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Contributions to Seymour’s second neighborhood
conjecture

James Brantner, Greg Brockman, Bill Kay and Emma Snively

(Communicated by Vadim Ponomarenko)

Let D be a simple digraph without loops or digons. For any v ∈ V (D) let N1(v)

be the set of all nodes at out-distance 1 from v and let N2(v) be the set of all
nodes at out-distance 2. We show that if the underlying graph is triangle-free,
there must exist some v ∈ V (D) such that |N1(v)| ≤ |N2(v)|. We provide several
properties a “minimal” graph which does not contain such a node must have.
Moreover, we show that if one such graph exists, then there exist infinitely many.

1. Introduction

In this article, we consider only simple nonempty finite digraphs (those containing
no loops or multiple edges and having a nonempty vertex set), unless stated other-
wise. We also require that our digraphs contain no digons, that is, if D is a digraph
then (u, v) ∈ E(D)⇒ (v, u) /∈ E(D). If i is a positive integer, we denote the i th
neighborhood of a vertex u in D by Ni,D(u)= {v ∈ V (D)| distD(u, v)= i}, where
distD(u, v) is the length of the shortest directed path from u to v in D (if there is no
directed path from u to v, we set distD(u, v)=∞). If D is clear from context, we
simply write Ni (u) and dist(u, v). We will also consider the i th in-neighborhood
of a node N−i (u)= {v ∈ V (D)| dist(v, u)= i}. In addition, if V ′ ⊆ V (D), we let
D[V ′] be the subgraph of D induced by V ′.

Graph theorists will be familiar with the following conjecture by Seymour.

Conjecture 1.1 (Seymour’s second neighborhood conjecture). Let D be a directed
graph. Then there exists a vertex v0 ∈ V (D) such that |N1(v0)| ≤ |N2(v0)|.

Dean and Latka [1995] conjectured this to be true when D is a tournament.
Dean’s conjecture was subsequently proven by Fisher [1996]. Further, Kaneko
and Locke [2001] showed Conjecture 1.1 to be true if the minimum out-degree of
vertices in D is less than 7, while Cohn, Wright and Godbole [Cohn et al. 2009]
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showed that it holds for random graphs almost always. Finally, Fidler and Yuster
[2007] proved that Conjecture 1.1 holds for graphs with minimum out-degree
|V (D)| − 2, tournaments minus a star, and tournaments minus a subtournament.
While over the years there have been several attempts at a proof of Conjecture 1.1,
none of these has yet been successful.

For completeness, we introduce the related Caccetta–Häggkvist conjecture.

Conjecture 1.2 (Caccetta–Häggkvist). If D is a directed graph with minimum out-
degree at least |V (D)|/k, then D has a directed cycle of length at most k.

Conjecture 1.1 would imply the k = 3 case of Conjecture 1.2. Much work
has been done on Conjecture 1.2, including an entire workshop sponsored by the
American Institute of Mathematics and the National Science Foundation, but still
both Conjectures 1.1 and 1.2 remain wide open.

In this paper, we will show that Conjecture 1.1 holds for digraphs where the
underlying graph is triangle-free. We then take a different tack and provide condi-
tions that must be satisfied by any appropriately-defined minimal counterexample
to Seymour’s second neighborhood conjecture.

2. Definitions

Definition 2.1. Suppose that D is digraph and u ∈ V (D). We say that u is satis-
factory if |N1(u)| ≤ |N2(u)|. Also, u is a sink if |N1(u)| = 0. Note that a sink is
trivially satisfactory.

Definition 2.2. Let A be the set of Seymour counterexamples, i.e., simple directed
graphs D with no satisfactory vertices (in other words, counterexamples to Sey-
mour’s second neighborhood conjecture). Let

A′ = {D| |E(D)| = min
H∈A
|E(H)|}

be the set of graphs in A with the fewest number of edges. Finally, let A′′ =

{D| |V (D)| =minH∈A′ |V (H)|} be the set of graphs in A′ with the fewest number
of vertices. We will refer to any element of A′′ as a minimal counterexample. Note
that A′′ is empty if and only if Conjecture 1.1 is true.

Definition 2.3. Define As,G(u) = |N1(u)| − |N2(u)| to be the antisatisfaction of
u. As usual, if G is clear from context, we simply write As(v). Notice that u is
satisfactory if and only if As(u)≤ 0.

Definition 2.4. Again let D be a digraph. If (u, v)∈ E(D), we say that edge (u, v)
is the base of a transitive triangle if u and v share a common first neighbor; that
is, |N1(u)∩ N1(v)| ≥ 1 (see Figure 1).
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Figure 1. Demonstration of an edge that is the base of a transitive triangle.

If, for distinct t, u, v, w ∈ V (D), we have (t, u), (u, w), (t, v), (v,w) ∈ E then
we call {(t, u), (u, w), (t, v), (v,w)} a Seymour diamond. We say the edges (t, u),
(t, v) are the bases of the Seymour diamond (see Figure 2).

Figure 2. Demonstration of the bases of a Seymour diamond.

3. Directed cycles and underlying girth

In this section we show that certain classes of graphs satisfy Seymour’s second
neighborhood conjecture. The following theorem shows that directed cycles are
necessary for a graph to be a Seymour counterexample.

Observation 3.1. If a digraph contains no directed cycles, then it must have a
satisfactory vertex.

Proof. Let D be a directed graph. Suppose that D contains no satisfactory vertices.
Then D has no sink, as noted in Definition 2.1. Thus if u ∈ V (D), we have
|N1(u)| ≥ 1. Now pick an arbitrary vertex v0 ∈ V (D), and consider the infinite
sequence {vi }

∞

i=0 defined recursively by vi+1 ∈ N1(vi ) for i ≥ 0. Since V is finite,
we then have that there exist some r 6= s such that vr = vs . Then we note that the
sequence of edges (vr , vr+1), (vr+1, vr+2), . . . , (vs−1, vs = vr ) defines a dicycle in
D, thus completing our proof. �

Recall that the girth of an undirected graph is the length of its shortest cycle. We
show that any Seymour counterexample must have underlying girth of exactly 3:

Theorem 3.2. Let G be a simple graph with girth strictly larger than 3. Then any
orientation of G will result in a directed graph with a satisfactory vertex.

Proof. Let D be any orientation of G. Clearly there must exist some vertex v0

with minimal out-degree. If |N1(v0)| = 0, then v0 is a sink and hence a satisfactory
vertex. Otherwise, let v1 ∈ N1(v0). By construction, we have that |N1(v1)| ≥
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|N1(v0)|. Furthermore, the underlying graph has girth at least 4, so |N1(v0) ∩

N1(v1)| = 0. Thus, |N2(v0)| ≥ |N1(v1)| ≥ |N1(v0)|, and by definition v0 is a
satisfactory vertex. �

Remark. A similar argument will show that any digraph D which has no transitive
triangle as a subgraph must have a satisfactory vertex. We will prove a stronger
version of this result in the following section.

4. Properties of counterexamples to Seymour’s second neighborhood
conjecture

To this point, we have been showing that classes of graphs satisfy Conjecture 1.1.
In this section we reverse course and explore necessary properties of the minimal
counterexample graphs of A′′ from Definition 2.2.

Theorem 4.1. Suppose M ∈A′′.

(i) M is strongly connected.

(ii) For each u ∈ V (M), As(u) ∈ {1, 2}.

(iii) For every edge e= (u, v)∈ E(M), there exists a path of length 1 or 2 avoiding
e from u to all but at most 1 element of {v} ∪ N1(v).

(iv) Every edge of M is the base of either a transitive triangle or a Seymour dia-
mond.

(v) For any node u ∈ V (M), there exists a node v ∈ N−1(u) such that As(v)= 1.

(vi) There exists a cycle C = (v1, v2), (v2, v3), ..., (vk, v1) in M such that for 1 ≤
i ≤ k, we have that As(vi )= 1.

Proof.
(i) Let D be a digraph with u ∈ V (D). We define

WD(u)= {v| dist(u, v) 6= ∞}

to be the reachable vertices from u with respect to D. If D is clear from context,
we simply write W (u). Pick an arbitrary node u from the vertex set of M. Now
consider M′ = M[W (u)]. We now pick an arbitrary node v ∈ W (u). Clearly,
N1,M(v)⊆W (u) and N2,M(v)⊆W (u). But this implies that

As,M′ = |N1,M′(v)| − |N2,M′(v)| = |N1,M(v)| − |N2,M(v)| = As,M,

and hence v is satisfactory in M′ if and only if v is satisfactory in M. Since by
construction M contains no satisfactory vertices, v cannot be satisfactory in M′.
Thus M′ contains no satisfactory vertices. But M′ is a subgraph of M, and so by
minimality of M we have that M=M′. Since u was arbitrary, we are done.
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Case 1 Case 2

Figure 3. Two possible cases resulting from deleting an edge
from M. In case 1, there is a length 2 path from u to v, while
in case 2 no such path exists. Note that it is possible that deleting
e will increase the size of u’s second neighborhood, as shown in
case 1.

(ii) Pick an arbitrary edge e= (u, v)∈ E(M). Consider the digraph M obtained by
deleting e from M. Since M has fewer edges than M, we have that M contains a
satisfactory vertex. For each vertexw∈V (M), we note that |N1,M(w)|= |N1,M(w)|

unless w= u, in which case |N1,M(u)| = |N1,M(u)|−1. Furthermore, we have that
|N2,M(w)| ≤ |N2,M(w)|, except if w = u, in which case we have that |N2,M(u)| ≤
|N2,M(u)| + 1. (See Figure 3.)

Thus, we obtain that in M for w 6= u ∈ V (M), As,M(w)≥ As,M(w), and hence
all vertices in M besides u are not satisfactory. Thus by process of elimination we
have that u is satisfactory in M . Thus

0≥ As,M(u)= |N1,M(u)| − |N2,M(u)| ≥ (|N1,M(u)| − 1)− (|N2,M(u)| + 1),

and hence we have that 0 < As,M(u) = |N1,M(u)| − |N2,M(u)| ≤ 2. Result (ii)
follows immediately.

(iii) Pick an arbitrary edge e = (u, v) ∈ E(M). Consider the graph M obtained by
deleting e from M. We see that |N2,M(u)|≥ |N2,M(u)|, since otherwise As,M(u)≤0
and u is not satisfactory in M , a contradiction. Consider now X = N2,M(u) \
N2,M(u). We note that X ⊆ {v}, since v is the only vertex that could have been
added to u’s second neighborhood in M (case 1 in Figure 3). Thus we see that

|N2,M(u) \ N2,M(u)| ≤ 1,

with equality only if v ∈ N2,M(u).
Note that N1,M(v) ⊆ N1,M(u)∪ N2,M(u). Let Y = N1,M(u)∩ N1,M(v) and Z =

N2,M(u) ∩ N1,M(v). For y ∈ Y , we clearly have a path of length 1 from u to y
avoiding e (namely the edge (u, y)). If |N2,M(u) \ N2,M(u)| = 0, then for z ∈ Z ,
we have a path of length 2 from u to z in M , and considering this path in M yields
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a path from u to z avoiding e. And finally, if |N2,M(u) \ N2,M(u)| = 1, then we
have a path of length 2 from u to z in M for all but 1 vertex in Z , and as before we
have a corresponding path from u to z avoiding e. But in this case, there is a path
of length 2 from u to v avoiding e, and hence we have obtained the desired result.

(iv) Paths of length 1 from u to v′ ∈ N1(v) yield transitive triangles with e as the
base, and paths of length 2 from u to v′ ∈ {v} ∪ N1(v) yield Seymour diamonds
with e as one of the bases. By part 3, at least one of these structures exists, and
hence we are done.

(v) In M, pick an arbitrary vertex u. Delete this vertex and label the resulting graph
M . Then in a similar manner to before, one of the nodes in N−1,M(u) must be
satisfactory in M by vertex minimality of M. Label this node t . Since |N1,M(t)| =
|N1,M(t)| − 1, t is satisfactory, and |N2,M(t)| ⊆ |N2,M(t)| (note that in contrast to
deleting an edge, deleting a vertex does not allow any vertices to add nodes to their
second neighborhoods), we see that we must have |N2,M(t)| = |N2,M(t)|. It is then
necessary that As,M(t) = 1. Since u was arbitrary, we have obtained the desired
result.

(vi) We apply the same technique as we used Observation 3.1. We present a brief
sketch of our proof: by part (v), each node in M has an in-neighbor having an-
tisatisfaction of exactly 1. If we begin at an arbitrary vertex and choose one of
its in-neighbors having antisatisfaction of exactly 1, do the same for the resulting
vertex, and iterate this process, at some point we must arrive back at a vertex
we have already visited. Thus we have constructed a dicycle of nodes having
antisatisfaction exactly 1. �

We now extend some of our results from the previous theorem. In particular, we
turn to a count of the number of transitive triangles and Seymour diamonds that
certain edges must belong to.

Theorem 4.2. If M ∈ A′′, suppose that e = (u, v) ∈ E(M) and |N1(u)| ≤ |N1(v)|.
Then e must be the base of at least |N1(v)| − |N1(u)| + 1 transitive triangles and
the base of at least |N1(v)| − |N1(u)| + 1 Seymour diamonds.

Proof. Since N1(v) \ (N1(u)∩ N1(v))⊆ N2(u), we have

|N2(u)| ≥ |N1(v)| − |N1(u)∩ N1(v)|.

But since M contains no satisfactory vertices, we have that |N2(u)|< |N1(u)|. By
transitivity, we obtain |N1(v)| − |N1(v) ∩ N1(u)| < |N1(u)|. It then follows that
|N1(v)|−|N1(u)|< |N1(v)∩N1(u)|, but |N1(v)∩N1(u)| is the number of transitive
triangles having base e, so we have proved the first half of the theorem.

To prove the second half of the theorem, we consider the following cases.
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Case 1. Suppose there exists a vertex u′ such that (u, u′), (u′, v) ∈ E(M). By part
(iii) of Theorem 4.1, we know that u must be connected to at least |N1(v)| − 1
elements of N1(v) via a path of length 1 or 2 avoiding e. But we see that u is
adjacent to at most |N1(u) − 2| nodes in N1(v). Subtracting, we see that u is
connected via a path of length 2 avoiding e to at least |N1(v)|−1−(|N1(u)|−2)=
(|N1(v)|− |N1(u)|)+1 nodes in N1(v); each of which yields a Seymour diamond
of which e is the base, which is the desired result.

Case 2. Suppose there is no such u′. Then again applying part (iii) of Theorem 4.1,
it must be that there exists a path of length 1 or 2 avoiding e to each node in N1(v).
But u is adjacent to at most |N1(u)|−1 of these nodes, and as before we count that
there is a path of length 2 avoiding e from u to at least |N1(v)| − (|N1(u)| − 1)=
|N1(v)|−|N1(u)|+1 nodes in |N1(v)|. Since each of these paths yields a Seymour
diamond with e as the base, we are done. �

Finally, we show that there is not some finite nonzero number of counterexam-
ples to the conjecture. That is, either the conjecture is true, or there are an infinite
number of (non-isomorphic) graphs that violate Conjecture 1.1. We provide a
constructive proof below.

Theorem 4.3. If Seymour’s second neighborhood conjecture is false, there are
infinitely many non-isomorphic strongly-connected counterexamples to Seymour’s
second neighborhood conjecture.

Proof. Suppose that Seymour’s second neighborhood conjecture is false, and sup-
pose that digraph D is any strongly-connected counterexample to Seymour’s sec-
ond neighborhood conjecture. (By Theorem 4.1(i) , such a D must exist.) Let H
be any digraph satisfying the condition As(v) ≥ 0 for all v ∈ V (H); that is, all
of H ’s vertices have nonnegative antisatisfaction. Note that any dicycle satisfies
the relevant condition, and hence there exists a choice of H on any number n of
vertices, n ≥ 3.

We now construct a graph D′ on |V (D)| · |V (H)| vertices such that D′ is a
counterexample to Seymour’s second neighborhood conjecture, thus proving our
theorem. We define our graph D′ as follows:

(i) V (D′)= V (D)× V (H).

(ii) If u = (d1, h1), v= (d2, h2)∈ V (D′), then (u, v)∈ E(D′) if and only if either

(a) d1 = d2 and (h1, h2) ∈ E(H), or
(b) d1 6= d2 and (d1, d2) ∈ E(D).

For any vertex v = (d, h) ∈ V (D′), we calculate that

|N1,D′(v)| = |N1,H (h)| + |V (H)| · |N1,D(d)|,
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since the neighborhood is equivalent to the set of vertices reachable by stepping in
H , holding d constant, or stepping in D and allowing h to be arbitrary.

Similarly, we have

|N2,D′(v)| = |N2,H (h)| + |V (H)| · |N2,D(d)|,

since we may consider walking two steps in H or two steps in D. Note that taking
one step in H and one step in D or one step in D and then one in H will result in
reaching a vertex that is in N1,D′(v), and hence this is not an overcount.

We then calculate that

As,D′(v) = |N1,D′(v)| − |N2,D′(v)|

= (|N1,H (h)| − |N2,H (h)|)+ |V (H)|(|N1,D(d)| − |N2,D(d)|).

But by our choice of H , we have |N1,H (h)| − |N2,H (h)| ≥ 0, and by our choice
of D we have |N1,D(d)| − |N2,D(d)| > 0. Hence we obtain As,D′(v) > 0, thus
implying that every vertex in D′ has positive antisatisfaction.

Furthermore, D′ is strongly connected: fix (d1, h1), (d2, h2)∈V (D′). If d1 6=d2,
let d1, δ1, . . . , δi , d2 define a directed path in D from d1 to d2. Then

(d1, h1), (δ1, h2), . . . , (δi , h2), (d2, h2)

defines a directed path in D′ from (d1, h1) to (d2, h2). If d1= d2, let d3 ∈ N1,D(d1);
we know that (d1, h1), (d3, h2) are adjacent in D′, and since d2 6= d3 there is a path
from (d3, h2) to (d2, h2) in D′, the existence of a path from (d1, h1) to (d2, h2)

follows.
By definition, we then have that D′ is a strongly-connected counterexample to

Seymour’s second neighborhood conjecture. �

5. Conclusions and future directions

In total, this paper has been an exploration of Seymour’s second neighborhood
conjecture. We have neither proven nor disproved the conjecture, but instead
determined some classes of graphs that do satisfy the conjecture; we have also
described some properties of a family of minimal counterexamples. Moreover, we
have shown that the existence of one counterexample graph implies the existence
of infinitely many such graphs. Our work is intended as a stepping stone for further
analysis of Conjecture 1.1, which we hope will ultimately lead to its resolution.
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