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How false is Kempe’s proof
of the Four Color Theorem?

Part II
Ellen Gethner, Bopanna Kallichanda, Alexander S. Mentis,

Sarah Braudrick, Sumeet Chawla, Andrew Clune, Rachel Drummond,
Panagiota Evans, William Roche and Nao Takano

(Communicated by Ken Ono)

We continue the investigation of A. B. Kempe’s flawed proof of the Four Color
Theorem from a computational and historical point of view. Kempe’s “proof”
gives rise to an algorithmic method of coloring plane graphs that sometimes
yields a proper vertex coloring requiring four or fewer colors. We investigate a
recursive version of Kempe’s method and a modified version based on the work
of I. Kittell. Then we empirically analyze the performance of the implementa-
tions on a variety of historically motivated benchmark graphs and explore the
usefulness of simple randomization in four-coloring small plane graphs. We end
with a list of open questions and future work.

1. Introduction

The Four Color Theorem for plane graphs states that, given a plane graph 0, the
vertices of 0 can be properly colored with at most four colors. While the Four
Color Theorem was proven in 1977 through the use of a computer and irreducible
sets [Appel and Haken 1976/77; 1977; Appel et al. 1977; Robertson et al. 1996;
1997], no proof has been found that can be verified by a human without the use
of a computer. Alfred Kempe seemingly came close to accomplishing this in 1879
when he presented a proof of the Four Color Theorem in [Kempe 1879]; however,
his proof contained a flaw, discovered by Heawood [1890] and independently by de
la Vallée Poussin in 1896 [Wilson 2002b]. Although Kempe was unable to repair
the flaw, his innovation of Kempe chains and Kempe chain switches remain useful
to graph theorists, and it is interesting to explore the boundaries of his technique
[Gethner and Springer 2003]. In particular, we focus our attention on the work of

MSC2000: 05C15, 68R10, 90C35.
Keywords: four color theorem, Kempe, Kittell.
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Errera, who was the first person to study the importance of the order in which the
vertices are labeled [Errera 1921]. For a comprehensive history of the Four Color
Theorem, see [Wilson 2002a; 2002b; Ore 1967; Fritsch and Fritsch 1998; Biggs
et al. 1986].

Following [Errera 1921; Hutchinson and Wagon 1998; Gethner and Springer
2003; Wagon 2009], we implemented Kempe’s method of proof as a recursive
algorithm (Algorithm Kempe) on different vertex labelings for some well known
graphs of nine vertices or more. For labelings resulting in the algorithm’s inabil-
ity to properly four-color the graphs, we identify vertices that cause irrevocable
Kempe chain failures (the source of the flaw in Kempe’s proof), and quantify the
graphs’ failure rates. In acknowledgement that Algorithm Kempe sometimes cor-
rectly four-colors the vertices of a plane graph, we explore some improvements to
Algorithm Kempe including random selection among all Kempe chain choices and
using random Kempe–Kittell chain switches to overcome irrevocable Kempe chain
tangles, following [Kittell 1935; Hutchinson and Wagon 1998; Wagon 2002; 2009;
Archuleta and Shapiro 1986; Morgenstern and Shapiro 1991]. While there may be
different flaws that also result in failure to four-color a plane graph, our improve-
ments focus solely on circumventing the flaw identified by Heawood and Poussin,
since that is the flaw addressed by our implementation of Kittell’s approach. Where
Kempe–Kittell chain switches allow Algorithm Kempe to continue, we correlate
the identified vertex with the number of Kempe–Kittell chain switches required to
overcome the tangle.

2. Definitions and algorithm

It is important to understand Kempe’s alleged proof and the flaw that led to our
investigations. For completeness and ease of reference, the following definitions
and algorithm are taken directly from [Gethner and Springer 2003]. In all of the
following, R, G, B, Y refer to the four possible colors, and Ci is an element of
{R,G, B, Y }.

Definition 1 (C1C2-Kempe chain). Let 0 be a plane graph whose vertices have
been properly colored and suppose v ∈ V (0) is colored C1. The C1C2-Kempe
chain containing v is the maximal connected component of 0 that contains v and
contains only vertices colored C1 or C2.

Importantly, the maximality of the set of colored vertices in a C1C2-Kempe
chain guarantees that interchanging all occurrences of C1 and C2 preserves the
proper coloring of 0.

Definition 2 (C1C2-Kempe chain switch). Let K be a C1C2-Kempe chain. A
C1C2-Kempe chain switch interchanges all values of C1 and C2 in K .
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v

v4:B v5:Y

v3:G v1:G

v2:R
Red-Blue

Kempe Chain

Red-Yellow
Kempe Chain

Figure 1. Setup for the faulty case in Kempe’s proof.

We need one more notion to illustrate the potential flaw in Kempe’s method. To
help visualize the setup, see Figure 1.

Definition 3 (Irrevocable Kempe chain tangle). Let 0 be a plane graph, all of
whose vertices, with the exception of one vertex v of degree 5, have been properly
colored with four colors. Denote the five neighbors of v in cyclic counterclockwise
order by v1, v2, v3, v4, v5, and assume they are colored G, R, G, B, Y respectively.
Moreover, assume that the RB-Kempe chain of v2 contains v4, and that the RY-
Kempe chain of v2 contains v5.

Denote the GB-Kempe chain containing v1 by K1 and the GY-Kempe chain
containing v3 by K2. We say that Algorithm Kempe causes an irrevocable Kempe
chain tangle on vertex v if either

• following a GB-Kempe chain switch on K1 by a GY-Kempe chain switch on
K2 causes v5 to be recolored G, or

• following a GY-Kempe chain switch on K2 by a GB-Kempe chain switch on
K1 causes v4 to be recolored G.

In particular, at least one of the original barriers afforded by either the RB-
Kempe chain containing v2 and v4, or the RY-Kempe chain containing v2 and v5

has been broken by two successive GX-Kempe chain switches, where X ∈ {Y, B}.
Moreover, the second GX-Kempe chain contains two vertices in the neighborhood
of v, which reintroduces a vertex colored G as a neighbor of v; thus the procedure
has not made G available for vertex v.

We use the adjective irrevocable in Definition 3 because under the initial hy-
potheses, a Kempe chain tangle might occur: that is, one of either the RB-Kempe
chain or the RY-Kempe chain may be “broken” by the two successive GX-Kempe
chain switches, but the procedure need not force any of the neighbors of v to be
recolored with G. In that case, v will be properly colored with G.

With these definitions, we can now describe Algorithm Kempe.
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Algorithm Kempe.
INPUT:

• A connected plane graph 0 with n vertices, labeled (in some order) with dis-
tinct elements from {1, . . . , n}.

• An ordering (C1,C2,C3,C4) of the set of permissible colors6={R,G, B,Y }.

OUTPUT:

• Either a proper vertex coloring of 0 with colors from 6, or

• the message “Kempe’s algorithm has encountered an irrevocable Kempe chain
tangle at vertex v and hence has failed to properly four-color 0.”

Gadget relabel (relabel the vertices):

• Search 00 := 0 for the first occurrence of a vertex of degree five or less;
the existence of such a vertex is guaranteed by Euler’s formula. The first
occurrence is dictated by the given ordering of the vertices. Call this vertex v1.

• Recursively label the other n− 1 vertices of 0, choosing for vi+1 (0≤ i < n)
the first occurrence of a vertex of degree five or less in 0i := 0 \ vi .

Gadget greed (color greedily whenever possible):

• Color vn in 0n−1 with the available color of lowest index from C . In this case,
since no colors have been used, vn will be colored C1.

• Color vn−1 in 0n−2 with the available color of lowest index in C ; if vn−1 is not
adjacent to vn , then vn−1 is colored C1. On the other hand, if vn−1 is adjacent
to vn , color vn−1 is colored C2.

• In general (if possible) color vi in 0i−1 with the available color of lowest index
from C .

Gadget 4 (perform Kempe chain switches on degree four vertices):

• We encounter a vertex vi of degree four that cannot be greed-
ily colored. That is, suppose degree vi = 4 and the neighbors
are colored R, G, B, Y (say) in counterclockwise order, as
on the right.

viB R

G

Y

• If there is an RB-Kempe chain containing both the R and B neighbors of vi ,
there cannot be a YG-Kempe chain that contains both of the Y and G neighbors
of vi . In that case a YG-Kempe chain switch leaves a color available for vi .

• Otherwise, if there is no RB-Kempe chain containing both the R and B neigh-
bors of vi , perform an RB-Kempe chain switch to make a color available for vi .
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Gadgets 51 and 52 (Kempe chain switches on degree-five vertices): Suppose we
encounter a vertex vi of degree five that cannot be greedily colored; a priori, one
color is used exactly twice and the other three are used exactly once on the five
neighbors of vi . Without loss of generality, suppose the twice-used color is G. Up
to rotation and reflection, only two configurations can occur, illustrated in the two
diagrams below.

Gadget 51 (degree vi = 5; two G neighbors next to each other):

• In Configuration 1, a gadget much like Gadget 4 will suc-
ceed in coloring vi . Suppose the five neighbors of vi are
colored, in counterclockwise order, by GGYBR.

• If there is no RY-Kempe chain containing both Y and R
neighbors of vi , then a RY-Kempe chain switch will leave
a color available for vi .

G

G
Y

B
R

vi

• Therefore, assume there is an RY-Kempe chain containing both Y and R
neighbors of vi . Thus a GB-Kempe chain containing the B neighbor of vi

contains neither of the G neighbors of vi .

• In that case, a GB-Kempe chain switch makes B available for vi .

• In all cases, vi can be properly colored.

Gadget 52 (degree vi = 5; two G neighbors are separated by
another neighbor of vi ):

• This is the case in which an irrevocable Kempe chain tan-
gle might occur, causing Algorithm Kempe to halt before
completing a proper four-coloring of the graph. Suppose
the neighbors of vi are colored in counterclockwise order

Ga

R
Gb

B
Y

vi

by Ga RGb BY (at this point, it is helpful to distinguish between the two G
vertices).

• If there is an RB-Kempe chain that does not contain both the R and B neigh-
bors of vi then an RB-Kempe chain switch leaves a color available for vi .

• If there is an RY-Kempe chain that does not contain both R and Y neighbors
of vi then an RY-Kempe chain switch makes a color available for vi .

• Otherwise, we must attempt both a Ga B-Kempe chain switch followed by a
GbY Kempe chain switch (or vice versa).

• If no irrevocable Kempe chain tangle occurs, then we successfully color vi

with G and move on to vertex vi−1.

• Otherwise, halt and return an error message that the offending vertex is vi .
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BEGIN

Step 1: Use Gadget relabel to label the vertices of 0.

Step 2: For i = n down to 1, attempt to color vi in graph 0i−1 as follows:

(a) if vi can be greedily colored in graph 0i−1 by Gadget greed then do so, else

(b) if degree vi = 4 in 0i then color vi using Gadget 4 else

(c) if degree vi = 5 in 0i−1 in configuration 1 then color vi using Gadget 51 else

(d) if degree vi = 5 in 0i−1 in configuration 2 then try to color vi using Gadget
52 employing two Kempe chain switches: try both orders if necessary.

END

Thus, it is obvious that it is possible to color vertices of degree three or less
with no more than a fourth color, and it has been shown that it is always possible
to color vertices of degree four through the use of Kempe chain switches [Heawood
1890]. Algorithm Kempe only encounters difficulties upon vertices of degree five
or more, but it has been shown that Algorithm Kempe will always succeed in
properly four-coloring any graph containing eight or fewer vertices (which may
contain vertices of degree five or more) [Gethner and Springer 2003]. In light of
the fact that Kempe’s method of proof works in some, but not all cases, we were
interested in identifying patterns of when the algorithm halts without producing
a proper four-coloring on our benchmark graphs. In particular, we explore the
usefulness of simple randomization when used with Kempe–Kittell chain switches
to improve its success on small plane graphs.

3. Results

Identification of vertex failures. We first implemented Algorithm Kempe and ex-
plored its success in nine well known, properly four-colored graphs. The first five,
shown in Figure 2 (ignore the coloring of vertices for the moment), were introduced
in [Heawood 1890], [Fritsch and Fritsch 1998], [Soifer 1997], [Errera 1921] (see
also [Hutchinson and Wagon 1998; Wagon 2009]), and Poussin’s writings (see
[Wilson 2002a]); they are all known counterexamples for Algorithm Kempe with
at least one labeling [Gethner and Springer 2003]. The remaining four are the edge
graphs of the icosahedron, dodecahedron, octahedron, and cube; since these last
three have vertices of degree at most four, Algorithm Kempe must always success-
fully color them, and they served as benchmarks for our implementations. Further,
although the Icosahedron graph is five-regular, we did not expect Kempe’s method
to fail on any labeling of vertices, and thus that graph served as a benchmark graph
as well. See also Open Question 5 in Section 4.
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Five groups worked independently to implement Algorithm Kempe and test it
on these graphs. For the graphs containing nine vertices or fewer, each group
explored Algorithm Kempe’s results for all n! labelings. For the graphs containing
more than nine vertices, each group independently tested a random subset of at
least 9! labelings.

While we expected different failure rates for the graphs with more than nine
vertices due to the use of different labeling subsets among the groups, we expected
the failure rates for Fritsch, Soifer, and the four benchmark graphs to be the same.
Instead, while the benchmark graphs produced no failures, as expected, failure rates
did vary for Fritsch and Soifer due to differences in the individual implementations
or failure rate calculations. In the case of Group 2, when Gadget 52 is required
the implementation only tests one of the two possible Kempe chain switch orders,
resulting in a higher failure rate. This difference in implementation, however, gives
us an idea of how many Kempe chain tangles can be “fixed” by changing the order
in which the switches are performed (see Table 1 on the next page).

We initially compared the vertices that caused irrevocable Kempe chain tangles
for each implementation on all graphs. Because each group tested all 9! labelings
for the two nine-vertex graphs (Fritsch and Soifer), each implementation agreed on
the vertices that caused failures for Fritsch and Soifer, as expected. An interesting
and unpredicted discovery, however, was that despite the differences in the labeling
subsets tested by each group for the graphs containing more than nine vertices,
there was considerable consensus among the groups on the vertices that cause
failures.

In Figure 2, vertices shown in red are those vertices that all groups found to
result in an irrevocable Kempe chain tangle for at least one labeling. Vertices

Fritsch

Soifer

Heawood

Poussin

Errera

Figure 2. Graph vertex failures.



256 GETHNER, KALLICHANDA, MENTIS ET AL.

shown in yellow are those vertices that at least one group, but not all, found to
fail. Vertices shown in white were not found by any groups to cause a failure
on the labelings tested. As one can see, the failure patterns of the vertices are
highly symmetrical for all graphs except the Poussin graph, which itself is a fairly
asymmetrical graph. For the Fritsch and Soifer graphs, since all n! labelings were
tested, we know that the vertices shown in white will never cause Kempe chain
tangles for any labeling. For the remaining graphs, we predict that the vertices
shown in yellow would eventually become red as more labelings are explored. We
cannot predict anything for the vertices shown in white of degree five or more —
they may eventually fail, or they may not. Nevertheless, these results lead us to ask
the question: are there commonalities among these vertices that can be exploited
to improve Algorithm Kempe? We leave this as an open question.

The next step was to add randomization, studied in [Kittell 1935; Hutchinson
and Wagon 1998; Wagon 2002; 2009; Archuleta and Shapiro 1986; Morgenstern
and Shapiro 1991], through the application of Kempe–Kittell chain switches [Kit-
tell 1935] and the use of randomization of the choice of Kempe or Kempe–Kittell
chain switches, rather than heuristics, at various stages of the algorithm. In contrast
to the study of randomization for large graphs in [Archuleta and Shapiro 1986;

Group F S O C I D P E H

min 13.947 1.692 0.000 0.000 0.000 0.000 0.610 9.730 7.089
1 avg 13.947 1.692 0.000 0.000 0.000 0.000 0.620 9.755 7.124

max 13.947 1.692 0.000 0.000 0.000 0.000 0.627 9.772 7.153

min 14.031 1.783 0.000 0.000 0.000 0.000 0.149 3.350 0.372
2 avg 14.083 1.832 0.000 0.000 0.000 0.000 0.153 3.383 0.382

max 14.131 1.859 0.000 0.000 0.000 0.000 0.156 3.402 0.390

min 3.598 0.520 0.000 0.000 0.000 0.000 0.014 8.140 1.089
3 avg 3.599 0.523 0.000 0.000 0.000 0.000 0.017 8.168 1.097

max 3.600 0.525 0.000 0.000 0.000 0.000 0.019 8.186 1.111

min 13.687 1.635 0.000 0.000 0.000 0.000 0.165 7.302 0.387
4 avg 13.687 1.635 0.000 0.000 0.000 0.000 0.165 7.302 0.387

max 13.687 1.635 0.000 0.000 0.000 0.000 0.165 7.302 0.387

min 13.630 1.620 0.000 0.000 0.000 0.000 0.180 10.680 3.199
5 avg 13.635 1.620 0.000 0.000 0.000 0.000 0.186 10.798 3.203

max 13.637 1.620 0.000 0.000 0.000 0.000 0.190 10.866 3.210

Table 1. Kempe method failure rates by graph. The column heads
stand for Fritsch, Soifer, Octahedron, Cube, Icosahedron, Dodeca-
hedron, Poussin, Errera, Heawood.
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Morgenstern and Shapiro 1991], we continue to investigate small, historically sig-
nificant benchmark graphs.

Randomization implementation. In our recursive implementation of the Kempe
method, there are several points at which we must choose one among multiple
Kempe chains upon which to perform a switch. In both Gadget 4 and Gadget 51,
in the case where the vertex cannot be greedily colored, there will be up to four
Kempe chains from which to choose; our implementation randomly chooses one
that results in a successful coloring. In Gadget 52, two Kempe chain switches
must be performed, but the order of the switches is not specified in the algorithm.
Theorem 4 shows that the order in which the switches are performed can influence
the success of the operation. In light of this knowledge, we randomize the choice
of which Kempe chain switch to perform first, and perform the alternative order
only if the first order fails.

Theorem 4 (Gadget 52 is order-dependent). In Algorithm Kempe, Gadget 52 is
sometimes noncommutative. That is, the order in which one chooses to execute
the Kempe chain switches on K1 and K2 may matter; in one order an irrevocable
Kempe chain tangle can occur, whereas in the other no Kempe chain tangle occurs.

Proof. It suffices to exhibit a plane graph 0 and a labeling of the vertices of 0
that cause Algorithm Kempe to execute Gadget 52 in the following way: upon
that execution, one of the two choices of Kempe chain switch orders causes an
irrevocable Kempe chain tangle while the other does not. To this end, we call upon
the Fritsch graph, which we denote by F . In Figure 3, the labeling of the vertices
in F (the uppermost graph) leads to a successful four-coloring with the exception
of vertex 1, whereupon Gadget 52 must be invoked. Following the arrows marked
A, one choice of Kempe chain switch order has been executed successfully, and
vertex 1 is colored G. Following the arrows marked B, the other Kempe chain
switch order has been followed, leading to an irrevocable Kempe chain tangle. �

In the case that both orders fail, we encounter the previously defined irrevoca-
ble Kempe chain tangle and turn to Kempe–Kittell chain switches in an attempt
to solve the impasse. Kempe–Kittell chains present yet another opportunity for
randomization of choices. To better understand these choices, we first define the
eight Kempe–Kittell chains identified by Kittell [1935].

We use exactly the notation and Kempe chain switches as suggested by Kittell
[1935]. The new gadget, called Gadget Kittell, is invoked only when Gadget 52 is
called upon in Algorithm Kempe and fails. For reference, see Figure 1.

Definition 5 (Gadget Kittell). (1) Chain α: perform an RB-Kempe Chain switch
beginning either on v2 or v4.

(2) Chain β: perform an RY-Kempe Chain switch beginning either on v2 or v5.
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Figure 3. Gadget 52 in Algorithm Kempe does not commute. The
thick purple lines highlight the current Kempe chain switch.

(3) Chain γ : perform a GY-Kempe Chain switch beginning either on v1 or v5.

(4) Chain δ: perform a GB-Kempe Chain switch beginning either on v3 or v4.

(5) Chain ε: perform a BY-Kempe Chain switch beginning either on v4 or v5.

(6) Chain ζ : perform a GB-Kempe Chain switch beginning either on v1 or v4.

(7) Chain η: perform a GY-Kempe Chain switch beginning either on v3 or v5.

(8) Chain θ : perform an RG-Kempe Chain switch beginning on any of v2 or v1.

Upon encountering an irrevocable Kempe chain tangle, we randomly choose
one of the eight Kempe–Kittell chains in Gadget Kittell and continue to randomly
execute switches from that list until we reach a coloration of the graph that allows
us to successfully color the vertex causing the impasse or until a fixed number of
Kempe–Kittell chain switches have failed (we chose an upper limit of 100 Kempe–
Kittell chain switches).

Thus Algorithm Kempe is modified as follows:

Algorithm Kempe–Kittell. BEGIN

Step 1: Use Gadget relabel to label the vertices of 0.

Step 2: For i = n down to 1, attempt to color vi in graph 0i−1 as follows:
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(a) if vi can be greedily colored in graph 0i−1 by Gadget greed then do so; else

(b) if degree vi = 4 in 0i then color vi using Gadget 4 on a randomly selected
viable Kempe chain; else

(c) if degree vi = 5 in 0i−1 in configuration 1 then color vi using Gadget 51 on a
randomly selected viable Kempe chain; else

(d) if degree vi = 5 in 0i−1 in configuration 2 then try to color vi using Gadget
52 employing two Kempe chain switches (randomly select an order in which
to perform the switches, and try both orders if necessary);

(e) if an irrevocable Kempe chain tangle is reached then select a random Kempe–
Kittell chain using Gadget Kittell until vi successfully colored or 100 attempts
have failed.

END

The fixed limit on the number of failures is required because it is unknown if
there is always a series of Kempe–Kittell chain switches that will result in suc-
cessful resolution of the impasse. The set of possible Kempe–Kittell chain switch
combinations that can affect the five vertices adjacent to vi , called the impasse
group, is known to have a lower bound of 120 [Kittell 1935], but it is impractical
to determine and check the upper bound for even a small arbitrary graph. The use of
heuristics to guide the search of the impasse group has been studied for large graphs
[Morgenstern and Shapiro 1991], but our interest was in determining algorithm
performance when executing a purely random sequence of Kempe–Kittell chain
switches to color a small graph, as this could provide an easy way to improve the
performance of Algorithm Kempe for those cases.

Our randomized recursive implementation of Kempe’s method
always succeeded in four-coloring the graphs we tested. We
ran the algorithm 500 times for each of the nine graphs
tested in the original implementation and, additionally,
the Kittell graph [1935], shown on the right.

We kept track of the number of times a Kempe–
Kittell chain switch was required to solve an impasse (Table 2) and the vertices
causing the impasse (see Table 3 on the next two pages).

F S O C I D P E H K
Kempe–Kittell switches (max) 9 7 0 0 0 0 6 73 6 11

Table 2. Maximum number of Kempe–Kittell chain switches re-
quired for any vertex. For the letters on the top row, see Table 1
(plus K = Kittell).
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G
raph

Node Chain switches Kittell Kittel

label required colored use
min max avg nodes (%)

F a 3 8 4.52 1088000 0.5996
F b, f 3 8 4.46 1088000 0.5996
F c 3 8 4.44 1088000 0.5996
F d, e, h 0 0 0.00 0 0.0
F g 3 7 4.49 1088000 0.5996
F i 3 9 4.50 1088000 0.5996

S a-b, d-i 0 0 0.00 0 0.0
S c 3 7 4.45 988089 0.5446

O a-f 0 0 0.00 0 0.0

C a-h 0 0 0.00 0 0.0

I a-l 0 0 0.00 0 0.0

D a-t 0 0 0.00 0 0.0

P a, b, g, i-o 0 0 0.00 0 0.0
P c 1 4 2.26 526486 0.2902
P d 2 6 2.58 399678 0.2203
P e 2 5 2.69 323390 0.1782
P f 2 5 2.82 339534 0.1871
P h 2 5 2.81 474890 0.2617

E a 35 73 47.01 4937929 2.7215
E b 3 8 4.14 463228 0.2553
E c 3 7 4.11 463000 0.2552
E d 3 7 4.05 463086 0.2552
E e 3 7 4.03 464390 0.2559
E f 2 5 2.83 440437 0.2427
E g 2 5 2.82 440226 0.2426
E h 2 5 2.80 440679 0.2429
E i 3 6 4.05 464517 0.2560
E j 2 6 2.85 439756 0.2424
E k 2 5 2.84 440513 0.2428
E l 3 7 4.07 462705 0.2550
E m 3 7 4.07 462517 0.2549
E n 3 7 4.10 463978 0.2557
E o 35 71 46.29 4938719 2.7220
E p 3 7 4.07 463436 0.2554
E q 3 8 4.06 461792 0.2545
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G
raph

Node Chain switches Kittell Kittel

label required colored use
min max avg nodes (%)

H a 2 6 3.22 775216 0.4273
H b 2 6 3.29 1217733 0.6711
H c 2 5 3.13 847294 0.4670
H d-f, h-i, q-s, v-y 0 0 0.00 0 0.0
H g 2 5 2.78 690371 0.3805
H j 1 1 1.00 6058 0.0033
H k 1 2 1.56 6037 0.0033
H l 2 6 3.36 907479 0.5002
H m 3 8 4.60 1405876 0.7748
H n 3 7 3.75 828677 0.4567
H o 2 5 3.15 813156 0.4482
H p 2 5 3.19 1032339 0.5690
H t 2 6 3.29 92157 0.0508
H u 2 6 3.27 91564 0.0505

K a 2 4 2.79 636989 0.3511
K b 2 5 2.75 478186 0.2636
K c,g 0 0 0.00 0 0.0
K d 2 6 3.33 675394 0.3722
K e 3 8 4.76 475928 0.2623
K f 5 9 6.57 792681 0.4369
K h 2 6 3.25 82375 0.0454
K i 5 9 6.32 782074 0.4310
K j 2 5 2.95 457668 0.2522
K k 4 7 4.92 400408 0.2207
K l 2 5 2.84 473726 0.2611
K m 3 6 3.99 386798 0.2132
K n 5 11 6.48 537869 0.2964
K o 5 8 5.93 496916 0.2739
K p 5 9 6.35 691822 0.3812
K q 0 1 0.98 1676 0.0009
K r 5 11 6.44 667972 0.3682
K s 2 6 3.16 660014 0.3638
K t 2 5 2.83 489486 0.2698
K u 2 6 3.51 209896 0.1157
K v 2 5 2.81 551059 0.3037
K w 0 1 0.98 1966 0.0011

Table 3. Algorithm Kempe–Kittell results (see also top of next page).
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In Table 3, the last column gives the percentage of Kittel colored nodes relative
to the total number of colored nodes, which is 50 times the numbering of labelings
per trial. The latter number, as already explained, was 9! = 362880 for all graphs
except those with less than 9 vertices (O with 6! = 720 and C with 8! = 40320).

Our fixed upper limit of 100 for Kempe–Kittell chain switches was more than
sufficient since, for most impasses encountered in our tests, eleven or fewer ran-
domly chosen Kempe–Kittell chain switches were sufficient to achieve a successful
four-coloring. The exception to this was the Errera graph, which contained two ver-
tices that required over 70 randomly chosen Kempe–Kittell chain switches on the
regions marked A and B in Figure 4 to achieve successful four-coloring. These two
vertices are the only two vertices in the Errera graph that do not have any neighbors
of degree greater than five, and they are the polar regions of Errera’s 17-country
counterexample when described as a spherical map as shown in [Hutchinson and
Wagon 1998, Figure 2; Wagon 2009] and as a fullerene, of molecular formula C30,
in our Figure 4.

A

B

B

A

Figure 4. Errera map: planar representation and coordinatized as
a fullerene (C30) in R3.

Comparison of original and randomized implementations. We achieve proper
four-coloring of all of our graphs on 100% of our runs through the inclusion of ran-
domly selected Kempe–Kittell chain switches. In addition to this, the percentage
of times that Gadget Kittell was required in our algorithm indicates the percentage
of irrevocable Kempe chain tangles encountered by our randomized algorithm,
which we compare in Table 4 to the failure rates from the original five groups’
implementations (see also Table 3).

When we make this comparison to the average failure rate of the original five
implementations, we see that our algorithm outperforms the average original al-
gorithm’s performance on the two graphs for which all n! labelings were tested
(Fritsch and Soifer graphs). In fact, our randomized implementation nearly matches
the lowest failure rates observed among the original six implementations: 3.60%
and 0.52% for Fritsch and Soifer, respectively (Table 1 and Table 4).

On the Errera and Heawood graphs, randomization results in a higher rate of
irrevocable Kempe chain tangles than the average rate of the original algorithm,
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Original algorithm Randomized

Graph Min % Max % Avg % algorithm
Failure Failure Failure % Failure

Fritsch 3.598 14.131 11.790 3.60
Soifer 0.520 1.859 1.461 0.55
Poussin 0.014 0.627 0.228 1.18
Errera 3.350 10.866 7.881 9.28
Heawood 0.372 7.153 2.439 4.83

Table 4. Comparison of original Algorithm Kempe to randomized
version with Kempe–Kittell chains.

but it is still within the range of the minimum and maximum failure rates of the
original implementations. On the asymmetrical Poussin graph, our algorithm re-
sults in significantly more Kempe chain tangles than the average (Table 4), but this
is mitigated by the success of the Kempe–Kittell chain switches in coloring the
graph. We exclude the graphs of the platonic solids, as they cause no failures for
either algorithm.

4. Conclusions

We evaluated the performance of the version of Algorithm Kempe in [Gethner
and Springer 2003] and its performance after the addition of Kempe–Kittell chain
switches, which successfully overcame all irrevocable Kempe chain tangles in our
benchmark graphs. We have proven that the order in which Kempe chain switches
are performed affects the outcome of the algorithm and have shown that the applica-
tion of randomization to the selection of Kempe and Kempe–Kittell chain switches
in this algorithm is a useful method for making the choice of which switch to per-
form first. In 500 test runs on each of ten benchmark graphs, the use of randomized
chain choices resulted in successful four-coloring of the graphs with fewer than 12
random choices for any vertex most of the time. When compared to the original
algorithm, there appears to be a performance trade-off in that randomization causes
the use of Gadget Kittell in the Poussin graph more often than would have been
required by the nonrandomized version. Finally, we discovered that some vertices
appear to be more likely to cause irrevocable Kempe chain tangles than others, and
we identify those vertices in the hopes of being able to characterize them.

Open questions for future work.

1. Given a plane graph 0 with e edges and n vertices, what is the minimum value
of e for which Kempe’s method is probably guaranteed to succeed in properly
coloring 0?
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2. What percentage of all plane graphs on nine vertices serve as counterexamples
to Kempe’s method?

3. Do the vertices that cause irrevocable Kempe chain tangles or require high
numbers of Kempe–Kittell chain switches share properties which can be ex-
ploited to improve Algorithm Kempe–Kittell?

4. Let 0 be a plane graph on n vertices. It follows from [West 2001, Exercise
6.1.9] that, when n ≤ 11, there is some labeling for which Algorithm Kempe
succeeds in properly four-coloring 0. What is the smallest value of n > 11
for which Algorithm Kempe–Kittell is provably guaranteed to succeed?

5. It is not difficult to show that the Icosahedral graph will be properly four-
colored by Kempe’s algorithm regardless of the labeling of the vertices (and
this is confirmed by Table 3). Characterize all plane graphs that will be prop-
erly four-colored by Kempe’s algorithm under all possible orderings of the
vertices. Short of that potentially difficult goal, find interesting families of
plane graphs (with at least 11 vertices and whose average vertex degree is at
least 5) for which Kempe’s algorithm will always succeed.

5. Addendum

Stan Wagon (personal communication, 2008) reports the discovery that the plane
graph corresponding to the contiguous 48 United States plus Lake Michigan and
the oceanic waters admits a labeling that leads to a Kempe impasse at the great
state of Illinois. Details will appear in [Wagon 2009].
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Dynamical properties of the derivative of the
Weierstrass elliptic function

Jeff Goldsmith and Lorelei Koss

(Communicated by Gaven J. Martin)

We discuss properties of the Julia and Fatou sets of the derivative of the Weier-
strass elliptic ℘ function. We find triangular lattices for which the Julia set is
the whole sphere, or which have superattracting fixed or period two points. We
study the parameter space of the derivative of the Weierstrass elliptic function on
triangular lattices and explain the symmetries of that space.

1. Introduction

The study of complex dynamical systems began in the early 1900s with the work of
mathematicians such as Fatou [1919; 1920a; 1920b] and Julia [1918]. These works
focused on the iteration of rational functions, although Fatou later published articles
on the iteration of entire functions [1926]. Much more recently, Devaney and Keen
[1988] published the first paper investigating the dynamics of a transcendental
meromorphic function. Since then, it has been well established that transcendental
meromorphic functions can exhibit dynamical behavior distinct from that of rational
maps [Baker et al. 1991a; 1991b; 1992; Bergweiler 1993; Devaney and Keen 1988;
1989; Erëmenko and Lyubich 1992]. (See also the references in the next paragraph.)

Studies on the dynamical, measure-theoretic, and topological properties of iter-
ated elliptic functions have appeared in [Hawkins 2006; Hawkins and Koss 2002;
2004; 2005; Hawkins and Look 2006; Kotus 2006; Kotus and Urbański 2003; 2004].
Of these, the first five deal with the Weierstrass elliptic ℘-function, which satisfies
some strong algebraic identities that influence the resulting dynamical behavior.
Even within an equivalence class of lattice shape, changing the size or orientation of
the lattice can drastically change the dynamics of the Weierstrass elliptic function.
Most of the work investigating the dynamics of parametrized families of elliptic
functions has involved the study of the Weierstrass function.
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In this paper, we investigate the dynamics of the derivative of the Weierstrass
elliptic function, focusing mainly on triangular lattices. Although the Weierstrass
elliptic function and its derivative share some of the same algebraic properties,
moving from the order two elliptic function ℘ to the order three function ℘ ′

changes many of the dynamical properties. For example, on a triangular lattice
�, ℘� has three distinct critical values, but ℘ ′� only has two. As the postcritical
orbits strongly influence the dynamical properties of an iterated family, ℘� and ℘ ′�
exhibit different types of behavior.

Here, we construct lattices for which the Julia set of ℘ ′� is the entire sphere,
and we also construct lattices for which ℘ ′� has a superattracting fixed point or
a superattracting period two cycle. We also investigate the symmetries of the
parameter space arising from all triangular lattices.

The paper is organized as follows. In Sections 2 and 3 we give background
on the dynamics of meromorphic functions and lattices in the plane. In Section
4, we define the function that we study, the derivative of the Weierstrass elliptic
function, and discuss the location of the critical points and critical values of this
function. In Section 5 we discuss the symmetries of the Fatou and Julia sets that
arise from the algebraic properties of these elliptic functions. Section 6 focuses on
the postcritical set of ℘ ′� when � is a triangular lattice. In this section, we construct
many triangular lattices � for which the postcritical set ℘ ′� exhibits especially nice
behavior.

In Section 7 we discuss parametrizing the derivative of the Weierstrass elliptic
function over all triangular lattices. We find a subset of this parameter space which
gives a reduced holomorphic family, and we discuss symmetries of parameter space
that arise from other dynamical properties of this family of maps.

2. Background on the dynamics of meromorphic functions

Let f : C→ C∞ be a meromorphic function where C∞ = C∪{∞} is the Riemann
sphere. The Fatou set F( f ) is the set of points z ∈ C∞ such that { f n

: n ∈ N} is
defined and normal in some neighborhood of z. The Julia set is the complement of
the Fatou set on the sphere, J ( f )= C∞ \ F( f ). Notice that

C∞ \
⋃

n≥0
f −n(∞)

is the largest open set where all iterates are defined. If f has at least one pole that
is not an omitted value, then ⋃

n≥0
f −n(∞)
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has more than two elements. Since

f (C∞ \
⋃

n≥0
f −n(∞))⊂ C∞ \

⋃
n≥0

f −n(∞),

Montel’s theorem implies that

J ( f )=
⋃

n≥0
f −n(∞).

Let Crit f denote the set of critical points of f , that is,

Crit f = {z : f ′(z)= 0}.

If z0 is a critical point then f (z0) is a critical value. The postcritical set of f is:

P( f )=
⋃

n≥0
f n(Crit f ).

A point z0 is periodic of period p if there exists a p ≥ 1 such that f p(z0)= z0.
We also call the set {z0, f (z0), . . . , f p−1(z0)} a p-cycle. The multiplier of a point
z0 of period p is the derivative ( f p)′(z0). A periodic point z0 is classified as
attracting, repelling, or neutral if |( f p)′(z0)| is less than, greater than, or equal to
1, respectively. If |( f p)′(z0)| = 0 then z0 is called a superattracting periodic point.
As in the case of rational maps, the Julia set is the closure of the repelling periodic
points [Baker et al. 1991a].

Suppose U is a connected component of the Fatou set. We say that U is prepe-
riodic if there exists n > m ≥ 0 such that f n(U )= f m(U ), and the minimum of
n−m= p for all such n,m is the period of the cycle. Although elliptic functions with
a finite number of critical values are meromorphic, it turns out that the classification
of periodic components of the Fatou set is no more complicated than that of rational
maps of the sphere. Periodic components of the Fatou set of these elliptic functions
may be attracting domains, parabolic domains, Siegel disks, or Herman rings [Baker
et al. 1992; Erëmenko and Lyubich 1992; Hawkins and Koss 2002].

Let

C = {U0,U1, . . .Up−1}

be a periodic cycle of components of F( f ). If C is a cycle of immediate attractive
basins or parabolic domains, then

U j ∩Crit f 6=∅ for some 0≤ j ≤ p− 1.

If C is a cycle of Siegel disks or Herman rings, then

∂U j ⊂
⋃

n≥0
f n(Crit f ) for all 0≤ j ≤ p− 1.
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In particular, critical points are required for any type of preperiodic Fatou compo-
nent.

3. Lattices in the plane

Let ω1, ω2 ∈ C \ {0} be such that ω2/ω1 /∈ R. We define a lattice of points in the
complex plane by

�= [ω1, ω2] := {mω1+ nω2 : m, n ∈ Z}.

Different sets of vectors can generate the same lattice �. If �= [ω1, ω2], then any
other generators η1, η2 of � are obtained by multiplying the vector (ω1, ω2) by the
matrix

A =
(

a b
c d

)
with a, b, c, d ∈ Z and ad − bc = 1. The values ω3 = ω1+ω2 and ω4 =

1
2ω3 will

be used later in this paper.
We can view � as a group acting on C by translation, each ω ∈� inducing the

transformation of C:
Tω : z 7→ z+ω.

Definition 3.1. A closed, connected subset Q of C is defined to be a fundamental
region for � if

(i) for each z ∈ C, Q contains at least one point in the same �-orbit as z;

(ii) no two points in the interior of Q are in the same �-orbit.

If Q is any fundamental region for �, then for any s ∈ C, the set

Q+ s = {z+ s : z ∈ Q}

is also a fundamental region. Usually (but not always) we choose Q to be a
polygon with a finite number of parallel sides, in which case we call Q a period
parallelogram for �.

Frequently we refer to types of lattices by the shapes of the corresponding period
parallelograms. If � is a lattice, and k 6= 0 is any complex number, then k� is
also a lattice defined by taking kω for each ω ∈�; k� is said to be similar to �.
Similarity is an equivalence relation between lattices, and an equivalence class of
lattices is called a shape.

Let � denote the set of complex numbers ω for all ω ∈ �. Then � is also a
lattice. If � = �, � is called a real lattice. There are two special lattice shapes:
square and triangular. A square lattice is a lattice with the property that i�=�. A
triangular lattice is a lattice with the property that ε�=�, where ε is a cube root
of unity; such a lattice forms a pattern of equilateral triangles throughout the plane.
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A triangular lattice is in the horizontal position if the main axis of the rhombus is
parallel to the real axis, and vertical if the main axis is parallel to the imaginary
axis.

Among all lattices, those having the most regular period parallelograms are
distinguished in many respects. For example, results on how the lattice shape
influences the dynamics of the Weierstrass elliptic function can be found in [Hawkins
2006; Hawkins and Koss 2002; 2004; 2005; Hawkins and Look 2006].

4. The derivative of the Weierstrass elliptic function

For any z ∈ C and any lattice �, the Weierstrass elliptic function is defined by

℘�(z)=
1
z2 +

∑
ω∈�\{0}

( 1
(z−ω)2

−
1
ω2

)
.

Replacing every z by −z in the definition we see that ℘� is an even function. It is
well-known that ℘� is meromorphic and is periodic with respect to �.

The derivative of the Weierstrass elliptic function is given by

℘ ′�(z)=−2
∑
ω∈�

1
(z−ω)3

.

It is also an elliptic function and is periodic with respect to �. It is clear from the
series definition that ℘ ′� is an odd function. In addition, ℘ ′� is also meromorphic,
with poles of order three at lattice points.

The Weierstrass elliptic function and its derivative are related by the differential
equation

(℘ ′�(z))
2
= 4(℘�(z))3− g2℘�(z)− g3, (1)

where

g2(�)= 60
∑

ω∈�\{0}

ω−4 and g3(�)= 140
∑

ω∈�\{0}

ω−6.

The numbers g2(3) and g3(3) are invariants of the lattice 3 in the following sense:
if g2(3)= g2(3

′) and g3(3)= g3(3
′), then 3=3′. Furthermore, given any g2

and g3 such that g3
2 − 27g2

3 6= 0 there exists a lattice 3 having g2 = g2(3) and
g3 = g3(3) as its invariants. If 3 is a square lattice then g2 = 0, and if 3 is a
triangular lattice, g3 = 0 [Du Val 1973].

It will be useful to have an expression for ℘ ′′�, the second derivative of the
Weierstrass elliptic function for a given lattice �. Starting with

℘ ′�(z)=−2
∑
�

(z−ω)−3,
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we differentiate term by term to find that

℘ ′′�(z)= 6
∑
�

(z−ω)−4.

Further, using (1), we have

℘ ′′�(z)= 6(℘�(z))2−
g2(�)

2
. (2)

The Weierstrass elliptic function, its derivatives, and the lattice invariants satisfy
the following homogeneity properties.

Proposition 4.1. For any lattice � and for any m ∈ C \ {0},

℘m�(mz)= m−2℘�(z),

℘ ′m�(mz)= m−3℘ ′�(z),

℘ ′′m�(mz)= m−4℘ ′′�(z),

g2(m�)= m−4g2(�),

g3(m�)= m−6g3(�).

Verification of the homogeneity properties can be seen by substitution into the series
definitions.

The homogeneity property of ℘ ′� influences the behavior of ℘ ′� under iteration.

Corollary 4.2. If � is any lattice then

(℘ ′�)
n(−z)=−(℘ ′�)

n(z).

Proof. Since � = −� for any lattice, the result follows from the homogeneity
property in Proposition 4.1. �

Critical points and values play an important role in complex dynamics, so it is
useful for us to be able to locate these points for ℘� and ℘ ′�. From [Du Val 1973],
we see that the critical points of ℘� lie exactly on the half lattice points of �; that is,
on ω j/2+� for j ∈ {1, 2, 3}. We discuss the critical points for ℘ ′� in the following
proposition.

Proposition 4.3 [Du Val 1973]. The critical points of ℘ ′ are the points where
℘2(z)= g2/12. Further, the critical values of ℘ ′ are ±{−g3± (g2/3)3/2}1/2.

Proof. We have ℘ ′′(z) = 6(℘ (z))2− g2/2 from (2). Solving ℘ ′′(z) = 0 gives us
that ℘ ′ has critical points in the four congruence classes where (℘ (z))2 = g2/12.

The critical values of ℘ ′ are found by solving

4(℘ (z))3− g2℘(z)− ((℘ ′(z))2+ g3)= 0



DERIVATIVE OF WEIERSTRASS ELLIPTIC FUNCTION 273

for ℘ ′(z) as follows. Substitution of ±
√

g2/12 for ℘(z) and simplification lead to

−
1
3 g3/2

2 =±
√

3((℘ ′(z))2+ g3).

Squaring both sides and rearranging terms shows that

g2
3
− 27((℘ ′(z))2+ g3)

2
= 0,

and by solving for ℘ ′(z), we see that the critical values of ℘ ′(z) are

±
(
−g3± (g2/3)3/2

)1/2
. �

The critical values are distinct unless the lattice is triangular.

Corollary 4.4. If � is triangular then � has exactly two equivalence classes of
critical points at±(1/3)ω3+�=±(1/3)(ω1+ω2)+�=±(2/3)ω4+� and two
distinct critical values at ±

√
−g3.

Proof. We note that if � is triangular then the critical points coincide in pairs with
the zeros of ℘�(z). These points occur at the points at the center of the equilateral
triangles determined by the lattice,±(1/3)ω3+�=±(2/3)ω4+�. Since g2(�)=0
for triangular lattices there are only two critical values by Proposition 4.3. �

5. Properties of the Julia and Fatou sets of ℘′
�

We begin our investigation of the dynamics of ℘ ′� for an arbitrary lattice � with an
examination of the symmetries that arise in the Julia and Fatou sets.

Theorem 5.1. Let � be any lattice.

(i) F(℘ ′�)= F(℘ ′�)+� and J (℘ ′�)= J (℘ ′�)+�.

(ii) F(℘ ′�)=−1F(℘ ′�) and J (℘ ′�)=−1J (℘ ′�).

(iii) F(℘ ′
�
)= F(℘ ′�) and J (℘ ′

�
)= J (℘ ′�).

(iv) If � is square, then F(℘ ′�)= i F(℘ ′�) and J (℘ ′�)= i J (℘ ′�).

(v) If � is triangular, then εF(℘ ′�)= F(℘ ′�) and εJ (℘ ′�)= J (℘ ′�) where ε is a
cube root of unity.

Proof. The proof of (i) follows immediately from the periodicity of ℘ ′� with respect
to �.

For (ii), let z ∈ F(℘ ′�). By definition, (℘ ′�)
n(z) exists and is normal for all n.

Let U be a neighborhood of z such that {(℘ ′�)
n(U )} forms a normal family. Let

V =−U . By Corollary 4.2, we have that (℘ ′�)
n(V )=−(℘ ′�)

n(U ) for all n≥ 1 and
thus {(℘ ′�)

n(V )} forms a normal family. The proof of the converse is identical. So
z ∈ F(℘ ′�) if and only if −z ∈ F(℘ ′�), and the Fatou set is symmetric with respect
to the origin. This of course forces the Julia set to be symmetric with respect to the
origin as well.
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To prove (iii), define φ(z)= z. We see that φ ◦℘ ′� =℘
′

�
◦φ for all lattices �, so

for a general lattice the map ℘ ′� is conjugate to ℘ ′
�

, and the Julia sets are conjugate
under φ.

For (iv), we know that square lattices satisfy i�=�. Using Proposition 4.1, we
have

(℘ ′�)
n(−i z)= (℘ ′i�)

n(−i z)=−i(℘ ′�)
n(z).

for all n ≥ 0. Thus the Julia set and the Fatou set of a square lattice must be
symmetric with respect to rotation by π/2.

A similar application of the homogeneity lemma proves (v). If ε is a cube
root of one, then so is ε2

= 1/ε; thus ε2� = �. Then from Proposition 4.1,
℘ ′�(ε

2z)= ℘ ′
ε2�
(ε2z)= ℘ ′�(z); by induction, (℘ ′�)

n(ε2z)= (℘ ′�)
n(z). �

In addition to a basic Julia set pattern repeating on each fundamental region, we
also see symmetry within the period parallelogram.

Proposition 5.2. For the lattice � = [ω1, ω2], J (℘ ′�) and F(℘ ′�) are symmetric
with respect to the half lattice points ω1/2+�, ω2/2+�, and (ω1+ω2)/2+�.

Proof. This follows easily from Theorem 5.1 (i), (ii). We have z ∈ J (℘ ′�) if and
only if −z+� ∈ J (℘ ′�), and a half lattice point must lie between z and −z+�
for any element of the lattice. �

6. Postcritical orbits

Recall from Proposition 4.3 that the critical points of ℘ ′ are the points where
℘2(u)= g2/12. Our next result shows that multiplying the lattice � by k changes
the location of the critical points from a� to ka�.

Theorem 6.1. Let � be a lattice and suppose a� is a critical point of ℘ ′�. Then
ka� is a critical point of ℘ ′k�.

Proof. Suppose a� is a critical point for ℘ ′�; that is, assume that [℘�(a�)]2 =
g2(�)/12. From Proposition 4.1, we have g2(k�)= k−4g2(�) and

[℘k�(ka�)]2 =
[ 1

k2℘�(a�)
]2
=

1
k4 [℘�(a�)]

2
=

g2(�)

k412
=

g2(k�)
12

.

Thus if a� is a critical point of ℘ ′�, then ka� is a critical point of ℘ ′k�. �

We will use the notation ak� to denote the critical point ka� for ℘ ′k�.
From Corollary 4.4, we know that triangular lattices are distinguished by the

fact that they have exactly two critical values. We restrict our attention to triangular
lattices throughout the rest of the paper. In particular, the postcritical orbits of ℘ ′�
are related in an especially nice way when � is a triangular lattice.
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Proposition 6.2. If� is a triangular lattice then P(℘ ′�) is contained in two forward
invariant sets: one set

α =
⋃

n≥0
(℘ ′�)

n(a�),

and the set eiπα. (These sets are not necessarily disjoint.)

Proof. The proof follows from the application of Corollaries 4.2 and 4.4. �

Let 3 be the lattice generated by g2 = 0, g3 = −4. We call 3 the standard
triangular lattice, and we reserve the symbol 3 to denote this particular lattice
throughout the rest of this paper. Then 3 is a triangular lattice in the horizontal
position. Let λ1, λ2 be a pair of generators for this lattice such that λ1 is in the first
quadrant and λ2 is its conjugate in the fourth quadrant. Using Mathematica or the
tables in [Milne-Thomson 1950], we can estimate λ1≈2.1+1.2i and λ2≈2.1−1.2i .
Define λ3 = λ1+λ2 and λ4 = (1/2)(λ1+λ2)= (1/2)λ3. Note that both λ3 and λ4

are real. Recall from Corollary 4.4 that for a general triangular lattice �, the critical
points are ±(2/3)ω4; let a3 = (2/3)λ4 so that a3 is a critical point of ℘ ′3. For the
lattice k3, let kλn denote the lattice points for n = 1, 2, 3, and let ak3 denote the
critical point ka3. Theorem 6.1 gives that ak3 = (2k/3)λ4. Since any triangular
lattice � can be written as �= k3 for some k, our discussion will now focus on
the lattice 3.

We begin with a lemma explaining how multiplying the standard triangular lattice
3 by certain values of k changes the critical values of ℘ ′k3. The lemma will be
useful in finding lattices for which the postcritical orbit is especially simple.

Lemma 6.3. Let 3 be the standard triangular lattice, j be a nonzero integer, and
choose k such that k4

= (2/j)(−2/λ3). Then ℘ ′k3(ka3)= ( j/2)kλ3. That is, ℘ ′k3
maps the critical point ak3 to the critical value ( j/2)kλ3.

Proof. Note that ℘ ′3(a3)=−
√
−g3(3)=−2. By Proposition 4.1,

℘ ′k3(ka3)=
1
k3 ℘

′

3(a3).

Multiplying by k/k gives

k
k4℘

′

3(a3)=
−2k

2
j
×
−2
λ3

=
j
2

kλ3,

as desired. �

We can use Lemma 6.3 to find values of k so that ℘ ′k3 has critical values located
at either lattice points or half lattice points.

http://www.wolfram.com/
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Lemma 6.4. Let3 be the standard triangular lattice, and let j be an even, nonzero
integer. Choose k such that k4

= (2/j)(−2/λ3). Then ℘ ′k3 maps the critical point
ak3 to a lattice point of k3.

Proof. We know from Lemma 6.3 that ℘ ′k3(ka3)= ( j/2)kλ3. Because j is even,
( j/2)kλ3 is a lattice point of k3. �

Lemma 6.5. Let 3 be the standard triangular lattice, and let j be an odd integer.
Choose k such that k4

= (2/j)(−2/λ3). Then ℘ ′k3 maps the critical point ak3 to a
half lattice point of k3.

Proof. We know from Lemma 6.3 that ℘ ′k3(ka3) = ( j/2)kλ3. Because j is odd,
( j/2)kλ3 is a half lattice point of k3. �

We can use the previous lemmas to find lattices for which all of the critical points
are prepoles and thus lie in the Julia set.

Theorem 6.6. Let 3 be the standard triangular lattice, and choose k so that
k4
= (2/j)(−2/λ3) for some nonzero integer j . Then the Julia set of ℘ ′k3 is C∞.

Proof. Suppose j is odd. By Lemma 6.5, ℘ ′k3(ka3) lands on a half lattice point of
k3. Recall that the critical points of ℘ lie at half lattice points; thus

℘ ′k3(℘
′

k3(ka3))= 0.

Then ak3 is a prepole, and by Corollary 4.2 so is −ak3. Then the postcritical set
{0,∞} is a finite subset of J (℘ ′k3), and thus J (℘ ′k3)= C∞.

Now suppose j is even. By Lemma 6.4, ℘ ′k3(ka3) lands on a lattice point of k3.
But the lattice points of k3 are the poles of ℘ ′k3, so ℘ ′k3(ka3) is a pole. Again we
have a finite postcritical set contained in J (℘ ′k3), and thus J (℘ ′k3)= C∞. �

Next, we focus on finding specific values of k which will map critical points to
critical points, which we can use to find examples where the Julia set is not the
entire sphere. We begin with a lemma that describes how to map critical points to
integer multiples of critical points.

Lemma 6.7. Let 3 be the standard triangular lattice and m be a nonzero integer.
Choose k such that k4

= (−2/ma3). Then ℘ ′k3(ak3)= mak3.

Proof. By Proposition 4.1, ℘ ′k3(ka3)= (1/k3)℘ ′3(a3). Again, we multiply by k/k
and have

k
k4℘

′

3(a3)=
−2k
−2/ma3

= mka3 = mak3,

as desired. �

The role of the integer m is similar to that of the integer j in Lemma 6.3: different
values of m give rise to different consequences.
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Lemma 6.8. Let 3 be the standard triangular lattice, and let m be a nonzero
integer of the form 3n. Choose k such that k4

= (−2/ma3). Then ℘ ′k3(ka3) lands
on a lattice point of k3.

Proof. From Lemma 6.7, ℘ ′k3(ka3)= mak3. Then mak3 = 3n(2/3)λ4 = nλ3. �

Note that this is the same case as in Lemma 6.4.
Next, we show that if m has the form 3n+ 1 then ℘ ′k3 has two superattracting

fixed points.

Lemma 6.9. Let 3 be the standard triangular lattice, and let m be a nonzero
integer of the form 3n+ 1. Choose k such that k4

= (−2/ma3). Then mak3 and
−mak3 are superattracting fixed points for ℘ ′k3.

Proof. We know from Lemma 6.7 that ℘ ′k3(ka3)=mak3. Because m has the form
3n+ 1,

mak3 = (3n+ 1)ak3 = 3n 1
3 kλ3+

2
3 kλ4 = nkλ3+

2
3 kλ4 ∼=

2
3 kλ4 = ak3.

Hence we see that mak3 and ak3 are in the same residue class and thus map to the
same point. Thus

℘ ′k3(mak3)= ℘
′

k3(ak3)= mak3,

and we see that mak3 is a superattracting fixed point of ℘ ′k3. Since ℘ ′k3 is odd,
−mak3 is also a superattracting fixed point of ℘ ′k3 �

On the other hand, if m has the form 3n − 1 then ℘ ′k3 has a superattracting
two-cycle.

Lemma 6.10. Let 3 be the standard triangular lattice, and let m be a nonzero inte-
ger of the form 3n− 1. Choose k such that k4

= (−2/ma3). Then {mak3,−mak3}

form a superattracting 2-cycle for ℘ ′k3.

Proof. We know from Lemma 6.7 that ℘ ′k3(ka3)= mak3. Since m has the form
3n− 1,

mak3 = (3n− 1)ak3 = 3n 1
3 kλ3−

2
3 kλ4 = nkλ3−

2
3 kλ4 ∼=−

2
3 kλ4 =−ak3.

Thus we have that mak3 and −ak3 are congruent (mod k3). Then, by Proposition
4.1, we see that ℘ ′k3(mak3) = ℘

′

k3(−ak3) = −℘
′

k3(ak3) = −mak3. Similarly,
℘ ′k3(−mak3)= mak3, and we have a superattracting 2-cycle. �

The next theorem follows immediately from the previous two lemmas.

Theorem 6.11. Let 3 be the standard triangular lattice, and choose k so that
k4
= (−2/ma3) for some nonzero integer m. Then if m is of the form 3n − 1 or

3n+ 1 the Fatou set of ℘ ′k3 is nonempty.
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Figure 1. Example with a superattracting 2-cycle.

To illustrate Lemma 6.10, consider Figure 1. In this graph we use Mathematica
to draw the Julia and Fatou set of ℘ ′k3 with k chosen so that k4

= (−2/ma3), where
m = −1 and 3 is the standard triangular lattice. Thus we have a superattracting
2-cycle {ak3,−ak3}. The Fatou set is colored blue, and the Julia set is yellow.
The points of the 2-cycle, at z ≈ ±1.532 + 0i , are shown as red dots, and a
period parallelogram is also displayed for reference. For this lattice, we have
g3(k�)≈−2.348.

We note that the sign of k influences the orientation of the lattice. If k4 is positive,
then two of the values of k are real, one positive and one negative, and the other two
values are pure imaginary, with one positive and one negative. When k is real, the
lattice k3 is triangular in the horizontal orientation, and when k is pure imaginary,
the lattice k3 is triangular in the vertical orientation.

If k4 is negative then the values of k are complex; two lie on the line y = x and
two on the line y = −x . For such values of k, the lattice k3 is no longer a real
lattice. One such example is shown is Figure 2, where we are in the setting of
Lemma 6.9, and we have chosen k such that k4

= (−2/ma3) and m = 1. In this
case, we have two superattracting fixed points. Note for future reference that this
lattice has g3(k�)≈−2.348i .

The method of the last few results has been to start with a lattice � and choose
a k value so that k� maps a critical point ak� to another critical point, resulting
in superattracting fixed points or superattracting two-cycles. The next proposition
shows that it is impossible to construct superattracting cycles of length n > 2 in
this way.

http://www.wolfram.com/
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Figure 2. Example with two superattracting fixed points.

Proposition 6.12. Let � be a triangular lattice with critical points t1 and t2. Sup-
pose ℘ ′�(t1)= t2. If t1 ∼= t2(mod �), t2 is a superattracting fixed point. If t1 and t2
are not congruent, t2 and −t2 form a superattracting 2-cycle.

Proof. Case 1: t1 ∼= t2 (mod �). We know that ℘ ′�(t1) = t2. Further, by the
congruence of t1 and t2, ℘ ′�(t2) = ℘

′

�(t1) = t2. Thus t2 is a superattracting fixed
point.

Case 2: t1 6∼= t2(mod �). Because we are dealing with a triangular lattice, we
know that there are only two congruence classes of critical points. From Corollary
4.2, we also know that ℘ ′�(−t1) = −℘ ′�(t1); thus t1 and −t1 do not map to the
same point, and therefore must be in different congruence classes. Since there are
only two congruence classes of critical points, and since both t2 and −t1 are not
congruent to t1, we see that t2 ∼=−t1(mod �).

Again, we know that ℘ ′�(t1) = t2. Further, by the congruence of −t1 and t2,
℘ ′�(t2)= ℘

′

�(−t1)=−℘ ′�(t1)=−t2. By Corollary 4.2, we also have ℘ ′�(−t2)=
−℘ ′�(t2)= t2. Thus we have a superattracting 2-cycle. �

For example, Proposition 6.12 says that we can’t have a superattracting three cycle
that contains two critical points.

7. Parameter space

Next, we study the parameter space for the elliptic functions ℘ ′� for triangular
lattices �. The theory of holomorphic families was introduced by Mañé et al.
[1983], refined by McMullen [2000], generalized to the setting of meromorphic
maps with finite singular set by Keen and Kotus [1997], and discussed for the
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Weierstrass elliptic function in [Hawkins and Koss 2004] and [Hawkins and Look
2006].

We begin with the definition of parameter space for triangular lattices.

Definition 7.1. Given g2=0, we define g3−space to be the set of points g3∈C\{0}
which represent the triangular lattice 0 determined by g2 = 0 and g3, and therefore
the function ℘0.

Let 0(0, g3) denote the lattice determined by g2 = 0 and g3 ∈ C \ {0}. Then the
map:

F : C \ {0}×C→ C∞

given by F(g3, z)= ℘ ′0(0,g3)
(z) is holomorphic in g3 and meromorphic in z. This

defines a holomorphic family of meromorphic functions; we say that the holomor-
phic family of meromorphic maps parametrized over a complex manifold M is
reduced if for all triangular lattices 0 6=� in M , ℘ ′0 and ℘ ′� are not conformally
conjugate. In the current setting, g3-space is not reduced; the next results distinguish
the symmetries of parameter space arising from conjugacy from the symmetries
that occur for other reasons.

We first describe the possible conformal conjugacies that can occur between two
maps ℘ ′� and ℘ ′0 when � and 0 are triangular lattices.

Lemma 7.2. If ℘ ′0 is conformally conjugate to ℘ ′� via a Möbius map φ, then
φ(z)= az and φ(0)=�.

Proof. Assume that φ(z) = (az + b)/(cz + d) and φ ◦℘ ′0(z) = ℘
′

� ◦ φ(z) for all
z ∈ C. Then φ(∞) = ∞ (since neither ℘ ′� nor ℘ ′0 is defined precisely at that
point); that is, φ takes C onto C. This means that c = 0 and φ is affine. Therefore
φ(z)= az+ b with a 6= 0; we have φ(0)= b ∈� since it must be a pole of ℘ ′�.

Since critical points must be mapped to critical points under φ, the critical values
are mapped to critical values as well. The critical values of ℘ ′0 are c0 =

√
−g3(0)

and −c0, and the critical values of ℘ ′3 are c� =
√
−g3(�) and −c�. First, if the

critical values are mapped in the order φ(c0)= c� and φ(−c0)=−c�, then

ac0 + b = c� and − ac0 + b =−c�;

therefore b = 0. If the critical values are mapped with the opposite pairing then
b = 0 as well. Therefore b = 0, φ(z) = az, and φ induces a group isomorphism
between C/0 and C/�; in particular a0 =�. �

Rotating a lattice by eiπ/2 results in conformal conjugacy.

Theorem 7.3. If � is any triangular lattice and i� = 0, then ℘0 and ℘� are
conformally conjugate via the map φ(z) = i z. Further, g3(0) = −g3(�). If
{z1, . . . , zn} is a cycle of length n with multiplier β under ℘ ′� then {i z1, . . . , i zn} is
a cycle of length n with multiplier β under ℘ ′i�.



DERIVATIVE OF WEIERSTRASS ELLIPTIC FUNCTION 281

Proof. We need to show that φ ◦℘ ′�(z)= ℘
′

0 ◦φ(z). From Proposition 4.1,

℘ ′0(i z)= ℘ ′i�(i z)= i−3℘ ′�(z)= i℘ ′�(z).

Also from Proposition 4.1, we have

g3(0)= g3(i�)= i−6g3(�)=−g3(�).

Now assume that z1, . . . , zn is a cycle of length n under ℘ ′�. From Proposition
4.1, for 1≤ j ≤ n we have

℘ ′i�(i z j )=
1
i3℘

′

�(z j )= i℘ ′�(z j )= i z j+1.

Therefore {i z1, . . . , i zn} is a cycle of length n under ℘ ′i�.
Also, from Proposition 4.1, we have

℘ ′′i�(i z)= i−4℘ ′′�(z)= ℘
′′

�(z),

so the cycles have the same multiplier. �

Although each g3 ∈C\{0} corresponds to a unique lattice, the conjugacy given in
Theorem 7.3 leads to eπ i rotational symmetry in g3-space coming from conformal
conjugacy of the mappings. Therefore g3-space is not a reduced space.

Theorem 7.4. For triangular lattices 01 6= 02, ℘ ′01
is conformally conjugate to

℘ ′02
if and only if 01 =±i02 .

Proof. (⇐): By Theorem 7.3, if 02 = eπ i/201, then ℘ ′01
is conformally conjugate

to ℘ ′02
.

(⇒): Suppose that ℘ ′01
is conformally conjugate to ℘ ′02

. Then the conjugating
map is of the form φ(z)=az by Lemma 7.2, and we write 02=a01. It follows from
Proposition 4.1 that g3(02)= a−6g3(01). The critical values for a triangular lattice
always satisfy c1 =−c2 =

√
−g3, by Corollary 4.4. Then φ(c01)= ac01 =±c02 .

But

ac01 = a
√
−g3(01)= a

√
−g3

(1
a
02
)
= a

√
−a6g3(02)= a4c02,

and a4
=±1.

If a4
= −1 then a = emπ i/4 for m = 1, 3, 5, or 7. Then a℘ ′01

(z) = ℘ ′a01
(az).

However, from Proposition 4.1,

℘ ′a01
(az)= a−3℘ ′01

(z),

which would imply that a4
= 1, a contradiction.

If a = ±1 then 02 = 01. The only cases remaining are when a2
= −1, which

gives the result. �
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Figure 3. g3-space showing g3 =−2.348 and g3 =−2.348i .

Corollary 7.5. For triangular lattices, the sector of g3-space such that

−
π

2
< Arg g3 ≤

π

2

is a reduced holomorphic family of meromorphic maps.

Proof. By Proposition 4.1, g3(01)= g3(i02)= i−6g3(0)=−g3(02). �

In Figure 3 we have drawn a portion of g3-space centered at the origin using
Mathematica. We color each value in the g3-plane according to the behavior of
the stationary point a� for ℘ ′�(0,g3)

. We know that the behavior of the orbits of the
critical points a� and−a� are related by Proposition 6.2, so it suffices to investigate
the orbit of a�. Red points are values of g3 where a� is drawn to a fixed point; blue
points are values of g3 where a� is drawn to a 2-cycle; and green points are values
of g3 where a� is drawn to a 3-cycle. If no cycle was ascertained by Mathematica,
then g3 is colored orange. For reference, we have also labeled the g3 values in
Figure 3 that correspond to the examples shown in Figures 1 and 2.

We observe the eπ i rotational symmetry in g3-space predicted by Corollary 7.5.
However, we also notice eπ i/2 rotational symmetry of shape, but not color, that
does not relate to conformal conjugacy. Our next few results explain this symmetry.

First, we show that for k = eπ i/4, the Fatou set of ℘ ′k� is the Fatou set of ℘ ′�
rotated by k.

Theorem 7.6. Let � be any triangular lattice. Then eπ i/4 F(℘ ′�)= F(℘ ′eπ i/4�
) and

g3(eπ i/4�)= ig3(�).
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Figure 4. Region of g3-space near g3 = 2.348 (left); near g3 =

2.348i (right).

Proof. Using Proposition 4.1, we have

℘ ′eπ i/4�(e
π i/4z)= e−3π i/4℘ ′�(z)=−eπ i/4℘ ′�(z),

and thus
(℘ ′eπ i/4�)

n(eπ i/4z)= (−1)neπ i/4(℘ ′�)
n(z).

If U is a neighborhood of z such that {(℘ ′�)
n(U )} forms a normal family, then

V = eiπ/4U is a neighborhood of eiπ/4z such that {(℘ ′eπ i/4�
)n(eπ i/4V )} forms a

normal family.
Proposition 4.1 gives that g3(eπ i/4�)= ig3(�). �

In fact, we can say much more about the behavior of periodic orbits. For example,
we see that under rotation by eiπ/2 in g3-space, red regions become blue, meaning
that all 1-cycles become 2-cycles. However, some blue regions rotate to red regions,
while other blue regions remain blue under rotation. We show a close-up of this
phenomenon in Figure 4. The next three theorems explain what happens to periodic
orbits as we rotate by eiπ/2 in g3-space.

We begin by showing that cycles of odd length n turn into cycles of length 2n
when the lattice is rotated by eiπ/4.

Theorem 7.7. If {z j }
n
j=1 is a cycle of odd length under ℘ ′� and k = eiπ/4, then

{(−1) j+1kz j (mod n)}
2n
j=1

is a cycle of length 2n under ℘ ′k�. Further, the 2n-cycle has the same classification
as the n-cycle.
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Proof. Let k = eπ i/4. Assume that {z j }
n
j=1 is a cycle of odd length under ℘ ′�. From

Proposition 4.1,

℘ ′k�(kz j )= e−3iπ/4z j =−kz j+1, ℘ ′k�(−kz j )=−e−3iπ/4z j = kz j+1.

Using these, we see that under ℘ ′k�,

kz1→−kz2→ · · · → kzn→−kz1→ · · · →−kzn→ kz1.

Since z1 6= z j for 2≤ j ≤ n, we have kz1 6= kz j ; we also know that z1 6= −z1, and
so kz1 6= −kz1. However, we still must verify that kz1 6= −kz j for 2 ≤ j ≤ n to
ensure that our new cycle under ℘ ′k� is in fact of length 2n. Assume not, so that
kz1 = −kz j for some 2 ≤ j ≤ n. Then z1 = −z j , so that under ℘ ′�, z j−1→−z1

and −z j−1→−z j = z1. Then our original cycle is

{z1, z2, . . . , z j−1,−z1, . . . ,−z j−1}.

But the length of this cycle is given by 2( j − 1), which is even. We therefore have
a contradiction, and our new cycle has length 2n.

To see that the n-cycle and the 2n-cycle have the same classification, we first
examine

∣∣[(℘ ′�)n]′(z1)
∣∣. Using the chain rule, we see that

[(℘ ′�)
n
]
′(z1)=

n−1∏
k=0

℘ ′′�((℘
′

�)
k(z1)).

Next, we consider |[(℘ ′k�)
2n
]
′(kz1)|, whose value determines the classification of

the 2n-cycle. We again use the chain rule to see that

[(℘ ′k�)
2n
]
′(kz1)= ℘

′′

k�((℘
′

k�)
2n−1(kz1)) ·℘

′′

k�((℘
′

k�)
2n−1(kz1)) · · · · ·℘

′′

k�(kz1).

From Proposition 4.1, we see that (℘ ′k�)
m(kz1)= (−1)mk℘ ′�(z1) for any integer

m, and that ℘ ′′k�((−1)mkz)=−℘ ′′�(z). Then

℘ ′′k�((℘
′

k�)
2n−1(kz1)) ·℘

′′

k�((℘
′

k�)
2n−2(kz1)) · · · · ·℘

′′

k�(kz1)

= ℘ ′′k�((−1)2n−1k℘ ′�
2n−1

(z1)) ·℘
′′

k�((−1)2n−2k℘ ′�
2n−2

(z1)) · · ·℘
′′

k�(kz1)

=−℘ ′′�(℘
′

�
2n−1

(z1)) · −℘
′′

�(℘
′

�
2n−2

(z1)) · · · · · −℘
′′

�(z1).

Finally, we recall that z1 has period n under ℘ ′�. Because of this,

℘ ′�
2n−s

(z1)= ℘
′

�
n−s
(z1).

Therefore, ∣∣[(℘ ′k�)2n
]
′(kz1)

∣∣= ∣∣[(℘ ′�)n]′(z1)
∣∣2,

and so the 2n-cycle formed by kz1 under ℘ ′k� has the same classification as the
n-cycle formed by z1 under ℘ ′�. �
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For example, suppose {z1, z2, z3} is a 3-cycle under ℘ ′�. Theorem 7.7 then says
that {kz1,−kz2, kz3,−kz1, kz2,−kz3} is a 6-cycle under ℘ ′k�, and that the 6-cycle
has the same classification as the 3-cycle.

From Proposition 4.1, g3(k�)= ig3(�); thus, we have shown that any region
corresponding to a cycle with odd length n will become a region corresponding to
a cycle of length 2n under rotation by eiπ/2. Specifically, regions corresponding to
fixed points will become regions corresponding to 2-cycles. Next we have a similar
result involving n-cycles of even length satisfying a certain structure and rotation
by eiπ/2.

Theorem 7.8. If {(−1) j+1z j (mod n)}
2n
j=1 with n odd is a cycle under ℘ ′� and k =

eiπ/4, then {kz j }
n
j=1 and {−kz j }

n
j=1 are cycles of odd length under ℘ ′k�. Further,

the classification of the n-cycle under ℘ ′k� is the same as the classification of the
2n-cycle under ℘ ′�.

Proof. Let k = eiπ/4. Assume that {(−1) j+1z j (mod n)}
2n
j=1 with n odd is a cycle

under ℘ ′�. From Proposition 4.1,

℘ ′k�(kz j )= e−3iπ/4℘ ′�(z j )=−k℘ ′�(z j )= (−k)(−z j+1)= kz j+1.

Thus, under ℘ ′k�,
kz1→ kz2→ · · · → kzn→ kz1.

We know that z1 6= z j for all 2 ≤ j ≤ n, so it is also true that kz1 6= kz j for all
2≤ j ≤ n. Thus {kz j }

n
j=1 is a cycle under ℘ ′k�, as is {−kz j }

n
j=1.

The proof that the n-cycle under ℘ ′k� has the same classification as the 2n-cycle
under ℘ ′� follows from the same reasoning as in the proof of Theorem 7.7. �

For example, if
{z1,−z2, z3,−z1, z2,−z3}

is a cycle under ℘ ′�, then
{kz1, kz2, kz3}

is a cycle under ℘ ′k�, and both cycles have the same classification.
Theorems 7.7 and 7.8 are very closely related. If we begin with a g3 value that

corresponds to a lattice with a cycle of odd length n, then eiπ/2g3 corresponds to a
lattice with a cycle of length 2n; another rotation by eiπ/2 gives a g3 value whose
lattice again has an n cycle. Our theorems have also given us a clear relationship
between the cycles generated by the different g3 values. Also note that we are
talking about a specific type of n-cycle in Theorem 7.8. Our next theorem deals
with all other cycles of even length.

Theorem 7.9. Suppose {z j }
m
j=1 is a cycle of even length m under ℘ ′� and does not

have the form {(−1) j+1z j (mod n)}
2n
j=1 with n odd. If k= eiπ/4, then {(−1) j+1kz j }

m
j=1



286 JEFF GOLDSMITH AND LORELEI KOSS

is a cycle of length m under ℘ ′k�. Further, the classification of the m-cycle under
℘ ′k� is the same as the classification of the m-cycle under ℘ ′�.

Proof. Using Proposition 4.1, we know that

℘ ′k�(kz j )=−kz j+1 and ℘ ′k�(−kz j )= kz j+1.

Thus, under ℘ ′k�,

kz1→−kz2→ · · · → kzm−1→−kzm→ kz1.

We know that kz1 6= kz j , so to ensure that {(−1) j+1kz j }
m
j=1 is a cycle of length

m under ℘ ′k�, we must check that kz1 6= −kz j for j even. Assume not, so that
z1 =−z j for some even 2≤ j ≤ m; note that j − 1 is odd. Then ℘ ′�(z j−1)=−z1,
and our original cycle has the form {z1, . . . , z j−1,−z1, . . . ,−z j−1} and has length
2( j − 1). If m is not divisible by an odd number, the contradiction is immediate.
On the other hand, if m is divisible by an odd number, then our cycle has the form
{(−1) j+1z j (mod n)}

2n
j=1 with n odd, which contradicts our assumption.

To show that
∣∣[(℘ ′�)m]′(z1)

∣∣= ∣∣[(℘ ′k�)m]′(kz1)
∣∣, we use that

(℘ ′k�)
n(kz1)= (−1)nk℘ ′�(z1) and ℘ ′′k�((−1)nkz)=−℘ ′′�(z)

for any integer n. �

Theorem 7.9 shows that if we begin with a g3 value that gives a cycle of even
length m that does not have the specific form given in Theorem 7.8, then eiπ/2g3

again gives us an m-cycle. That is, unless an even cycle has a certain form, it
remains the same length when g3-space is rotated by eiπ/2.

We note the appearance of Mandelbrot-like sets in g3 parameter space in the
sense introduced in [Douady and Hubbard 1985; McMullen 2000] and extended to
quadratic-like Weierstrass elliptic functions in [Hawkins and Look 2006]. We do
not present any results here; they are a further subject of study by the authors.
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Maximum minimal rankings of oriented trees
Sarah Novotny, Juan Ortiz and Darren Narayan

(Communicated by Vadim Ponomarenko)

Given a graph G, a k-ranking is a labeling of the vertices using k labels so that
every path between two vertices with the same label contains a vertex with a
larger label. A k-ranking f is minimal if for all v ∈ V (G) we have f (v) ≤ g(v)
for all rankings g. We explore this problem for directed graphs. Here every
directed path between two vertices with the same label contains a vertex with
a larger label. The rank number of a digraph D is the smallest k such that D
has a minimal k-ranking. The arank number of a digraph is the largest k such
that D has a minimal k-ranking. We present new results involving rank numbers
and arank numbers of directed graphs. In 1999, Kratochvíl and Tuza showed
that the rank number of an oriented of a tree is bounded by one greater than the
rank number of its longest directed path. We show that the arank analog does
not hold. In fact we will show that the arank number of an oriented tree can be
made arbitrarily large where the largest directed path has only three vertices.

1. Introduction

A labeling f : V (G) → {1, 2, . . . , k} is a k-ranking of a graph G if, whenever
f (u)= f (v), every path joining u and v contains a vertexw such that f (w)> f (u).
A k-ranking f is minimal if f (v) ≤ g(v) for all v ∈ V (G) and all rankings g. A
ranking f has a drop vertex x if the labeling defined by g(v) = f (v) when v 6= x
and g(x) < f (x) is still a ranking. It was shown in [Jamison 2003; Isaak et al.
2009] that a ranking is minimal if and only if it contains no drop vertices. When
the value of k is unimportant, we will refer to a k-ranking simply as a ranking.

Recall that an oriented graph is a directed graph D where for each pair of vertices
x, y either (x, y) or (y, x) is an arc in D and D contains no self-loops. We will
refer to a path where all of the arcs have the same orientation as a directed path. A
path where the arcs are alternately oriented (so that each vertex is either a source
or a sink) will be referred to as an antidirected path. An undirected path is simply
a path where the edges are not oriented.
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We recall that a vertex coloring of a graph is a labeling of the vertices so that
no two adjacent vertices receive the same label. Hence a k-ranking is a vertex
coloring with an additional condition imposed. Following along the lines of the
chromatic number, the rank number of a graph χr (G) is defined to be the smallest
k such that G has a minimal k-ranking. At the other extreme, the arank number
of a digraph ψr (G) is defined to be the maximum k such that D has a minimal
k-ranking. These rankings are known as arankings or maximum minimal rankings.
We explore rankings and arankings of directed graphs. Here any directed path
between two vertices with the same label contains a vertex with a higher label.
The rank and arank number of oriented graphs are defined in the same way as they
were for undirected graphs.

Early studies involving the rank number for undirected graphs were motivated by
its numerous applications including its role in the design of very large scale integra-
tion (VLSI) layout and Cholesky factorizations associated with parallel processing
[de la Torre et al. 1992; Ghoshal et al. 1999; Sen et al. 1992]. One of the first results
involving minimal rankings was by Bodlaender et al. [1998], who determined the
rank number of a path of length n to be

χr (Pn)=
⌊

log2 n
⌋
+ 1.

A ranking of this form can be obtained by labeling the vertices {vi | 1 ≤ i ≤ n}
with α+1 where 2α is the highest power of 2 dividing i and this ranking is unique
when n is a power of 2. We will refer to this ranking as the standard ranking of a
path.

Many papers have since appeared on rankings of undirected graphs [Dereniowski
2006; 2004; Dereniowski and Nadolski 2006; Flórez and Narayan 2009; Ghoshal
et al. 1999; 1996; Hsieh 2002; Jamison 2003; Kostyuk and Narayan ≥ 2009;
Kostyuk et al. 2006; Leiserson 1980; Laskar and Pillone 2001; 2000; Novotny
et al. 2009]. However only two papers are known to have investigated the rank-
ing of oriented graphs, and to date there have not been any papers on the arank
number of an oriented graph. Kratochvı́l and Tuza [1999] gave a general bound
on the ranking number of oriented trees. They also proved that deciding whether
the rank number of an oriented graph is bounded by a constant is NP-complete.
Flórez and Narayan [2009] established new results involving the rank number for
all orientations of a cycle. In this paper, we build upon known results for oriented
graphs and present the first results involving oriented graphs and arank numbers.

Kratochvı́l and Tuza [1999] showed that the rank number of an oriented tree is
bounded by one plus the rank number of its longest directed path. In Theorem 10
we show that this property does not hold for the arank number. In fact we will
show that the arank number of an oriented tree can be made arbitrarily large where
the longest directed path has three vertices.
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2. Rankings for oriented graphs

In this section we begin by determining the rank and arank numbers for orientations
of stars. Later we investigate orientations of a tree.

2.1. Oriented stars. The next two theorems give the rank and arank number of an
oriented star. We show that for oriented stars on two or more vertices, the rank
number is 2 and the arank number is either 2 or 3.

Theorem 1. Let DS(n) be a digraph that is any orientation of a star. Then

χr (DS(n))= 2.

Proof. A minimal 2-ranking can be formed by labeling the center vertex with a 2
and all other vertices with a 1. �

Theorem 2. Let DS+(n) denote a directed out-star, DS−(n) a directed in-star,
and DSH (n) the directed hybrid star that contains a directed P3. Then

(i) ψr (DS+(n))= 2,

(ii) ψr (DS−(n))= 2,

(iii) ψr (DSH (n))= 3.

Proof. We consider the digraphs DS+(n) and
DS−(n). There are only two possible rank-
ings. First, if the center of the star is labeled
1, each vertex of degree 1 must be labeled 2,
leading to the following minimal 2-rankings:

2

22

2

2 2

1
2

22

2

2 2

1

Next we consider DSH (n). Suppose we have a minimal
ranking with the center vertex labeled 1. Then any directed
path with labels a-1-b could be relabeled with 2-1-3, leading
to a minimal 3-ranking such as the one on the right.

2

22

3

3 3

1

Hence any minimal k-ranking of DSH (n) must have k ≤ 3. �

2.2. Oriented paths. We begin by recalling a theorem of [Bodlaender et al. 1998]
that gives the rank number of an undirected path.

Theorem 3. χr (Pn)=
⌊

log2 n
⌋
+ 1.

The directed case the follows immediately.

Corollary 4. Let EPn denote the path on n vertices where all of the arcs have the
same direction. Then χr ( EPn)=

⌊
log2 n

⌋
+ 1.

Recall that the antidirected path APn is a path on vertices v1, v2, . . . , vn where
the arcs alternate in direction.

Theorem 5. Let APn be the antidirected path on n vertices. Then χr (APn)= 2.
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Proof. Each vertex of an antidirected path is either a source or a sink. Labeling
each source with a 1 and each sink with a 2 creates a minimal ranking. �

We restate a known result involving the rank number of an oriented path.

Theorem 6 [Kratochvı́l and Tuza 1999]. Let Pl be the longest directed path con-
tained in the orientation of a path OPn . Then χr (OPn)= χr (Pl) or χr (Pl)+ 1.

We next consider the arank number of an oriented path. For some oriented paths
we may simply join together two ψr -rankings on the directed subpaths. Consider
the example 3 1 2 1 . The first three vertices are labeled according to
a ψr -ranking of a directed P3 and the last two vertices are labeled according to a
ψr -ranking of P2. Note that there is an overlap on the vertex of the third label.
Since none of these labels can be reduced the arank number of this oriented path
is at least 3. A 4-ranking would imply that each vertex receives a different label.
In either case the label of the end vertex not adjacent to a vertex labeled 1 can be
reduced to a 1. Hence the rank number is 3 which equals the arank number of its
longest directed path.

Next consider 1 2 3 1 . The arank number is at least 3 since no
label can be reduced. However the arank number of its longest directed path is 2.
It would seem that the difference between the arank number of an oriented path
and the arank number of its longest directed path can differ by at most 1. This is
in fact the case. Before proving this result we state the following lemma.

Lemma 7. Let Pn be a path on vertices v1, v2, . . . , vn . Then there exists a ψr -
ranking f of Pn where f (v1)= ψr (Pn)+ 1.

Proof. We first find the largest value less than or equal to m that is either one less
than a power of 2, or one less than the average of two consecutive powers of 2. A
construction was given in [Kostyuk et al. 2006] showing that ψr -rankings can be
constructed for paths with these lengths where the endpoints receive the largest two
labels. We can construct a ranking for Pn by starting with the endpoint with the
largest label and extending the other end of the path, labeling additional vertices
so that the new vertex i is labeled α + 1 where 2α is the largest power of 2 that
divides i .

By the monotonicity property ψr (Ps) ≤ ψr (Pt) whenever s ≤ t mentioned in
[Ghoshal et al. 1996] it follows that this ranking is a ψr -ranking. �

We next prove the main result of this section.

Theorem 8. Let OPn be an orientation of a path with longest directed path Pl .
Then ψr (OPn)= ψr (Pl) or ψr (Pl)+ 1.

Proof. Let OPn be the union of oppositely directed paths Pi1, Pi2, . . . , Pi j . We will
proceed by induction on j . When j = 1 the result is immediate. We assume the
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result is true for j − 1. There are two cases to consider depending on whether or
not the Pi j has the largest arank number of all paths in OPn .

Case (i): ψr (Pi j )≥ ψr (Pik ) for all k, 1≤ k ≤ j . Then by Lemma 7 the vertices of
Pi j can be labeled using a ψr -ranking where the largest label is given either to the
first or last vertex of this path. We may need to use a larger label for this vertex;
however, any larger label for this vertex can be reduced to at most ψr (Pi j )+ 1.
We may have to reduce other labels to obtain a minimal ranking, but since these
reductions will not increase the largest label we have ψr (OPn)≤ ψr (Pl)+ 1.

Case (ii): ψr (Pi j ) < maxk ψr (Pik ) for all k, 1 ≤ k ≤ j . We append a ψr -ranking
of Pi j as in Case (i). Since the largest label did not increase we again have
ψr (OPn)≤ ψr (Pl)+ 1. �

3. Arankings for oriented trees

We recall the following theorem involving the rank number of an oriented tree.

Theorem 9 [Kratochvı́l and Tuza 1999]. Let Pl be the longest directed path con-
tained in the orientation of a tree Tn . Then χr (Tn)= χr (Pl) or χr (Pl)+ 1.

Our next theorem shows that the analog does not hold for the arank number of
a directed path. In fact we will show that the arank number of an oriented tree can
be made arbitrarily large where the longest directed path has only three vertices.

Theorem 10. For any positive integer t , there exists a directed tree T without a
directed P3 such that ψr (D)= t .

Proof. When t = 1, D consists of a single vertex with no edges. When t = 2, D is
a directed K2.

For the case where t = 3, the minimal 3-ranking 1 2 3 1 shows
that ψr (D)≥ 3.

This same digraph can be extended to one with a minimal 4-ranking as follows:
1 2 3 1

1 2 4 1

We now give a general extension from the case where t = j to the case where
t = j + 1.

Suppose t = j . We start with the digraph D which contains a vertex v such that
f (v)= j . Let D′ be a copy of the digraph D, with the orientation of all of the arcs
in D′ reversed. We note that the digraph D′ contains a vertex v′ such that f (v′)= j .
We then construct the graph D∗ from D, D′ along with an arc between v and v′,
where the direction is from the source to the sink. In D∗ we let f (v′)= j+1, and
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label all other vertices as they were in D or D′. The construction gives a minimal
( j + 1)-ranking of D∗. Hence ψr (D∗)≥ j + 1. �

4. Conclusion

At the current time, the rank and arank number are only known for a few families of
graphs. Even less is known about these numbers for oriented graphs. We note that
Theorem 8 suggests the problem of partitioning oriented paths into two classes.
Class 1 contains all oriented paths OPn where ψr (OPn) = ψr (Pl) and Class 2
contains of all paths where ψr (OPn)= ψr (Pl)+ 1.
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Applications of full covers in real analysis
Karen Zangara and John Marafino

(Communicated by David Larson)

In this paper we briefly introduce the reader to the concept of full covers and in-
dicate how it can be used to prove theorems in an undergraduate analysis course.
The technique exposes the student to the idea of covering an interval [a, b] with
a collection of sets and then extracting from this collection a subcollection that
partitions [a, b]. As a consequence, the student is furnished with a unifying
thread that ties together and simplifies the proofs of many theorems.

1. Introduction

We were first drawn to the concept of full covers after reading two papers by Botsko
[1987; 1989]. We then pursued this idea in [Klaimon 1990] and will now provide
full covering arguments for four more theorems: the Lebesgue Number Lemma,
the Intermediate Value Theorem for Derivatives, Baire’s Theorem, and Ascoli’s
Theorem.

The following definition and lemma are used in full covering arguments:

Definition. Let [a, b] be a closed, bounded interval. A collection C of closed
subintervals of [a, b] is a full cover of [a, b] if, for each x in [a, b], there corre-
sponds a number δ > 0 such that every closed subinterval of [a, b] that contains x
and has length less than δ belongs to C .

Thomson’s Lemma. If C is a full cover of [a, b], then C contains a partition of
[a, b]. In other words, there is a partition of [a, b] all of whose subintervals belong
to C.

The proof of the lemma is based upon a bisection argument and is easily ac-
cessible to undergraduates. It can be found in [Botsko 1987], [Botsko 1989] and
[Thomson 1980]. Thomson’s lemma is similar in concept and execution to the
version of the Heine–Borel theorem, which states that every open cover of a closed
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interval has a finite subcover. So the proof of any theorem that uses the Heine–
Borel theorem can be rewritten to use full covers. Our proof of the Lebesgue
Number Lemma illustrates this.

The advantage of full covering arguments lies in that the resulting finite subcover
of [a, b] is a partition of the interval. This extra condition can often be used to
streamline and simplify the proofs of certain theorems. For instance, in the proof
of the Intermediate Value Theorem for derivatives, we obtain a finite subcover
{Jk : k = 1, 2, . . . ,m} of [a, b] having the property that a function f defined on
[a, b] has a constant sign on each Jk . Since {Jk : k = 1, 2, . . . ,m} is a partition of
closed subintervals of [a, b], we can order the Jk so that Jk abuts Jk+1 to the left,
J1 contains a, and Jm contains b. It is then trivial to see that the sign of f on J1

determines the sign of f on each of the Jk, k = 2, 3, . . . ,m, and hence, determines
the sign of f on [a, b].

Another instance occurs in Baire’s Theorem. In the proof we have a function
f defined on [a, b] and a finite subcollection {Jk : k = 1, 2, . . . ,m} such that f is
bounded above on each Jk by a constant function 8k . Since {Jk : k = 1, 2, . . . ,m}
forms a partition of [a, b], the intervals can easily be ordered as before. Trivially,
the interiors of Jk do not intersect, so each interior point of Jk can be associated
with only one 8k value. By moving from left to right on [a, b], we then indicate a
well defined procedure that connects the graphs of each 8k and defines a continu-
ous function hε on [a, b]. Finally, the full covering argument offers a very efficient
iterative method for proving Ascoli’s Theorem.

We close this section by listing those theorems that have been proved using
this technique and that a student would normally encounter in an undergraduate
analysis course. We categorize them under four main topics and give a reference
for their proof.

Topology:

Heine–Borel Theorem [Botsko 1987, p. 452]. Any open cover of [a, b] has a finite
subcover.

Bolzano–Weierstrass Theorem [Botsko 1987, p. 452]. If S is a bounded infinite set
of real numbers, then S has an accumulation point.

Continuity and differentiability:

Theorem [Botsko 1987, p. 451]. If f is continuous on [a, b], then f is bounded on
[a, b].

Theorem [Klaimon 1990, p. 156]. If f is a continuous function on [a, b], there
exists points M and m on [a, b] such that f (M) ≥ f (x) and f (m) ≤ f (x) for all
x on [a, b].
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Theorem [Botsko 1987, p. 452]. If f is continuous on [a, b], then f is uniformly
continuous on [a, b].

Intermediate Value Theorem [Botsko 1987, p. 451]. If f is continuous on [a, b]
with f (a) f (b) < 0, then there exists x0 on (a, b) such that f (x0)= 0.

Remark. The same cover employed to prove this theorem will be used below to
prove the Intermediate Value Theorem for derivatives.

Theorem [Botsko 1989, p. 331; Klaimon 1990, p. 158]. If f ′(x) = 0 for all x on
[a, b], then f is constant on [a, b].

Theorem [Klaimon 1990, p. 160]. If f ′(x)>0 (<0) on (a, b), then f is increasing
(decreasing) on (a, b).

Remark. The proofs of these two theorems do not use the Mean Value Theorem
as is typically done.

Rolle’s Theorem [Klaimon 1990, p. 157]. If f is continuous on [a, b] and differ-
entiable on (a, b), and f (a) = f (b), there exists a point x0 on (a, b) such that
f ′(x0)= 0.

Integration:

Theorem [Botsko 1989, p. 330]. If f is continuous on [a, b], then f is Riemann
integrable.

Theorem [Botsko 1989, p. 331]. If f is bounded on [a, b] and continuous almost
everywhere, then f is Riemann integrable on [a, b].

Remark. By slightly modifying the cover in the first theorem, Botsko is able to
prove the stronger second theorem! This also works with other results, as pointed
out in [Botsko 1989].

Sequences:

Dini’s Theorem [Klaimon 1990, p. 159]. If fn(x) is a sequence of continuous
functions on [a, b] and fn(x) < fn+1(x) for all n and for all x in [a, b], and if
fn(x) converges to f (x) where f (x) is continuous on [a, b], then fn(x) converges
uniformly to f (x).

2. Four theorems proven using full covers

Lebesgue Number Lemma. Let = be an open cover of [a, b]. There exists a
number η > 0 such that if B is any subset of [a, b] with diameter B < η, then there
exists a set A ∈ = such that A ⊇ B.
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Proof. For each x in [a, b] and ε > 0, set Iε[x] = [x − ε, x + ε]. Let

C = {Iε[x] : Iε[x] ⊂ [a, b] and I2ε[x] is a subset of some A ∈ =}.

We first show that C is a full cover of [a, b]. Let x be an element of [a, b]. Since
= is an open cover of [a, b], there exists an A in = that contains x . Because A is
open, one can find a δ = δ(x) such that I2δ[x] is a subset of A. Let J be a closed
subinterval of [a, b] containing x such that |J |<δ. We can write J as Iε[x ′], where
x ′ is the midpoint of J and ε = δ/2. Since I2ε[x ′] is a subset of A, J is in C and
so C is a full cover of [a, b].

By Thomson’s Lemma, C contains a partition of [a, b]; that is, there exists a =
p0< p1< · · ·< pm = b such that [pk−1, pk]= Iε(k)[xk] is in C for k= 1, 2, . . . ,m.
Note that xk = (pk + pk−1)/2 and ε(k)= |pk−1− pk |/2.

Let η = min{ε(k)} and let B be a subset of [a, b] with diameter B < η. B
intersects Iε(k)[xk] for some k = 1, . . . ,m and hence B is a subset of I2ε(k)[xk],
which is contained in some A ∈ =. �

Intermediate Value Theorem for derivatives. If f (x) is the derivative for some
function g(x) on an open interval containing [a, b], and if f (a) f (b) < 0, then
there exists an x0 in (a, b) such that f (x0)= 0.

Proof. Suppose to the contrary that for all x on (a, b), f (x) 6= 0. Then f (x) 6= 0
on [a, b]. Let

C = {I : I is a closed subinterval of [a, b] and f (x) has one sign on I }.

Let x be in [a, b]. Assume for definiteness that f (x) > 0. We claim that there
exists a δ neighborhood about x such that f (y) > 0 for all y in this neighborhood.
Suppose the claim is false. Then one can find a sequence {yn}, where yn → x as
n→∞ and f (yn) < 0. Again, for definiteness, suppose {yn} approaches x from
the left. Since f (x) > 0, there exists a δ1 such that when |h|< δ1, g(x+h) < g(x)
if h < 0. By choosing n large enough, one can find yn such that |yn − x | < δ1

and so g(yn) < g(x). Since f (yn) < 0, there exists a δ2 neighborhood about yn

that is contained in the δ1 neighborhood about x such that if |h| < δ2 and h < 0,
then g(yn) < g(yn + h). Choose |h′|< δ2 and h′ < 0. Then yn + h′ < yn < x and
g(yn) < g(yn + h′) < g(x). By the Intermediate Value Theorem for Continuous
Functions, there exists an xn in [yn, x] such that g(xn)= g(yn+h′). Using Rolle’s
Theorem on [yn + h′, xn] one can find an x0 in [yn + h′, xn] such that f (x0) = 0.
This contradicts our assumption that f (x) 6= 0 for all x in [a, b]. So there must
be a δ > 0 such that f (y) > 0 for all y satisfying |y − x | < δ. Let J be a closed
interval containing x with |J | < δ. Then J is in C . A similar δ can be found if
f (x) < 0. Thus C is a full cover of [a, b].
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Using Thomson’s Lemma, C contains a partition of [a, b]; that is, there exist
a = p0 < p1 < · · ·< pm = b such that [pk−1, pk] = Ik is in C for k = 1, 2, . . . ,m.
Suppose f (x) > 0 on I1. Since the intervals overlap at the endpoints, we have
f (x)>0 on Ik for k=2, . . . ,m. But this contradicts our assumption f (a) f (b)<0.
The same contradiction results if f (x) < 0 on I1. So our original assumption that
f (x) 6= 0 on (a, b) is false. Consequently, there exists a point x0 on (a, b) such
that f (x0)= 0. �

Next, we present the proofs of two sequence theorems. For these theorems
we will need the following definitions. The function f is upper (lower) semi-
continuous at x if lim supy→x f (y) ≤ f (x) (lim infy→x f (y) ≥ f (x)). If f is
upper (lower) semi-continuous for all x on [a, b], then f is upper (lower) semi-
continuous on [a, b]. The family of functions � is equicontinuous on [a, b] if for
each x in [a, b] and ε > 0, there exists a δ = δ(x, ε) such that if |y − x | < δ,
then | f (y)− f (x)| < ε for all f in �. The family of functions � is uniformly
bounded on [a, b] provided there exists a constant M > 0 such that | f (x)| < M
for all x ∈ [a, b] and for all f ∈�.

Baire’s Theorem. Let f be upper (lower) semi-continuous on [a, b] and bounded
above (below) by M on [a, b]. Then there exists a sequence of continuous functions
{hn} such that, for all x in [a, b],

(i) M ≥ h1(x)≥ · · · ≥ hn(x)≥ · · · (M ≤ h1(x)≤ · · · ≤ hn, (x)≤ · · · ),

(ii) limn→∞ hn(x)= f (x).

Proof. Let M be the upper bound of f (x) on [a, b] and let ε be an arbitrarily small
positive number.

Define

C =
{

J : J is a closed subinterval of [a, b], |J |< ε, and there exists x in J

such that f (y)≤ f (x)+ ε for all y in J
}
.

Let x be an element in [a, b]. Since f is upper semi-continuous at x , there is
a δ(x) > 0 such that |y − x | < δ(x) implies f (y) ≤ f (x) + ε. We can further
assume that δ(x) < ε. Now let J be any closed interval of [a, b] containing x with
|J |< δ(x). If we set 8(y)= f (x)+ε for all y ∈ J , then f (y) <8(y) on J . Thus
J is in C and C is a full cover of [a, b].

By Thomson’s Lemma there exists a partition {Jk, k = 1, 2, . . .m} of [a, b]
contained in C . Hence, |Jk | < ε and on each Jk, k = 1, 2, . . . ,m, there is a point
xk such that the constant functions8k(x)= f (xk)+ε defined on Jk satisfy f (x)≤
8k(x) on Jk .

We first construct a function hε that will approximate f in a sense to be clarified
below. For each k, k = 1, 2, . . . ,m, let 8k also denote the constant value of 8k(x)
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on Jk . If 81 > 82, then connect the horizontal graph of 81(x) to that of 82(x)
by the line segment P1 P2 where P1 coincides with the end point of the graph of
81(x) and P2 lies 1/3 of the distance on the graph of 82(x). If 81 < 82, then
connect the horizontal graphs by the line segment P1 P2 where P1 is 2/3 of the
distance on the graph of 81(x) and P2 coincides with the initial point of the graph
of 82(x). Doing this for k = 1, 2, . . . ,m, we can construct a continuous function
hε(x) on [a, b] with the property f (x) ≤ hε(x) for all x on [a, b]. We will say
that hε approximates f in the following sense. Given any x ∈ [a, b], x ∈ Jk for
some k and either (x, hε(x)) will be on a horizontal step of hε or it will be on a
line segment connecting two consecutive steps. In either case, it is evident that

hε(x)≤ sup
|y−x |<2ε

f (y)+ ε,

since all Jk are of width at most ε.
We now construct the desired sequence {hn} ↓ f . For each n, let ε = 1/n

and let gn be a function constructed as hε was above. Define h1 = inf(g1,M),
h2 = inf(g2, h1), h3 = inf(g3, h2), and so on. For each x in [a, b], the sequence
{hn(x)} converges, since it is decreasing and bounded below by f (x). Moreover,
limn→∞ hn(x)≥ f (x). Since

hn(x)≤ sup
|y−x |<2/n

f (y)+ 1/n,

it follows that limn→∞ hn(x)≤ lim supy→x f (y)≤ f (x) for all x . Hence {hn} ↓ f ,
as claimed. �

Ascoli’s Theorem. Let� be a family of functions uniformly bounded and equicon-
tinuous at every point of a closed interval [a, b]. Then every sequence of functions
{ fn} in � contains a subsequence that converges uniformly on [a, b].

Proof. Consider a family of functions �, equicontinuous and uniformly bounded
on [a, b]. We first establish this claim:

For any sequence {gn}
∞

n=1 ⊆ � and positive number ε, there exists a subsequence
{gn(ε,k)}

∞

k=1 of {gn}
∞

n=1 such that n(ε, 1) > 1 and

|gn(ε,k)(y)− gn(ε,i)(y)|< ε for all y ∈ [a, b] and all k, i. (1)

To see this, fix ε > 0 and let

C =
{

J : J is a closed subinterval on [a, b] and for any {gn} ⊆�,

there exists a subsequence {gn(k)} of {gn} such that n(1) > 1

and |gn(k)(y)− gn(i)(y)|< ε on J for all k, i
}
.
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Let x be an element of [a, b]. Since � is equicontinuous, there exists a δ= δ(x, ε)
such that | f (x)− f (y)| < ε/3 for all f in � and y such that |y − x | < δ. Let
J be a closed interval containing x such that |J | < δ. We must show J is in C ;
so we begin with any sequence {gn} from �. Since {gn(x)} is bounded, it has a
subsequence {gn(s)(x)}, s = 1, 2, . . . , that converges. Convergent sequences are
Cauchy sequences, so we can choose S > 1 such that |gn(i)(x)− gn( j)(x)| < ε/3
if i, j > S. Consider the collection of functions gn(s), s > S, on [a, b]. Using the
triangle inequality, we have |gn(i)(y)− gn( j)(y)| < ε for all y in J and i, j > S.
In addition, n(S + 1) > 1. We relabel the sequence by writing s > S as S + k,
k = 1, 2, . . . and setting n(k) = n(S + k). The sequence {gn(k)} now satisfies
the conditions defining C . Thus J is in C and C is a full cover of [a, b]. Using
Thomson’s Lemma, we see that C contains a partition {Jh, h = 1, 2, . . . ,m} of
[a, b].

Let {gn} be any sequence from �. Since J1 is in C , there exists a subsequence
{gn(1,k)} of {gn} such that for all y on J1, |gn(1,k)(y)− gn(1,i)(y)| < ε for all k, i
and n(1, 1) > 1. Furthermore, {gn(1,k)} is a family of equicontinuous functions
uniformly bounded on [a, b]. Thus, on J2 there exists a subsequence {gn(2,k)} of
{gn(1,k)} such that for all y in J1 ∪ J2, |gn(2,k)(y)− gn(2,i)(y)| < ε for all k, i and
n(2, 1) > n(1, 1). By continuing this process on each subinterval Jh , for h =
3, 4, . . . ,m, we obtain a subsequence {gn(m,k)} of {gn} with the properties that
n(m, 1) > 1 and |gn(m,k)(y)− gn(m,i)(y)| < ε for all k, i and all y on [a, b]. This
sequence, with the change in labeling n(ε, k)= n(m, k), satisfies (1), so the claim
is proved.

We are now ready to conclude the proof of our theorem. Let { fn} be any se-
quence in �. Apply the claim with { fn} and 1 in place of {gn} and ε to obtain a
subsequence { fn(1,k)} of { fn} such that n(1, 1) > 1 and | fn(1,k)(y)− fn(1,i)(y)|< 1
for all k, i and all y on [a, b]. Apply the claim again with { fn(1,k)} and 1/2 in place
of {gn} and ε to obtain a subsequence { fn(2,k)} of { fn(1,k)} with the properties that
n(2, 1) > n(1, 1) and | fn(2,k)(y)− fn(2,i)(y)|< 1/2 for all k, i and all y on [a, b].
Continuing in this manner, construct for each p= 2, 3, . . . a subsequence { fn(p,k)}

of { fn(p−1,k)} such that n(p, 1) > n(p− 1, 1) and | fn(p,k)(y)− fn(p,i)(y)| < 1/p
for all k, i and all y in [a, b].

Now take the subsequence { fn(p,1) : p= 1, 2, . . . } of { fn}. If q > p then fn(q,1)

is equal to f(p,k) for some k = 2, 3, . . . . Thus, for all y in [a, b],

| fn(q,1)(y)− fn(p,1)(y)| = | fn(p,k)(y)− fn(p,1)(y)|< 1/p. (2)

This shows that { fn(p,1)(y)} is a Cauchy sequence, hence convergent. Let f (y)
denote its limit. By letting q →∞ in (2) we obtain | f (y)− fn(p,1)(y)| < 1/p,
which implies { fn(p,1) : p = 1, 2, . . . } converges uniformly to f on [a, b]. �
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3. Conclusion

Because of their wide applicability, full covering arguments should seriously be
considered as part of — or a supplement to — any elementary analysis course. In
addition, these arguments prepare the student for the more intricate covering-based
proofs of approximate and symmetric derivative theorems [Thomson 1980].

References

[Botsko 1987] M. W. Botsko, “A unified treatment of various theorems in elementary analysis”,
Amer. Math. Monthly 94:5 (1987), 450–452. MR 1541097

[Botsko 1989] M. W. Botsko, “The use of full covers in real analysis”, Amer. Math. Monthly 96:4
(1989), 328–333. MR 90d:26001 Zbl 0721.26003

[Klaimon 1990] K. Klaimon, “More applications of full covering”, Pi Mu Epsilon J. 9:3 (Fall 1990),
156–161.

[Thomson 1980] B. S. Thomson, “On full covering properties”, Real Anal. Exchange 6:1 (1980),
77–93. MR 82c:26008 Zbl 0459.26004

Received: 2008-08-22 Accepted: 2009-03-19

zangark@gmail.com Cheiron, One Greentree Centre, Suite 201,
Marlton, NJ 08053, United States

marafijt@jmu.edu Department of Mathematics and Statistics,
305 Roop Hall, MSC 1911, James Madison University,
Harrisonburg, VA 22807, United States

http://dx.doi.org/10.2307/2322732
http://www.ams.org/mathscinet-getitem?mr=1541097
http://dx.doi.org/10.2307/2324087
http://www.ams.org/mathscinet-getitem?mr=90d:26001
http://www.emis.de/cgi-bin/MATH-item?0721.26003
http://www.ams.org/mathscinet-getitem?mr=82c:26008
http://www.emis.de/cgi-bin/MATH-item?0459.26004
mailto:zangark@gmail.com
mailto:marafijt@jmu.edu


INVOLVE 2:3(2009)

Numerical evidence on the uniform distribution of
power residues for elliptic curves

Jeffrey Hatley and Amanda Hittson

(Communicated by Nigel Boston)

Elliptic curves are fascinating mathematical objects which occupy the intersec-
tion of number theory, algebra, and geometry. An elliptic curve is an algebraic
variety upon which an abelian group structure can be imposed. By considering
the ring of endomorphisms of an elliptic curve, a property called complex mul-
tiplication may be defined, which some elliptic curves possess while others do
not. Given an elliptic curve E and a prime p, denote by Np the number of points
on E over the finite field Fp. It has been conjectured that given an elliptic curve
E without complex multiplication and any modulus M , the primes for which
Np is a square modulo p are uniformly distributed among the residue classes
modulo M . This paper offers numerical evidence in support of this conjecture.

1. Introduction

Let F(x, y)= y2
−a1xy−a3 y− x3

−a2x2
+a4x−a6 where the ai ∈C. Consider

the set of points
E = {(x, y) ∈ C2

: F(x, y)= 0}.

We also wish to associate with the set E a special point O∈ E , called the point at in-
finity, an idea which is made rigorous by projective geometry and whose existence
is justified below. Provided there are no points (x, y) such that

∂F
∂x

∣∣∣∣
(x,y)
=
∂F
∂y

∣∣∣∣
(x,y)
= 0,

we say that F is nonsingular, and when F is nonsingular, we call E an elliptic
curve. Through some substitutions, the equations defining elliptic curves can be
put into the form F(x, y) = y2

− x3
− ax − b for some a, b ∈ C, which is called

Weierstrass normal form.
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If one were to graph the real points (x, y) ∈ R2 of E , the graph would form an
ordinary-looking plane curve which is symmetric about the x-axis:
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However, elliptic curves are far from ordinary and are the focus of much research
due to some remarkable properties they possess. In particular, an addition law
can be defined for points on the curve under which the points form an abelian
group with identity element O. The addition law can be described in the following
geometric way: given two points on the curve, p1 and p2, draw the line connecting
these two points:
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We define p3 = p1 ∗ p2 to be the third point of intersection between this line and
the curve E . (If p1 = p2, we take the tangent line to the curve E at that point,
which exists since E is nonsingular.)

This third point is guaranteed to exist by the following theorem.

Theorem (Bézout). Let C and D be two curves in the projective space CP2 of
degrees n and m, respectively, which have no common component (that is, there
do not exist curves C1, D1, and E of degrees at least 1 such that C = C1 ∪ E and
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D = D1 ∪ E). Then C and D have precisely nm points of intersection counting
multiplicities.

This theorem is about curves in projective space; projective space and its role
in the study of elliptic curves is discussed below. For a detailed discussion of
projective space, multiplicity, and Bézout’s theorem, see [Kirwan 1992].

Bézout’s theorem states that two algebraic curves of degrees n and m intersect
in exactly nm points (counting multiplicity), provided the curves do not share a
common component. Now, the degree of a curve is simply the degree of the homo-
geneous polynomial defining it. (Homogeneous polynomials are discussed below.)
Since E is defined by a polynomial of degree 3, E is of degree 3, and since a line
is of degree 1, Bézout’s theorem implies that the two curves should intersect in
exactly 3 points; hence precisely one such point p3 is guaranteed to exist. Then
p1+ p2 is defined to be the reflection of p3 about the x-axis:
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This method of addition is frequently referred to as the chord and tangent method.
This addition law can be stated succinctly in the following way: three points on E
sum to the identity, O, if and only if they are collinear. With this formulation, and
the understanding that O exists “at the top of the y-axis” as discussed below, we
see that p1 ∗ p2 = −(p1 + p2), and the reflection of this point across the y-axis,
which we defined to be p1+ p2, is the third point of E on the line between p1 ∗ p2

and O.
It is now necessary to consider O, the point at infinity. For our purposes, it

suffices to think of O as the point at which all vertical lines in the x − y plane
intersect. Consider the line connecting p1 ∗ p2 and p1+ p2. This is a vertical line,
and clearly only intersects E twice. However, Bézout’s Theorem assures us that
there are three points of intersection. In this case, that third point is O.

To make this more rigorous, we consider the homogenized form of the curve E
defined by

E : F(x, y)= y2
− x3
− ax − b.



308 JEFFREY HATLEY AND AMANDA HITTSON

A homogeneous curve of degree n defined by an equation in three variables x, y, z
is one in which, for every monomial αx i y j zk , we have i+ j+k=n. To homogenize
F , we make the substitutions x = X/Z and y = Y/Z and multiply F by Z3,
obtaining the curve

Ē : F(X, Y, Z)= Y 2 Z − X3
− aX Z2

− bZ3.

Furthermore, we consider the curve in the complex projective space of degree two,
denoted CP2, where two 3-tuples [x, y, z] and [x ′, y′, z′] in CP2 are considered
equivalent if they differ by a constant multiple; that is, we have the equivalence
relation

[x, y, z] ∼ [x ′, y′, z′] ⇐⇒ [x, y, z] = λ[x ′, y′, z′]

for some complex, nonzero constant λ 6= 0. We do not consider [0, 0, 0] to be an
element of CP2. To summarize, we have

CP2 =
{
[x, y, z] : x, y, z ∈ C−{[0, 0, 0]}

}/
∼ .

Because of this equivalence, we see that as long as Z 6= 0, we may divide by Z
and obtain our original curve, since in projective space

[X, Y, Z ] =
1
Z
[X, Y, Z ] = [x, y, 1],

and plugging this point into our homogeneous equation yields

E : F(X, Y, 1)= y2
− x3
− ax − b.

If Z = 0, then we have

F(X, Y, 0)= X3.

Since points on the curve are those for which F(X, Y, Z)= 0, we must have X = 0,
and Y is free to take any nonzero value, hence we obtain the homogeneous point
[0, Y, 0] = [0, 1, 0] corresponding to the line Z = 0; this is the point at infinity, O.
In projective space, all curves intersect, including parallel lines, which intersect at
O. Bézout’s theorem, stated above, is actually a statement about projective space,
but we extend its implications to C2 using O.

As an illustration, note that if we have two parallel projective lines, y=αx+β1z
and y=αx+β2z, where β1 6=β2, then to find their intersection, we solve these two
equations simultaneously. These lines coincide when z = 0, so just as we claimed,
these lines intersect at the point at infinity.

To make the addition law rigorous, let us now describe it algebraically. We wish
to find the formula for p1+ p2, the sum any of two points on our curve, E , which
is given by the equation y2

= x3
+ ax + b. There are several cases to consider.
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CASE 1: Let p1 = (x1, y1) and p2 = (x2, y2), and suppose p1 6= p2 and neither
point is equal to O. To find p1+ p2, we must first find p1 ∗ p2 = p3 = (x3, y3), the
third point of intersection of the line between p1 and p2 with E . The line between
p1 and p2 is given by

y = λx + ν, where λ=
y2− y1

x2− x1
and ν = y1− λx1.

Now, we wish to find the points where this line intersects our curve, so we make
the following substitution:

y2
= (λx + ν)2 = x3

+ ax + b.

Subtracting gives us

0= x3
− λ2x2

+ (a− 2λ)x + (b− ν2).

The x-coordinates of the three points of intersection of the line and E are given by
the roots of this equation. Factoring, we obtain

x3
− λ2x2

+ (a− 2λ)x + (b− ν2)= (x − x1)(x − x2)(x − x3),

and by identifying coefficients, we know that the sum of the roots is equal to the
negative of the coefficient of x2; that is,

x1+ x2+ x3 = λ
2
⇒ x3 = λ

2
− x1− x2.

By the equation of our line, this allows us to find y3:

y3 = λx3+ ν.

Thus, we have p3 = (x3, y3). Now, the definition of our group law tells us that
since p1, p2, and p3 are collinear, their sum must be equal to the group identity,
which is O. Thus

p1+ p2+ p3 = O.

But this implies that p3 =−(p1+ p2). By the definition of the inverse of a group
element, we know that

(p1+ p2)+ p3 = (p1+ p2)− (p1+ p2)= O.

Using the definition of our group law again, as well as the fact that O is the identity
element, we see that

(p1+ p2)+ p3+O= O,

which, geometrically, means that p1 + p2 is the third point of intersection of E
with the line between p3 and O; but by our definition of O, this is just a vertical
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line, and since E is symmetric about the x-axis, we conclude that p1+ p2 is simply
the reflection of p3 about the x-axis. Thus,

p1+ p2 =−p3 = (x3,−y3),

where x3 and y3 are given by

x3 = λ
2
− x1− x2, y3 = λx3+ ν. (1)

CASE 2: Let p1 = p2 = (x1, y1) 6= O. Then the line “connecting” p1 and p2 is
simply the line tangent to E at p1. Since E is given by

y2
= x3
+ ax + b,

implicit differentiation yields

∂y
∂x
=

3x2
− a

2y
.

Then the formulas in (1) hold, by the exact same arguments, with λ= ∂y/∂x . Note
that λ blows up if y = 0; that is, the tangent line is vertical. So if p = (x, 0), then
p + p = 2p = O. Thus, the points of order two on E are precisely those with
y-coordinate equal to zero.

CASE 3: If p1 = O, then since O is the identity element of the group, we have

p1+ p2 = O+ p2 = p2.

As an example, consider the curve E defined by

E = {(x, y) ∈ C2
: y2
= x3
+ 17}.

It is easy to check that the points p1 = (2, 5) and p2 = (−1, 4) are on the curve.
Applying the addition formulas given above, we see that λ= 1

3 , ν = 13
3 , and p1+

p2 = (−
8
9 ,

109
27 ), which is also easily verified to be on the curve.

To summarize, under the chord-and-tangent addition law and the inclusion of
O, E forms an abelian group with identity element O, where p1 + p2 + p3 = O if
and only if p1, p2, p3 ∈ E are the three points of intersection of some line with E .
A wonderful introduction to elliptic curves can be found in [Silverman and Tate
1992].

Frequently, one prefers to look at the set

E(Q)= {(x, y) ∈Q2
: y2
= x3
+ ax + b with a, b ∈Q} ∪ {O}

of rational points on the curve. Here again, O is the point at infinity with projective
coordinates O = [0, 1, 0], and under the chord-and-tangent method of addition,
the algebraic description of which is given in (1), E(Q) forms an abelian group
with identity element O. In fact, this is a subgroup of the original group E , and
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interestingly, the Mordell–Weil theorem tells us that it is finitely-generated. More
generally, given a field K , one might look at the group

E(K )= {(x, y) ∈ K 2
: y2
= x3
+ ax + b with a, b ∈ K } ∪ {O}

of K -rational points on the curve. Once again, O= [0, 1, 0] is the point at infinity.
If K = Fp is the finite field with p elements, where p is an odd prime, then E(K )
is called the reduction modulo p of E . An examination of our derivation of the
algebraic formulas for the addition law, given in (1), reveals that the formulas hold
in any field, provided the field has characteristic other than 2. Under this addition
law, E(K ) forms an abelian group with identity element O.

Let p be an odd prime. Given an elliptic curve E reduced modulo p, it is
common to ask how many points Np lie on the curve (equivalently, what the order
is of the group given by the curve). Clearly this number is finite, since for each of
the p possible values of x there are only two possible values of y, plus the point
at infinity O; hence there are at most 2p+1 points on the curve. A better estimate
for Np might be derived in the following way. An element a of Fp is said to be a
quadratic residue if there exists a nonzero b ∈ Fp such that b2

≡ a (mod p). In Fp,
there are exactly (p−1)/2 quadratic residues. Finding points (x, y) on E amounts
to finding those values of x such that x3

+ax+b is a quadratic residue modulo p;
hence we might expect x3

+ax+b to be a square modulo p about half of the time.
Since each such square yields the two pairs (x, y) and (x,−y), we should expect
about p− 1 such points. We might also have x3

+ ax + b = 0, in which case we
get the point (x, 0). Finally, there is the point at infinity. Adding these points up,
we get an estimate of Np = p+ 1. Of course, this is a heuristic argument, so we
should expect an error term. A theorem due to Hasse and Weil bounds this error
term:

Theorem (Hasse, Weil). If E is an elliptic curve defined over the finite field Fp,
then the number of points on E with coordinates in Fp is p + 1− ap, where the
“error term” ap satisfies |ap| ≤ 2

√
p.

Returning to our previous example, let us look at the curve

Ē = {(x, y) ∈ F5 : y2
= x3
+ 2}.

In this case, brute force suffices to show that

E = {(2, 0), (3, 2), (3, 3), (4, 1), (4, 4),O},

hence Np = 6. Since p + 1 = 6, the error term from the Hasse–Weil theorem is
in this case ap = 0, and our heuristic argument gave us Np exactly. This does not
happen in general, however.
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In this paper, we are particularly interested in the set

QE = {odd primes p ∈ Z : Np is a quadratic residue modulo p}.

We have just shown that for the elliptic curve E which we have been considering,
N5= 6≡ 1≡ 12 (mod 5), so 5∈ QE . Note that, in general, for two different curves
E1 and E2 we have QE1 6= QE2 .

Recall that an endomorphism of a group G is a homomorphism
φ : G → G. Now, since an elliptic curve E/C defined over C forms a group, it
is natural to study End(E), the ring of endormorphisms of E . (To be precise, we
actually only look at rational endomorphisms, those which are defined by rational
functions with entries in C. These are also called isogenies.) For each integer n,
the multiplication-by-n map φn : E → E defined by φn(x, y) = n(x, y) (where
n(x, y) represents repeated chord-and-tangent addition) defines an endomorphism
of E , hence φn ∈ End(E). For most curves, these are the only endomorphisms;
however, some curves do have additional endormorphisms, and these curves are
said to have complex multiplication, or simply CM. Curves for which End(E)∼= Z

are said to be non-CM.
Returning to our example curve E defined by the polynomial

y2
= x3
+ 17,

let φ : E→ E be the homomorphism defined by

φ(x, y)=
(
−1+

√
−3

2
x,−y

)
.

This is not a multiplication-by-n map, and since (−1+
√
−3

2 )3 = 1 and (−y)2 = y, if
(x, y) ∈ E then also φ(x, y) ∈ E ; hence E has CM.

Conjecture. Let E be a non-CM curve, fix a modulus M , and let r1, . . . , rs denote
the residue classes modulo M such that gcd(ri ,M) = 1 for each i . Now, look at
the reduction of E modulo p for each p in the set Pn = {3, 5, . . . , pn} of the first n
odd primes, calculate Np for each p, and let QE be defined as before. Let

Ri = {p ∈ QE ∩ Pn | p ≡ ri (mod M)}.

Let #Ri denote the cardinality of this set. Then the residues of the elements of QE

modulo M are uniformly distributed among the ri ; that is, for every 1≤ i, k ≤ s we
have

lim
n→∞

#Ri

#R j
= 1.

This conjecture, suggested to Martin by Ramakrishna, is based on [Weston
2005], which investigates a similar problem involving the distribution of power
residues for ap ≡ Np − 1 (mod p).
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To test this conjecture, we wrote a program using William Stein’s project Sage
which takes as input an elliptic curve E , a range of moduli M , and a large number
B. For each modulus M , the program looks at the reduction of E modulo p for
every prime p < B and computes the number of points Np on the reduced elliptic
curve. Finally, it takes those p such that Np is a quadratic residue modulo p and
looks at their residues modulo M . The output data consists of 1) the number of
primes congruent to ri for each residue class ri relatively prime to M , and 2) the
maximum percent deviation of the size of each #Ri from the expected size (were
the Np distributed uniformly among the ri ).

In this paper, we present data from our program for several curves without CM,
arguing that the trends in the data as B increases strongly suggest the truth of the
conjecture.

2. The program

2.1. What the programs do. To get the data we needed, we wrote a program that
takes an elliptic curve and a few other parameters, computes a subset of the prime
numbers, called QE , and, given a modulus M , computes a count for each residue.
The count is the number of elements in QE that, when reduced modulo M , have
that residue. The program also computes the largest percent difference from the
expected value.

More specifically, given an elliptic curve E , a range of prime numbers P , and a
range of moduli M , the program computes the set

QE = {p ∈ P | Np is a quadratic residue modulo p}.

Then for all m ∈ M , the program computes for each residue r ,

#R = #{p ∈ P | p ≡ r (mod m)}.

This information is written to a file. Then the program computes some statistical
information. First, it computes the expected count for each residue. If a residue, r ,
is not relatively prime to the modulus, m, then p ∈ QE will have p≡ r (mod m)⇔
r ∈ QE . This means that #R = 0, 1 for all residues, r , that are not relatively prime
to m. So we are really only interested in residues relatively prime to the modulus.
If the conjecture were true for non-CM elliptic curves, we would expect that

#Ri =
#QE

ϕ(m)
,

where ϕ(m) = #{r ∈ Z | 0 ≤ r < m and gcd(r,m) = 1} denotes the Euler-phi
function and r1, . . . , rs are the residues relatively prime to m. For each modulus,
m, the program computes the percent difference of the actual count, #Ri , from the
expected count, C = (#QE)/ϕ(m). So the percent difference for each residue is
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|1− #Ri/C | · 100. The program then picks out the largest percent difference. We
are interested in the largest percent difference because it tells us how far off the
actual count is from the expected count. Finally, the program writes to a file each
modulus and its corresponding largest percent difference.

For example, consider the elliptic curve E defined by

F(x, y)= y2
+ xy+ y− x3

− 4x + 6.

Then given

P = {p ∈ Z+ | p < 106, p prime},

M = {m ∈ Z | 3≤ m < 301}, and

QE = {p ∈ P | Np is a quadratic residue modulo p},

the program computed that #QE = 40593. Now consider a specific modulus, say
m = 9. Then the residues relatively prime to m are r1 = 1, r2 = 2, r3 = 4, r4 =

5, r5 = 7, r6 = 8, so ϕ(m)= 6. Thus the expected count for each residue is

C =
#QE

ϕ(m)
=

40593
6
= 6765.5.

In fact, the program computed that the actual counts are

#R1 = 6551, #R2 = 6876, #R3 = 6802,

#R4 = 6850, #R5 = 6632, #R6 = 6882.

So there are 6551 primes p less than one million such that Np is a quadratic
residue modulo p and p ≡ 1 (mod 9). In fact, of these six counts, #R1 is the
farthest off from the expected count C = 6765.5. So #R1 will yield the biggest
percent difference, which is ∣∣∣1− #R1

C

∣∣∣ · 100≈ 3.17.

2.2. Outline of programs and efficiency. We organized the programs to try to
maximize efficiency. The original programs we wrote were slow. Using them,
we could not have computed nearly the same amount of data that we did with
our newer version. By timing the original programs, we were able to see that the
process that took the most time was generating and storing the set QE . Since this
set was not even an output of our programs, we decided to generate one part of
QE at a time. It worked like this:

while counter < limit:
compute part of QE beginning with counter
read in previously computed data (if any)
compute counts for this part of QE
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save these data
delete current part of QE

compute percentages for all data

Note that counter and limit are simply variables to keep track of which piece of
QE has been computed.

This while loop lends itself to division into two programs: 1) a program to return
a part of the set QE and 2) a program to maintain a count of the residue classes
in the set QE over the various moduli in some set M . After running initial tests
on various curves for primes strictly less than one hundred thousand, which ran in
under five minutes, and then for primes strictly less than one million, which ran for
more than two hours, we realized that the second run of these tests was recomputing
data. This led us to modify the second program to look for output files generated
by previous runs of the program and start with an updated count and then proceed
from there. This also meant that if the program crashed in the middle of running,
we wouldn’t lose all previous data. Finally, there are several driver programs that
run the tests for various elliptic curves, various ranges of moduli and various ranges
of prime numbers.

2.3. How the main programs work. The main program, called residueCounter, is
the second program described in the preceding paragraph. It takes as parameters
a starting number and upper bound to specify which range of prime integers to
look at, a starting modulus and ending modulus to specify which range of moduli
to test, a list of five integers to specify an elliptic curve, and finally a boolean to
specify whether or not to look for files containing data that this program can use.
The program stores all of the output in a dictionary, called dataDict. The keys of
the dictionary are the moduli in the range specified by the parameters. Given a
modulus, m, dataDict[m] evaluates to a list of lists. This list is a count for each
residue of m.

The program starts by deciding whether or not to look for old files based on the
boolean passed as a parameter.

if True:
find all files generated by previous runs of residueCounter
pick the most relevant file
initialize dataDict to include all of the data computed from this file
exclude the primes already checked by this file

if False:
initialize a blank dataDict

Note that the most relevant file is the file whose range of moduli match that of
the current program and of the files whose ranges match; the one with the highest
upper bound has the most data and hence will save the most time.



316 JEFFREY HATLEY AND AMANDA HITTSON

The program needs to find the set QE and update dataDict to include the count
from this set. However, as mentioned in the previous section, the program runs
too slowly to do this all at once. So, instead it runs a loop that calls a different
function, the first one mentioned above, to return a piece of QE , update dataDict
to get all the counts for this piece, and then repeat this over and over until dataDict
has all the data needed.

More precisely, the program has a variable current prime to keep track of what
part of QE has been retrieved. It then runs the following while loop:

while current prime is strictly less than the upper bound:
call function
this function returns a new current prime and a piece of QE

update dataDict for this piece of QE

get rid of that piece of QE to clear up memory space
try to run loop again

The program then calculates the largest percent difference for each modulus, as
described in Section 2.1. Finally, it writes this information to two different files,
one for the data, one for the statistical information. The file names are keyed to
include the elliptic curve, the upper bound, the range of moduli and what kind of
file it is.

The function called in the last while loop is the one that actually deals with the
elliptic curves. The elliptic curves we are looking at have the form y2

+ a1xy +
a3 y = x3

+a2x2
+a4x +a5 for some a1, a2, a3, a4, a6 ∈ Z. This way we can look

at the curves reduced modulo p for odd primes p. A standard way to reference a
specific curve is by a list of the coefficients [a1, a2, a3, a4, a6].

This function takes as parameters an elliptic curve in the form [a1, a2, a3, a4, a6],
the current prime, how many primes to check and the upper bound. It then calcu-
lates the conductor of the elliptic curve. Every elliptic curve has a unique integer
associated with it, called the conductor. Essentially, the conductor tells you which
primes to avoid; every prime divisor of the conductor has what is known as ‘bad
reduction’, meaning that the reduction of E modulo these primes is singular and
therefore not an elliptic curve. Accordingly, this function skips all of these primes.
Also, we are only interested in primes p such that Np is a quadratic residue modulo
p. Luckily, there is a quick way to find out if Np is a quadratic residue. A result due
to Euler says that a necessary and sufficient condition for a ∈ Fp to be a quadratic
residue is:

a(p−1)/2
≡ 1 (mod p).

The numbers Np are calculated in Sage via the command cardinality using
either the Schoof–Elkies–Atkins algorithm or the baby-step-giant-step algorithm
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of Mestre and Shanks. Sage decides which algorithm to use by heuristically deter-
mining which will be more computationally efficient.

That said, here is a sketch of the program:

compute conductor of elliptic curve
initialize blank list to store primes of interest
while (current prime < upper bound) and (counter < how many primes to check):

if current prime doesn’t divide conductor:
if the coefficients define an elliptic curve:

if N (p−1)/2
p ≡ 1 (mod p):

add current prime to list
set current prime to the next prime

3. The data

Let us recall the conjecture on which we are working.

Conjecture. Given a non-CM elliptic curve E , a modulus M , and a list QE of
all the primes p for which the number of points Np on the reduction of E modulo
p are quadratic residues modulo p, the elements of QE are uniformly distributed
among the residue classes of M.

Due to the nature of the conjecture, the data we collect is bound to have some
experimental error, since we can only look at a finite subset of QE at a time. When
this subset of QE is large with respect to the modulus M , we should expect less
error, and when this subset is small with respect to M , we should expect greater
variance in the distribution of the primes, and hence greater error.

When we ran our program, to obtain our subset of QE we took all of the primes
in QE below some fixed bound B. We then looked at their distribution among
the residue classes of moduli from 3 to 300. The preceding discussion suggests
that by increasing the size of B, we should expect to see our experimental error
decrease. Consider Figure 1, which shows the data for F(x, y)= y2

+ y−x3
+x , a

curve lacking complex multiplication. The bars in the graph indicate the maximum
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Figure 1. Prime distribution on the non-CM curve y2
+y= x3

−x
of conductor 37 and rank 1, for different values of the bound B.
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percent deviation from the expected (uniform) distribution among the moduli; a
higher bar indicates higher deviation. The first important thing to note is that, in
all three figures, we can see that the error does indeed increase as the modulus
increases. The second thing to note is that as we increase B (and thus the size of
our subset of QE ), the error decreases for every modulus. The three parts of the
figure show the error when B = 105, 106, and 3×106. As B increases, the graphs
“flatten out”, indicating a decrease in the error. This suggests that the deviation is
simply “experimental error”.

We tested our program on several non-CM curves of varying ranks and conduc-
tors. The data for some of these curves is presented on this and the next two pages.
The data for all of the curves tested strongly suggest that the conjecture is correct.
However, we have no proof of it at this time.

All of our data and program code is available upon request.
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4. Future research ideas

Several related problems might be considered in the future. It would be beneficial
to find an efficient way to run a program like ours for larger primes for further
data collection. The data presented in is paper is for values of B at the limit of
our program’s reasonable run time. We plan to modify our program to test the
conjecture regarding ap rather than Np; furthermore, Weston [2005] conjectures
that a similar result holds for primes for which the ap are higher power residues. A
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slight modification of our program, or any similar program, would allow for data
collection for these cases.
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The genus level of a group
Matthew Arbo, Krystin Benkowski, Ben Coate,

Hans Nordstrom, Chris Peterson and Aaron Wootton

(Communicated by Nigel Boston)

We introduce the notion of the genus level of a group as a tool to help classify
finite conformal group actions on compact Riemann surfaces. We classify all
groups of genus level 1 and use our results to outline an algorithm to classify
actions of p-groups on compact Riemann surfaces. To illustrate our results, we
provide a number of detailed examples.

1. Introduction

The group of conformal automorphisms of a compact Riemann surface of genus
σ ≥2 is always finite. An interesting problem is to determine all groups that can act
on a surface X of genus σ ≥ 2 for a fixed σ . For low genus, due to great advances
in computer algebra systems, this problem has been completed. Specifically, in
[Broughton 1991], all groups that can act on surfaces up to genus 3 were classified.
More recently, with the aid of the computer algebra system GAP, the list of all
groups that can act on surfaces of genus σ for genera 2≤ σ ≤ 48 were classified in
[Breuer 2000] and stored in a database in GAP. Though in principle the algorithms
developed to solve this problem could be used to determine automorphism groups
of surfaces of higher genus, the computations become much more complicated,
and complete classification does not seem reasonable.

A different approach to classifying automorphism groups is to fix some other
property than the genus of the surface X . One can, for instance, restrict how a group
may act on the surface, or one can restrict the types of groups under consideration
that act on X . In many cases, complete classification results are possible. Such
results abound in the literature; see for example [Benim 2008; Bujalance et al.
2003; Harvey 1966; Kallel and Sjerve 2001; Wootton 2007b]. One motivation for
classifying automorphism groups by imposing further restrictions on the way an
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automorphism group can act on a surface is that it may aid in answering other
questions about the surface. For example, in certain cases, the classical problem of
determining a defining model for a compact Riemann surface X is possible when
assumptions are made about the existence of automorphisms on the surface acting
in a particular way, as was done in [Fuertes and González-Diez 2007] or [Wootton
2007a]. Another motivational reason for classifying families of surfaces is that it
may provide new techniques to the more general problem of classifying all groups
that can act on surfaces of genus σ ≥ 2.

Suppose G is a finite group of automorphisms of a compact Riemann surface X
of genus σ ≥ 0. We define the genus level of G to be the number of distinct genera
of the quotient spaces X/H , where H runs over the nontrivial subgroups of G. We
will classify all groups of genus level 1. This is an extension of [Kallel and Sjerve
2001], where full results are given for each group G that can act on a surface of
genus σ ≥ 0 with the property that every quotient space X/H has genus 0, where
H runs over all the nontrivial subgroups of G. We use our results to provide an
inductive method to determine all p-groups that act as automorphism groups on
surfaces of genus σ ≥ 2 (though it should be noted that with minor modifications,
this algorithm would extend to a classification of nonsimple groups).

2. Preliminaries

Suppose that G is a group of conformal automorphisms of a compact Riemann
surface X of genus σ ≥ 2 upon which we assume G acts faithfully. We need the
following definitions:

Definition 2.1. The signature of G is defined to be the tuple of integers

(g;m1,m2, . . . ,mr ),

where the orbit space X/G has genus g and the quotient map πG : X → X/G is
branched over r points α1, . . . , αr , where the multiplicity of a point in the fiber
π−1

G (αi ) is equal to mi for 1 ≤ i ≤ r . We say that the genus of G is g and we call
the numbers m1, . . . ,mr the periods of G.

Remark 2.2. We note that for a general holomorphic map F : X → Y , the mul-
tiplicities of two different points in the fiber F−1(α) for α ∈ Y may be different.
However, for normal covers, all points in a fiber will have the same multiplicity,
and so our definition for the mi is well defined. For more detail on holomorphic
maps, we refer the reader to [Miranda 1995, Chapter 2].

Definition 2.3. We define the genus level of G to be the number of distinct genera
among those of the nontrivial subgroups of G. If G has genus level n, we define
the genus level vector to be the n-tuple of increasing integers (t1, . . . , tn), where ti
is the genus of some nontrivial subgroup of G.
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Definition 2.4. A vector of elements (α1, . . . , αt , β1, . . . , βt , γ1, . . . , γr ) is called
a (t,m1, . . . ,mr )-generating vector of G if

(i) G = 〈α1, . . . , αt , β1, . . . , βt , γ1, . . . , γr 〉,

(ii) O(γi )= mi for 1≤ i ≤ r , and

(iii)
∏t

i=1[αi , βi ] ·
∏r

j=1 γj = e.

We refer to the elements αi and βi as hyperbolic generators and the elements γi as
elliptical generators.

The (t;m1,m2, . . . ,mr )-generating vectors of a group G provide us with a way
to determine when G acts on a surface of genus σ ≥ 2. Specifically, we have the
following.

Theorem 2.5. A group G acts with signature (t;m1, . . . ,mr ) on a surface X
with genus σ ≥ 2 if G has a (t;m1, . . . ,mr )-generating vector and the Riemann–
Hurwitz formula holds:

2σ − 2= |G|
(

2t − 2+
r∑

i=1

(
1−

1
mi

))
.

Proof. See [Broughton 1991]. �

If a group G acts on a surface X , so does each of its subgroups. The signatures
of the subgroups can be calculated from that of G as follows:

Theorem 2.6 [Singerman 1970]. Suppose G has signature (t;m1, . . . ,mr ) and
generating vector (α1,β1, . . . ,αt ,βt , γ1, . . . , γr ). Suppose H ≤G, set d=|G|/|H |
and let θ : G→ Sd be the map induced by permutation on the left cosets of H. Then
the signature of H is

(s; n11, n12, . . . , n1ρ1, n21, . . . , n2ρ2, . . . , nr1 . . . , nrρr ), (1)

where

(i) θ(γj ) has precisely ρj cycles of length m j/n j1, . . . ,m j/n jρj , respectively;

(ii) s satisfies

2s− 2+
r∑

i=1

ρi∑
j=1

(
1−

1
ni j

)
= d

(
2t − 2+

r∑
i=1

(
1−

1
mi

))
. (2)

Conversely, if d divides |G| and there exist a map θ : G→ Sd and an integer s such
that conditions (i) and (ii) hold, there exists H ≤ G of index d and signature (1).

In the special case that H is a normal subgroup of G, calculation of the signature
is much easier.
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Theorem 2.7. Suppose G has signature (t;m1,m2, . . . ,mk) and H E G. Then
the signature of H is(

s;
m1

n1
, . . . ,

m1

n1︸ ︷︷ ︸
a1 times

,
m2

n2
, . . . ,

m2

n2︸ ︷︷ ︸
a2 times

, . . . ,
mr

nr
, . . . ,

mr

nr︸ ︷︷ ︸
ar times

)
,

where O (ρ (γi ))= ni under ρ : G→ G/H , ai = |G/H |/ni and s satisfies

2s− 2=
|G|
|H |

(
2t − 2+

r∑
i=1

(
1−

1
ni

))
.

Remark 2.8. We can use Theorems 2.6 and 2.7 to reconstruct the signature of G
given the signature of H and the map θ : G→G/H ; see Theorem 4.3 for example.

The inconsistency of the notation for the order of the elliptic generators of H
in Theorems 2.6 and 2.7 is to preserve the form of the summand in the Riemann–
Hurwitz formula. To avoid confusion, we shall clearly distinguish between the
normal and nonnormal cases.

Remark 2.9. It is an immediate consequence of Theorem 2.6 that t ≤ s. Note that
this also implies, if G has genus vector (t1, . . . , tr ), then G must have genus t1.

All finite groups that can act on surfaces of genus 0 and 1 are well known; see
for example [Tyszkowska and Weaver 2008] for genus 1 and [Wootton 2005] for
genus 0. Most of the results and definitions we have introduced for groups acting
on surfaces of genus σ ≥ 2 hold for genus 0 and 1 too and will be relevant in our
work. We summarize below.

Theorem 2.10. (i) The possible finite groups and corresponding signatures for
groups that can act on a surface of genus σ = 1 are shown in the table on the
left. We call these signatures toroidal signatures.

(ii) The possible finite groups and corresponding signatures for groups that can
act on a surface of genus σ = 0 are shown in the table on the right. We call
these signatures spherical signatures.

Group Signature

Cn ×Cm (1;−)
(Cn ×Cm)n C2 (0; 2, 2, 2, 2)
(Cn ×Cm)n C3 (0; 3, 3, 3))
(Cn ×Cm)n C4 (0; 2, 4, 4)
(Cn ×Cm)n C6 (0; 2, 3, 6)

Group Signature

Cn (0; n, n)
Dn (0; 2, 2, n)
A4 (0; 2, 3, 3)
S4 (0; 2, 3, 4)
A5 (0; 2, 3, 5)

Table 1. Groups of automorphisms of genus 1 surfaces (left) and
those of genus 0 surfaces (right).
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We finish this section with an explicit example to illustrate the use of these
results.

Example 2.11. Consider the group

Q8 =
〈
x, y | x4, x2 y2, yxy−1

= x−1〉
The vector

(
x2, x2, x, x, y, y

)
is a (0; 2, 2, 4, 4, 4, 4)-generating vector for Q8.

Using the Riemann–Hurwitz formula from Theorem 2.5, it follows that this is a
group of automorphisms of a surface of genus

σ = 1+ |G| (−1)+ |G| /2
6∑

i=1

(1− 1/mi )

= 1− 8+ 4
(

1
2
+

1
2
+

3
4
+

3
4
+

3
4
+

3
4

)
= 9.

Consider the normal subgroup N =〈x〉 and the canonical homomorphism ρ :G→
G/N . We have O

(
ρ
(
x2
))
= 1, O (ρ (x)) = 1, and O (ρ (y)) = 2. By Theorem

2.6, it follows that H has signature (s; 2, 2, 2, 2, 2, 2, 4, 4, 4, 4), where

s = 1+ |G| / |N | (g− 1)+ |G| /2 |N |
6∑

i=1

(1− 1/ni )= 1− 2+
(

1
2
+

1
2

)
= 0.

3. Groups of genus level 1

We want to classify all genus level 1 group actions on all compact Riemann sur-
faces. In [Kallel and Sjerve 2001] all genus level 1 groups with genus level vector
(0) are classified for groups acting on surfaces of genus σ ≥ 0. Using Theorem
2.10 we get the following classification for groups acting on genus 1 surfaces with
genus level 1.

Theorem 3.1. Suppose G, a finite group, acts on a surface of genus 1 and has
genus vector (1). Then G ∼= Cn ×Cm , where Cn and Cm are finite cyclic groups.

It remains to classify all genus level 1 groups acting on a surface of genus σ ≥ 2
with genus vector (t) for t ≥ 1. We start with the following important result.

Proposition 3.2. Suppose G has signature (t;m1,m2, . . . ,mr ), where t ≥ 1. Let
H be a nontrivial proper subgroup of G that also has genus t. Then t = 1 and the
elliptical generators γi ∈ H for all i .

Proof. We set t = s in Equation (2) of Theorem 2.6 and rearrange, obtaining

2t − 2+
r∑

i=1

ρi∑
j=1

(
1−

1
ni j

)
=
|G|
|H |

(
2t − 2

)
+
|G|
|H |

r∑
i=1

(
1−

1
mi

)
,
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2t − 2−
|G|
|H |

(
2t − 2

)
=
|G|
|H |

r∑
i=1

(
1−

1
mi

)
−

r∑
i=1

ρi∑
j=1

(
1−

1
ni j

)
,

2(1− t)
(
|G|
|H |
− 1

)
=
|G|
|H |

r∑
i=1

(
1−

1
mi

)
−

r∑
i=1

ρi∑
j=1

(
1−

1
ni j

)
.

Now, we have ni j ≤ mi , since ni j | mi , and we know that ρi ≤ |G| / |H |. Further-
more, equality will hold in each case exactly when θ (γi ) is the identity permuta-
tion, consisting of |G| / |H | 1-cycles. Then

2(1− t)
(
|G|
|H |
− 1

)
=
|G|
|H |

r∑
i=1

(
1−

1
mi

)
−

r∑
i=1

ρi∑
j=1

(
1−

1
ni j

)

≥
|G|
|H |

r∑
i=1

(
1−

1
mi

)
−

r∑
i=1

|G|
|H |

(
1−

1
mi

)
= 0.

Since t ≥ 1, the inequality cannot be satisfied unless t = 1. Thus each γi acts as
the identity permutation on the cosets of H , that is, γi ∈ H for all i . �

Remark 3.3. A consequence of this result is that if G has genus t > 1, then all
proper subgroups have genus strictly greater than t .

This allows us to classify all genus level 1 groups with genus level vector (t)
for t > 1. Specifically, we have the following.

Corollary 3.4. Suppose G acts on a surface of genus σ ≥ 2 and has genus level
vector (t) for some t ≥ 2. Then G ∼= C p, where C p is cyclic of prime order p; the
possible signatures of G are

(t; p, p, . . . , p︸ ︷︷ ︸
r times

),

where r is at least 2 for all p and is even when p = 2; and finally, the genus σ
equals 1+ 1

4 p(t − 1)(p− 1).

An obvious but very useful consequence of this result is the following.

Corollary 3.5. If G acts with signature (1;m1,m2, . . . ,mr ) and all γi ∈ H for
some subgroup H , then H has genus 1.

The last case we need to consider is when a group with genus level vector (1)
acts on a surface of genus σ ≥ 2.

Theorem 3.6. Suppose G acts on a surface of genus σ ≥ 2 and has genus level
vector (1). Then G ∼= C pn or G ∼= Q8.

When G ∼= C pn , the possible signatures are (1;
r times︷ ︸︸ ︷

p, p, . . . , p), where r is at least
2 for all p and is even when p = 2; moreover σ = 1+ 1

4 p2n−1(t − 1)(p− 1)r .
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In the opposite case the possible signatures are (1; 2, 2, . . . , 2︸ ︷︷ ︸
r times

), where r is odd;
moreover σ = 8t + 2r − 7.

Proof. Suppose the generating vector of G is (α, β, γ1, . . . , γr ). Since every non-
trivial subgroup has genus 1, Corollary 3.5 implies that all γi lie in each nontrivial
subgroup of G. By assumption, mi ≥ 2, and r ≥ 1 since (1;−) does not satisfy
the Riemann–Hurwitz formula for a group action on a surface of genus σ ≥ 2. It
follows that the intersection of all nontrivial subgroups of G contains each γi and
hence is nontrivial, and thus G has a unique minimal nontrivial subgroup. The only
groups that satisfy this condition are C pn and Q2n , by [Robinson 1995, Theorem
5.3.6]. We now proceed by cases.

First consider

G = Q2n = 〈x, y | x2n−1
, x2n−2

y−2, yxy−1x〉.

Let H =
〈
y2
〉
EG and let θ :G→G/H denote the canonical quotient map. Observe

that G/H ∼= D2n−2 , the dihedral group of order 2n−1. By our remarks above, all γi

lie in H . Now αβα−1β−1γ1γ2 · · · γr = e, so

θ (eG)= θ(αβα
−1β−1γ1γ2 · · · γr )= [θ (α) , θ (β)]= eG/H .

It follows that θ (G) must be abelian, since it is generated by θ(α) and θ(β). The
only abelian dihedral group is the Klein 4 group. Hence G ∼= Q8.

Now consider
G ∼= Q8 = 〈x, y | x4, x2 y2, yxy−1x〉.

Then G has a (1;2,2, . . . ,2︸ ︷︷ ︸
r times

)-generating vector (y, x, y2, y2, . . . , y2) for any odd r .

For even r , the generating vector must be of the form

(α, β, y2, y2, . . . , y2)

for some α, β ∈ G. However, when r is even, the product of r copies of y2 is
the identity. It follows that α and β must commute and generate G, and no such
generators of Q8 exist, and hence r cannot be even. To finish, we need to show that
every nontrivial subgroup of G has genus 1. First observe that the center Z(G) is
the intersection of all nontrivial subgroups. By Remark 2.9, since we are assuming
G has genus 1, it suffices to prove that Z(G) has genus 1. But this follows by
Corollary 3.5. To determine σ , we simply apply Theorem 2.5.

Finally, consider G = C pn = 〈x | x pn
〉. Since C pn is abelian and all γi are

in the minimal subgroup 〈x pn−1
〉 = 〈a〉, the order of each γi is p. Moreover, the

commutator [α, β] will be equal to the identity, and hence γ1 . . . γr = e. It follows
that r ≥ 2. Furthermore, if p = 2 then γi = a for all i . In this case the product
γ1 . . . γr = e if and only if r is even.



330 ARBO, BENKOWSKI, COATE, NORDSTROM, PETERSON AND WOOTTON

To finish, we need to construct generating vectors. For r even, the vector
(x, x, a, a−1, a, a−1, . . . , a, a−1) is a generating vector for G. For r odd, we know
p 6=2 and consequently (x, x, a, a−1, a, a−1, . . . , a, a−1, a, a, a−2) is a generating
vector for G. To determine σ , we simply apply Theorem 2.5. �

To summarize our results, we need the following definitions.

Definition 3.7. We define a Zassenhaus metacyclic group to be a group with pre-
sentation

〈x, y | xm, yn, yxy−1x−r
〉

, where rn
≡ 1 mod (m) and gcd((r − 1)n,m) = 1. We denote such a group by

Gm,n(r).

Definition 3.8. We define a polyhedral group to be a finite subgroup of PSL (2,C).
Equivalently, polyhedral groups are the cyclic groups of order n for any n, the
dihedral groups of order 2n for any n, the alternating groups A4 and A5, and the
symmetric group S4.

Combining the results of [Kallel and Sjerve 2001] with Theorems 3.1, 3.6 and
Corollary 3.4, we get a complete classification of genus level 1 group actions. We
summarize.

Theorem 3.9. Suppose G is a finite group acting on a compact Riemann surface
of genus σ ≥ 0 and G has genus level 1. Then we have the following possibilities:

(i) If G has genus level vector (0) then G is either cyclic, generalized quaternion
(Q2n ), polyhedral or Zassenhaus metacyclic of the form G p,4(−1) for p an
odd prime.

(ii) If G has genus level vector (1) and σ = 1, then G =Cn×Cm , a direct product
of two finite cyclic groups.

(iii) If G has genus level vector (1) and σ ≥ 2, then G∼= Q8, the quaternion group,
or G ∼= C pn , a cyclic group of prime power order pn .

(iv) If G has genus level vector (t) for t ≥ 2, then G ∼=C p, a cyclic group of prime
order pn .

4. Determining p-groups

Suppose G is a nonsimple group of automorphisms acting on a surface X of genus
σ ≥ 0 with genus level vector (t1, . . . , tn). If N is a normal subgroup G with genus
ti , then G/N acts on the surface X/N of genus ti . The genus level vector of the
action of G/N on X/N is clearly related to the genus level vector of the action of
G of N . The precise relationship is this:
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Lemma 4.1. Suppose G acting on X has genus level vector (t1, . . . , tk) and N ≤G
is a nontrivial normal subgroup of G of genus ti . Then G/N has genus level vector
(m1, . . . ,ml), where the m j run over the genera of each subgroup K ≤ G with
N ≤ K .

Proof. Suppose G and N are as given. If K̄ ≤G/N , let K > N denote its preimage
in G given by the correspondence theorem. Then the quotient space (X/N )/(K̄ )
is naturally homeomorphic to the quotient space X/K . In particular, the genus of
the quotient space (X/N )/(K̄ ) will be equal to the genus of the quotient space
X/K . Conversely, using a similar argument, if N ≤ K , then the image of K in the
quotient group G/N will have the same genus as K . The result follows. �

Here is a simple consequence of the relationship described in Lemma 4.1.

Corollary 4.2. Suppose G has genus level vector (t1, . . . , tk) for k ≥ 2 and N ≤G
is a nontrivial normal subgroup of G of genus ti . Then unless G has genus level
vector (0, 1) and ti = 1, the genus level vector of G/N is strictly shorter in length
than the genus level vector of G.

These observations suggest we can construct an inductive algorithm to help de-
termine nonsimple groups of automorphisms of compact Riemann surfaces depen-
dent upon the length of the genus level vector. Specifically, if the genus level of a
group G is at least two, then except under the exception provided above in Corollary
4.2, the genus level of a nontrivial quotient group will be strictly smaller than the
genus level of a given group. This, coupled with the classification of genus level
1 actions in Section 3, provides an inductive process for classification. Though
in principle such an algorithm is possible, the calculations become difficult very
quickly, especially the calculation of signatures. Therefore, rather than a general
algorithm for all nonsimple groups, we shall construct an algorithm for p-groups.
Henceforth assume that G is a p-group for some prime p. Before we construct the
algorithm, we shall develop several results specific to p-groups.

Theorem 4.3. Suppose that G is a p-group of order pn acting on a surface X of
genus σ with genus level vector V = (t1, . . . , tk) and C is a normal cyclic prime
subgroup of G with genus ti , so C has signature

(ti ; p, . . . , p︸ ︷︷ ︸
f times

), where f =
2σ − 2− 2p(ti − 1)

p− 1
.

Then the quotient group G/C acts on a surface of genus ti with genus level vector
(t1, tβ1, . . . , tβs ), where β1, . . . , βs run over the genera of each subgroup K with
C ≤ K ≤ G. If the signature of G/C is (t1;m1, . . . ,mr ), the signature of G is

(t1; a1m1, a2m2, . . . ar mr , p, . . . , p︸ ︷︷ ︸
l times

), where a1, . . . , ar ∈ {1, p},
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and where f and l satisfy

f = lpn−1
+

r∑
i=1

(ai − 1)pn−1

(p− 1)mi
.

Moreover, if V= (α1, . . . , αt , β1, . . . , βt , γ1, . . . , γr ) is a generating vector for G,
then ai = p if and only if C ≤ 〈γi 〉 and γr+i ∈ C for all i ≥ 1.

Proof. The specified action of G/C , the genus level vector, and generating vector
are consequences of Lemma 4.1 and Theorems 2.5 and 2.7. To determine the
signatures, we use a geometric argument similar to that presented in Proposition 3
of [Wootton 2005]. For brevity, let K = G/C . Let

πC : X→ X/C, πK : X/C→ (X/C)/K ∼= X/G, πG : X→ X/G,

denote the quotient maps, and if F : Y → Y/L is a holomorphic quotient map
between compact Riemann surfaces and α∈Y/L , let MF (α) denote the multiplicity
of a point in the fiber of π−1

F (α). By the geometric definition of signature, see
Definition 2.1, to determine the signature of G, we need to determine the genus of
X/G and for each branch point αi of πG , the multiplicity of a point in the fiber
π−1

G (αi ). By assumption, the genus of G, and also K , is t1. Therefore, we just
need to determine the periods of G.

To determine the periods, we first make some simple observations. We have
πG = πK ◦πC , and for any α ∈ X/G, it is easy to show that MπG (α) = MπK (α) ·

MπC (β), where β ∈ π−1
K (α), see [Miranda 1995, page 53]. Also, since πC is a

cyclic prime cover of X/C of order p, all the periods of C will be equal to p. It
follows that if α ∈ X/G is a branch point of πG , then it will either have order mi ,
order p or order mi p depending upon whether α is a branch point of πK , the image
of a branch point of πC , or both. Since every branch point of πK is also a branch
point of πG , it follows that G has signature

(t1; a1m1, a2m2, . . . ar mr , p, . . . , p︸ ︷︷ ︸
l times

),

where l denotes the number of branch points of πG that are not branch points of
πK and ai ∈ {1, p}.

To determine the relationship between the periods of G and C , we examine the
orbits of branch points of πC under the action of K . Suppose that β is a branch
point of πC and let α = πK (β). The fiber π−1

K (α) coincides with the orbit of β
under K and hence has size |K |/|StabK (β)|, where StabK (β) denotes the stabilizer
of β under the action of K . However, |StabK (β)| = MπK (α); see [Miranda 1995,
Theorem 3.4]. It follows that if StabK (β) is trivial, there are |K |/|StabK (β)| =

pn−1 points in the fiber π−1
K (α). If StabK (β) is nontrivial, then StabK (β) = mi
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for some i and we must have ai = p in the signature of G. In this case we get
|K |/|StabK (β)| = pn−1/mi . Since a j = 1 for branch points of πG that are not the
image of a branch point of πC , and the the number of branch points of πG that are
not branch points of πK is equal to l, we obtain

f = lpn−1
+

r∑
i=1

(ai − 1)pn−1

(p− 1)mi
. �

As indicated by Corollary 4.2, the only barrier preventing us from constructing
such an algorithm is the case where G has genus level vector (0, 1). The groups
acting on a surface of genus σ = 1 with genus level vector (0, 1) are given in
Theorem 2.10, so we only need to consider groups acting on surfaces of genus
σ ≥ 2.

Theorem 4.4. Suppose G is a group acting on a surface X of genus σ ≥ 2 with
genus level vector (0, 1) with the property that if C is any normal cyclic prime
subgroup, then C has genus 1 and G/C has genus vector (0, 1). Then one of the
following completely describes G:

(i) G = Q2n acts with signature

(0; 2, 2, . . . , 2︸ ︷︷ ︸
r times

, 4, 4, 4, 4)

and X has genus σ = 2n−2 (r + 2)+ 1;

(ii) X has genus 3 and we have one of the following cases:

(a) G = V4 acts with signature (0; 2, 2, 2, 2, 2, 2);
(b) G = C4×C2 acts with signature (0; 2, 2, 4, 4);
(c) G = D4 acts with signature (0; 2, 2, 4, 4);
(d) G = D4 acts with signature (0; 2, 2, 2, 2, 2);
(e) G = C4×C4 acts with signature (0; 4, 4, 4);
(f) G of order 16 with presentation 〈x, y | x2, y8, xyx−1y−5

〉

acts with signature (0; 2, 8, 8);
(g) G of order 16 with presentation

〈x, y, z | x2, y2, z4, [y, z], [x, z], xyx−1z−2 y−1〉

acts with signature (0; 2, 2, 2, 4);
(h) G of order 32 with presentation

〈x, y, z | x2, y2, z8, yzy−1z−5, xyx−1z−4 y−1, xzx−1z−3 y−1
〉

acts with signature (0; 2, 4, 8).
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Proof. Fix a normal cyclic prime subgroup C EG of genus 1. Since C has genus
1, the quotient space will have genus 1 and so by assumption, the group G/C will
have genus vector (0, 1) and act on a surface of genus 1. It follows that we can
only have p= 2 or p= 3. Before we determine G explicitly, we make some simple
observations about the structure of G to determine all such groups that can act on
surfaces of genus σ ≤ 3.

First, we are assuming that both G and the quotient group G/C have genus
vector (0, 1). It follows that G has genus 0, there is a subgroup K with genus 1
of order at least p2 with C ≤ K , and consequently G must have order at least p3.
We shall examine K . In [Broughton 1991], all groups and signatures that can act
on surfaces of genus 2 and 3 are classified. By simply checking these lists, we see
that for genus 2 no such K exists, and for genus 3, no such K exists for p = 3.
To determine all 2-groups acting on genus 3 surfaces with these properties, we
simply proceed through the list in [Broughton 1991] to extract all the groups and
signatures that satisfy the requirements.

Henceforth, we shall assume that the genus of X is at least 4. We shall show
that G has a unique cyclic prime subgroup. Suppose not and let H denote a cyclic
prime subgroup different from C . Then the group LE〈C, H〉 is elementary abelian
of order p2. By Theorem 3.6, the genus of L must be 0, so L will have signature

(0; p, p, . . . , p︸ ︷︷ ︸
r times

) for some r.

Let V denote a corresponding generating vector for L . Now if K ≤ L is any
nontrivial proper subgroup, by assumption, the genus of K must be 0 or 1. Observe
that the genus of K ≤ L is completely determined by the number of elements of
V with nontrivial image under the quotient map ρ : L→ L/K . Specifically, if the
genus of K is 0, precisely two generators will have nontrivial image. If the genus
of K is 1 and p = 2, four will have nontrivial image; if p = 3, three will have
nontrivial image. We consider the cases p = 2 and p = 3 separately.

If p = 2, then 4 elements of V will have nontrivial image under ρ : L→ L/C .
It follows that all remaining elements of V lie in C , and hence will have nontrivial
image under ρ : L→ L/K for any other nontrivial subgroup K ≤ L . This can only
happen if r = 6 and each nontrivial subgroup K ≤ L contains two elements of V,
or r = 5 and two subgroups each contain 2 and the other contains 3. In each of
these cases, we apply the Riemann–Hurwitz formula and find that either σ = 2 or
σ = 3, counter to our assumption that σ ≥ 4.

If p= 3, we use a similar argument. Specifically, the only possible signature for
L is (0, 3, 3, 3, 3), where a (0, 3, 3, 3, 3)-generating vector for L has one element
in each nontrivial subgroup K of L . However, it is easy to show that no such
generating vector for L exists and hence no such group exists. We shall henceforth
assume that G has a unique cyclic prime subgroup.
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Since G has a unique cyclic prime subgroup, we can use [Robinson 1995, The-
orem 5.3.6] and conclude that either G = Q2n or G = C pn . We consider each of
these cases. Suppose first that G ∼= C pn and let K be the subgroup of maximal
order of G that has genus 1. Then the signature of K will be (1; p, . . . , p). Since
G/K will have genus level vector (0) and act on a surface of genus 1, it must either
be C4, or cyclic of prime order 2 or 3. Using the toroidal signatures and Theorem
4.3, we can reconstruct the signature of G for each of these cases. If G/K is cyclic
of order 3, then G will have signature (0; 3, . . . , 3, 3a, 3b, 3c), where a, b and
c are either 1 or 3. Since G must be generated by elliptic generators, it follows
that G can have order at most 9 contradicting the fact that |G| ≥ p3. Likewise, if
G/C is cyclic of order 2, then G will have signature (0; 2, . . . , 2, 2a, 2b, 2c, 2d),
where a, b, c and d are either 1 or 2. It follows that G has order at most 4, again
a contradiction. Finally, if G/K = C4, then there would exist L with L > K and
G/L = C2, which we have already shown cannot happen.

Now suppose that G ∼= Q2n and fix the presentation

〈x, y | x2n−1
, x2n−2

y−2, yxy−1x〉

for G. The group L = 〈x〉 is a cyclic subgroup of order 2n−1, where n ≥ 3. By our
previous observations, L must have genus 1. Similar to the last case, using the fact
that G/L =C2 and has genus level vector (0), we can reconstruct the signature for
G. Specifically, the signature for G will be (0; 2, 2, . . . , 2, 2a, 2b, 2c, 2d), where
a, b, c, and d are either 1 or 2. Any generating vector for G will be of the form
(γ1, . . . , γr , γr+1, γr+2, γr+3, γr+4), where γr+i /∈ L for 1 ≤ i ≤ 4. However, if
any γr+i has order 2, then by uniqueness of C , it will lie in C and hence L . It
follows that each γr+i has order 4 and so the only possible signature for G is
(0; 2, 2, . . . , 2, 4, 4, 4, 4). We finish by showing that this signature is admissible
for every possible value of r .

We know that the product γ1γ2 · · · γr is either e or y2. We set

γr+1 = yx, γr+2 = y3x, γr+3 = y.

If the product is e, we set γr+4 = y3; if it is y2, we set γr+4 = y. In either case, the
generators multiply to e. Moreover, x = γr+3γr+2 and y = γr+3 generate Q2n and
thus, for each possible r , we have constructed a generating vector. Application of
Theorem 2.7 shows, for this generating vector, all subgroups of L have genus 1
and the Riemann–Hurwitz formula gives the signature for X . �

Putting our work together, we can now outline the inductive method to determine
all p-groups that can act on a compact Riemann surface dependent upon the genus
level of the group. We note that all groups are known for genus 0 and 1 surfaces,
so we restrict to surfaces of genus σ ≥ 2. Fix an n and assume that we know all
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p-group actions for all p-groups with genus level k ≤ n − 1. To determine the
possible p-groups actions, with genus level n, we do the following:

(i) If n = 2, determine each possible p group G with genus level vector (0, 1)
with the property that if C is any normal cyclic prime subgroup, then the group
G/C has genus level vector (0, 1). This can be done using Theorem 4.4.

(ii) Else, any such group G of order p f admits a cyclic subgroup of order p such
that G/C is a group of automorphisms of order p f−1 acting on a surface
with a strictly shorter genus level vector than the genus level vector of G. In
particular, by assumption, we know the structure of every possible K =G/C .
Therefore, to determine G, and its signature, we can do the following:
(a) Determine the solutions of the short exact sequence

1→ C→ G→ K → 1

for each possible K .
(b) For a given G and K from (a), each possible signature Tof G can be

determined from K using Theorem 4.3. Specifically, we run over all the
possibilities by choosing ai = 1 or p for each i .

(c) For a G and signature T from (b), we can determine all possible gener-
ating vectors and check, for each vector, that G has genus level n. If no
valid generating vector exists, then there does not exist an action by G
with this signature and with genus level n.

5. Examples

We finish with some explicit examples to illustrate our results.

Example 5.1. It is easy to determine all genus level 1 group actions of a cyclic
prime group G of order p on a surface of genus σ ≥ 0. Specifically, the signature
for such a group will be

(t; p, . . . , p︸ ︷︷ ︸
r times

), where σ = 1+ p(t − 1)+
r(p− 1)

2
.

For σ = 0 or 1, Theorem 2.10 gives all possible signatures. For σ ≥ 2, it is easy to
show that a

(t; p, . . . , p︸ ︷︷ ︸
r times

)-generating vector for G

exists for all primes p, provided r 6= 1 and when p = 2, r is even. The genus on
which such a G acts is calculated using the Riemann–Hurwitz formula.

Example 5.2. We can use our results and Example 5.1 to classify all group actions
by cyclic groups of order p2 for any prime p with genus level 2 on surfaces of genus
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σ ≥ 2. Let G be such a group. If C is the cyclic prime subgroup of G, Example
5.1 shows the signature of G/C is

(t; p, . . . , p︸ ︷︷ ︸
r times

) with r 6= 1

and if p = 2, then r is even. Using Theorem 4.3, since C ≤ 〈γ 〉 for any nontrivial
γ ∈ G, it follows that there are r elements of order p2 in the signature of G.
Therefore, the possible signatures of G are

(t, p, . . . , p︸ ︷︷ ︸
r1 times

, p2, . . . , p2︸ ︷︷ ︸
r times

)

for certain values of r1. Using Theorem 2.7, the genus level vector of such an
action will be (t, t1), where t1= 1+ p(t−1)+ 1

2r(p− 1). We shall show that such
a G exists for every possible r1 and t . To show this, we need to show that there
exists a

(t, p, . . . , p︸ ︷︷ ︸
r1 times

, p2, . . . , p2︸ ︷︷ ︸
r times

)-generating vector for G.

This can be done in a similar way to the final argument in Theorem 3.6. The genus
on which such a G acts is calculated using the Riemann–Hurwitz formula.

Example 5.3. We can use our results and the Example 5.1 to classify all elementary
abelian group actions of order p2 for any prime p with genus level 2 on surfaces
of genus σ ≥ 2. Let G be such a group and let C be a cyclic prime subgroup of G.
Using Example 5.1, the signature of G/C is

(t; p, . . . , p︸ ︷︷ ︸
r times

).

According to Theorem 4.3, the fact that all elements of G have order p implies the
signature of G is

(t, p, . . . , p︸ ︷︷ ︸
r1 times

, p, . . . , p︸ ︷︷ ︸
r times

)

for certain values of r1. Using Theorem 2.7, the genus level vector of such an
action is (t, t1), where

t1 = 1+ p(t − 1)+
r(p− 1)

2
.

To determine for which values of t and r1 such a G exists, we need to construct
generating vectors, or show that no such generators exists. We do this on a case-
by-case basis. For the remainder of the proof, assume that G = 〈x, y〉 and let
n = r + r1 denote the number of elliptic generators.
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First, suppose that n = 0. Then t ≥ 2 since we are assuming σ ≥ 2. A (t;−)-
generating vector for G is the vector (x, y, 1, . . . , 1). Using Theorem 2.7, the
genus of every possible nontrivial subgroup is t1. It follows that such a G exists
for every possible choice of t ≥ 2 with n = 0.

Now suppose that the number of elliptic generators is n> 0 and t 6= 0, 1. By as-
sumption, G has genus level 2 and so by Proposition 3.2, every nontrivial subgroup
of G must have genus t1. Consider a generating vector

(α1, . . . , αt , β1, . . . , βt , γ1, . . . , γn)

for G. By Theorem 2.7, the genus of each nontrivial C ≤ G is completely deter-
mined by the number of γi ∈C . In particular, every nontrivial subgroup C ≤G has
the same genus provided each contains the same number of elliptical generators,
γi . Since there are p+1 nontrivial subgroups of G, it follows that the only possible
signature for G is

(t, p, . . . , p︸ ︷︷ ︸
n times

),

where n = r(p + 1)/p. For any such r , and t ≥ 0, it is easy to construct a gen-
erating vector for G satisfying these properties by generalizing the final argument
in Theorem 3.6. For example, if r is even and x1, . . . , x p+1 is a set of nontrivial
elements from distinct subgroups of G, then

(1, . . . , 1︸ ︷︷ ︸
2t times

, x1, x−1
1 , . . . , x1, x−1

1︸ ︷︷ ︸
(r/2) times

, . . . , x p+1, x−1
p+1, . . . , x p+1, x−1

p+1︸ ︷︷ ︸
(r/2) times

)

is a generating vector for G. It follows that such a G exists for every possible
choice of t ≥ 2 provided n = r(p+ 1)/p, and no such group exists otherwise.

The next case we consider is when t = 1. In this case, G could have subgroups
with genus 1 as well as with genus t1. If all the subgroups of G of order p have
genus t1, then it is easy to imitate the proof of the previous case to show that a
generating vector for G exists only if n = r(p + 1)/p. Therefore, we only need
consider the case when at least one of the subgroups of G of order p has genus 1.
Let C ≤ G be a subgroup with genus 1. By Proposition 3.2, then γi ∈ C for all i .
It follows that for any other subgroup K 6= C , γi /∈ K for all i . Therefore, using
Theorem 2.7, the genus of every subgroup K 6= C of order p will be the same.
Without loss of generality, suppose that C = 〈x〉. It is easy to construct a generat-
ing vector for G satisfying these properties by generalizing the final argument in
Theorem 3.6 and a generating vector always exists unless p = 2 and n is odd.

The last case we need to consider is t=0. As above, if every subgroup of order p
has genus t1, then a generating vector for G exists only if n=r(p+1)/p. Therefore,
we only need consider the case when at least one of the subgroups of G of order
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p has genus 0. In [Wootton 2007b], all G containing more than one cyclic prime
subgroup with genus 0 were classified and there are only two possibilities for G.
In the first case, G has signature (0; p, p, p) and generating vector (x, y, (xy)−1)

and three genus 0 subgroups - the ones generated by x , y, and xy. Using Theorem
2.7, all other cyclic subgroups of G will have the same genus, and hence G has
genus level 2. In the second case, G has signature (0; p, p, p, p) and generating
vector (x, y, x−1, y−1) and two genus 0 subgroups - the ones generated by x and y.
Using Theorem 2.7, all other cyclic subgroups of G will have the same genus, and
hence G has genus level 2. Therefore, the last case we need to consider is when
t = 0 and G contains a unique cyclic subgroup of genus 0. In this case, if C is the
cyclic subgroup with genus 0 and (γ1, . . . , γn) is a generating vector for G, then
by Theorem 4.3, γi ∈ C for all but two values of i , say n− 1 and n. As remarked
previously, the only way two other subgroups C1 and C2 can have the same genus
is if they contain the same number of γi . This occurs exactly when G contains just
two nontrivial, proper subgroups other than C , and each subgroup contains one
of γn−1 or γn . Such restrictions force p = 2. Through our observations, the only
possible generating vectors of G are of the form

(x, . . . , x︸ ︷︷ ︸
n−2 times

, (xy), y).

Clearly this defines a generating vector when n is odd and does not for n even, and
thus such a G exists only under these circumstances.
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A statistical study of extreme nor’easter snowstorms
Christopher Karvetski, Robert B. Lund and Francis Parisi

(Communicated by Sat Gupta)

This short paper studies the statistical characteristics of extreme snowstorms
striking the eastern seaboard of the United States — the so-called nor’easters.
Poisson regression techniques and extreme value methods are used to estimate
return periods of storms of various snow volumes. Return periods of several
memorable events are estimated, including the superstorm of 1993, the North
American blizzard of 1996, and the blizzard of 1888. While nor’easters are
found to occur more frequently in late winter than early winter, no evidence of
increasing/decreasing storm frequencies in time or dependencies on the North
Atlantic oscillation is found.

1. Introduction

A nor’easter is a large-scale winter storm that impacts the east coast of the United
States. A nor’easter can drop copious amounts of snow and may also cause flood
and wind damage. Nor’easters occur from late fall through early spring. The super-
storm of 1993 (March 12–15), for example, was the largest snowstorm affecting
the United States in the last century. This storm deposited over 60 inches of snow
in some places, is blamed for 300 fatalities, and caused an estimated six to ten
billion dollars of damage.

While nor’easters are sometimes referred to as winter hurricanes, literature
studying their frequency properties is sparse when compared to that for summer
hurricanes. The goal here is to quantify the nor’easter snowstorm hazard. The
timing of this work coincides with attempts by several insurance risk modeling
firms to quantify the hazard.

The total snow volume of each storm will be used as the measure of storm sever-
ity. Return periods for various snow volume accumulations will then be estimated.
A snow volume return period is how long one waits, on average, until a nor’easter
with a preset snow volume or greater strikes. For example, the superstorm of 1993
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is also nicknamed the Storm of the Century, giving connotations of a 100-year
storm. Later, we will see that this storm was more than a 100-year event.

2. The data

The data for this analysis were taken from [Kocin and Uccellinni 2004a; 2004b].
These references contain much information about the individual storms. Nor’easter
documentation is scant when compared to that for summer hurricanes (for the latter,
see [Blake et al. 2005; Parisi and Lund 2008]). Our data consists of 65 storms
occurring during the years 1953–2003 inclusive; the record for this time period is
complete. The individual storms are chronologically listed in Table 1; no storms
occurred in 1953, 1954, or 1955. As the pre-1953 record is incomplete, we cannot
include memorable pre-1953 storms (such as the New England blizzard of 1888),
without biasing the overall results.

For each storm in the table, Kocin and Uccellinni 2004a report the areas that
accumulated more than four inches, ten inches, twenty inches, and thirty inches,
respectively. For each storm, we compute a crude volume estimate via the fol-
lowing rubric. For the superstorm of 1993, an area of 386.0× 103 squared miles
experienced snow accumulations of at least four inches, an area of 283.5× 103

squared miles saw accumulations of at least ten inches, an area of 142.4 × 103

squared miles had accumulations of at least twenty inches, and an area of 12.9×103

squared miles received accumulations of over thirty inches. A volume estimate for
the superstorm of 1993 is hence

386× 4+ 283.5× (10− 4)+ 142.4× (20− 10)+ 12.9× (30− 20)= 4798,

where the units on the volume are 103 inches times squared miles. The volumes can
be converted to cubic meters upon multiplication by 6.5024×107, but we will not
do this as the analysis below is invariant of any linear scale change on the volume
units. Because of this, volume units will be henceforth suppressed for simplicity.

Whereas our estimated volume underestimates actual values (areas receiving
less than 4 inches of snow, for example, are not included in the volume estimates),
the estimated volumes are reasonable measures of storm intensity; moreover, all
volumes are underestimated in the same way, which makes storm-by-storm com-
parisons meaningful. The smallest volume was 291.2 and the largest volume was
4798.0. On average, there are about 1.27 storms per season. The number of storms
in a single season ranges from zero to five.

We emphasize that this data only contains large-scale nor’easters and not more
localized events such as Great Lake effect snowfalls. Alberta Clipper-type storms,
whose snowfall volumes tend to be much less than nor’easters, are also not repre-
sented in this data.
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Date (midstorm) Sq. miles covered with NAO Rough
yr mo day 4 in 10 in 20 in 30 in average volume

1956 3 16 195.5 92.3 0 0 −1.07 1335.8
1956 3 18 64.9 28.6 2.6 0 −1.07 457.2
1957 12 4 87.2 9.4 0 0 0.073 405.2
1958 2 15 282.6 129.2 20.2 3.4 0.073 2141.6
1958 3 19 146.7 62.1 13.8 3.5 0.073 1132.4
1959 3 12 215.3 121.1 7.7 0 −0.13 1664.8
1960 2 14 353.9 142.1 23.3 0 0.093 2501.2
1960 3 3 590.4 140.8 7.6 0 0.093 3282.4
1960 12 12 302.9 78.5 0.6 0 1.993 1688.6
1961 1 19 144.9 62.3 5.7 0 1.993 1010.4
1961 2 3 369.3 114 19.4 1.4 1.993 2369.2
1961 12 24 105.5 14.8 0 0 0.497 510.8
1962 2 14 101.4 33.8 0.4 0 0.497 612.4
1962 3 6 148.6 70 19.3 0 0.497 1207.4
1963 12 22 374.2 51.3 0 0 −0.763 1804.6
1964 1 12 356.5 129.6 10.3 0 −0.763 2306.6
1964 2 19 169.7 53.4 3.5 0 −0.763 1034.2
1965 1 16 214.5 15.3 0 0 −1.42 949.8
1966 1 22 296.4 145.1 6.6 0 −0.05 2122.2
1966 1 30 371.4 111.7 12.3 1.5 −0.05 2293.8
1966 12 24 292.2 89.8 9.9 0 1.14 1806.6
1967 2 6 246 50.9 0 0 1.14 1289.4
1967 3 21 62.3 7 0 0 1.14 291.2
1969 2 9 107.5 66.4 11.6 0 −2.177 944.4
1969 2 25 101.7 48.4 40.8 24.2 −2.177 1347.2
1969 12 26 250.6 138.7 37.6 0 −0.107 2210.6
1970 12 31 151 46.4 4.4 0 −0.267 926.4
1971 3 4 195.7 101.6 23.3 0 −0.267 1625.4
1971 11 26 163.4 73.4 6.6 0 0.013 1160
1972 2 19 206.3 140.9 13.5 0 0.013 1805.6
1978 1 17 364.4 122.1 0 0 −0.593 2190.2
1978 1 20 295.2 167.7 8.3 0 −0.593 2270
1978 2 6 220.2 132.3 30.7 0.9 −0.593 1990.6
1979 2 18 304 88.2 4.3 0 −1.973 1788.2

Table 1. The nor’easter data (continued on next page).
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Date (midstorm) Sq. miles covered with NAO Rough
yr mo day 4 in 10 in 20 in 30 in average volume

1982 1 14 382.2 133.9 0 0 −0.223 2332.2
1982 4 6 258.3 79.3 2.1 0 −0.223 1530
1983 2 11 157.1 112.6 33.7 0.9 2.07 1650
1984 3 8 120.9 54.6 0 0 1.697 811.2
1984 3 28 124.6 53.3 2.1 0 1.697 839.2
1987 1 1 164.6 76.6 0 0 0.353 1118
1987 1 22 286.9 153.7 2 0 0.353 2089.8
1987 1 25 74.3 38 0 0 0.353 525.2
1987 2 22 61.3 28.3 0.3 0 0.353 418
1988 1 7 488.5 129.7 0 0 −0.13 2732.2
1990 12 26 166 12.7 0 0 0.73 740.2
1992 12 11 118.7 61.6 21.5 0 1.41 1059.4
1993 3 13 386 283.5 142.4 12.9 1.41 4798
1994 1 4 222.3 76.4 10.5 0 1.173 1452.6
1994 2 9 280 57.7 4.4 0 1.173 1510.2
1994 3 3 165.4 109.1 0 0 1.173 1316.2
1995 2 3 200.1 98 0 0 2.897 1388.4
1995 12 20 260.3 85.4 0 0 −2.24 1553.6
1996 1 7 313.8 200.1 90.2 15.1 −2.24 3508.8
1996 2 3 157.3 44.1 0.9 0 −2.24 902.8
1996 2 16 136.7 12.2 0 0 −2.24 620
1997 3 31 76.4 32 13.1 3.1 −0.463 659.6
1996 1 7 313.8 200.1 90.2 15.1 −2.24 3508.8
1996 2 3 157.3 44.1 0.9 0 −2.24 902.8
1996 2 16 136.7 12.2 0 0 −2.24 620
1997 3 31 76.4 32 13.1 3.1 −0.463 659.6
1999 3 14 180.3 58.8 1.4 0 1.55 1088
2000 1 25 205.6 74.2 0.3 0 2.283 1270.6
2000 12 30 103.8 56.5 3.7 0 −0.44 791.2
2001 3 5 161.1 105.1 30.4 1.8 −0.44 1597
2002 12 4 269.7 6.1 0 0 0.17 1115.4
2002 12 25 345.3 91.3 13.8 4.4 0.17 2111
2003 1 3 211.1 77.4 11 0 0.17 1418.8
2003 2 6 88.4 6.1 0 0 0.17 390.2
2003 2 16 303.5 142 51.9 2.7 0.17 2612

Table 1 (continued). The nor’easter data.
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3. Arrival properties of nor’easters

To estimate return periods, we need to model the storm arrival times. Following
[McDonnell and Holbrook 2004] and [Parisi and Lund 2008], the storm count in
season t is modeled as a Poisson random variable with mean λt , where

λt = exp (β0+αt +β1NAOt) .

Here, the parameter α allows for a linear trend in the storm counts (we will assess
whether or not this parameter is zero below) and the β1NAOt component allows
for possible influences of the North Atlantic oscillation (NAO). The average NAO
index over December, January, and February during season t is used for NAOt .
Kocin and Uccellinni [2004a] suggest that the NAO may influence nor’easter storm
counts (see [Van den Dool et al. 2006] for generalities about the NAO and North
American climate).

Poisson regression techniques were used to fit the above model. The estimated
parameters are α̂ = 0.008 and β̂1 = −0.0149. Intervals of 95% confidence for α
and β are [−0.009, 0.025] and [−0.339, 0.041]. As both of these intervals contain
zero, these two parameters are statistically indistinguishable from zero with 95%
confidence. All possible subsets of the regression model structure were also fitted
and produced insignificant parameters at the 95% level. Thus, we do not find
evidence of trends or NAO influences in the storm counts. A Kolmogorov–Smirnov
test fails to reject a Poisson distribution for the annual storm counts at the 95% level.
In short, the annual nor’easter storm counts pass as statistical white noise with a
Poisson marginal distribution with a mean of approximately 1.27 storms per season.

Although the number of storms from season to season appears time-homogen-
eous, the storms do not arrive uniformly within a season. To investigate this aspect,
the kernel intensity estimate in Figure 1 was constructed. This graphic presents a
probabilistic description of when storms occur within a season. As the earliest
storm in our data record occurred on November 26 (and the latest on April 6), we
have chosen to measure a storm’s arrival date as the number of days after October 1
that the storm’s midpoint took place on (the midpoint, or the average of the storms’
beginning and ending dates, is used since some storms last multiple days). Figure 1
displays estimates of the intensity function λ̂(t) at time t defined by

λ̂(t)=
1

Nyr

Nst∑
i=1

h−1K
( t−di

h

)
, 0≤ t < 365.

Here, Nyr = 51 is the number of seasons of data, Nst = 65 is the total number of
storms, K is the Gaussian kernel function

K (x)=
exp(−x2/2)
√

2π
, −∞< x <∞,
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Figure 1. Estimated seasonal intensity function.

h = 10 is a bandwidth parameter that controls the amount of smoothing done (see
[Sheather and Jones 1991] for discussion about selecting an appropriate h), and di

is the number of days after October 1 that the midpoint of the i th storm occurs on
for 1 ≤ i ≤ Nst. The interpretation of λ̂(t) is that the probability of a nor’easter
occurring in the time interval (t, t + h] is approximately λ̂(t)h for small h.

The intensity function in Figure 1 peaks at about 133.8 days after October 1,
or around February 11. Hence, nor’easters are slightly more likely to occur after
midwinter (which is about January 20) than before midwinter. Though we cannot
offer a meteorological explanation for this pattern, we note that summer hurricane
arrivals also peak in the later half of their season.

4. Return periods

Our next task lies in estimating the return periods of nor’easters. The return periods
derived below apply to the northeastern United States as a whole and not to a
specific geographic location. Elaborating, a return period of a twenty inch snowfall
for New York City should be estimated from snowfall data taken in New York City
proper (whose record is much longer than our 51 years) and not the nor’easter data
set in Table 1.

The return period of a volume x storm is simply how long one waits, on the
average, until a storm occurs that deposits a snow volume of x or more. We measure
all return periods from October 1. For example, one waits an average of 839.5 days
after October 1 of any calendar year for a 2.3 year nor’easter to occur.
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To estimate return periods, we need to model the snow volumes of the storms.
For this, we appeal to the peaks over threshold paradigm (see [Embrechts et al.
1997] for general discussion). Elaborating, there is very general mathematical
justification for fitting the Pareto cumulative distribution

P(Vi − u ≤ x |Vi > u)= 1−
(

1+ ξ
x
σ

)−1/ξ

+

, x ≥ 0, (4.1)

to the nor’easter snow volumes {Vi }
Nst
i=1. The three parameters in the Pareto model

are the shape parameter ξ , the scale parameter σ , and the threshold u > 0. In
Equation (4.1), x+ =max(x, 0). The threshold u = 290 is selected. This threshold
allows all nor’easters in Table 1 to be considered and passes the rudimentary diag-
nostic checks suggested in [Davison and Smith 1990]. The maximum likelihood
parameter estimates of the other Pareto parameters and 95% confidence intervals
are ξ̂ = −0.2899 ([−0.436,−0.144]) and σ̂ = 1544.931 ([1174.10, 2032.90]). A
Kolmogorov–Smirnov goodness of fit test fails to reject the fitted Pareto distribu-
tion with a p-value of 0.2175. Due to the support set of the distribution in (4.1),
the negative estimate of ξ implies that snow volumes of nor’easters cannot exceed
u−σ/ξ , which is approximately 5619.2 in this case. Finally, we regressed the snow
volumes on the average December, January, and February NAO index to ascertain
if the NAO influences snow volumes (Section 3 shows that NAO does not influence
storm counts). No statistically significant relationship was found.

With the above model, return periods can be estimated via simulation. One
season of the process is simulated as follows. First, a nonhomogeneous Poisson
process with the intensity function in Figure 1 is simulated. This intensity function
integrates to approximately 1.27 over an annual cycle, which is the mean number
of storms per season. For each generated storm in this cycle, we then simulate a
snow volume from the fitted Pareto model.

For a volume of x , the waiting time of the simulation is the elapsed time,
measured from October 1, until the first storm whose snow volume exceeds x is
encountered. If no snow volume of x is encountered in this season, then one adds
a year to the waiting time and simulates another season. This process is repeated
until a snow volume of x or more is encountered.

The above scheme generates one fair draw of a “level x” waiting time. Every
time a snow volume of x or more is encountered, the simulation run is over and
the next run starts from scratch (October 1). An estimate of the return period is
based on empirically averaging many independent waiting times.

Simulating the necessary processes is reasonably easy; see [Ross 2002] for gen-
eral detail. One aspect, however, does merit some elaboration: how to generate a
Poisson process from the intensity function in Figure 1. This is done by Poisson
thinning. Specifically, to generate one season of storm arrival times, we generate a
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Estimated return
Storm name Volume period (years)

Blizzard of 1888 1837.0 2.4
February blizzard of 1978 1990.6 2.8
Presidents’ Day storm of 2003 2612.0 5.5
North American blizzard of 1996 3508.8 19.0
Superstorm of 1993 4798.0 500.1

Table 2. Estimated return periods for some historical storms.

time-homogeneous Poisson process with arrival rate λ∗ satisfying λ̂(t)≤ λ∗ for all
t ∈ [0, 365]. If a storm occurs at time t in the time-homogeneous process, we then
independently flip a coin with heads probability λ(t)/λ∗. If the coin is heads, the
storm is kept; if the coin is tails, we disregard the storm. The “thinned process” of
retained storms is indeed a sample from a nonhomogeneous Poisson process with
arrival rate λ̂(t) at time t (see [Ross 1996, page 80] for a proof).

Figure 2 plots estimated return periods for various volume levels as estimated by
the model. For example, a snow volume of 4250 has an estimated return period of
82.4 years. This return period was estimated by averaging one hundred thousand
independent waiting time draws; hence, there is little simulation error.

While there is little simulation error in this return period estimate, significant
model uncertainties may well be present. One could use asymptotic normality of
the Pareto parameter estimators to quantify the Pareto uncertainties in the return
period estimates (the uncertainties in the Poisson arrival cycle are somewhat harder
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to quantify); however, such schemes do not appear to work well in practice (see
[Tajvidi 2003] for discussion and possible remedies). While we will not delve into
model uncertainties further, Bayesian methods may be promising.

The graphic in Figure 2 shows that a nor’easter with a volume of 3000 occurs
about once every nine years on average; a hundred-year volume is about 4300. The
return periods increase rapidly for volume levels above 4000. In fact, a volume of
4800 (which is only 2 more than the superstorm of 1993) has a return period of
about 500 years. Indeed, it appears that the superstorm of 1993 deserves its “Storm
of the Century” nickname.

Table 2 shows estimated return periods of selected historical storms. The bliz-
zard of 1888 has a return period of about 2.4 years, a relatively common event
given its historical lore. This estimate is, however, reasonable: while dropping
very heavy snow, the storm did not affect a large area. The recent Presidents’ Day
blizzard of 2003 has a return period of about 5.5 years. The only two storms in
our data set with volumes above 3500 are the North American blizzard of 1996
(a volume of 3508.8) and the superstorm of 1993 (a volume of 4798). The return
period for the North American blizzard of 1996 is estimated at 19.0 years and the
superstorm of 1993’s return period is estimated at a whopping 500.1 years. The
superstorm of 1993 is clearly an extreme event; indeed, its volume lies close to
the statistical boundaries of what is deemed possible. Whereas this return period
estimate likely contains considerable error due to model uncertainty, it was indeed
an impressive event. In fact, accounts of pre-1953 blizzards do not suggest an
event of this magnitude over the last 300 years (the Great Storm of February 1889
and the Great Snow of 1717 seem the closest in magnitude; see [Burt 2004] for
descriptions of these storms).
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Donald Adams, Rene Ardila, David Hannasch, Audra Kosh,

Hanah McCarthy, Vadim Ponomarenko and Ryan Rosenbaum

(Communicated by Scott Chapman)

A bifurcus semigroup or ring is defined as possessing the strong property that
every nonzero nonunit nonatom may be factored into two atoms. We develop
basic properties of such objects as well as their relationships to well-known
semigroups and rings.

1. Introduction and basic properties

Factorization theory has traditionally considered unique factorization as “good”,
and focused attention on semigroups whose factorization is close (in various precise
ways) to this ideal. We instead propose to consider semigroups that are by some
measures the “worst”, those whose factorization is as far as possible from this ideal.

Definition 1.1. We call an atomic semigroup bifurcus if every nonunit nonatom
can be factored into two atoms. We call a ring bifurcus if every nonzero nonunit
nonatom can be factored into two atoms. We call a bifurcus semigroup or ring
nontrivial if it contains at least one (nonzero) nonunit.

We do not require our semigroups to be commutative, cancellative, or possess
bounded factorization. We also do not require our rings to possess multiplicative
identities. In the sequel, we develop various properties of bifurcus semigroups
and rings and give some examples. For a background to factorization theory, see
[Geroldinger and Halter-Koch 2006]. For additional undefined terms, see [Baginski
et al. 2008; Chapman and Krause 2005].

We begin by presenting some basic properties and calculating standard factor-
ization invariants for bifurcus semigroups.

Theorem 1.1. Let S be a nontrivial bifurcus semigroup, and let x be a (nonzero)
nonunit nonatom in S. Then:
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(1) If S is either left or right cancellative, then S contains infinitely many atoms,
and the divisor closure [[x]] is not finitely generated.

(2) S contains no strong atoms.

(3) Let L(x) denote the set of factorization lengths of x , and let L(x)= sup L(x).
Then L(x) is the set of integers in [2, L(x)].

(4) The elasticity ρ(x) satisfies 2ρ(x) ∈ N∪ {∞}.

(5) The elasticity ρ(S) is∞.

(6) The delta set 1(S) equals {1}.

(7) The catenary degree c(S) equals 3.

(8) The tame degree t (S) is∞.

(9) The critical length of S is 3.

Proof.

(1) For each n ∈N, we write xn
= anbn , where ai , bi are atoms. Suppose that S is

left cancellative (right cancellative is similar). We will show that {a1, a2, . . .}

are distinct. Otherwise we have ai = ai+ j for some i, j ∈ N. We have
ai bi x j

= x i x j
= x i+ j

= ai+ j bi+ j = ai bi+ j . Applying left cancellation yields
a factorization of the atom bi+ j into nonunits, a contradiction. The second
statement holds since {a1, a2, . . .} ⊆ [[x]].

(2) Let y be a strong atom. Applying the bifurcus property we have y3
= ab,

for atoms a, b. Applying the strong atom property, a = εyα, b = ε′yβ , with
α+ β = 3 and ε, ε′ units. Without loss of generality α ≥ 2; but then a is not
an atom.

(3) It suffices to prove that if m ∈ L(x) with m ≥ 3, then m − 1 ∈ L(x). Let
x = b1b2b3 · · · bm be a factorization. By the bifurcus property b1b2b3 = cd,
hence x = cdb4 · · · bm , a factorization of length m− 1.

(4) Follows directly from the bifurcus property, which gives min L(x)= 2.

(5) Consider an for any atom a, as n→∞. sup L(an)≥ n, but inf L(an)= 2.

(6) Follows from property (3).

(7) Given any factorization of x , we iteratively apply the construction from (3) to
get a sequence of factorizations, each of distance three from each other, ending
in two atoms. Given two factorizations, we apply the preceding process twice
to get f1 → f2 → · · · → ab and g1 → g2 → · · · → cd . Reversing and
combining, we have a sequence of factorizations f1 → f2 → · · · → ab→
cd→ · · · → g2→ g1, each of distance at most three.

(8) Follows from (5) and [Geroldinger and Halter-Koch 2006, Theorem 1.6.6]
that gives ρ(S)≤ t (S).
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(9) Immediately follows from the observation that min L(x) = 2. In fact, the
bifurcus property characterizes monoids with critical length 3. �

The bifurcus property excludes many classes of well-studied and familiar semi-
groups and rings.

Theorem 1.2. The following are not bifurcus:

(1) Block monoids B(G0), for G0 ⊆ G.

(2) Krull monoids.

(3) Rings of integers of any algebraic number field.

(4) Diophantine monoids.

(5) Numerical semigroups.

Proof.

(1) Let x ∈ B(G0) be a nonunit nonatom. We may express x as the multiset
{xm1

1 , xm2
2 , . . . , xmk

k } where k ≥ 1, xi ∈ G0, and mi ≥ 1 (for all i ∈ [1, k]).
Consider the function γ from multisets drawn from {x1, x2, . . . , xk} to Nk

0
that gives the multiplicity of each element (e.g. γ (x) = (m1,m2, . . . ,mk)).
For all n ∈ N, the bifurcus property gives a factorization of xn

= a(n)b(n)
into two atoms. Without loss we may assume that γ (a(n))1≥ γ (b(n))1. Note
that γ (a(n))+ γ (b(n)) = γ (xn) = (nm1, nm2, . . . , nmk), hence γ (a(n))1 ∈
[(nm1/2), nm1]. Consider now the set S = {γ (a(1)), γ (a(2)), . . .}, a subset
of Nk

0. Because of the condition on the first coordinates of the elements of
S, |S| = ∞. By a classical theorem attributed to Lothaire (in [Spielman and
Bóna 2000]) or Dickson (in [Geroldinger and Halter-Koch 2006]), Nk

0 has no
infinite antichain in the usual partial ordering. Hence there must be some i, j
with γ (a(i)) ≥ γ (a( j)); but then a( j)|a(i) in B(G0), and hence a(i) is not
an atom, contrary to assumption.

(2) Follows from (1) and from [Geroldinger and Halter-Koch 2006, Theorem
2.5.8], which states that all reduced Krull monoids are block monoids.

(3) Follows from [Geroldinger and Halter-Koch 2006, Theorem 1.7.3] together
with Theorem 1.1 (5).

(4) Follows from (2) and [Chapman et al. 2002], which shows that Diophantine
monoids are Krull.

(5) Follows from [Rosales 2009], which shows that numerical semigroups are
cancellative and must have a finite number of atoms. This is violative of
Theorem 1.1 (1). �

While it may seem that the bifurcus property is rare, the following result shows
that in fact every semigroup can be embedded into a bifurcus semigroup.
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Theorem 1.3. Let R be any semigroup. Let S be any atomic semigroup with no
units. Then T = R× S× S is bifurcus.

Proof. Note that T has no units since S does not. Let x ∈ T be a nonatom. We
factor x = yz, where y = (ry, u y, vy), z = (rz, uz, vz), and x = (ryrz, u yuz, vyvz).
We write u yuz = pu and vyvz = vq, for some atoms p, q ∈ S. Set y′ = (ry, p, v)
and z′ = (rz, u, q). These are atoms in T , and x = y′z′. �

2. Examples

We provide several examples of bifurcus rings. These do not have multiplicative
units, but (1) and (3) of Example 2.1 do not have zero divisors. The conditions
imposed on m, n are all necessary – if n is a prime power, then neither (1) nor (3)
is bifurcus; if m = 1, then (2) is not bifurcus.

Example 2.1. The following are bifurcus rings:

(1) nZ, for n not a prime power.

(2) (mZ)× (nZ) for m, n natural numbers greater than 1.

(3) The subring of n×n matrices consisting of matrices with all entries identical
integers, for n not a prime power.

Proof.

(1) Atoms in our ring are nx where n - x . Write n= pqr where p, q are prime and
might divide r ∈Z. Consider nonatom z= (nx)(ny)= paqbr2s, where p, q - s.
Note that a, b≥ 2; hence we can factor z= (pqr(qb−2s))(pqr(pa−2)). These
are atoms since n - qb−2s and n - pa−2.

(2) Consider nonatom z = (ma, nb)× (mc, nd)= (m, nbd)× (mac, n), a factor-
ization into two atoms.

(3) This ring is isomorphic with Z, with the usual addition but with multiplication
given by x ? y = nxy. Atoms are those integers that are not multiples of n.
Write n= pqr where p, q are prime and might divide r ∈Z. Consider nonatom
z = x ? y = nxy = npaqbs where p, q - s. Set x ′ = pa, y′ = qbs. These are
atoms and z = x ′ ? y′. �

Bifurcus semigroups turn out to be common among (noncommutative) matrix
semigroups (see [Adams et al. ≥ 2009]). We give just one example.

Example 2.2. Let n> 1 and let S denote the semigroup of n×n rank one matrices
with entries from N. Then S is bifurcus.

Proof. Let gcd denote the usual greatest common divisor function, which we
will apply to the entries of matrices and vectors. Recall that a ∈ S may be ex-
pressed (nonuniquely) as a = uvT , for u, v column n-vectors. We claim that
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gcd(a) = gcd(u) gcd(v). We assume without loss that gcd(u) = gcd(v) = 1 and
prove gcd(a)= 1 by instead considering

a
gcd(u) gcd(v)

=
u

gcd(u)
vT

gcd(v)
.

If p| gcd(a), then p divides each entry of the i th columns of a, namely vi u. Since
p cannot divide each entry of u, p|vi . But this holds for each i , hence p divides
each entry of v, a contradiction. Hence gcd(a)= 1, as desired.

Now consider nonatom a=bc= (ubv
T
b )(ucv

T
c )= (v

T
b uc)(ubv

T
c ). Note in passing

that since all entries are from N, gcd(a)≥ vT
b uc ≥ n for every nonatom a. Set

a′ =
a

gcd(a)
= u′v′T ;

by the previous claim gcd(u′)= gcd(v′)= 1. Set x = [gcd(a)−n+1, 1, . . . , 1]T ,
y=[1, 1, . . . , 1]T . We have a=gcd(a)a′= (xT y)(u′v′T )= (u′xT )(yv′T ). Because
gcd(u′) = gcd(v′) = gcd(x) = gcd(y) = 1, by the previous claim gcd(u′xT ) =

gcd(yv′T )= 1, and since n > 1 these are both atoms. �

We conclude with some unanswered questions.

Open problems

(1) Does there exist a bifurcus ring with 1? A bifurcus domain?

(2) Can every ring/domain be embedded in a bifurcus ring?

(3) Can a bifurcus semigroup possess finitely many atoms?
Note that by Theorem 1.1(1), such an example would be neither left nor right
cancellative. Further, such an example must be finite (since N atoms yields
at most N 2 ordered pairs of atoms), and therefore must not possess bounded
factorization.

(4) Can a bifurcus semigroup be inside factorial or Cale?

(5) Can a bifurcus semigroup be locally tame?
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Construction and enumeration of Franklin circles
Rebecca Garcia, Stefanie Meyer, Stacey Sanders and Amanda Seitz

(Communicated by Scott Chapman)

Around 1752, Benjamin Franklin constructed a variant on the popular magic
squares and what we call a magic (a, r)-circle. We provide a definition for magic
(a, r)-circles, magic a-circles and, more specifically, Franklin magic a-circles.
In this paper, we use techniques in computational algebraic combinatorics and
enumerative geometry to construct and to count Franklin magic 8-circles. We also
provide a description of its minimal Hilbert basis and determine the symmetry
operations on Franklin magic 8-circles.

1. Introduction

Benjamin Franklin was a noted American scholar, politician, scientist, inventor,
author of various books and scientific articles, publisher of Poor Richard’s Almanac,
and most notably an editor and signer of the Declaration of Independence, who
eventually came to enjoy the recreational side of mathematics. Among his most
cherished mathematical works are his famous 8× 8 and 16× 16 magic squares,
which are many times more magical than ordinary magic squares. Here is one of
Franklin’s 8× 8 squares, with sum 260:

MSC2000: primary 05A15; secondary 15A48.
Keywords: Franklin squares, Franklin circles, magic circles, enumeration, polyhedral cones, Ehrhart

series.
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A magic square has three properties: that each row sum, each column sum, and
each main diagonal sum is the same “magic” number. A Franklin square, however,
has many more properties [Ahmed 2004]:

• Each row sum is the same magic number M .

• Each column sum is M .

• Each bent diagonal sum is M .

• Each half-row sum is M/2.

• Each half-column sum is M/2.

• For 8× 8 Franklin squares, each 2× 2 block sum is M/2.

• For 8× 8 Franklin squares, the four corners with the middle four sums to M .

• For 16× 16 Franklin squares, each 2× 2 block sum is M/4, each 4× 4 block
sum is M/4.

These properties can be nicely visualized thus:

Several magic squares constructed by Franklin were described in a letter written
around 1752 to fellow English botanist Peter Collinson [Pasles 2001]. Franklin
noted in the same letter that these unusual squares were not his only construction.
Franklin provided a similarly complex magic circle in a letter dated 1765 to fellow
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English physicist John Canton, describing all of its properties with painstaking
detail. In this article, we refer to this magic 8-circle as the Franklin magic 8-circle.

There is no standard definition for a magic circle. We will use the following
definition, found also in [Nicholas 1955].

Definition 1. A magic (a, r)-circle is an arrangement of nonnegative integers in a
circular grid consisting of a concentric annuli and r radii, with the property that
each annular sum is M and each radial sum is M . In the case a = r , we shall call it
a magic a-circle.

Franklin’s magic circle, like his magic squares, has additional sophistication.
Much like the bent diagonals of Franklin’s magic squares, a Franklin magic circle
has families of concentric annuli contained within the largest main circle, which
however are eccentric relative to the basic circular grid. Here is Franklin’s original
magic 8-circle, with sum M = 360; one eccentric annulus is highlighted:

There are four different excenters labeled A, B, C , and D, located north, east,
south and west of the center. Around each excenter are six concentric circles,
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forming five annuli. For example, the innermost annulus centered at A in the
previous figure (bounded by the two thick circles) contains, clockwise from the
bottom, the entries 42, 59, 19, 66, 21, 68, 28, 45. We call these values x17, x28,
x31, x42, x43, x34, x25, x16, according to the cells in which they lie; that is, xi j is
the number in the i-th original annulus, counted outward, and in the j-th sector,
counted clockwised starting with the lower of the two sectors in the first quadrant.
Here is another way to visualize the eccentric circles centered at A:

Franklin’s original magic circle satisfies the following four properties, which are
also depicted graphically on the next page:

(i) Each radial sum plus the central number is the same magic number M .

(ii) Each upper- or lower-half annular sum plus half the central number is M/2,
and consequently each annular sum plus the central number is M .

(iii) Each 2× 2 block sum plus half the central number is M/2.

(iv) Each upper- or lower-half annular sum of vertically centered eccentric annuli
plus half the central number is M/2, and similarly, each left- or right-half
annular sum of horizontally centered eccentric annuli plus half the central
number is M/2. Consequently, each eccentric annular sum plus the central
number is M .

Because the central number, appropriately scaled, is added to each of the various
types of sums, its role is merely to shift the magic sum. Thus, we will drop the
inclusion of the central number in our computations throughout. In this paper, we
define a Franklin magic 8-circle to be a magic 8-circle with nonnegative integer
entries satisfying properties (i)–(iv) above (without a central number). In general,
for n ≥ 2, we define a Franklin magic 2n-circle to be a magic 2n-circle satisfying
(i)–(iv), except that (iii) is modified to read that every 2× 2 block sum is 22−n M .
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Figure 1. Properties of a Franklin magic circle.

In Section 2, we take a closer look at the tools in computational algebraic
combinatorics that allow us to construct all Franklin magic 8-circles. We give a
succinct description of the minimal Hilbert basis of the Franklin magic 8-circles,
which is a special set of Franklin magic 8-circles that can be used to construct any
Franklin magic 8-circle. Furthermore, we give a simple description for producing
all possible Franklin magic 4-circles.

In Section 3, we discuss the symmetry operations on the Franklin magic 8-circles
and we reveal a new Franklin magic 8-circle, that is, a Franklin magic 8-circle
which cannot be obtained via symmetry operations on the original Franklin magic
8-circle. Finally, in Section 4, we provide the generating function for Franklin
magic 8-circles FC8(s), a function which determines the number of Franklin magic
8-circles with magic sum s.

2. Background and notation

We now describe the techniques used to derive the building blocks of all Franklin
magic 2n-circles, starting with n= 3. To this end, we view a generic Franklin magic
8-circle as a vector in R82

, with variable entries x11, . . . , x88, where, as before, the
entry xi j is in the i-th annulus and the j-th radius.

The four defining properties of the Franklin magic 8-circle can be viewed as
linear relations in these variables. For example, the first property states that each
radial sum is the (undetermined) magic number M ; that is, the sums

∑8
i=1 xi j must

be equal for all j . This gives seven independent linear equations such as

x11+ x21+ x31+ x41+ x51+ x61+ x71+ x81

= x12+ x22+ x32+ x42+ x52+ x62+ x72+ x82.
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The half-annular sum property yields sixteen linear equations, while there are
fifty-six distinct 2× 2 block linear equations coming from the eight radial and
seven annular locations in the circular arrangement. There are altogether twenty
eccentric annuli coming from the five eccentric annuli centered around each of the
four ex-centers, with each eccentric annulus yielding two linear relations for the
eccentric half annular sum. Rewriting these equations in matrix form, we have a
119× 64 integral matrix M :

M =

 1 · · · 1 −1 · · · −1 0 · · · 0 0 · · · 0 · · · 0
1 · · · 1 0 · · · 0 −1 · · · −1 0 · · · 0 · · · 0

...
...

...
...

 .
We observe that for the Franklin magic 8-circle: (1) any nonnegative integer

linear combination of Franklin magic 8-circle is a Franklin magic 8-circle, and (2)
the set of all Franklin magic 8-circles is the integral solution set to the 119 integral
linear equations mentioned above. This shows that the Franklin magic 8-circles are
also the integral points inside the set

C = {x = (x11, . . . , x88) ∈ R64
≥0 : M x = 0},

which is itself a pointed rational polyhedral cone.
By [Schrijver 1986, Theorem 16.4], there is a unique finite set H of integral

points in C , such that every integral point in C is a linear combination of elements
in H . This set is known as the minimal Hilbert basis of C . Thus with this minimal
Hilbert basis, every Franklin magic 8-circle is some linear combination of the
elements in H . Using the software 4ti2, we computed the seventy-four elements of
the minimal Hilbert basis for the Franklin magic 8-circles.

We observed two distinct subsets of elements in this minimal Hilbert basis.
Among the minimal Hilbert basis elements of the first type, we observed that the
first radial arrangement determines all others for the following reasons: the second
radial arrangement must be the complement of the first, and this alternating pattern
repeats for the third through the eighth radial arrangements. We also noted that the
first radial arrangement is completely determined by the placement of the four 1s.
Since there are eight possible places, that yields precisely

(8
4

)
= 70 Hilbert basis

elements of the first type.
To illustrate the construction of a minimal Hilbert basis element of the first type,

see Figure 2. Here, the first radial arrangement is in the second quadrant, just above
the horizontal diameter. We chose to place the four 1s in annuli 2, 4, 5, and 7. The
second radius, clockwise, is then determined by placing a 1 in the complementary
annuli: 1, 3, 6, and 8, shown in bold gray type in Figure 2. This pattern alternates
in the subsequent radii.

http://www.4ti2.de
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1

1
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1
1

1

1

1

1

1

1
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1

1

1

1
1

1

1

1
1

Figure 2. Examples of Hilbert basis elements.

Finally, there are four Hilbert basis elements of the second type. Their description
is based on two observations: all radial arrangements consists of alternating 0 and
1, and the two radial arrangements in each of the four quadrants are duplicates, with
the upper half consisting of complementary quadrants and likewise for the lower
half. This yields precisely four elements. See Figure 2 for an illustration.

With this minimal Hilbert basis, constructing new Franklin magic 8-circles boils
down to simple arithmetic. We present another Franklin magic 8-circle in Figure 3.

We computed the integer linear combination that produces the original Franklin
magic 8-circle. This combination is shown in Figure 4 and uses eleven minimal

Figure 3. A new Franklin magic 8-circle.
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Figure 4. Linear combination of the original Franklin magic 8-circle.

Hilbert basis elements. In terms of the two types of minimal Hilbert basis elements,
this linear combination uses two of the second type and nine of the first type.

As for Franklin magic 4-circles, there are precisely six elements in its minimal
Hilbert basis. They, too, were computed using 4ti2. Figure 5 shows three elements,
with the remaining three obtained by flipping these along the horizontal diameter.
The simplicity of its minimal Hilbert basis forces all Franklin magic 4-circles to
have repeated entries, whose arrangement is described in Theorem 3.
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Figure 5. Three elements of the minimal Hilbert basis for Franklin
magic 4-circles.

We observe that in this case, the minimal Hilbert basis is only of the first type;
that is, the first radial arrangement determines all other radial arrangements. We also
noted that the first radial arrangement is completely determined by the placement
of the two 1s. Since there are four possible places, then this yields precisely

(4
2

)
= 6

Hilbert basis elements of the first kind. With this observation, we make the following
conjecture for the minimal Hilbert basis for Franklin magic 16-circles.

Conjecture 2. There are
(16

8

)
+16 elements in the minimal Hilbert basis for Franklin

magic 16-circles.

Theorem 3. A Franklin magic 4-circle is of the form

Proof. Consider the matrix whose rows correspond to integer multiples of an
element in the minimal Hilbert basis:

0 a 0 a a 0 a 0 0 a 0 a a 0 a 0
b 0 b 0 b 0 b 0 0 b 0 b 0 b 0 b
0 c 0 c 0 c 0 c c 0 c 0 c 0 c 0
d 0 d 0 0 d 0 d d 0 d 0 0 d 0 d
e 0 e 0 0 e 0 e 0 e 0 e e 0 e 0
0 f 0 f f 0 f 0 f 0 f 0 0 f 0 f


Any Franklin magic 4-circle is an integral linear combination of the elements in the
minimal Hilbert basis. Thus, any Franklin magic 4-circle corresponds to the sum
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of the rows of this matrix:

(b+d+e, a+c+ f, b+d+e, a+c+ f, a+b+ f, c+d+e, a+b+ f, c+d+e,

c+d+ f, a+b+e, c+d+ f, a+b+e, a+c+e, b+d+ f, a+c+e, b+d+ f ),

where the first four entries represent the first annulus in the Franklin magic 4-
circle, the next four entries represent the second annulus, and so forth. Setting
W = b+ d + e, X = a+ c+ f , Y = a+ b+ f and Z = c+ d + f , demonstrates
that any Franklin magic 4-circle is of the desired form. �

Example 4. Choosing fixed nonnegative integer values for W =16, X =24, Y =25,
and Z = 17 yields the following Franklin magic 4-circle:

3. Symmetry operations on Franklin magic 8-circles

A symmetry operation on the set of Franklin magic 8-circles is defined to be a map
σ from the set of all Franklin magic 8-circles to itself, that permutes the entries in
a Franklin magic 8-circle. From this definition, one can easily see that there are
three obvious such symmetry operations: 180◦ rotation and reflection along the
horizontal and vertical diameters.

There are operations on Franklin magic 8-circles which yield magic 8-circles
that do not preserve all defining properties properties (i)–(iv). For example, rotation
by 90◦ is not a symmetry operation. This can be readily seen by considering
this operation on the first minimal Hilbert basis element in Figure 4 (page 364).
Here, the upper half annular sum is 0, while the lower half annular sum is 4. In
addition, we also note that the transpose, that is, exchanging annuli for radii, is not
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a symmetry operation. This can be seen easily from trying to transpose an element
of the minimal Hilbert basis, such as the multiple of 13 in Figure 4.

We observed that the elements of the minimal Hilbert basis hold the key to
finding all symmetry operations on Franklin magic circles, as we see in Theorem 5.

Theorem 5. Let F8 denote the set of all Franklin magic 8-circles, and HF8 denote
the minimal Hilbert basis of the Franklin magic 8-circles. Then σ : F8 −→ F8 is
a symmetry operation on F8 if and only if its restriction σ : HF8 −→ HF8 is a
symmetry operation on HF8.

Proof. (H⇒) By definition. (⇐H) Let σ : HF8 −→ HF8 be a symmetry operation
on HF8. Let (xi j ) denote a Franklin magic 8-circle. Then, by definition, (xi j ) is
some integral linear combination of the elements in HF8,

(xi j )=

74∑
k=1

nk(H[k]i j ),

where H[k]i j is the entry in the i-th annulus and j-th radius of the k-th element in
HF8. By definition, σ is a permutation on the entries of

(
H[k]i j

)
. Under σ , the entry

in position i j is permuted to a new position i j , and thus σ(H[k]i j )= (H[k]i j ), which
is, by definition of σ , another minimal Hilbert basis element, which we will denote,
for the sake of convenience, as H[σ(k)]. Observe that if σ(H [k])= σ(H [ j]), then
k = j , since all the entries move in precisely the same manner.

Given σ , define

σ : F8 −→ F8, (xi j ) 7→

74∑
k=1

nk(H[σ(k)]i j ). (1)

The image of (xi j ) under σ in (1) is an integral linear combination of elements
in HF8 and is therefore a Franklin magic 8-circle. �

From Theorem 5, we observe that all symmetry operations can be obtained by
finding symmetry operations on the minimal Hilbert basis. We used the description
of the minimal Hilbert basis given in Section 2 to observe that the operations
described in Theorem 6 are in fact symmetry operations on the set of all Franklin
8-circles.

Theorem 6. Let F8 denote the set of all Franklin magic 8-circles. The following
are symmetry operations on F8:

(i) Rotation by 180◦, and reflections along the horizontal and vertical diameters.

(ii) Exchanging two consecutive annuli

xi , xi+1 with xi+2k, xi+2k+1,

with 1≤ i ≤ 5 and 0≤ k ≤ 3 and the restriction that i + 2k+ 1≤ 8.
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Proof. The operations in (i) clearly preserve the four Franklin magic 8-circle
properties. For the operations in (ii), recall that there are two types of elements
in the minimal Hilbert basis HF8 of F8. The first type of elements come from
placing 1s in four of the eight possible locations in the first radial arrangement. This
pattern is duplicated in the third, fifth and seventh radial arrangements, while the
complementary arrangement is duplicated in the second, fourth, sixth and eighth
radii. Thus, permuting the annuli among these elements produces another element
in HF8. The second type of elements in HF8 impose the conditions given in (ii). �

4. Enumeration of Franklin magic 8-circles

In this section, we answer the question For any positive integer s, how many Franklin
magic 8-circles have a magic sum of s? This is an example of the general question of
enumerating integer lattice points contained in polyhedra. For an excellent resource
on this general topic, see [Beck and Robins 2007].

As we noted earlier, we view a generic Franklin magic 8-circle as an integer
vector (x11, . . . , x88) in R82

, where the entry xi j is in the i-th annulus and the j-th
radius. Also any Franklin magic 8-circle is an integer linear combination of the
minimal Hilbert basis described in Section 2. Since each element of the minimal
Hilbert basis has magic sum 4, that implies that every Franklin magic 8-circle must
have a magic sum divisible by 4.

Alternatively, we can apply commutative algebra, as in [Ahmed et al. 2003; Cox
et al. 1998]. Consider the map of polynomial rings

φ : R[H[1], . . . ,H[74]] −→ R[x11, . . . , x88]

defined by mapping the indeterminate H[k] to
∏8

i, j=1 xH[k]i j
i j . Integral linear com-

binations of the elements in HF8 correspond to products of integral powers of
monomials in R[H[1], . . . ,H[74]]. Thus if

∑74
k=1 nk(H[k]i j )=

∑74
k=1 mk(H[k]i j ),

we have

φ
( 74∏

k=1

H[k]nk −

74∏
k=1

H[k]mk
)
= 0.

Define the homogeneous ideal IF8 =
〈∏74

k=1 H[k]nk −
∏74

k=1 H[k]mk
〉
, and consider

the weighted, graded ring

R = R[H[1], . . . ,H[74]]/IF8,

where the degree of each variable H[k] is 4, for all k. The Hilbert function HR(s)
is defined by

HR(s)= dimR R[H[1], . . . ,H[74]]s − dimR IF8,s,



CONSTRUCTION AND ENUMERATION OF FRANKLIN CIRCLES 369

where R[H[1], . . . ,H[74]]s is the finite-dimensional vector space over R of ho-
mogeneous polynomials in R[H[1], . . . ,H[74]] of degree s and IF8,s is the finite-
dimensional vector space over R of homogeneous polynomials of degree s in IF8 .
Applying [Ahmed 2004, Lemma 2.2], since the weight of each variable H[i] in the
polynomial ring R[H[1], . . . ,H[74]] is the magic sum of the corresponding magic
circle, then the value HR(s) is the number of distinct Franklin magic 8-circles with
magic sum s. Thus, the Hilbert–Poincaré series

HPR(t)=
∞∑

s=1

HR(s)t s

is also the Ehrhart series of the Franklin magic 8-circles.
To count the number of Franklin magic 8-circles reduces to computing the

generating function of the Hilbert–Poincaré series

HPR(t)=
∞∑

s=1

HR(s)t s .

We used the computer algebra software LattE [De Loera et al. 2003], to find the
HPR(t) as a rational function, and then used LattE to compute the first sixty-
four values of the enumerating function for the Franklin magic 8-circles. Using
Mathematica, we found the interpolating polynomial for these values and compu-
tationally verified that the function given in Theorem 7 enumerates the Franklin
magic 8-circles.

Theorem 7. Let FC8(s) denote the number of Franklin magic 8-circles with sum s.
The Ehrhart series of the Franklin magic 8-circles has the rational form
∞∑

s=0

FC8(s)t s

=
t8
+64t7

+700t6
+2352t5

+3430t4
+2352t3

+700t2
+64t+1

(t9−9t8+36t7−84t6+126t5−126t4+84 t3−36 t2+9t−1)(t−1)
.

A partial expansion of this series is
∞∑

s=0

FC8(s)t s
= 1+ 74t + 1395t2

+ 13092t3
+ 80245t4

+ 367774t5
+ · · · .

The generating function for the Ehrhart series of the Franklin magic 8-circles is

FC8(s)=
1

1486356480
(1486356480+ 1980628992s+ 1233911808s2

+ 448643072s3
+ 103670784s4

+ 16004352s5

+ 1677312s6
+ 117888s7

+ 5436s8
+ 151s9)

when 4 divides s; otherwise, FC8(s)= 0.
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