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Yet another generalization of frames
and Riesz bases

Reza Joveini and Massoud Amini

(Communicated by David Larson)

A frame is a sequence of vectors in a Hilbert space satisfying certain inequalities
that make it valuable for signal processing and other purposes. There is a formula
giving the reconstruction of a signal (a vector in the space) from its sequence of
inner products (the Fourier coefficients) with the elements of the frame sequence.
A g-frame, or operator-valued frame, is a sequence of operators defined on a
countable ordered index set that has properties analogous to those of a frame
sequence.

We present a new approach to the matter of defining a Hilbert space frame,
indexed by an ordered set, when the set is a measure space which is not necessar-
ily purely atomic. Continuous frames have been widely studied in the literature,
but the measure spaces they are associated with are not necessarily ordered in
any way. Our approach is to make the measure space a directed set, and then
replace the sequence of vectors (or operators) with a net indexed by the directed
set, obtaining a natural generalization of the usual notion of generalized frame.
We show that this definition makes sense mathematically, and proceed to obtain
generalizations of several of the standard results for frame and Bessel sequences,
and also Riesz bases, g-frames and operator-valued frames.

1. Introduction

Frames are generalizations of bases in a Hilbert space. They were introduced
and studied in [Duffin and Schaeffer 1952] and [Daubechies et al. 1986]. They
have been recently of special interest because of their applications in signal pro-
cessing. The interested reader is referred to [Christensen 2003; Daubechies 1992;
Feichtinger and Strohmer 1998; Gröchenig 2001; Han and Larson 2000; Heil and
Walnut 1989; Yong 1980] for theory and applications of frames. Throughout this
paper, U and V are two Hilbert spaces and {Vm : m ∈ M} is a net of subspaces of
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V , B(U, Vm) is the collection of all bounded linear operators from U into Vm and
(M, µ) is a measure space.

Definition 1.1. We call a net {3m ∈ B(U, Vm) : m ∈ M} a generalized frame or
simply a g-frame for U with respect to {Vm : m ∈ M} if

(a) for each f ∈U , there is a measurable function f̃ :M→ Vm such that f̃ (m)=
3m f , and

(b) there are positive constants A and B such that

A‖ f ‖2U ≤ ‖ f̃ ‖2L2
(M,Vm )
≤ B‖ f ‖2U ( f ∈U ). (1-1)

We call A and B the lower and upper frame bounds. We call {3m : m ∈ M}

(i) a tight g-frame if A = B;

(ii) an exact g-frame if it ceases to be a g-frame whenever any of its elements is
removed;

(iii) a g-frame for U whenever the net {Vm : m ∈ M} is clear from the context;

(iv) a g-frame for U with respect to V whenever Vm = V , for each m ∈ M .

Various generalizations of frames have been proposed [Aldroubi et al. 2004;
Asgari and Khosravi 2005; Casazza and Kutyniok 2004; Christensen and Eldar
2004; Feichtinger and Strohmer 1998; Fornasier 2003; Gröchenig 2001]. We take
as our starting point the generalization presented in [Sun 2006]. Our definition
above is just the definition of g-frames in [Sun 2006] when the measure space
M is countable, µ is the counting measure and Vm = C for m ∈ M . The case
when M is not countable could be of interest when one deals with nonseparable
Hilbert spaces (such as Hilbert space completions of the space of almost periodic
functions). Thus our present work can be regarded as a nonseparable version of
[Sun 2006]. For instance Examples 3.4 and 3.5 in that reference are outside the
scope of Sun’s definition when the Hilbert space has no countable Riesz basis, but
they fit in our framework.

2. g-frame operators and dual g-frames

Let {3m : m ∈ M} be a g-frame for U with respect to {Vm : m ∈ M}. Define the
g-frame operator S by

S f =
∫

M
3∗m3m f dµ(m), (2-1)

where 3∗ is the adjoint operator of 3.
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Lemma 2.1. Let (�,µ) be a measure space, X and Y are two Banach spaces,
λ : X→ Y be a bounded linear operator and f :�→ X be a measurable function.
Then

λ
(∫

�

f dµ
)
=

∫
�

(λ f ) dµ.

Next we want to show S is self-adjoint operator. For any f1, f2 ∈U we have

〈S f1, f2〉 =

〈∫
M
3∗m3m f1 dµ(m), f2

〉
=

∫
M
〈3∗m3m f1, f2〉 dµ(m)

=

∫
M
〈 f1,3

∗

m3m f2〉 dµ(m)=
〈

f1,

∫
M
3∗m3m f2 dµ(m)

〉
= 〈 f1, S f2〉.

Moreover, S is a bounded operator because

‖S‖ = sup
‖ f ‖=1
‖S f ‖ = sup

‖ f ‖=1

∥∥∥∫
M
3∗m3m f dµ(m)

∥∥∥≤ sup
‖ f ‖=1

(∫
M
‖3∗m3m f ‖ dµ(m)

)
= sup
‖ f ‖=1

∫
M

(
〈3m f,3m f 〉

)1/2 dµ(m)= sup
‖ f ‖=1

∫
M
‖ f̃ (m)‖ dµ(m)≤ B.

Since A‖ f ‖2 ≤ 〈S f, f 〉 ≤ ‖S f ‖ ‖ f ‖, we have

‖S f ‖ ≥ A‖ f ‖,

which implies that S is injective and SU is closed in U . Let f2 ∈ U be such that
〈 f1, S f2〉 = 0, for each f1 ∈ U . This implies that S f2 = 0 and therefore f2 = 0.
Hence SU =U . Consequently S is invertible and ‖S−1

‖ ≤
1
A . For any f ∈U we

have

f = SS−1 f = S−1S f =
∫

M
3∗m3m S−1 f dµ(m)=

∫
M

S−13∗m3m f dµ(m).

Let 3̃m =3m S−1. Then the above equalities become

f =
∫

M
3∗m3̃m f dµ(m)=

∫
M
3̃∗m3m f dµ(m). (2-2)

We now prove that {3̃m : m ∈ M} is also a g-frame for U with respect to the set
{Vm : m ∈ M}; in fact for any f ∈U we have∫

M
‖3̃m f ‖2 dµ=

∫
M
‖3m S−1 f ‖2 dµ=

∫
m
〈3m S−1 f,3m S−1 f 〉 dµ

=

∫
M
〈3∗m3m S−1 f, S−1 f 〉 dµ

= 〈SS−1 f, S−1 f 〉 = 〈 f, S−1 f 〉 ≤
1
A
‖ f ‖2.



400 REZA JOVEINI AND MASSOUD AMINI

On the other hand, since

‖ f ‖2 =
∫

M
〈3̃∗m3m f, f 〉 dµ=

∫
M
〈3m f, 3̃m f 〉 dµ

≤

(∫
M
‖3m f ‖2 dµ

)1/2(∫
M
‖3̃m f ‖2d µ

)1/2
≤ B1/2

‖ f ‖
(∫

M
‖3̃m f ‖2 dµ

)1/2
,

we have ∫
M
‖3̃m f ‖2dµ≥

1
B
‖ f ‖2.

Hence, {3̃m : m ∈ M} is a g-frame for U with frame bounds A−1 and B−1. We
call it the (canonical) dual g-frame of {Vm : m ∈ M}.

Let S̃ be the g-frame operator associated with {3̃m :m ∈ M}. Then, for f ∈U ,

SS̃ f =
∫

M
S3̃∗m3̃m f dµ=

∫
M

SS−13∗m3m S−1 f dµ

=

∫
M
3∗m3m S−1 f dµ= SS−1 f = f.

Hence S̃ = S−1 and 3̃m S̃−1
=3m S−1S =3m . In other words, {3m :m ∈ M} and

{3̃m : m ∈ M} are dual g-frames with respect to each other.

Remark 2.2. We can always get a tight g-frame from any g-frame {3m :m ∈ M}.
In fact if we put {Qm = 3m S1/2

: m ∈ M}, it is easy to check that {Qm : m ∈ M}
is a tight g-frame with the frame bound 1.

Lemma 2.3. Let {3m : m ∈ M} be a g-frame for U with respect to {Vm : m ∈ M}
and 3̃m =3m S−1. For any gm ∈ Vm satisfying f =

∫
M 3

∗
m gmdµ, we have∫

M
‖gm‖

2dµ=
∫

M
‖3̃m f ‖2dµ+

∫
M
‖gm − 3̃m f ‖2dµ.

Proof. It is easy to check that for every f ∈U ,∫
M
‖3̃m f ‖2 dµ=

∫
M
〈3̃m f,3m S−1 f 〉 dµ=

∫
M
〈3∗m3̃m f, S−1 f 〉 dµ

=

∫
M
〈3∗m gm, S−1 f 〉 dµ=

∫
M
〈gm,3m S−1 f 〉 dµ

=

∫
M
〈gm, 3̃m f 〉 dµ,

and the conclusion follows. �

3. Generalized Bessel nets, Riesz bases and orthonormal bases

Similar to generalized frames, we can define generalized Bessel nets, Riesz bases,
and orthonormal bases.



YET ANOTHER GENERALIZATION OF FRAMES AND RIESZ BASES 401

Definition 3.1. Let 3m ∈B(U, Vm), for m ∈ M .

(i) If the right hand inequality of (1-1) holds, then we say that {3m : m ∈ M} is
a g-Bessel net for U with respect to {Vm : m ∈ M}.

(ii) If { f :3m f = 0 (m ∈M)}= {0} then we say that {3m :m ∈M} is g-complete.

(iii) If {3m : m ∈ M} is g-complete and there are two positive constant A and
B such that for any measurable subset M1 ⊂ M of finite measure, and gm ∈

Vm,m ∈ M1,

A
∫

M1

‖gm‖
2 dµ≤

∥∥∥∫
M1

3∗m dµ
∥∥∥2
≤ B

∫
M1

‖gm‖
2 dµ,

then we say {3m : m ∈ M} is a g-Riesz bases for U with respect to the set
{Vm : m ∈ M}.

(iv) We say {3m : m ∈ M} is a g-orthonormal basis for U with respect to the set
{Vm : m ∈ M} if it satisfies the following equalities:

〈3∗m1
gm1,3

∗
m2

gm2〉=δm1m2〈gm1, gm2〉 (m1,m2∈M, gm1 ∈Vm1, gm2 ∈Vm2) (3-1)∫
M
‖3m f ‖2 dµ(m)= ‖ f 2

‖, ( f ∈U ). (3-2)

Characterization of g-frames, g-Riesz bases and g-orthonormal bases. Consider
3m ∈B(U, Vm); we do not have other assumptions on3m at the moment. Suppose
that {em,n, n ∈ Nm} is an orthonormal basis for Vm , where Nm is an index set of
arbitrary cardinality. Then

f 7→ 〈3m f, em,n〉

defines a bounded linear functional on U , so we can find um,n ∈U such that

〈 f, um,n〉 = 〈3m f, em,n〉; (3-3)

hence
3m f =

∑
n∈Nm

〈 f, um,n〉em,n. (3-4)

Since
∑

n∈Nm
|〈 f, um,n〉|

2
= ‖3m f ‖2 ≤ ‖3m‖

2
‖ f ‖2, the family {um,n : n ∈ Nm} is

a Bessel net for U , and it follows that for any f ∈U and g ∈ Vm ,

〈 f,3∗m g〉 = 〈3m f, g〉 =
∑

n∈Nm

〈 f, um,n〉〈em,n, g〉 =
〈

f,
∑

n∈Nm

〈g, em,n〉um,n

〉
.

Hence
3∗m g =

∑
n∈Nm

〈g, em,n〉um,n (g ∈ Vm). (3-5)

In particular,
um,n =3

∗

mem,n (m ∈ M, n ∈ Nm). (3-6)
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We call {um,n : m ∈ M, n ∈ Nm} the net induced by {3m : m ∈ M} with respect
to {em,n : n ∈ Nm,m ∈ M}. With these representations for 3∗m and 3m , we get
characterizations of generalized frames, Riesz bases and orthonormal bases.

Theorem 3.2. Let 3m ∈B(U, Vm) and um,n be defined as in (3-3).

(i) {3m :m ∈M} is a g-frame (alternatively a g-Bessel net, tight g-frame, g-Riesz
basis, or g-orthonormal basis) for U if and only if {um,n : m ∈ M, n ∈ Nm} is
a frame (Bessel net, tight frame, Riesz basis, orthonormal basis) for U.

(ii) If {3m : m ∈ M} is a g-frame, then∑
m∈M

dim Vm ≥ dim U

and the equality holds whenever {3m : m ∈ M} is a g-Riesz basis.

(iii) The g-frame operator for {3m :m ∈ M} coincides with the frame operator for
{um,n : m ∈ M, n ∈ Nm}.

(iv) {3m : m ∈ M} and {3̃m : m ∈ M} are a pair of (canonical) dual g-frames if
and only if the induced net are a pair of (canonical) dual frames.

Proof. (i) We see from (3-4) that∫
M
‖3m f ‖2 dµ(m)=

∫
M

∑
n∈Nm

|〈 f, um,n〉|
2 dµ(m), ( f ∈U ).

Hence {3m :m ∈ M} is a g-frame (respectively g-Bessel net, tight-frame) for U if
and only if {um,n :m ∈M, n ∈ Nm} is a frame (respectively Bessel net, tight frame)
for U .

Next assume that {3m :m ∈ M} is a g-Riesz bases for U . Since {em,n : n ∈ Nm}

is an orthonormal basis for Vm , every gm ∈ Vm has an expansion of the form gm =∑
n∈Nm

cm,nem,n , where {cm,n : n ∈ Nm} ∈ l2(Nm). It follows that

A
∫

M1

‖gm‖
2 dµ≤ ‖

∫
M1

3∗m gm dµ‖2 ≤ B
∫

M1

‖gm‖
2 dµ

is equivalent to

A
∫

M1

(∑
n∈Nm

|cm,n|
2
)

dµ≤
∥∥∥∫

M1

(∑
n∈Nm

cm,num,n

)
dµ
∥∥∥2
≤ B

∫
M1

(∑
n∈Nm

|cm,n|
2
)

dµ.

On the other hand, we see from 3m f =
∑

n∈Nm
〈 f, um,n〉em,n that{

f :3m f = 0 (m ∈ M)
}
=
{

f : 〈 f, um,n〉 = 0 (m ∈ M, n ∈ Nm)
}
.

Hence {3m :m∈M} is g-complete if and only if {um,n :m∈M, n∈Nm} is complete.
Therefor {3m :m ∈ M} is a g-Riesz basis if and only if {um,n :m ∈ M, n ∈ Nm} is
a Riesz basis.
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Now assume that {3m :m ∈ M} is a g-orthonormal basis. It follows from (3-1)
and (3-3) that

〈um1,n1,um2,n2〉 = 〈3m2um1,n1, em2,n2〉 = 〈3
∗
m2

em2,n2, um1,n1〉

= 〈3m13
∗
m2

em2,n2,em1,n1〉 = 〈3
∗

m1
em1,n1,3

∗

m2
em2,n2〉 = δm1,m2δn1,n2

for m1,m2 ∈ M , n1 ∈ Nm1 , n2 ∈ Nm2 . Hence {um,n,m ∈ M, n ∈ Nm} is an or-
thonormal net. Moreover, observe that

‖ f ‖2 =
∫

M
‖3m f ‖2 dµ=

∫
M

(∑
n∈Nm

|〈 f, um,n〉|

)
dµ ( f ∈U ).

Therefore {um,n : m ∈ M, n ∈ Nm} is an orthonormal basis.
For the converse, we need only to show that (3-2) holds. In fact, we see from

(3-5) that for any m1 6= m2 ∈ M , gm1 ∈ Vm1 , gm2 ∈ Vm2 ,

〈3∗m1
gm1,3

∗

m2
gm2〉 =

〈 ∑
n1∈Nm1

〈gm1, em1,n1〉um1,n1,
∑

n2∈Nm2

〈gm2, em2,n2〉um2,n2

〉
= 0,

and for m ∈ M , g1, g2 ∈ Vm ,

〈3∗m g1,3
∗

m g2〉 =

〈 ∑
n1∈Nm

〈g1, em,n1〉um,n1,
∑

n2∈Nm

〈g2, em,n2〉um,n2

〉
= 〈g1, g2〉.

Now the conclusion follows.

(ii) Since the cardinality of a frame is no less than that of the basis, we have
#{um,n : m ∈ M, n ∈ Nm} ≥ dim U . Moreover, we see from (i) that the equality
holds whenever {3m : m ∈ M} is a g-Riesz basis.

(iii) We see from (3-4) and (3-5) that, for f ∈U ,∫
M
3∗m3m f dµ=

∫
M

(∑
n∈Nm

〈3m f, em,n〉um,n

)
dµ

=

∫
M

(∑
n∈Nm

〈 ∑
n′∈Nm

〈 f, um,n′〉em,n′, em,n

〉
um,n

)
dµ

=

∫
M

(∑
n∈Nm

〈 f, um,n〉um,n

)
dµ

Hence the g-frame operator for {3m : m ∈ M} coincides with the frame operator
for {um,n : m ∈ M, n ∈ Nm}.

(iv) This is the content of (i) and (iii). �
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Corollary 3.3. {3m :m ∈ M} is a g-Bessel net with an upper bound B if and only
if for any measurable subset M1 ⊂ M of finite measure,∥∥∥∫

M1

3∗m dµ
∥∥∥2
≤ B

∫
M1

‖gm‖
2 dµ.

Corollary 3.4. A g-Riesz basis {3m : m ∈ M} is an exact g-frame. Moreover, it is
g-biorthonormal with respect to its dual {3̃m : m ∈ M} in the sense that

〈3∗m1
gm1,3

∗

m2
gm2〉 = δm1,m2〈gm1, gm2〉 (m1,m2 ∈ M, gm1 ∈ Vm1, gm2 ∈ Vm2).

Corollary 3.5. A net {3m :m ∈ M} is a g-Riesz basis for U with respect to the set
{Vm : m ∈ M} if and only if there is a g-orthonormal basis {Qm : m ∈ M} for U
and a bounded invertible linear operator T on U such that 3m = Qm T , m ∈ M.

Proof. Let {em,n : n ∈ Nm} be an orthonormal basis for Vm , m ∈ M . First, we
assume that {3m : m ∈ M} is a g-Riesz basis for U . By Theorem 3.2, we can find
some Riesz basis {um,n : m ∈ M, n ∈ Nm} for U such that

3m f =
∑

n∈Nm

〈 f, um,n〉em,n.

Take an orthonormal basis {u0
m,n} for U and define the operator T on U by

T ∗u0
m,n = um,n.

Obviously, T is a bounded invertible operator. Let Qm ∈ B(U, Vm) be such that
Qm f =

∑
n∈Nm
〈 f, u0

m,n〉em,n . Again by Theorem 3.2, {Qm : m ∈ M} is a g-
orthonormal basis for any f ∈U , and

Qm T f =
∑

n∈Nm

〈T f, u0
m,n〉em,n =

∑
n∈Nm

〈 f, T ∗u0
m,n〉em,n

=

∑
n∈Nm

〈T f, um,n〉em,n =3m f.

Hence 3m = Qm T , for each m ∈ M .
Next we assume that {Qm : m ∈ M} is a g-orthonormal basis and 3m = Qm T

for some bounded invertible operator T . Then {3m : m ∈ M} is g-complete in
U and we can find orthonormal basis {u0

m,n : m ∈ M, n ∈ Nm} for U such that
Qm f =

∑
n∈Nm
〈 f, u0

m,n〉em,n . Hence

3m f =
∑

n∈Nm

〈T f, u0
m,n〉em,n =

∑
n∈Nm

〈 f, T ∗u0
m,n〉em,n,

and we see from Theorem 3.2 that {3m : m ∈ M} is a g-Riesz basis. �
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Excess of g-frames. By Theorem 3.2, g-frames, g-Riesz basis and g-orthonormal
bases have properties similar to those of frame, Riesz bases and orthonormal bases,
respectively. However, not all the properties are similar. For example, Riesz bases
are equivalent to exact frames, but this is not the case for g-Riesz bases and exact
g-frames.

In fact, we see from Theorem 3.2 that a g-Riesz basis is also a g-frame, while
the converse is not true. This is not surprising, since one element of a g-frame
might correspond to several elements of the induced frame.

A natural problem arises: given a measurable subset M1 ⊂ M with µ(M1) > 0,
when is {3m : m ∈ M −M1} a g-frame?

Theorem 3.6. Let {3m :m ∈ M} be a g-frame for U with respect to {Vm :m ∈ M}
and {3̃m : m ∈ M} be the canonical dual g-frame. Suppose that M1 ⊂ M and
µ(M1) > 0.

(i) If there is some g0 ∈ Vm′ − {0} such that 3̃m′3
∗

m′g0 = g0, for any m′ ∈ M1,
then {3m : m ∈ M −M1} is not g-complete in U.

(ii) If there is some f0 ∈U −{0} such that3∗m′3̃m′ f0 = f0, for any m′ ∈ M1, then
{3m : m ∈ M −M1} is not g-complete in U.

(iii) If I −3∗m′3̃
∗

m′ or I − 3̃m′3
∗

m′ is bounded invertible on Vm′ , for any m′ ∈ M1,
then {3m : m ∈ M −M} is a g-frame for U.

Proof. (i) Since 3∗m′g0 ∈U , we have from (2-2)

3∗m′g0 =

∫
M
3∗m3̃m3

∗

m′g0 dµ.

Put vm′,m = δm′,m g0. We have

3∗m′g0 =

∫
M
3∗mvm′,m dµ.

It follows from Lemma 2.3 that∫
M
‖vm0,m‖

2 dµ=
∫

M
‖3̃m3

∗

m0
g0‖

2 dµ+
∫

M
‖3̃m3

∗

m0
g0− vm0,m‖

2,

and so

‖g0‖
2
= ‖g0‖

2
+ 2

∫
M−M1

‖3̃m3
∗

m′g0‖
2 dµ.

Hence 3̃m3
∗

m′g0 = 0, for each m′ ∈ M1 and almost all m ∈ M −M1. This means
that 3m3̃

∗

m′g0 = 3m S−13∗m′g0 = 3̃m3
∗

m′g0 = 0, for almost all m 6= m′. But
〈3∗m′g0, 3̃

∗

m′g0〉 = 〈3̃m′3
∗

m′g0, g0〉 = ‖g0‖
2 > 0, which implies that 3̃∗m′g0 6= 0.

Hence {3m : m ∈ M −M1} is not g-complete in U .
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(ii) Since 3∗m′3̃m′ f0 = f0 6= 0, we have 3̃m′ f0 6= 0 and 3̃m′3
∗

m′ f0 = 3̃m′ f0. Now
the conclusion follows from (i).

(iii) Since 3̃m = 3m S−1 where S is the g-frame operator for {3m : m ∈ M}, we
have

I −3m′3̃m′ = I −3m′S−13̃∗m′ = I − 3̃m′3
∗

m′ .

Let A and B be the lower and upper frame bounds for {3m : m ∈ M}. For any
f ∈U , we have

f =
∫

M
3̃∗m3m f dµ.

Hence, for each m′ ∈ M1,

3m′ f =
∫

M
3m′3̃

∗

m3m f dµ.

Therefore

(I −3m′3̃
∗

m′)3m′ f =
∫

M−M1

3m′3̃
∗

m3m f dµ. (3-7)

Note that∥∥∥∫
M−M1

3m′3̃
∗

m3m f dµ
∥∥∥2
= sup

g∈Vm′,‖g‖=1

∣∣∣〈∫
M−M1

3m′3̃
∗

m3m f dµ, g
〉∣∣∣2

= sup
‖g‖=1

∣∣∣∫
M−M1

〈3m f, 3̃m3
∗

m′g〉 dµ
∣∣∣2

≤

∫
M−M1

‖3m f ‖2 dµ sup
‖g‖=1

∫
M
‖3̃m3

∗

m′g‖
2 dµ

≤
1
A
‖3m′‖

2
∫

M−M1

‖3m f ‖2 dµ.

We see from (3-7) that

‖3m′ f ‖2 ≤ ‖(I −3m′3̃
∗

m′)
−1
‖

1
A
‖3m′‖

2
∫

M−M1

‖3m f ‖2 dµ (m′ ∈ M1).

Hence ∫
M
‖3m f ‖2 dµ≤ C

∫
M−M1

‖3m f ‖2 dµ.

Therefore, for f ∈U ,

A
C
‖ f ‖2 ≤

∫
M−M1

‖3m f ‖2 dµ≤ B‖ f ‖2.

This completes the proof. �
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4. Applications of g-frames

Atomic resolution of bounded linear operators. Here we give an application of
g-frames. Let {3m : m ∈ M} be a g-frame for U with respect to {Vm : m ∈ M}.
Suppose that {3̃m : m ∈ M} is the canonical dual g-frame. Then for any f ∈ U ,
we have f =

∫
M 3

∗
m3̃m f dµ=

∫
M 3̃

∗
m3m f dµ. It follows that

IU =

∫
M
3∗m3̃m dµ=

∫
M
3̃∗m3m dµ. (4-1)

Let T be a bounded linear operator on U . We see from (4-1) that

T =
∫

M
T3∗m3̃m dµ=

∫
M

T 3̃∗m3m dµ=
∫

M
3∗m3̃m T dµ=

∫
M
3̃∗m3m T dµ. (4-2)

Construction of frames via g-frames. Let {3m :m ∈ M} be a g-frame for U with
respect to {Vm : m ∈ M}. We see from Theorem 3.2 that

{um,n : m ∈ M, n ∈ Nm} = {3
∗

mem,n : m ∈ M, n ∈ Nm}

is a frame for U , where {em,n : n ∈ Nm} is an orthonormal basis for Vm . However,
it might be difficult to find an orthonormal basis for Vm in practice. Fortunately,
orthonormality is not necessary to get a frame. In fact:

Theorem 4.1. Let {3m :m ∈ M} and {3̃m :m ∈ M} be a pair of dual g-frames for
U with respect to {Vm : m ∈ M}, and {gm,n : n ∈ Nm} and {g̃m,n : n ∈ Nm} be the
corresponding pair of dual frames for Vm , respectively. Then

{3∗m gm,n : m ∈ M, n ∈ Nm} and {3̃m g̃m,n : m ∈ M, n ∈ Nm}

are a pair of dual frames for U , provided that the frame bounds for {gm,n : n ∈ Nm}

satisfy C1 ≤ Am ≤ Bm ≤ C2, for some constants C1,C2 > 0.
Moreover, suppose that {3m : m ∈ M} and {3̃m : m ∈ M} are canonical dual

g-frames for U , {gm,n : n ∈ Nm} and {g̃m,n : n ∈ Nm} are canonical dual frames
for Vm , and {gm,n : n ∈ Nm} is a tight g-frame with frame bounds Am = Bm = A,
m ∈ M. Then {3∗m gm,n : m ∈ M, n ∈ Nm} and {3̃∗m g̃m,n : m ∈ M, n ∈ Nm} are
canonical dual frames for U.

Proof. Note that 〈 f,3∗m gm,n〉 = 〈3m f, gm,n〉. It is easy to see that {3∗m gm,n :

m ∈ M, n ∈ Nm} and {3̃∗m g̃m,n : m ∈ M, n ∈ Nm} are frames for U . On the other
hand, for any f ∈U , we have∫

M

(∑
n∈Nm

〈 f,3∗m gm,n〉3̃
∗

m g̃m,n

)
dµ=

∫
M
3̃∗m

∑
n∈Nm

〈3m f, gm,n〉g̃m,n dµ

=

∫
M
3̃∗m3m f = f.
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Similarly we can get ∫
M

(∑
n∈Nm

〈 f, 3̃∗m g̃m,n〉3
∗

m gm,n

)
dµ= f.

Hence {3∗m gm,n :m ∈ M, n ∈ Nm} and {3̃∗m g̃m,n :m ∈ M, n ∈ Nm} are dual frames
for U .

Next we assume that {3m : m ∈ M} and {3̃m : m ∈ M} are canonical dual g-
frames and {gm,n : n ∈ Nm} is a tight frame with frames bounds Am = Bm = A.
Then g̃m,n = A−1gm,n . Let S3 and S3,g be the frame operators associated with
{3m : m ∈ M} and {3∗m gm,n : m ∈ M, n ∈ Nm}, respectively. Then, for f ∈U ,

S3,g f =
∫

M

(∑
n∈Nm

〈 f,3∗m gm,n〉3
∗

m gm,n

)
dµ

=

∫
M

(
3∗m

∑
n∈Nm

〈3m f, gm,n〉gm,n

)
dµ= A

∫
M
3∗m3m f dµ= AS3 f.

Hence

S−1
3,g3

∗

m gm,n =
1
A

S−1
3 3∗m gm,n =3

∗

m g̃m,n (m ∈ M, n ∈ Nm).

This completes the proof. �
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