involve a journal of mathematics

Bifurcus semigroups and rings

Donald Adams, Rene Ardila, David Hannasch, Audra Kosh, Hanah McCarthy, Vadim Ponomarenko and Ryan Rosenbaum

Bifurcus semigroups and rings

Donald Adams, Rene Ardila, David Hannasch, Audra Kosh, Hanah McCarthy, Vadim Ponomarenko and Ryan Rosenbaum

(Communicated by Scott Chapman)

A bifurcus semigroup or ring is defined as possessing the strong property that every nonzero nonunit nonatom may be factored into two atoms. We develop basic properties of such objects as well as their relationships to well-known semigroups and rings.

1. Introduction and basic properties

Factorization theory has traditionally considered unique factorization as "good", and focused attention on semigroups whose factorization is close (in various precise ways) to this ideal. We instead propose to consider semigroups that are by some measures the "worst", those whose factorization is as far as possible from this ideal.

Definition 1.1. We call an atomic semigroup bifurcus if every nonunit nonatom can be factored into two atoms. We call a ring bifurcus if every nonzero nonunit nonatom can be factored into two atoms. We call a bifurcus semigroup or ring nontrivial if it contains at least one (nonzero) nonunit.

We do not require our semigroups to be commutative, cancellative, or possess bounded factorization. We also do not require our rings to possess multiplicative identities. In the sequel, we develop various properties of bifurcus semigroups and rings and give some examples. For a background to factorization theory, see [Geroldinger and Halter-Koch 2006]. For additional undefined terms, see [Baginski et al. 2008; Chapman and Krause 2005].

We begin by presenting some basic properties and calculating standard factorization invariants for bifurcus semigroups.

Theorem 1.1. Let S be a nontrivial bifurcus semigroup, and let x be a (nonzero) nonunit nonatom in S. Then:

MSC2000: 20M14, 20M99.
Keywords: semigroup, monoid, factorization, bifurcus, Krull.
Research supported in part by NSF grant 0647384.
(1) If S is either left or right cancellative, then S contains infinitely many atoms, and the divisor closure $\llbracket x \rrbracket$ is not finitely generated.
(2) S contains no strong atoms.
(3) Let $\mathfrak{L}(x)$ denote the set of factorization lengths of x, and let $L(x)=\sup \mathfrak{L}(x)$. Then $\mathfrak{L}(x)$ is the set of integers in $[2, L(x)]$.
(4) The elasticity $\rho(x)$ satisfies $2 \rho(x) \in \mathbb{N} \cup\{\infty\}$.
(5) The elasticity $\rho(S)$ is ∞.
(6) The delta set $\Delta(S)$ equals $\{1\}$.
(7) The catenary degree $c(S)$ equals 3.
(8) The tame degree $t(S)$ is ∞.
(9) The critical length of S is 3 .

Proof.
(1) For each $n \in \mathbb{N}$, we write $x^{n}=a_{n} b_{n}$, where a_{i}, b_{i} are atoms. Suppose that S is left cancellative (right cancellative is similar). We will show that $\left\{a_{1}, a_{2}, \ldots\right\}$ are distinct. Otherwise we have $a_{i}=a_{i+j}$ for some $i, j \in \mathbb{N}$. We have $a_{i} b_{i} x^{j}=x^{i} x^{j}=x^{i+j}=a_{i+j} b_{i+j}=a_{i} b_{i+j}$. Applying left cancellation yields a factorization of the atom b_{i+j} into nonunits, a contradiction. The second statement holds since $\left\{a_{1}, a_{2}, \ldots\right\} \subseteq \llbracket x \rrbracket$.
(2) Let y be a strong atom. Applying the bifurcus property we have $y^{3}=a b$, for atoms a, b. Applying the strong atom property, $a=\epsilon y^{\alpha}, b=\epsilon^{\prime} y^{\beta}$, with $\alpha+\beta=3$ and $\epsilon, \epsilon^{\prime}$ units. Without loss of generality $\alpha \geq 2$; but then a is not an atom.
(3) It suffices to prove that if $m \in \mathfrak{L}(x)$ with $m \geq 3$, then $m-1 \in \mathfrak{L}(x)$. Let $x=b_{1} b_{2} b_{3} \cdots b_{m}$ be a factorization. By the bifurcus property $b_{1} b_{2} b_{3}=c d$, hence $x=c d b_{4} \cdots b_{m}$, a factorization of length $m-1$.
(4) Follows directly from the bifurcus property, which gives $\min \mathfrak{L}(x)=2$.
(5) Consider a^{n} for any atom a, as $n \rightarrow \infty$. sup $\mathfrak{L}\left(a^{n}\right) \geq n$, but $\inf \mathfrak{L}\left(a^{n}\right)=2$.
(6) Follows from property (3).
(7) Given any factorization of x, we iteratively apply the construction from (3) to get a sequence of factorizations, each of distance three from each other, ending in two atoms. Given two factorizations, we apply the preceding process twice to get $f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow a b$ and $g_{1} \rightarrow g_{2} \rightarrow \cdots \rightarrow c d$. Reversing and combining, we have a sequence of factorizations $f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow a b \rightarrow$ $c d \rightarrow \cdots \rightarrow g_{2} \rightarrow g_{1}$, each of distance at most three.
(8) Follows from (5) and [Geroldinger and Halter-Koch 2006, Theorem 1.6.6] that gives $\rho(S) \leq t(S)$.
(9) Immediately follows from the observation that $\min \mathfrak{L}(x)=2$. In fact, the bifurcus property characterizes monoids with critical length 3 .
The bifurcus property excludes many classes of well-studied and familiar semigroups and rings.

Theorem 1.2. The following are not bifurcus:
(1) Block monoids $B\left(G_{0}\right)$, for $G_{0} \subseteq G$.
(2) Krull monoids.
(3) Rings of integers of any algebraic number field.
(4) Diophantine monoids.
(5) Numerical semigroups.

Proof.

(1) Let $x \in B\left(G_{0}\right)$ be a nonunit nonatom. We may express x as the multiset $\left\{x_{1}^{m_{1}}, x_{2}^{m_{2}}, \ldots, x_{k}^{m_{k}}\right\}$ where $k \geq 1, x_{i} \in G_{0}$, and $m_{i} \geq 1$ (for all $i \in[1, k]$). Consider the function γ from multisets drawn from $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ to \mathbb{N}_{0}^{k} that gives the multiplicity of each element (e.g. $\gamma(x)=\left(m_{1}, m_{2}, \ldots, m_{k}\right)$). For all $n \in \mathbb{N}$, the bifurcus property gives a factorization of $x^{n}=a(n) b(n)$ into two atoms. Without loss we may assume that $\gamma(a(n))_{1} \geq \gamma(b(n))_{1}$. Note that $\gamma(a(n))+\gamma(b(n))=\gamma\left(x^{n}\right)=\left(n m_{1}, n m_{2}, \ldots, n m_{k}\right)$, hence $\gamma(a(n))_{1} \in$ $\left[\left(n m_{1} / 2\right), n m_{1}\right]$. Consider now the set $S=\{\gamma(a(1)), \gamma(a(2)), \ldots\}$, a subset of \mathbb{N}_{0}^{k}. Because of the condition on the first coordinates of the elements of $S,|S|=\infty$. By a classical theorem attributed to Lothaire (in [Spielman and Bóna 2000]) or Dickson (in [Geroldinger and Halter-Koch 2006]), \mathbb{N}_{0}^{k} has no infinite antichain in the usual partial ordering. Hence there must be some i, j with $\gamma(a(i)) \geq \gamma(a(j))$; but then $a(j) \mid a(i)$ in $B\left(G_{0}\right)$, and hence $a(i)$ is not an atom, contrary to assumption.
(2) Follows from (1) and from [Geroldinger and Halter-Koch 2006, Theorem 2.5.8], which states that all reduced Krull monoids are block monoids.
(3) Follows from [Geroldinger and Halter-Koch 2006, Theorem 1.7.3] together with Theorem 1.1 (5).
(4) Follows from (2) and [Chapman et al. 2002], which shows that Diophantine monoids are Krull.
(5) Follows from [Rosales 2009], which shows that numerical semigroups are cancellative and must have a finite number of atoms. This is violative of Theorem 1.1 (1).

While it may seem that the bifurcus property is rare, the following result shows that in fact every semigroup can be embedded into a bifurcus semigroup.

Theorem 1.3. Let R be any semigroup. Let S be any atomic semigroup with no units. Then $T=R \times S \times S$ is bifurcus.
Proof. Note that T has no units since S does not. Let $x \in T$ be a nonatom. We factor $x=y z$, where $y=\left(r_{y}, u_{y}, v_{y}\right), z=\left(r_{z}, u_{z}, v_{z}\right)$, and $x=\left(r_{y} r_{z}, u_{y} u_{z}, v_{y} v_{z}\right)$. We write $u_{y} u_{z}=p u$ and $v_{y} v_{z}=v q$, for some atoms $p, q \in S$. Set $y^{\prime}=\left(r_{y}, p, v\right)$ and $z^{\prime}=\left(r_{z}, u, q\right)$. These are atoms in T, and $x=y^{\prime} z^{\prime}$.

2. Examples

We provide several examples of bifurcus rings. These do not have multiplicative units, but (1) and (3) of Example 2.1 do not have zero divisors. The conditions imposed on m, n are all necessary - if n is a prime power, then neither (1) nor (3) is bifurcus; if $m=1$, then (2) is not bifurcus.
Example 2.1. The following are bifurcus rings:
(1) $n \mathbb{Z}$, for n not a prime power.
(2) $(m \mathbb{Z}) \times(n \mathbb{Z})$ for m, n natural numbers greater than 1 .
(3) The subring of $n \times n$ matrices consisting of matrices with all entries identical integers, for n not a prime power.

Proof.

(1) Atoms in our ring are $n x$ where $n \nmid x$. Write $n=p q r$ where p, q are prime and might divide $r \in \mathbb{Z}$. Consider nonatom $z=(n x)(n y)=p^{a} q^{b} r^{2} s$, where $p, q \nmid s$. Note that $a, b \geq 2$; hence we can factor $z=\left(\operatorname{pqr}\left(q^{b-2} s\right)\right)\left(\operatorname{pqr}\left(p^{a-2}\right)\right)$. These are atoms since $n \nmid q^{b-2} s$ and $n \nmid p^{a-2}$.
(2) Consider nonatom $z=(m a, n b) \times(m c, n d)=(m, n b d) \times(m a c, n)$, a factorization into two atoms.
(3) This ring is isomorphic with \mathbb{Z}, with the usual addition but with multiplication given by $x \star y=n x y$. Atoms are those integers that are not multiples of n. Write $n=p q r$ where p, q are prime and might divide $r \in \mathbb{Z}$. Consider nonatom $z=x \star y=n x y=n p^{a} q^{b} s$ where $p, q \nmid s$. Set $x^{\prime}=p^{a}, y^{\prime}=q^{b} s$. These are atoms and $z=x^{\prime} \star y^{\prime}$.
Bifurcus semigroups turn out to be common among (noncommutative) matrix semigroups (see [Adams et al. ≥ 2009]). We give just one example.
Example 2.2. Let $n>1$ and let S denote the semigroup of $n \times n$ rank one matrices with entries from \mathbb{N}. Then S is bifurcus.

Proof. Let gcd denote the usual greatest common divisor function, which we will apply to the entries of matrices and vectors. Recall that $a \in S$ may be expressed (nonuniquely) as $a=u v^{T}$, for u, v column n-vectors. We claim that
$\operatorname{gcd}(a)=\operatorname{gcd}(u) \operatorname{gcd}(v)$. We assume without loss that $\operatorname{gcd}(u)=\operatorname{gcd}(v)=1$ and prove $\operatorname{gcd}(a)=1$ by instead considering

$$
\frac{a}{\operatorname{gcd}(u) \operatorname{gcd}(v)}=\frac{u}{\operatorname{gcd}(u)} \frac{v^{T}}{\operatorname{gcd}(v)}
$$

If $p \mid \operatorname{gcd}(a)$, then p divides each entry of the $i^{\text {th }}$ columns of a, namely $v_{i} u$. Since p cannot divide each entry of $u, p \mid v_{i}$. But this holds for each i, hence p divides each entry of v, a contradiction. Hence $\operatorname{gcd}(a)=1$, as desired.

Now consider nonatom $a=b c=\left(u_{b} v_{b}^{T}\right)\left(u_{c} v_{c}^{T}\right)=\left(v_{b}^{T} u_{c}\right)\left(u_{b} v_{c}^{T}\right)$. Note in passing that since all entries are from $\mathbb{N}, \operatorname{gcd}(a) \geq v_{b}^{T} u_{c} \geq n$ for every nonatom a. Set

$$
a^{\prime}=\frac{a}{\operatorname{gcd}(a)}=u^{\prime} v^{\prime T}
$$

by the previous claim $\operatorname{gcd}\left(u^{\prime}\right)=\operatorname{gcd}\left(v^{\prime}\right)=1$. Set $x=[\operatorname{gcd}(a)-n+1,1, \ldots, 1]^{T}$, $y=[1,1, \ldots, 1]^{T}$. We have $a=\operatorname{gcd}(a) a^{\prime}=\left(x^{T} y\right)\left(u^{\prime} v^{\prime T}\right)=\left(u^{\prime} x^{T}\right)\left(y v^{\prime T}\right)$. Because $\operatorname{gcd}\left(u^{\prime}\right)=\operatorname{gcd}\left(v^{\prime}\right)=\operatorname{gcd}(x)=\operatorname{gcd}(y)=1$, by the previous claim $\operatorname{gcd}\left(u^{\prime} x^{T}\right)=$ $\operatorname{gcd}\left(y v^{\prime T}\right)=1$, and since $n>1$ these are both atoms.

We conclude with some unanswered questions.

Open problems

(1) Does there exist a bifurcus ring with 1? A bifurcus domain?
(2) Can every ring/domain be embedded in a bifurcus ring?
(3) Can a bifurcus semigroup possess finitely many atoms?

Note that by Theorem 1.1(1), such an example would be neither left nor right cancellative. Further, such an example must be finite (since N atoms yields at most N^{2} ordered pairs of atoms), and therefore must not possess bounded factorization.
(4) Can a bifurcus semigroup be inside factorial or Cale?
(5) Can a bifurcus semigroup be locally tame?

Acknowledgment

The authors would like to thank Alfred Geroldinger and an anonymous referee for some helpful suggestions and an additional reference.

References

[Adams et al. ≥ 2009] D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy, V. Ponomarenko, and R. Rosenbaum, "Factorization in matrix semigroups", in preparation.
[Baginski et al. 2008] P. Baginski, S. T. Chapman, and G. J. Schaeffer, "On the delta set of a singular arithmetical congruence monoid", J. Théor. Nombres Bordeaux 20:1 (2008), 45-59. MR 2434157 Zbl 05543190
[Chapman and Krause 2005] S. T. Chapman and U. Krause, "Cale monoids, cale domains, and cale varieties", pp. 142-171 in Arithmetical properties of commutative rings and monoids, Lect. Notes Pure Appl. Math. 241, Chapman \& Hall/CRC, Boca Raton, FL, 2005. MR 2006b:13050 Zbl 1100. 20040
[Chapman et al. 2002] S. T. Chapman, U. Krause, and E. Oeljeklaus, "On Diophantine monoids and their class groups", Pacific J. Math. 207:1 (2002), 125-147. MR 2004b:20089 Zbl 1060.20050
[Geroldinger and Halter-Koch 2006] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Pure and Applied Mathematics 278, Chapman \& Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic theory. MR 2006k:20001 Zbl 1113.11002
[Rosales 2009] J. C. Rosales, "Atoms of the set of numerical semigroups with fixed Frobenius number", Linear Algebra Appl. 430:1 (2009), 41-51. MR 2460497 Zbl 05376883
[Spielman and Bóna 2000] D. A. Spielman and M. Bóna, "An infinite antichain of permutations", Electron. J. Combin. 7:article \#2 (2000). MR 2000k:05014

