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A complete classification of Zp-sequences
corresponding to a polynomial

Leonard Huang

(Communicated by Andrew Granville)

Let p be a prime number and set Zp = Z/pZ. A Zp-sequence is a function
S : Z→ Zp. Let R be the set {P ∈ R[X ] | P(Z) ⊆ Z}. We prove that the set
of sequences of the form (P(n) (mod p))n∈Z, where P ∈ R, is precisely the set
of periodic Zp-sequences with period equal to a p-power. Given a Zp-sequence,
we will also determine all P ∈ R that correspond to the sequence according to
the manner above.

1. Preliminaries

Let N= {1, 2, 3, . . .} and N0 = {0, 1, 2, . . .}.

Definition 1. Define the sequence (Pi )i∈N0 of polynomials in R[X ] as follows:

P0 = 1 and for all i ∈ N : Pi =

(X
i

)
=

∏i−1
j=0(X − j)

i !
.

Lemma 2 [Niven et al. 1991, pp. 42–43, Problems 11, 14, 15]. We have

R=
{ m∑

i=0

ci Pi | m ∈ N0, c0, . . . , cm ∈ Z
}
.

Proof. Clearly, R ⊇
{∑m

i=0 ci Pi |m ∈ N0, c0, . . . , cm ∈ Z
}
, so we only need to

prove the reverse inclusion.
Let P ∈R have degree m. If the system of equations

P( j)=
m∑

i=0

ci Pi ( j), j = 0, . . . ,m, (1)

MSC2000: 11B83.
Keywords: Zp-sequences, polynomials, free abelian group.

411



412 LEONARD HUANG

in the unknowns c0, . . . , cm has a solution (c0, . . . , cm)∈Zm+1, then P=
∑m

i=0 ci Pi

because P and
∑m

i=0 ci Pi are polynomials of degree at most m that agree at the
m+ 1 points 0, . . . ,m. However, (1) is equivalent to the system

c j = P( j)−
j−1∑
i=0

( j
i

)
ci , j = 0, . . . ,m,

which clearly has a unique solution (c0, . . . , cm) ∈ Zm+1. �

Lemma 3. Let p be a prime number. For every k ∈ N,(
pk

0

)
≡ 1 (mod p) and for all i ∈ {1, . . . , pk

− 1} :
(

pk

i

)
≡ 0 (mod p).

Proof. The first identity is clearly true. When i ∈ {1, . . . , pk
− 1}, we have

pk

i
=

(
pk

i

)
(

pk
−1

i−1

) .
Write i as plm, where l ∈ N0 and m is a positive integer not divisible by p. From
the equation

pk−l

m
=

pk

i
=

(
pk

i

)
(

pk
−1

i−1

) ,
we immediately obtain

pk−l
(

pk
−1

i−1

)
= m

(
pk

i

)
.

Since i < pk , we have k − l ≥ 1. Thus p divides m
(

pk

i

)
, and since it does not

divide m, it must divide
(

pk

i

)
. This proves that(

pk

i

)
≡ 0 (mod p).

As i ∈ {1, . . . , pk
− 1} was arbitrary, Lemma 3 is true. �

Lemma 4. Let p be a prime number. Then, for every n ∈ Z, k ∈ N0 and i ∈
{0, . . . , pk

− 1}, (
n+ pk

i

)
≡

(n
i

)
(mod p). (2)

Proof. Let k ∈ N0. Define a well-ordering ≺ on {0, . . . , pk
− 1} ×N0 by setting

(i, n) ≺ (i ′, n′) if either (i) i < i ′, or (ii) i = i ′ and n < n′. By the principle of
induction, it suffices to prove the following statements:
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(A) For every i ∈ {0, . . . , pk
− 1},(
0+ pk

i

)
≡

(0
i

)
(mod p).

(B) Given (i∗, n∗) ∈ {0, . . . , pk
− 1}×N0, if

for every (i, n)� (i∗, n∗) :
(

n+ pk

i

)
≡

(n
i

)
(mod p), (3)

and

for every (i, n)� (i∗, n∗) :
(
−n+ pk

i

)
≡

(
−n
i

)
(mod p), (4)

then, respectively, (
n∗+1+ pk

i∗
)
≡

(n∗+1
i∗

)
(mod p) (5)

and (
−(n∗+1)+ pk

i∗
)
≡

(
−(n∗+1)

i∗
)
(mod p). (6)

Statement (A) holds by Lemma 3. For Statement (B), we consider two cases:
(i) i∗= 0 and (ii) i∗> 0. In Case (i), (B) is vacuously true. In Case (ii), we deduce
(5) from (3) by applying Pascal’s Rule:(

n∗+1+ pk

i∗
)
=

(
n∗+ pk

i∗−1

)
+

(
n∗+ pk

i∗
)

(by Pascal’s Rule)

≡

( n∗
i∗−1

)
+

(n∗
i∗
)

(from (3))

≡

(n∗+1
i∗

)
(mod p) (by Pascal’s Rule again).

In a similar fashion, we deduce (6) from (4):(
−(n∗+1)+ pk

i∗
)
=

(
−n∗+ pk

i∗
)
−

(
−(n∗+1)+ pk

i∗−1

)
≡

(
−n∗
i∗
)
−

(
−(n∗+1)

i∗−1

)
≡

(
−(n∗+1)

i∗
)
(mod p).

Therefore (B) is true in Case (ii). Since k ∈N0 was arbitrary, Lemma 4 is true. �

Corollary 5. For every i ∈ N0, the sequence
((n

i

)
(mod p)

)
n∈Z is periodic with

period equal to a p-power.

Proof. Choose k ∈ N0 such that i < pk . By Lemma 4,
(

n+ pk

i

)
≡

(n
i

)
(mod p)

for every n ∈ Z. This clearly implies the claim. �

Corollary 6. For every P ∈ R, the sequence (P(n) (mod p))n∈Z is periodic with
period equal to a p-power.
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Proof. Let P ∈R. By Lemma 2, there exist m ∈ N0 and c0, . . . , cm ∈ Z such that
P =

∑m
i=0 ci Pi . Then,

(P(n) (mod p))n∈Z =

( m∑
i=0

ci Pi (n) (mod p)
)

n∈Z

.

By Corollary 5, each (Pi (n) (mod p))n∈Z is periodic with period equal to a p-
power. We conclude that (P(n) (mod p))n∈Z is also periodic with period equal to
a p-power. �

2. Main results

Theorem 7. Let pR be the subset of R obtained by multiplying every P ∈ R by
p. A polynomial P ∈ R lies in pR if and only if p divides P(n) for all n ∈ Z; in
symbols,

pR=
{

P ∈R | (P(n) (mod p))n∈Z = (0)n∈Z

}
.

Proof. It is clear that every polynomial in pR corresponds to (0)n∈Z, so let us
suppose that P ∈R satisfies

(P(n) (mod p))n∈Z = (0)n∈Z.

Then, by Lemma 2, there exist m ∈N0 and c0, . . . , cm ∈Z such that P=
∑m

i=0 ci Pi .
We claim that c0, . . . , cm ≡ 0 (mod p).

To prove the claim, we use mathematical induction. By our hypothesis,

P(0)=
m∑

i=0

ci Pi (0)= c0 ≡ 0 (mod p).

Hence, the claim is true for c0. Next, suppose that k ∈N0 and that the claim is true
for c j for every j ≤ k. If j = m, we are done. If j < m, then

P( j + 1)=
m∑

i=0

ci Pi ( j + 1)≡ c j+1 ≡ 0 (mod p).

Hence, the claim is true for c j+1 as well. By induction, the claim is true for all
c0, . . . , cm . This shows that P ∈ pR. �

Theorem 8. The set of sequences of the form (P(n) (mod p))n∈Z, where P ∈R, is
precisely the set of periodic Zp-sequences with period equal to a p-power.

Proof. By virtue of Corollary 6, we only have to prove that every periodic Zp-
sequence with period equal to a p-power corresponds to some P ∈R.
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Let k ∈ N0. Define A to be the set

{pk
−1∑

i=0

ci Pi
∣∣ c1, . . . , cpk−1 ∈ {0, . . . , p− 1}

}
,

and B to be set of all periodic Zp-sequences with period equal to pl , where 0≤ l≤k.
By Lemma 4 and Theorem 7, every polynomial in A corresponds to a unique
sequence in B. Since |A| = |B| = p pk

, the correspondence is actually one-to-one.
Therefore, every periodic Zp-sequence with period pk corresponds to a unique
polynomial of the form

pk
−1∑

i=0

ci Pi ,

where c1, . . . , cpk−1 ∈ {0, . . . , p−1}. Since k was arbitrary, Theorem 8 is proven.
The theorem, however, would not be of much use unless the coefficients ci can

be determined. Hence, let S be a periodic Zp-sequence with period pk , where
k ∈ N0. By the first part, there exist c1, . . . , cpk−1 ∈ {0, . . . , p− 1} such that

S =
(pk
−1∑

i=0

ci Pi (n) (mod p)
)

n∈Z

.

From this identity, we obtain the equations

S( j)=
pk
−1∑

i=0

ci

( j
i

)
, j = 0, . . . , pk

− 1.

Some algebraic manipulation shows that the ci ’s satisfy

ci ≡

i∑
j=0

(−1) j
(i

j

)
S(i − j) (mod p), i = 0, . . . , pk

− 1. �

Corollary 9. Let S be a periodic Zp-sequence with period pk , where k ∈N0. Then,
the set of all P ∈R which correspond to S is

(pk
−1∑

i=0

ci Pi

)
+ pR,

where ci is the least positive residue of
i∑

j=0
(−1) j

(i
j

)
S(i − j) (mod p) for every

i = 0, . . . , pk
− 1.
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Proof. Let ci satisfy the hypothesis given in the corollary. By Theorem 8,

S−
(pk
−1∑

i=0

ci Pi (n) (mod p)
)

n∈Z

= (0)n∈Z.

The corollary now follows directly from Theorem 7. �

With both theorems and Corollary 9, we have a complete classification of Zp-
sequences corresponding to a polynomial. Let us now look at some examples.

3. Examples

Example 10. To determine whether or not a Zp-sequence corresponds to a poly-
nomial, simply investigate its periodicity. For example, the Z7-sequence

. . . , 4̂, 0, 6, 4, 0, 6, . . .

(thêmarks the zeroth element of the sequence) does not correspond to any poly-
nomial because, although periodic, it has period 3, which is not a power of 7.

Example 11. The Z3-sequence

. . . , 1̂, 0, 1, 2, 0, 1, 1, 0, 2, . . .

is periodic with period 9 = 32, so it corresponds to a polynomial. The proof of
Theorem 8 says that the sequence corresponds to(X

0

)
+ 2

(X
1

)
+ 2

(X
2

)
+

(X
3

)
+ 2

(X
4

)
+

(X
5

)
+

(X
6

)
+ 2

(X
7

)
+ 2

(X
8

)
.

4. Conclusion

We can add some algebraic flavor to the classification problem as follows. Let
S denote the set of periodic Zp-sequences with period equal to a p-power. It is
not difficult to see that S forms an abelian group under component-wise addition.
Notice also that R is a free abelian group generated by the set {Pi | i ∈ N0} and
that the mapping

φ :R→ S,

φ : P 7→ (P(n) (mod p))n∈Z

is a surjective group homomorphism. By the first isomorphism theorem for groups,
R/ ker(φ)∼=S. However, Theorem 7 says that ker(φ)= pR, so we obtain R/pR∼=
S. This elegant algebraic identity summarizes much of the effort invested in this
paper.

Theorem 8 may be generalized so as to obtain a complete classification of all
Zm-sequences corresponding to a polynomial for an arbitrary integer m ≥ 2. The
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first step to doing this is to consider the case when m is a prime-power. It would be
too good to be true for Lemma 4 to hold if we replace p in (2) by pa for arbitrary
a ∈ N, and indeed it is.1 We have the following counterexample:(

4+32

3

)
≡ 7 (mod 9) but

(4
3

)
≡ 4 (mod 9).

However, an analogous equation for prime-powers may be obtained from the fol-
lowing proposition (see Theorem 1 of [Granville 1997]):

Proposition 12. Let p be a prime number. For any positive integer a, define (a!)p

to be the product of those positive integers ≤ a which are not divisible by p. Let q ,
m, n and r be positive integers such that n=m+r . Write n in base p as

∑d
i=0 ni pi

and let N j be the least positive residue of [n/p j
] (mod pq) for each j ≥ 0 (so that

N j =
∑q−1

i=0 n j+i pi ). Also, make the corresponding definitions for m j , M j , r j and
R j . Let e j denote the number of ‘carries’, when adding m and r in base p, on and
beyond the j-th digit. Then,

(±1)eq−1

pe0

(n
m

)
≡

( d∏
j=0

(N j !)p

(M j !)p(R j !)p

)
(mod pq),

where (±1)=−1 except if p = 2 and q ≥ 3.

We will not attempt to generalize Theorem 8 in this paper because it would take
us too far afield.
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