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Minimum spanning trees
Pallavi Jayawant and Kerry Glavin

(Communicated by Arthur T. Benjamin)

The minimum spanning tree problem originated in the 1920s when O. Borůvka
identified and solved the problem during the electrification of Moravia. This
graph theory problem and its numerous applications have inspired many others
to look for alternate ways of finding a spanning tree of minimum weight in a
weighted, connected graph since Borůvka’s time. This note presents a variant
of Borůvka’s algorithm that developed during the graph theory course work of
undergraduate students. We discuss the proof of the algorithm, compare it to
existing algorithms, and present an implementation of the procedure in Maple.

1. Introduction

Minimum spanning trees (MSTs) have long been of interest to mathematicians
because of their many applications. Most commonly, cable and communications
companies can represent the task of connecting every house in a network in the least
expensive way possible as an MST problem. In this case, the cost of laying cables
between houses corresponds to the weights of the edges. There are analogous
applications to transportation networks, such as determining the least expensive
method of connecting a number of islands or bodies of land. For more applications,
see [Wu and Chao 2004; Graham and Hell 1985].

Many algorithms have been developed over the years to find MSTs efficiently.
The problem originated in the 1920s when O. Borůvka identified and solved the
problem during the electrification of Moravia. However, the language of graph
theory is not used to describe the algorithm in his papers from 1926 [Borůvka
1926a; 1926b] which have been translated recently into English [Nešetřil et al.
2001]. In the 1950s, many people contributed to the MST problem. Among them
were R. C. Prim and J. B. Kruskal, whose algorithms are very widely used today.
The algorithm known as Prim’s algorithm was in fact discovered earlier by V.
Jarnı́k in 1930. A history of the MST problem appears in [Graham and Hell 1985;
Nešetřil et al. 2001; Milková 2007; Nešetřil 1997]. In this note we present a variant
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of Borůvka’s algorithm and compare it to the algorithms given by Borůvka, Prim
and Kruskal which have been central to the history of the problem.

In Section 2, we introduce the graph theory terminology used in this note. We
outline the steps of our algorithm in Section 3, provide an illustrative example
in Section 4, and prove the algorithm works as intended in Section 5. Section 6
highlights the differences between our algorithm and the work of Borůvka, Prim,
and Kruskal. Finally, Section 7 discusses the MapleTM implementation of our
algorithm.

2. Terminology

We use the following terminology throughout this note. An undirected graph G
consists of a set of vertices, denoted by V (G), and a set of unordered pairs of
vertices called edges, denoted by E(G). Since we focus on undirected graphs,
henceforth we use the word graph to mean an undirected graph. If there exists a
path from each vertex u to every other vertex v in G, we call G a connected graph.
In a weighted graph, a real number (usually positive) is assigned to each edge and
is called the weight of the edge. An example of a connected, weighted graph is
provided in Figure 1. The sequence of edges {1, 2}, {2, 4}, {4, 5} and {5, 1} is
called a cycle. There are many cycles in the graph in Figure 1. The ends of the
edge {1, 2} are the vertices 1 and 2 and its weight is 1, that is, w({1, 2})= 1.

A minimum spanning tree (MST) T in a connected, weighted graph G is a con-
nected, acyclic subgraph of G with minimum total weight. To further clarify this
definition, we use Figure 2 to explain the various graph theory terms embedded in
an MST. The top left diagram shows a tree in G. A tree is a connected graph which
is acyclic, that is, it has no cycles. A graph with multiple connected components
such that each component is a tree is called a forest.

Figure 1. A connected, weighted graph G.
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T =

Figure 2. Clockwise from top left: a tree in G; a spanning tree in
G; a minimum spanning tree T in G.

The top right diagram represents a spanning tree in G, that is, a tree with vertex
set equal to V (G). Finally, the bottom diagram shows a minimum spanning tree in
G, which is a spanning tree with minimum total weight. The total weight of a tree
is the sum of the weights of all the edges in the tree. The weight of the minimum
spanning tree T in Figure 2 is w(T )= 10.

3. Steps of the algorithm

First, we establish the input and output for the algorithm, in addition to any nec-
essary notation. The input is a weighted, connected graph G and the output is a
spanning tree in G with minimum total weight, which we will call H . We start with
H having no vertices and edges. We then construct H by adding vertices and edges
as we go through the steps of the algorithm. In this procedure, we assume that there
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is an ordering of the vertices in V (G). This is quite standard in a computer algebra
system such as Maple. We designate the number of vertices in G as n.

3.1. Identify incident edge with smallest weight. For each vertex vi for i from
1 to n, identify the edge incident to vi with the smallest weight. In the case of
multiple edges with the same weight, identify only one of these edges. If the ends
of this edge are not already in H , then add the edge to H . Otherwise, do not make
any changes to H . This ensures that H does not contain any cycles.

At the end of this step, H may contain one or more connected components.
If there is only one connected component, then the procedure is finished. If the
number of connected components of H is greater than one, then the procedure
continues in the next step.

3.2. If necessary, create one connected component. If H consists of more than
one connected component, then evaluate the weights of all edges connecting the
distinct components of H . Add the edge with the smallest weight to H . In the case
of multiple edges with the same weight, add only one of these edges.

Repeat this step until H has just one connected component.

4. An illustrative example

To demonstrate the two separate steps involved in this algorithm, we will build
a minimum spanning tree H in the weighted graph shown in Figure 3. This is a
complete bipartite graph, denoted by K3,3.

The first step of the algorithm calls for an evaluation of the weights of the edges
incident to each vertex. Starting with vertex 1, we evaluate the weights of the edges
{1, 4}, {1, 5}, and {1, 6}. We note that w({1, 6})= 6 and this is the edge of smallest
weight at vertex 1. Since neither vertex 1 nor vertex 6 is already part of H , the

Figure 3. A weighted complete bipartite graph K3,3.



MINIMUM SPANNING TREES 443

Figure 4. The generation of a minimum spanning tree H in a
weighted K3,3. We begin with the smallest edge incident to vertex
1, namely edge {1, 6} in Figure 3. At the end of the first step of the
algorithm, H is the graph shown on the left. At completion, H is
the minimum spanning tree shown on the right.

edge {1, 6} is the first addition to H . Even though it is obvious that the ends of the
first edge added are not already part of the MST, this check is extremely important
in later iterations to guarantee that H does not contain any cycles.

Once the algorithm runs through the entire first step, we have two distinct com-
ponents to H . Figure 4, left, shows these components. The second step of the
algorithm is necessary in this case to achieve a connected graph.

The second step begins with an evaluation of the weights of all edges that con-
nect these two distinct components. The algorithm evaluates the weights of edges
{3, 4}, {3, 6}, {2, 5}, and {1, 5} and finds that edge {2, 5} has the smallest weight.
Thus this edge is added to H . We know that the addition of this edge will not
create any cycles by the nature of distinct components. Now that H contains just
one connected component with no cycles, we have our final desired result, as shown
in Figure 4, right. The weight of the MST is w(H)= 42.

5. Proof of the algorithm

The proof of our algorithm uses similar techniques as the existing proofs for other
MST algorithms, including the work of both Prim and Kruskal [Wilson and Watkins
1990; Rosen 2007]. In order to prove that the final output of the algorithm, H , is
a minimum spanning tree, it is necessary to prove two separate properties: H is a
spanning tree of the weighted, connected graph G; and H is of minimum weight.
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5.1. H is a spanning tree of G. First, we show that H is a tree, that is, H is
both connected and acyclic. The second step of the algorithm (3.2) guarantees that
edges will be added to H until it has only one connected component. There are
two different parts of the algorithm to consider when determining if H contains a
cycle. In the first step (3.1), we do not add any edges whose ends are already in
H . This prevents the creation of any cycles. In the second step (3.2), we only add
edges connecting distinct components. There is no way to create a cycle in H by
adding an edge that connects distinct components.

Second, we show that H spans G, that is, we show V (H) = V (G). The first
step of the algorithm, the loop for each vertex vi for i from 1 to n, ensures that H
contains all vertices of G.

5.2. H is of minimum weight. Suppose M is a minimum spanning tree in G. We
know w(M) ≤ w(H) and M and H are both subgraphs of G. Our goal is to
transform M into H in a way that shows w(H) ≤ w(M). This implies w(H) =

w(M) and proves that H is of minimum weight.
A tree on n vertices has n− 1 edges. We name the edges in H according to the

order in which they were added by the algorithm: e1, e2, . . . , en−1. Assume e1,
e2, . . . , ek−1 are all in M as well. So ek = {u, v} is the first edge in H that we find
is not also in M . We want to add ek to M and delete an edge from it such that the
resulting subgraph L is a spanning tree of G and w(L) ≤ w(M). We know that
there must be a path between u and v in M since the MST is both connected and
spanning. Thus the addition of ek = {u, v} to M creates a cycle C in M . Let e be
the other edge incident to u in C .

To select the edge to delete so that we obtain L , we now consider two cases:
either ek was added to H during the first step (3.1) or ek was added during the
second step (3.2).

If ek was added to H during the first step, it must be true that ek is the edge of
smallest weight at one of its endpoints. Without loss of generality, assume that ek

is the edge of smallest weight incident to u. We then delete the edge e from M to
obtain L . We know that w(e)≥w(ek) because ek is an edge incident to u with the
smallest weight and hence w(L)≤ w(M).

If ek was added to H during the second step, let K be the subgraph of H to which
ek was added. Then we know that u and v must have been in distinct components
of K . Note that K is also a subgraph of M because all the edges added to H
before ek are in M as well. If we start traversing the cycle C along the edge e,
then we must reach an edge f such that its ends are in distinct components of K
and we delete f from M to obtain L . Again, w( f )≥w(ek) because the algorithm
adds an edge of smallest weight that connects distinct components of K , and hence
w(L)≤ w(M).
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Since M is of minimum weight, w(L)=w(M) and thus L is a minimum span-
ning tree of G. We repeat the process of adding and deleting an edge with M
replaced by L . We continue in this way until we get H .

6. Comparison with other algorithms

We now compare our algorithm to the three algorithms by Prim, Kruskal and
Borůvka “that have played a central role in the history of the MST problem” as
stated in [Milková 2007].

Prim’s algorithm [1957] generates a minimum spanning tree by identifying an
edge with minimum weight incident to the initial vertex and spreading the tree from
this edge. At every iterative step, the algorithm finds and adds the edge of smallest
weight such that one vertex is already part of the MST and the other vertex is not.
The procedure is complete once the vertex set of the tree is equal to the vertex set
of the original graph, that is, the tree spans all of the vertices. Prim’s algorithm
allows for just one tree at any given step. By comparison, there may be multiple
trees, or a forest, that are ultimately connected in our algorithm.

We use graphs created in Maple to highlight the differences between our al-
gorithm and Prim’s algorithm. Figure 5 shows MSTs in a complete graph on six
vertices, denoted by K6, with each edge weighted 5. The left diagram shows the
MST generated by the spantree procedure in Maple, which uses Prim’s algo-
rithm. The Maple implementation of our algorithm created the MST shown in the
diagram on the right.

Figure 5. MSTs in K6 with each edge weighted 5. The one on the
left was created by Prim’s algorithm, the one on the right by our
algorithm.
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Kruskal’s algorithm [Kruskal 1956] is a “greedy” algorithm that constructs a
minimum spanning tree by adding edges with minimum weight as long as doing
so does not form a cycle. For detailed steps of the algorithm, see [Wilson and
Watkins 1990]. Thus, Kruskal’s algorithm chooses edges of smallest weight from
the entire graph at every iteration whereas our algorithm identifies an edge with
minimum weight at each vertex and later between two connected components.

Borůvka’s algorithm [Borůvka 1926a; 1926b; Nešetřil et al. 2001] is a recursive
algorithm which at every recursive step repeats the first step of the algorithm on a
new graph formed by contraction. The first step of Borůvka’s algorithm and the
first step of our algorithm are identical. Thus, at the end of the first step, there is a
set of chosen edges that may not form a single connected component. Borůvka’s
algorithm then forms a new graph by contraction as follows. Each connected com-
ponent is replaced by a single vertex. All edges connecting vertices in the same
connected component are eliminated. All edges between two distinct components
are eliminated except for the edge with the smallest weight. If edges do not have
distinct weights, a tie-breaking procedure is used to retain only one edge between
two distinct components. Borůvka’s algorithm then repeats the first step on this
newly formed graph. The recursion continues until only one vertex remains in
the contracted graph; that is, until the chosen edges form only one connected
component. The set of all the edges chosen each time the first step is executed
constitutes an MST. The contraction to form the new graph and the subsequent
recursion of Borůvka’s algorithm are replaced in our algorithm with the iterative
process of joining the connected components obtained at the end of the first step
with edges of minimum weight.

Thus of the three algorithms mentioned here, our algorithm is most similar to
Borůvka’s algorithm. The output of our algorithm may differ from the output of
Borůvka’s algorithm because both depend on the particular tie-breaking procedures
used when all edges do not have distinct weights.

7. Maple implementation of algorithm

Our implementation of the algorithm takes advantage of the networks package in
Maple. This package contains many commands useful in graph theory, a number
of which we will discuss later in this section. The Maple implementation of the
first step of the algorithm (3.1) is shown on the next page

The implementation employs a number of useful commands. In general, the
networks package makes it easy to work with both vertices and edges in a graph.
The incident command returns a set of the edges incident to a vertex vi . The
eweight command gives the weights of the edges in a graph. Both of these com-
mands are important when we create the list of the weights of all edges incident to



MINIMUM SPANNING TREES 447

vertex vi . The nops command counts the number of elements in its argument, and
the member command tests if an element belongs to a set or list. While nops and
member are not specific to the networks package, both of these commands play a
large role in the procedure as well.

pathset:={}; # This is where we will keep track of edges in our MST.
for i from 1 to nops(vertices(G)) do

listofweights:=[];
currentedge:={};
for j in ends(incident(i,G),G) do

listofweights:=[op(listofweights),eweight(edges({j[1],j[2]},G)[1],G)];
end do;
# In this loop, we create a list of the weights (called "listofweights")
# of all edges incident to vertex v_i.
smallest:=listofweights[1];

for k from 2 to nops(listofweights) do
if (listofweights[k]<smallest) then smallest:=listofweights[k]
end if;

end do;
# Here, we identify the smallest value in "listofweights".

for x in ends(incident(i,G),G) do
if eweight(edges({x[1],x[2]},G)[1],G)=smallest then

currentedge:=currentedge union {x};
end if;

end do;
# We match the smallest value to the edge(s) with this weight and add it
# to a set called "currentedge".
found:=0;
foundvertex:=0;
for j in pathset do

if (member(currentedge[1][1],j) and currentedge[1][1]<>foundvertex)
then found:=found+1:foundvertex:=currentedge[1][1]

end if;
if found=2 then break end if;
if (member(currentedge[1][2],j) and currentedge[1][2]<>foundvertex)
then found:=found+1:foundvertex:=currentedge[1][2]

end if;
if found=2 then break end if;

end do;
if found=2 then pathset:=pathset

else pathset:=pathset union {currentedge[1]}
end if;
# If the ends of the edge incident to v_i with the smallest weight
# are already part of pathset, then pathset remains the same.
# Otherwise, we add just one edge to pathset.

end do;

Maple implementation of the first step (3.1) of our algorithm (# introduces a
comment line). The input is a weighted, connected graph G.
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Following the first step of the procedure, we begin to build H by inserting ver-
tices 1 to n and the edges from pathset into H . If H has more than one compo-
nent, the second part of the procedure starts by identifying all edges in G that con-
nect distinct components in H , as shown below. These edges are then added to a set
called connectingedges. The components command, which identifies the com-
ponents of a graph as a set of sets, is especially valuable in this part of the procedure.

possibleedges:=ends(G) minus pathset;
connectingedges:={};
for r in possibleedges do

d:=nops(components(H));
addedge(r,H);

if nops(components(H))<d
then connectingedges:=connectingedges union {r}

end if;
delete(edges({r[1],r[2]},H),H);

end do;

The implementation of the rest of the second step (3.2) is similar to the procedure
for the first step. After establishing the set connectingedges, we evaluate the
weights of the edges, identify the smallest value, and add the associated edge to
H . This step is repeated until H contains just one connected component.

Now we take a look at the complexity of our implementation. Let n be the
number of vertices in G and m the number of edges in G. If we assume that each
of the Maple command runs in unit time, then our implementation runs in time
O(mn). This could be improved with a more efficient sorting procedure in each
step. For a discussion of the complexity of MST algorithms and recent work on
MSTs see [Wu and Chao 2004; Graham and Hell 1985; Cheriton and Tarjan 1976].

8. Conclusion
Due to the numerous applications of minimum spanning trees to communications
and transportation networks, it is important to have efficient algorithms to find
minimum spanning trees in weighted, connected graphs. Borůvka, Jarnı́k, Prim,
and Kruskal, among others, have made important contributions to this area of graph
theory. We have presented an algorithm that is a variant of the original solution
by Borůvka and unlike the proof by Borůvka, we have provided a proof of the
algorithm using the language of modern graph theory. The running time of the
implementation could be improved and we hope the reader will try to do so.
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