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Newton’s law of heating and the heat equation
Mark Gockenbach and Kristin Schmidtke

(Communicated by Suzanne Lenhart)

Newton’s law of heating models the average temperature in an object by a simple
ordinary differential equation, while the heat equation is a partial differential
equation that models the temperature as a function of both space and time. A
series solution of the heat equation, in the case of a spherical body, shows that
Newton’s law gives an accurate approximation to the average temperature if the
body is not too large and it conducts heat much faster than it gains heat from the
surroundings. Finite element simulation confirms and extends the analysis.

1. Introduction

A popular application involving an elementary differential equation is Newton’s
law of heating, which describes the change in temperature in an object whose sur-
roundings are hotter than it is.1 If the temperature at time t is T (t), then Newton’s
law of heating is

T ′ = α(Ts − T ), T (0)= T0, (1)

where Ts and T0 are constants representing the temperature of the surroundings
and the initial temperature of the object, respectively.2 The differential equation
in (1) simply states that the rate of change of the temperature is proportional to
the difference between the temperatures of the surroundings and the object. The
solution of (1) is

T (t)= Ts − (Ts − T0)e−αt . (2)

MSC2000: 35K05.
Keywords: heat equation, Newton’s law of heating, finite elements, Bessel functions.

1If the surroundings are colder, then the differential equation is called Newton’s law of cooling.
For definiteness of language, we will usually assume that heating is occurring.

2We take T0 and Ts to be constants, as this agrees with the usual textbook presentation of New-
ton’s law of heating, which we wish to analyze in this paper. There is nothing that would prevent
us from allowing Ts to depend on time, or T0 to depend on space (so that T0(x, y, z) is the initial
temperature at the point (x, y, z) in the object). If T0 were variable, then we would use the average
value T 0 of T0 in the ordinary differential equation model (1) and the variable T0 itself in the partial
differential equation model presented below. Allowing nonconstant T0 and/or Ts would considerably
complicate the analysis in this paper.
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Newton’s law of heating is included in virtually every introductory textbook on
differential equations, such as [Boyce and DiPrima 1992; Zill 2005].

Newton’s law of heating assumes that the temperature of the object is repre-
sented by a single number. A more sophisticated model represents the object as
occupying a domain � in R3 and its temperature as a function u(x, y, z, t), where
(x, y, z) ∈�. The governing partial differential equation is the heat equation

ρc
∂u
∂t
= κ1u in �, t > 0. (3)

In this equation, 1u is the Laplacian of u:

1u =
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 .

The quantities ρ, c, and κ describe the material properties of the object; ρ is the
density, c is the specific heat, and κ is the thermal conductivity. Typically, κ is
given in J/s cm K, ρ in g/cm3, and c in J/g K. For a derivation of the heat equation,
the reader can consult introductory books on partial differential equations, such as
[Gockenbach 2002; Haberman 2004].

To obtain a complete description of u, we must model how � exchanges heat
energy with its surroundings. We adopt a model much like Newton’s law of heating:

κ
∂u
∂n
= α(Ts − u) on ∂�. (4)

This is called a Robin boundary condition; it states that the heat flux across the
boundary is proportional to the difference between Ts and the temperature on ∂�.
Although the form of the boundary condition is analogous to Newton’s law of
heating, there is no reason to expect that the constants α and α are the same;
indeed, since they have different units, it would be surprising if their numerical
values were the same.

The PDE (3) and the boundary condition (4), together with an initial condition,
form a well-posed problem that determines u uniquely. We assume that the ini-
tial temperature in � is constant and obtain the following initial boundary value
problem (IBVP):

ρc
∂u
∂t
− κ1u = 0 in �, t > 0,

u(x, y, z, 0)= T0 in �,

κ
∂u
∂n
+αu = αTs on ∂�, t > 0.

(5)

We now have two models to describe the temperature of the given object, namely,
Newton’s law of heating and the heat equation together with a Robin boundary
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condition. The simpler model (1) would be an adequate substitute for the more
complicated model (5) if T is close to the average temperature in � as predicted
by (5):

u =
1
|�|

∫
�

u. (6)

Before we can compare the solutions T and u, we must determine the relative
values of the constants α and α appearing in (1) and (5), respectively. Fortunately,
given α, the value of α is suggested by the following calculation:

du
dt
=

1
|�|

∫
�

∂u
∂t
=

1
ρc|�|

∫
�

ρc
∂u
∂t
=

1
ρc|�|

∫
�

κ1u

=
1

ρc|�|

∫
∂�

κ
∂u
∂n
=

1
ρc|�|

∫
∂�

α(Ts − u).

If we define ub = ub(t) to be the average value of u on ∂�,

ub =
1
|∂�|

∫
∂�

u,

then ∫
∂�

α(Ts − u)= α|∂�|(Ts − ub),

and we obtain

u′ =
α|∂�|

ρc|�|
(Ts − ub). (7)

We then see that u satisfies a differential equation similar to Newton’s law of heat-
ing, but with α replaced with

α =
|∂�|

ρc|�|
α. (8)

Of course, even with this value of α, (1) and (7) are not the same, since (7) shows
that the rate of change of u is determined not by u itself, but by ub. However, the
equations are similar enough that we might expect T to be a good approximation
to u.

The primary purpose of this paper is to compare the solutions of the heat equa-
tion (5) and Newton’s law of heating (1), where α is given by (8). We will use both
analytical and numerical methods; to make the analysis tractable and the numerics
simpler, we will assume that the object is spherical.
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2. Solution of the heat equation on a spherical domain

We will henceforth assume that � is the ball of radius R centered at the origin.
Since the initial value of u is a constant and the boundary conditions are con-
stant on ∂�, the solution to the IBVP (5) depends only on the radial variable
r =

√
x2+ y2+ z2. This follows from the fact that the Laplacian 1 is invariant

under any rotation of the coordinate system (for a nice discussion of this, the reader
can consult [Folland 1995, Section 2.A]). We can therefore write u = u(r, t), and
we recall that

1u =
∂2u
∂r2 +

2
r
∂u
∂r

(see, for example, [Haberman 2004]). The IBVP (5) can thus be rewritten as

ρc
∂u
∂t
− κ

(
∂2u
∂r2 +

2
r
∂u
∂r

)
= 0, 0< r < R, t > 0,

u(r, 0)= T0, 0< r < R,

κ
∂u
∂r
(R, t)+αu(R, t)= αTs, t > 0.

(9)

In addition to the equations explicitly listed above, there is the implicit requirement
that u be finite at r =0. We use the technique of shifting the data to transform (9) to
a problem with homogeneous boundary conditions. We define Y (r)= ar2, where
a is chosen so that Y satisfies the boundary condition κY ′(R)+αY (R)= αTs ,

a =
αTs

2κR+αR2 , (10)

and write u(r, t)=U (r, t)+ Y (r). Then U satisfies

ρc
∂U
∂t
− κ

(
∂2U
∂r2 +

2
r
∂U
∂r

)
= 6aκ, 0< r < R, t > 0,

U (r, 0)= T0− ar2, 0< r < R,

κ
∂U
∂r
(R, t)+αU (R, t)= 0, t > 0.

(11)

We can derive a solution to (11) by expanding U in terms of the eigenfunctions
of the spatial operator

L =−κ
(

d2

dr2 +
2
r

d
dr

)
,

where homogeneous Robin conditions are imposed on the eigenfunctions:

κv′(R)+αv(R)= 0. (12)
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We will now briefly derive these eigenfunctions and the corresponding eigenvalues.
First, using integration by parts, we can show that if v1, v2 satisfy (12), then∫ R

0
−κ

(
d2v1

dr2 +
2
r

dv1

dr

)
v2(r)r2 dr = αv1(R)v2(R)R2

+

∫ R

0
κ

dv1

dr
dv2

dr
r2 dr.

This shows that L is symmetric with respect to the inner product

〈v1, v2〉 =

∫ r

0
v1(r)v2(r)r2 dr,

that is, that 〈L(v1), v2〉 = 〈v1, L(v2)〉 for all v1, v2 satisfying the given boundary
conditions. The standard argument then shows that the eigenvalues of L are all real,
and that eigenfunctions of L corresponding to distinct eigenvalues are orthogonal
with respect to the given inner product [Gockenbach 2002, Section 5.1]. We also
see that

〈L(v), v〉 = αv(R)2+
∫ R

0
κ

(
dv
dr
(r)
)2

r2 dr,

which is positive for every nonzero function v. This implies that all the eigenvalues
of L are positive.

We now wish to solve

−κ

(
d2v

dr2 +
2
r

dv
dr

)
= λv, 0< r < R,

κv′(R)+αv(R)= 0,
(13)

for λ > 0 and v = v(r). It is well known [Arfken and Weber 2005] that the only
solutions to (13)1 that are bounded at the origin are multiples of

j0
(√
λ/κ r

)
,

where j0 is the first spherical Bessel function:

j0(s)=
sin (s)

s
.

(For more information about Bessel functions, including the properties cited below,
the reader can consult [Trantor 1968] or the comprehensive reference [?].) The
problem of finding the eigenvalues and eigenfunctions then reduces to finding the
values of λ>0 such that v(r)= j0

(√
λ/κ r

)
satisfies the boundary condition (13)2.

Substituting v into (13)2 and simplifying yields

tan (s)= ms, m =
κ

κ −αR
, s = R

√
λ/κ. (14)
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We will henceforth make the important assumption that κ−αR>0 or, equivalently,
that

β =
αR
κ
< 1. (15)

Recalling that κ is the thermal conductivity within the object and α describes how
well thermal energy is transmitted to the environment, this assumption means that
the object conducts energy more quickly than it transmits energy to the surround-
ings and also that the radius of the object is not too large. Our intuition ought to
tell us that these are precisely the conditions under which Newton’s law of heating
should give accurate results. In fact, below we will expand u(t)− T (t) in powers
of β and show that u(t)− T (t)= O(β) uniformly for t ≥ 0.

Assumption (15) implies that m = 1/(1− β) > 1 in (14), and a simple graph
then shows that (14) has positive solutions s1, s2, s3, . . . , with

(k− 1)π < sk <
(

k−
1
2

)
π, k = 1, 2, 3, . . .

and sk ≈
(
k− 1

2

)
π for k≥ 2. For our analysis below, we need accurate estimates of

the sk’s. To estimate s1, we can expand tan (s) in powers of s, truncate the series,
and obtain

s1 =
√

3β1/2
−

√
3

10
β3/2
+ O(β5/2),

λ1 =
3κ
R2

(
β − 1

5β
2
+ O(β3)

)
.

(16)

For k ≥ 2, we see that each sk is greater than the corresponding solution sk to
tan (s) = s. We write sk =

(
k− 1

2

)
π − εk , expand tan

((
k− 1

2

)
π − εk

)
in powers

of εk , and solve to get

sk ≥ sk =
(
k−

1
2

)
π

(
1−

1(
k− 1

2

)2
π2
−

2

3
(
k− 1

2

)4
π4
+ . . .

)
. (17)

In particular, we find that

0.95
(
k− 1

2

)
π < sk <

(
k− 1

2

)
π, k = 2, 3, . . . . (18)

This estimate will suffice for our purposes below.
We now write

vk(r)= j0
(√
λk/κ r

)
=

sin
(√
λk/κ r

)
√
λk/κ r

, k = 1, 2, 3, . . . , (19)

for the eigenfunctions of L . The standard theory of (spherical) Bessel functions
guarantees that any function u=u(r) (finite at the origin) can be expanded in terms
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of the orthogonal functions v1, v2, v3, . . . . We can therefore expand the solution
U of (11) as

U (r, t)=
∞∑

k=1

Ck(t)vk(r).

Substituting this expression into the PDE (11)1 yields
∞∑

k=1

{
ρcC ′k(t)+ λkCk(t)

}
vk(r)=

∞∑
k=1

bkvk(r),

where
∑
∞

k=1 bkvk(r) is the expansion of the constant function 6aκ:

bk =
6aκ

∫ R
0 vk(r)r2 dr∫ R

0 vk(r)2r2 dr
, k = 1, 2, 3, . . . . (20)

From the initial condition (11)2, we have
∞∑

k=1

Ck(0)vk(r)=
∞∑

k=1

dkvk(r),

where
∑
∞

k=1 dkvk(r) is the expansion of T0− ar2:

dk =

∫ R
0 (T0− ar2)vk(r)r2 dr∫ R

0 vk(r)2r2 dr
, k = 1, 2, 3, . . . . (21)

We then obtain the following initial value problem for Ck :

ρcC ′k + λkCk = bk, Ck(0)= dk, k = 1, 2, 3, . . . .

The solution is

Ck(t)=
bk

λk
+

(
dk −

bk

λk

)
e−λk t/(ρc), k = 1, 2, 3, . . . . (22)

We now have the following solution to the IBVP (9):

u(r, t)= ar2
+

∞∑
k=1

Ck(t)vk(r). (23)

The reader will recall that

u =
1
|�|

∫
�

u.

With � equal to the ball of radius R, this reduces to

u(t)=
4π

(4/3)πR3

∫ R

0
u(r, t)r2 dr =

3
R3

∫ R

0
u(r, t)r2 dr,
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and so

u(t)=
3
R3

∫ R

0
ar4 dr +

∞∑
k=1

{
3
R3

∫ R

0
vk(r)r2 dr

}
Ck(t) (24)

(since the solution u to the heat equation is known to be smooth, the series for u
can be integrated term-by-term to produce (24)).

3. Comparing the solutions

We now have formulas for both T (t) and u(t), and we wish to bound |T (t)−u(t)|
for t ≥ 0. Since vk is oscillatory for k ≥ 2 (see Figure 1 and also the definition of
vk in (19)), we expect

3
R3

∫ R

0
vk(r)r2 dr

to be small for k ≥ 2. We hypothesize, then, that u(t) will be well approximated
by

u1(t)=
3
R3

∫ R

0
ar4 dr +

(
3
R3

∫ R

0
v1(r)r2 dr

)
C1(t).

We therefore wish to show that |T (t)−u1(t)| and |u1(t)−u(t)| are both small for
t ≥ 0.

A straightforward calculation shows that

3
R3

∫ R

0
vk(r)r2 dr = 3

sin
(
R
√
λk/κ

)
− R
√
λk/κ cos

(
R
√
λk/κ

)(
R
√
λk/κ

)3 ,

0 1

1

Figure 1. The first five eigenfunctions v1, v2, v3, v4, v5 on the in-
terval [0, R], R = 1.0. To construct this graph, we have taken
κ = 1.0 and α = 0.001. The first eigenfunction is nearly constant
on the interval [0, R], while, for k ≥ 2, vk is increasingly oscilla-
tory as k increases.
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or
3
R3

∫ R

0
vk(r)r2 dr = 3

sin (sk)− sk cos (sk)

s3
k

.

Since tan (sk)= msk , or sk cos sk = m−1 sin sk , we obtain

3
R3

∫ R

0
vk(r)r2 dr = 3

m− 1
m

sin sk

s3
k

= 3β
sin sk

s3
k

. (25)

For k ≥ 2, we can apply (18) to obtain∣∣∣∣ 3
R3

∫ R

0
vk(r)r2 dr

∣∣∣∣≤ 3β
s3

k

≤
3β

(0.95 (k− 1/2) π)3
,

which yields ∣∣∣∣ 3
R3

∫ R

0
vk(r)r2 dr

∣∣∣∣≤ 1

8 (k− 1/2)3
β, k = 2, 3, . . . . (26)

For k = 1, we expand the integral in powers of β, which is a straightforward
calculation:3

3
R3

∫ R

0
v1(r)r2 dr = 1−

3
10
β + O

(
β2) . (27)

The results given in (25) and (27) support our hypothesis that u(t) should be well
approximated by u1(t).

We can now complete the bound |T (t)−u1(t)| in short order. From (16)2, (20),
and (21), we find that

b1

λ1
= Ts + O

(
β2)

and

d1−
b1

λ1
= T0− Ts +

3
10
(T0− Ts)β + O

(
β2) . (28)

We can also expand the constant term in the series for u(t) in powers of β:

3
R3

∫ R

0
ar4 dr =

3a R2

5
=

3Ts

10
β + O

(
β2) .

Putting these results together, we obtain

u1(t)= Ts − (Ts − T0)e−λ1t/(ρc)
+ O

(
β2) . (29)

The reader should notice how the O(β) term has canceled (compare the product
of (27) and (28)). The only dependence of the O

(
β2
)

term on t is through the
exponential (this dependence is not shown explicitly here), which is bounded by

3We used Mathematica to generate this and other series expansions.
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one for t ≥ 0. Thus the O
(
β2
)

term is uniformly small for t ≥ 0 (assuming β is
small).

The similarity between T (t) and u1(t) is now obvious (compare (2) and (29)).
It remains only to compare the exponentials e−λ1t/(ρc) and e−αt

= e−3αt/(ρcR). We
have

λ1 =
3κ
R2β

(
1−

1
5
β + O(β2)

)
=

3α
R

(
1−

1
5
β + O(β2)

)
(30)

(using β = αR/κ), so we see that λ1/(ρc) and α = 3α/(ρcR) are quite similar,
with

e−λ1t/(ρc)
≥ e−αt , t ≥ 0.

To obtain a useful bound, we maximize the function

f (t)= e−λ1t/(ρc)
− e−αt , t ≥ 0.

The function f has a unique stationary point, and we easily obtain

0≤ e−λ1t/(ρc)
− e−αt

≤
1
5e
β + O

(
β2) , t ≥ 0. (31)

We can now bound the difference between T (t) and u1(t):

|T (t)− u1(t)| =
∣∣Ts − (Ts − T0)e−αt

− Ts + (Ts − T0)e−λ1t/(ρc)
+ O(β2)

∣∣
=
∣∣(Ts − T0)(e−λ1t/(ρc)

− e−αt)
∣∣+ O(β2)

≤
|Ts − T0|

5e
β + O(β2).

As noted above, this bound is uniform over the interval 0≤ t <∞.
Finally, we bound |u1(t)− u(t)| for t ≥ 0. We will merely sketch the results,

which the interested reader can verify. We already have the upper bound (26) for∣∣∣∣ 3
R3

∫ R

0
vk(r)r2 dr

∣∣∣∣ .
We will need upper bounds for dk and bk/λk , which will require a lower bound for∫ R

0
vk(r)2r2 dr.

A straightforward calculation gives∫ R

0
vk(r)2r2 dr =

κ

λk

(
R
2
−

sin
(
2
√
λk/κ R

)
4
√
λk/κ

)
≥

R3

4 (k− 1/2)2 π2
(32)

(applying the upper bound for λk implied by (18)). We then have

bk =
6aκ

∫ R
0 vk(r)r2 dr∫ R

0 vk(r)2r2 dr
,
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and (26) gives an upper bound for the numerator. Applying this upper bound to-
gether with (32) and simplifying yields

bk ≤
3κTsπ

2

2R5
(
k− 1

2

)β2.

Since (18) implies

λk ≥ 0.952(k− 1
2

)2
π2κ, k = 2, 3, . . . , (33)

we obtain (after a little manipulation)

bk

λk
≤

2Ts

R5
(
k− 1

2

)3β
2. (34)

Obtaining a bound for dk is more work. We have∫ R

0
(T0− ar2)vk(r)r2 dr

=
κ

(2+β)λ5/2
k R2

·
{
−

√
λk R

(
6βκTs + λk R2((2+β)T0−βTs)

)
cos (

√
λk/κ R)

+
√
κ
(
6βκTs + λk R2((2+β)T0− 3βTs)

)
sin (

√
λk/κ R)

}
=

κ3/2

(2+β)λ5/2
k R2

·
{
(sin sk − sk cos sk)

(
6βκTs + λk R2((2+β)T0−βTs)

)
− 2βT2 sin sk

}
.

Since sin sk = msk cos sk , we have

sin sk − sk cos sk = (m− 1)sk cos sk =
β

1−β
sk cos sk .

Also, sk is an approximate root of cosine; using (17) and the Taylor expansion of
cosine around s = (k− 1/2) π , we obtain sk cos sk = O(1). Using this and some
more manipulation, we find positive constants γ1 and γ2 such that∣∣∣∣∫ R

0
(T0− ar2)vk(r)r2 dr

∣∣∣∣≤ γ1β + γ2β
2

λ
3/2
k

, k = 2, 3, . . . .

This, together with the lower bound (32), yields

dk =

∫ R
0 (T0− ar2)vk(r)r2 dr∫ R

0 vk(r)2r2 dr
≤ γ1β + γ2β

2, (35)

where γ1 and γ2 are positive constants.
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We can finally use (26), (34), and (35) to bound |u1(t)− u(t)|. We have

|u1(t)− u(t)| ≤
∞∑

k=2

(
3
R3

∫ R

0
vk(r)r2 dr

)∣∣∣bk

λk
+

(
dk −

bk

λk

)
e−λk t/(ρc)

∣∣∣
≤

∞∑
k=2

β

8(k− 1/2)3

(
2
∣∣∣bk

λk

∣∣∣+ |dk |

)
.

Since
∞∑

k=2

1(
k− 1

2

)3

is finite, (34) and (35) yield positive constants γ̃1 and γ̃2 such that

|u1(t)− u(t)| ≤ γ̃1β
2
+ γ̃2β

3, t ≥ 0.

This, together with our earlier bound on |T (t)− u1(t)|, yields our final result:

|T (t)− u(t)| ≤
|Ts − T0|

5e
β + O(β2), t ≥ 0. (36)

The reader will recall that

β =
αR
κ
,

where κ is the thermal conductivity with the object, α describes how well the object
transmits heat energy to its surroundings (or vice versa), and R is the radius of �.
As long as α� κ and � is not too large, (36) shows that the average temperature
in � will be well approximated by Newton’s law of heating.

4. The finite element method

We wish to give some numerical examples to illustrate the above analysis. This
requires that we be able to compute accurate solutions to the initial-boundary value
problem (9). We will use the standard Galerkin–Crank–Nicolson finite element
method, which we now briefly describe.

To compute the solution of (9), we first rewrite the problem in its variational
form:∫ R

0
ρc
∂u
∂t
(r, t)v(r)r2 dr +

∫ R

0
κ
∂u
∂r
(r, t)v′(r)r2 dr +αR2u(R, t)v(R)

= αR2Tsv(R), for all v ∈ V . (37)

Here V is the space of test functions,

V =
{
v ∈ H 1(0, R) : rv ∈ L2(0, R), rv′ ∈ L2(0, R)

}
,
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based on the Sobolev space H 1(0, R) (the space of functions with one square-
integrable (weak) derivative). The variational form (37) results from multiplying
the PDE (9) by a test function, integrating over �, integrating the ∂2u/∂r2 term by
parts, and applying the boundary condition. It is well known that the variational
form is equivalent to the original initial-boundary value problem (at least when, as
in this case, the original problem is known to have a smooth solution).

We obtain the semidiscrete form of (37) by discretizing in space using piecewise
linear functions on a mesh defined by ri = ih, h = R/n, and applying Galerkin’s
method. We will write Vh for the space of continuous piecewise linear functions
on the given mesh, and {φ0, φ1, . . . , φn} for the usual nodal basis defined by

φi (r j )=

{
1 if i = j,
0 if i 6= j.

The semidiscrete solution is

uh(r, t)=
n∑

j=0

α j (t)φ j (r),

satisfying∫ R

0
ρc
∂uh

∂t
(r, t)v(r)r2 dr +

∫ R

0
κ
∂uh

∂r
(r, t)v′(r)r2 dr +αR2uh(R, t)v(R)

= αR2Tsv(R), for all v ∈ Vh . (38)

Choosing v = φi , i = 0, 1, . . . , n, (38) is equivalent to

Ma′+ (K +G)a = F, (39)

where M and K are the mass and stiffness4 matrices,

Mi j =

∫ R

0
ρcφ j (r)φi (r)r2 dr, Ki j =

∫ R

0
κφ′j (r)φ

′

i (r)r
2 dr, i, j = 0, 1, . . . , n.

Every entry in the matrix G is zero except the n, n entry, and similarly only the
n-th component of the vector F is nonzero:

Gnn = αR2, Fn = αR2Ts .

This scheme is O(h2) in the sense that there is a constant C > 0 (depending on the
true solution u) such that

‖u(·, t)− uh(·, t)‖ ≤ Ch2 for all t ≥ 0,

4The terminology comes from mechanics, the discipline that popularized finite element methods.



432 MARK GOCKENBACH AND KRISTIN SCHMIDTKE

where

‖u(·, t)− uh(·, t)‖ =
[∫ R

0
(u(r, t)− uh(r, t))2r2 dr

]1/2

.

To obtain a fully discrete scheme, (39) is discretized in time by the Crank–
Nicolson method,

M
(a(k+1)

− a(k)

1t

)
+ (K +G)

(a(k+1)
+ a(k)

2

)
= F,

to obtain (
M +

1t
2

B
)

a(k+1)
=

(
M −

1t
2

B
)

a(k)+1t F, (40)

where a(k) is the approximation to a(tk), tk = k1t , k = 0, 1, 2, . . . .
We write u(k)(r) for the approximation to uh(r, tk) obtained by estimating a(tk)

by a(k). Then there exists constants C1,C2 > 0 such that, for all k,

‖u(·, tk)− u(k)‖ ≤ C1h2
+C21t2.

This error bound (and the earlier bound on the error in the semidiscrete solution)
can be obtain by a straightforward generalization of the standard error analysis
found in Thomée [2006].

5. Examples

We will now show several examples, demonstrating the effectiveness of the above
analysis. In these examples, we compare the solution (2) of Newton’s law of heat-
ing with an accurate solution of the heat equation computed by the finite element
method described above.

Example 1 (A small iron ball). We first consider an iron ball approximately the
size of a baseball: R = 3.7 cm. The physical constants describing iron are c =
0.437 J/g K, ρ = 7.88 g/cm3, and κ = 0.802 J/s cm. Various references suggest
values of α (the convection heat transfer coefficient in air) from 10−2 to 10−3

W/cm2K; we will use a value of α = 0.0045. The corresponding value of α is

α =
3α
ρcR
≈ 0.0010596.

We assume that the initial temperature of the ball is T0 = 0◦ C and that the
temperature of the surrounding air is Ts = 25◦ C, and simulate the temperature
in the ball for one hour. The average temperature u computed by solving the
heat equation and the temperature T predicted by Newton’s law of heating are
indistinguishable on a graph (see Figure 2); the maximum difference between the
two is about 0.038187.
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Figure 2. Left: The average temperature of the iron ball in Exam-
ple 1. Right: The difference u(t)−T (t) between the temperatures
calculated from the heat equation and Newton’s law of heating. In
both graphs, the horizontal axis is time in seconds, and the vertical
is degrees Celsius.

In this example, we have β = αR
κ
≈ 0.020761, and the first-order bound on the

error is
|Ts − T0|

5e
β ≈ 0.038107.

With a small value of β, the analysis suggests that Newton’s law is an accurate
substitute for the heat equation, and that conclusion is confirmed by the numerical
results. Moreover, the first-order bound on the difference between the two solutions
is an excellent estimate of the actual difference.

Example 2 (A large iron ball). The second example is the same as the first, except
now the radius of the ball is R = 100 cm. The value of β is now approximately
0.56110, so we do not expect that Newton’s law will yield a particularly accurate
estimate of the true average temperature. We simulate the temperature for 20 hours
(since it takes a long time to appreciably change the temperature in such a large
ball).

As Figure 3 shows, the maximum difference between the two solutions is about
0.97333. The first-order bound on the error is

|Ts − T0|

5e
β ≈ 1.0321.

Once again, the analysis proves to be quite accurate.

Example 3 (A small styrofoam ball). In the last example, Newton’s law of heating,
while not a bad approximation, did not accurately model the average temperature
in the ball because the ball was so large. In this example, we consider the other
reason why Newton’s law might not work particularly well, namely, that heat flows
slowly through the object compared to how quickly it flows from the surroundings
to the object. We consider a styrofoam ball of radius R = 3.7 cm. The physical
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Figure 3. Left: The temperatures of the iron ball in Example 2,
as predicted by the heat equation and Newton’s law of heating.
(The larger temperature is predicted by Newton’s law.) Right: The
difference u(t)− T (t) between the temperatures calculated from
the heat equation and Newton’s law.

parameters describing styrofoam are c = 0.209 J/g K, ρ = 0.1 g/cm3, and κ =
3.3 · 10−4 J/s cm. We continue to use α = 0.0045, so now β ≈ 50.455. Since
β� 1, we expect Newton’s law to yield a poor approximation to the true average
temperature. This is confirmed in Figure 4, which shows a maximum error of about
14.363. (Since β is so large, we should not expect the first-order error bound to be
a good approximation to the actual error, and indeed it is not; the bound is about
92.806.) The value of α is

α ≈ 0.17458.

A natural question arises in regard to this example: The results show that New-
ton’s law does not produce good results with α = 3α/(ρcR), but what if we use a
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Figure 4. Left: The temperatures of the styrofoam ball in Exam-
ple 3, as predicted by the heat equation and Newton’s law of heat-
ing. (The larger temperature is predicted by Newton’s law.) Right:
The temperatures of the styrofoam ball in Example 3, as predicted
by the heat equation and Newton’s law with a better value of α.
(The temperature predicted by Newton’s law is eventually larger.)
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different value of α? To answer this question, we found the value of α that produces
a solution (2) as close as possible to u in the least-squares sense; that is, we found
α to minimize

J (α)=
N∑

k=1

(u(tk)− Ts + (Ts − T0)e−αtk )2

(where N is the number of time steps in the finite element simulation). We denote
the optimal value of α by α̃; the result in this example is

α̃ ≈ 0.016805.

With this value of α, Newton’s law yields a much improved estimate of the average
temperature of the ball. Nevertheless, the result is still not very good (see Figure 4),
which shows that, for this example, the true average temperature in the styrofoam
ball is simply not well modeled by Newton’s law of heating.

6. Concluding remarks

Our results show that for a small spherical object with the property that heat flows
through the object more quickly than it flows to the surroundings (β =αR/κ� 1),
Newton’s law of heating provides a satisfactory model of the average temperature
of the object. Moreover, the value

α =
3α
ρcR

is a satisfactory constant of proportionality in Newton’s law. To carry out this
analysis, we have assumed that the initial temperature of the object is constant
throughout, and also that the temperature of the surroundings is held constant.

The alert reader may have noticed that the analysis suggests an even better value
of α. The estimate of λ1 in (30) suggests that

α =
3α
ρcR

(
1−

1
5
β
)

would be an improved estimate of λ1/(ρc) and hence lead to a better estimate of
u by T . Indeed, the reader can easily check that this value of α leads to an O(β2)

bound for |u(t)− T (t)|, t ≥ 0.
Many textbook problems on Newton’s law of cooling refer to inhomogeneous

objects; perhaps the classic example is the cooling of a cup of coffee; see, for
example, [Boyce and DiPrima 1992, Section 2.5, problem 14]. (Another popular
example is the cooling of a corpse!) Nothing in our analysis allows us to address
either inhomogeneities in the object or complex geometries. However, we can
apply finite element simulation to an inhomogeneous sphere. For example, we
can consider a hollow styrofoam ball filled with water, the closest we can get to
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Figure 5. The average temperature in a hollow styrofoam ball
filled with water, as computed by finite element simulation.

a coffee cup with our current work. We set the outer radius of the ball to 4.4 cm
and the inner radius to 3.9 cm (so that it holds about 250 ml of water), and assume
that the initial temperature in both the water and the ‘cup’ is T0 = 100◦ C. Finite
element simulation (for 20 minutes) produces the average temperature shown in
Figure 5. The results show that the average temperature initially drops quite rapidly,
after which it decreases at a more moderate rate. The initial decrease (see the
first few seconds in Figure 5) is due to the styrofoam cup’s initial loss of heat to
the surroundings; since styrofoam has a very small volumetric heat capacity (that
is, c measured in J/cm3 K), a small loss of heat energy translates to a relatively
large decrease in temperature in the styrofoam. Once this decrease of average
temperature in the styrofoam is complete, the average temperature in the entire
ball decreases in a rate well modeled by a function of the form (2) (as the authors
have verified), and so Newton’s law is a good model after the first few seconds.

A more realistic initial condition would have the temperature of the water at, say,
100◦ C and the temperature of the styrofoam at room temperature. In this case, the
average temperature in the entire ball is less than 100◦ C and initially increases as
the hot water heats the styrofoam. Thereafter, again, Newton’s law provides an
adequate model.
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