is a cycle of length 2n under ℘ ′k�. Further, the 2n-cycle has the same classification
as the n-cycle.
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Proof. Let k = eπ i/4. Assume that {z j }
n
j=1 is a cycle of odd length under ℘ ′�. From

Proposition 4.1,

℘ ′k�(kz j )= e−3iπ/4z j =−kz j+1, ℘ ′k�(−kz j )=−e−3iπ/4z j = kz j+1.

Using these, we see that under ℘ ′k�,

kz1→−kz2→ · · · → kzn→−kz1→ · · · →−kzn→ kz1.

Since z1 6= z j for 2≤ j ≤ n, we have kz1 6= kz j ; we also know that z1 6= −z1, and
so kz1 6= −kz1. However, we still must verify that kz1 6= −kz j for 2 ≤ j ≤ n to
ensure that our new cycle under ℘ ′k� is in fact of length 2n. Assume not, so that
kz1 = −kz j for some 2 ≤ j ≤ n. Then z1 = −z j , so that under ℘ ′�, z j−1→−z1

and −z j−1→−z j = z1. Then our original cycle is

{z1, z2, . . . , z j−1,−z1, . . . ,−z j−1}.

But the length of this cycle is given by 2( j − 1), which is even. We therefore have
a contradiction, and our new cycle has length 2n.

To see that the n-cycle and the 2n-cycle have the same classification, we first
examine

∣∣[(℘ ′�)n]′(z1)
∣∣. Using the chain rule, we see that

[(℘ ′�)
n
]
′(z1)=

n−1∏
k=0

℘ ′′�((℘
′

�)
k(z1)).

Next, we consider |[(℘ ′k�)
2n
]
′(kz1)|, whose value determines the classification of

the 2n-cycle. We again use the chain rule to see that

[(℘ ′k�)
2n
]
′(kz1)= ℘

′′

k�((℘
′

k�)
2n−1(kz1)) ·℘

′′

k�((℘
′

k�)
2n−1(kz1)) · · · · ·℘

′′

k�(kz1).

From Proposition 4.1, we see that (℘ ′k�)
m(kz1)= (−1)mk℘ ′�(z1) for any integer

m, and that ℘ ′′k�((−1)mkz)=−℘ ′′�(z). Then

℘ ′′k�((℘
′

k�)
2n−1(kz1)) ·℘

′′

k�((℘
′

k�)
2n−2(kz1)) · · · · ·℘

′′

k�(kz1)

= ℘ ′′k�((−1)2n−1k℘ ′�
2n−1

(z1)) ·℘
′′

k�((−1)2n−2k℘ ′�
2n−2

(z1)) · · ·℘
′′

k�(kz1)

=−℘ ′′�(℘
′

�
2n−1

(z1)) · −℘
′′

�(℘
′

�
2n−2

(z1)) · · · · · −℘
′′

�(z1).

Finally, we recall that z1 has period n under ℘ ′�. Because of this,

℘ ′�
2n−s

(z1)= ℘
′

�
n−s
(z1).

Therefore, ∣∣[(℘ ′k�)2n
]
′(kz1)

∣∣= ∣∣[(℘ ′�)n]′(z1)
∣∣2,

and so the 2n-cycle formed by kz1 under ℘ ′k� has the same classification as the
n-cycle formed by z1 under ℘ ′�. �
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For example, suppose {z1, z2, z3} is a 3-cycle under ℘ ′�. Theorem 7.7 then says
that {kz1,−kz2, kz3,−kz1, kz2,−kz3} is a 6-cycle under ℘ ′k�, and that the 6-cycle
has the same classification as the 3-cycle.

From Proposition 4.1, g3(k�)= ig3(�); thus, we have shown that any region
corresponding to a cycle with odd length n will become a region corresponding to
a cycle of length 2n under rotation by eiπ/2. Specifically, regions corresponding to
fixed points will become regions corresponding to 2-cycles. Next we have a similar
result involving n-cycles of even length satisfying a certain structure and rotation
by eiπ/2.

Theorem 7.8. If {(−1) j+1z j (mod n)}
2n
j=1 with n odd is a cycle under ℘ ′� and k =

eiπ/4, then {kz j }
n
j=1 and {−kz j }

n
j=1 are cycles of odd length under ℘ ′k�. Further,

the classification of the n-cycle under ℘ ′k� is the same as the classification of the
2n-cycle under ℘ ′�.

Proof. Let k = eiπ/4. Assume that {(−1) j+1z j (mod n)}
2n
j=1 with n odd is a cycle

under ℘ ′�. From Proposition 4.1,

℘ ′k�(kz j )= e−3iπ/4℘ ′�(z j )=−k℘ ′�(z j )= (−k)(−z j+1)= kz j+1.

Thus, under ℘ ′k�,
kz1→ kz2→ · · · → kzn→ kz1.

We know that z1 6= z j for all 2 ≤ j ≤ n, so it is also true that kz1 6= kz j for all
2≤ j ≤ n. Thus {kz j }

n
j=1 is a cycle under ℘ ′k�, as is {−kz j }

n
j=1.

The proof that the n-cycle under ℘ ′k� has the same classification as the 2n-cycle
under ℘ ′� follows from the same reasoning as in the proof of Theorem 7.7. �

For example, if
{z1,−z2, z3,−z1, z2,−z3}

is a cycle under ℘ ′�, then
{kz1, kz2, kz3}

is a cycle under ℘ ′k�, and both cycles have the same classification.
Theorems 7.7 and 7.8 are very closely related. If we begin with a g3 value that

corresponds to a lattice with a cycle of odd length n, then eiπ/2g3 corresponds to a
lattice with a cycle of length 2n; another rotation by eiπ/2 gives a g3 value whose
lattice again has an n cycle. Our theorems have also given us a clear relationship
between the cycles generated by the different g3 values. Also note that we are
talking about a specific type of n-cycle in Theorem 7.8. Our next theorem deals
with all other cycles of even length.

Theorem 7.9. Suppose {z j }
m
j=1 is a cycle of even length m under ℘ ′� and does not

have the form {(−1) j+1z j (mod n)}
2n
j=1 with n odd. If k= eiπ/4, then {(−1) j+1kz j }

m
j=1
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is a cycle of length m under ℘ ′k�. Further, the classification of the m-cycle under
℘ ′k� is the same as the classification of the m-cycle under ℘ ′�.

Proof. Using Proposition 4.1, we know that

℘ ′k�(kz j )=−kz j+1 and ℘ ′k�(−kz j )= kz j+1.

Thus, under ℘ ′k�,

kz1→−kz2→ · · · → kzm−1→−kzm→ kz1.

We know that kz1 6= kz j , so to ensure that {(−1) j+1kz j }
m
j=1 is a cycle of length

m under ℘ ′k�, we must check that kz1 6= −kz j for j even. Assume not, so that
z1 =−z j for some even 2≤ j ≤ m; note that j − 1 is odd. Then ℘ ′�(z j−1)=−z1,
and our original cycle has the form {z1, . . . , z j−1,−z1, . . . ,−z j−1} and has length
2( j − 1). If m is not divisible by an odd number, the contradiction is immediate.
On the other hand, if m is divisible by an odd number, then our cycle has the form
{(−1) j+1z j (mod n)}

2n
j=1 with n odd, which contradicts our assumption.

To show that
∣∣[(℘ ′�)m]′(z1)

∣∣= ∣∣[(℘ ′k�)m]′(kz1)
∣∣, we use that

(℘ ′k�)
n(kz1)= (−1)nk℘ ′�(z1) and ℘ ′′k�((−1)nkz)=−℘ ′′�(z)

for any integer n. �

Theorem 7.9 shows that if we begin with a g3 value that gives a cycle of even
length m that does not have the specific form given in Theorem 7.8, then eiπ/2g3

again gives us an m-cycle. That is, unless an even cycle has a certain form, it
remains the same length when g3-space is rotated by eiπ/2.

We note the appearance of Mandelbrot-like sets in g3 parameter space in the
sense introduced in [Douady and Hubbard 1985; McMullen 2000] and extended to
quadratic-like Weierstrass elliptic functions in [Hawkins and Look 2006]. We do
not present any results here; they are a further subject of study by the authors.
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