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We develop the theory of frames and Parseval frames for finite-dimensional vec-
tor spaces over the binary numbers. This includes characterizations which are
similar to frames and Parseval frames for real or complex Hilbert spaces, and the
discussion of conceptual differences caused by the lack of a proper inner product
on binary vector spaces. We also define switching equivalence for binary frames,
and list all equivalence classes of binary Parseval frames in lowest dimensions,
excluding cases of trivial redundancy.

1. Introduction

There are many conceptual similarities between frames and error-correcting linear
codes. Frame theory is concerned with stable linear embeddings of Hilbert spaces
obtained from mapping a vector to its frame coefficients [Duffin and Schaeffer
1952; Christensen 2003; Han et al. 2007]. The linear dependencies incorporated
in the frame coefficients of a vector help recover from errors such as noise, quan-
tization and data loss [Goyal et al. 1998; 2001; Rath and Guillemot 2003; 2004;
Püschel and Kovačević 2006], just as linear codes help recover from symbol de-
coding errors and erasures [MacWilliams and Sloane 1977]. Frame design for
specific purposes has been related to optimization problems of a geometric nature
[Casazza and Kovačević 2003; Strohmer and Heath 2003; Holmes and Paulsen
2004] or even a discrete one [Bodmann and Paulsen 2005; Xia et al. 2005; Kalra
2006], including combinatorial considerations that are more commonly associated
with error-correcting codes. On the other hand, one may ask whether concepts
from frame theory yield insights in the binary setting. This is the motivation of the
present paper.
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We translate many of the essential results on frames for finite-dimensional real
or complex Hilbert spaces to analogous statements for vector spaces over the binary
numbers. In the first part, we show that in the binary case, the spanning property
of a family of vectors is equivalent to having a reconstruction identity with a dual
family. This means, both properties can be used interchangeably as a definition
of frames, as on finite dimensional real or complex Hilbert spaces. On the other
hand, we demonstrate that an attempt to define binary frames similarly to the real or
complex case via norm inequalities fails in binary vector spaces, because they lack
an inner product and a polarization identity. In the main part of this paper, we focus
on Parseval frames, which have a particularly simple reconstruction identity. We
characterize binary Parseval frames in terms of their frame operator and develop a
notion of switching equivalence for binary frames, similar to the concept for real
or complex frames [Goyal et al. 2001; Holmes and Paulsen 2004; Bodmann and
Paulsen 2005]. Moreover, we introduce the notion of trivial redundancy, caused
by repeated vectors or the inclusion of the zero vector in the frame. Ignoring cases
of trivial redundancy and choosing representatives from each switching equiva-
lence class simplifies the enumeration of binary Parseval frames. By an exhaustive
search, we have found that if k ∈{4, 5, . . . , 11}, then all frames that are not trivially
redundant in Z4

2 with k vectors belong to one switching equivalence class. Further
simplifications for the search of all binary Parseval frames are obtained from a
combinatorial consideration, which might be useful for a future effort to catalogue
binary Parseval frames in larger dimensions.

The remainder of this paper is organized as follows. In Section 2, we define
frames for finite-dimensional binary vector spaces. Section 3 specializes the dis-
cussion to Parseval frames. Finally, in Section 4, we define switching equivalence
for binary frames and give a catalogue of representatives from each equivalence
class of Parseval frames in lowest dimensions, excluding trivially redundant ones.

2. Preliminaries

In this section we first revisit the essentials of frames over the fields R or C, the real
or complex numbers. We then proceed to develop the concept of frames over the
field Z2, that is, the field with two elements {0, 1}, where 0 is the neutral element
with respect to addition, and 1 is the neutral element with respect to multiplication.
The main insight of this section is that while there are equivalent characterizations
of certain types of frames when the ground field is R or C, this is not true over Z2,
because the polarization identity is no longer available due to the lack of an inner
product.

If H is a finite-dimensional Hilbert space over R or C with inner product 〈 · , · 〉,
then a family of vectors F := { f1, f2, . . . , fk} in H is called a frame if there exist
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real numbers A and B such that 0< A ≤ B <∞ and

A‖x‖2 ≤
k∑

j=1
|〈x, f j 〉|

2
≤ B‖x‖2 for all x ∈H. (2-1)

The inequalities displayed in (2-1) are known as the frame condition, and it can
be shown that when H is finite dimensional, then the set F satisfies the frame
condition if and only if span F = H [Han et al. 2007, Proposition 3.18]. In this
case, there exist vectors {g1, g2, . . . , gk} which provide the reconstruction identity

x =
k∑

j=1
〈x, f j 〉g j for all x ∈H .

While the family {g j }
k
j=1 may not be unique, there is a canonical choice. If we

define the so-called frame operator S on H by Sx =
k∑

j=1
〈x, f j 〉 f j , then setting

g j = S−1 f j for j ∈ {1, 2, . . . , k} yields the reconstruction identity [Christensen
2003]. The family {g j }

k
j=1 is also called the canonical dual frame.

A frame F={ f1, . . . , fk} is called a Parseval frame (or sometimes a normalized
tight frame) if we can choose A = B = 1 in the frame condition, so that

k∑
j=1
|〈x, f j 〉|

2
= ‖x‖2 for all x ∈H. (2-2)

Using the polarization identity, it can be shown (see [Han et al. 2007, Proposi-
tion 3.11]) that F is a Parseval frame if and only if

x =
k∑

j=1
〈x, f j 〉 f j for all x ∈H. (2-3)

The simple form of the reconstruction formula for Parseval frames has many prac-
tical uses in engineering and computer science [Goyal et al. 1998; 2001; Kovačević
and Chebira 2008].

We now turn to frames over the binary numbers.
The first two goals in this paper are to develop the notion of frames and of

Parseval frames for finite-dimensional vector spaces over the field Z2. Any such
vector space has the form Zn

2 = Z2⊕ · · ·⊕Z2 for some n ∈ N.

Definition 2.1. A family of vectors F={ f1, f2, . . . , fk} in Zn
2 is a frame if it spans

Zn
2 .

We have chosen this form of the definition because the field Z2 has no notion of
positive elements, so that it is impossible to find a properly defined inner product,
let alone a norm on Zn

2 , which would be needed to formulate a direct analogue of
the frame condition (2-1).
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Nevertheless, we want to show that an analogue of the reconstruction identity
can be deduced with the help of a Z2-valued “dot product” in place of an inner
product.

Definition 2.2. We define a bilinear map ( · , · ) : Zn
2 × Zn

2 → Z2, called the dot
product on Zn

2 , by 
a1
...

an

 ,
b1
...

bn


 := n∑

i=1

ai bi .

We see that the dot product ( · , · ) is symmetric and Z2-linear in each component,
but it is degenerate: It is possible to have x ∈ Zn

2 with (x, x) = 0 but x 6= 0.
Furthermore, because the dot product is degenerate, it does not provide a norm on
Zn

2 . Nonetheless, we will use the dot product as an analogue of the inner products
on Rn and Cn , and for expressions in Rn or Cn involving 〈x, y〉 or ‖x‖2, we shall
consider analogous expressions in Zn

2 involving (x, y) or (x, x), respectively.
To establish the equivalence between the spanning property and the reconstruc-

tion identity for frames, we unfortunately cannot simply use the same strategy as
in the real or complex case. If we take the dot product instead of an inner product
to define the frame operator, then the spanning property of the frame does not
guarantee that the frame operator is invertible. To see this, we note that the family
{1, 1} is spanning for Z2, but the analogue of the frame operator maps every x ∈Z2

to x + x = 0. A similar family can be obtained for any Zn
2 , n ≥ 1, by repeating

vectors of an arbitrary spanning set.
To build an alternative strategy that relates the spanning property with the ex-

istence of a reconstruction identity, we first recall that the dot product mediates a
canonical mapping between vectors and linear functionals.

Lemma 2.3. If φ : Zn
2→ Z2 is a linear functional then there exists a unique z ∈ Zn

2
such that φ(x)= (x, z) for all x ∈ Zn

2 .

Proof. Let φ be a linear functional. Let {e1,. . . ,en} be the canonical basis for
Zn

2 , and let z = φ(e1)e1 + · · · + φ(en)en . We now observe that if x ∈ Zn
2 , with

x =
∑n

i=1 ai ei for ai ∈ Z2, then φ(x)=
∑n

i=1 aiφ(ei )= (x, z) .
To verify the uniqueness, assume there is z′ such that φ(x) = (x, z′) = (x, z).

Choosing x among the canonical basis vectors gives φ(ei )= (ei , z′)= (ei , z) and
thus z and z′ are identical. �

Theorem 2.4. Given a family F = { f j }
k
j=1 in Zn

2 , then F is a frame if and only if
there exist vectors {g j }

k
j=1 such that for all y ∈ Zn

2

y =
k∑

j=1

(y, g j ) f j . (2-4)
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Proof. We note that if (2-4) is true, then necessarily { f j }
k
j=1 is spanning.

Conversely, assume that { f j }
k
j=1 is a frame for Zn

2 . In a first step, we prove
that there are linear functionals {γ1, γ2, . . . , γk} such that y =

∑k
j=1 γ j (y) f j for

all y ∈ Zn
2 . For any family of linear functionals γ1, γ2, . . . , γk , we note that the

expression
∑k

j=1 γ j (y) f j is linear in y, so it is enough to show that there exist
linear functionals giving

wi =
k∑

j=1
γ j (wi ) f j for all vectors in some basis w1, . . . , wn of Zn

2.

To establish this, we choose a subset of { f1, . . . , fk} which is spanning and linearly
independent, that is, a basis. Without loss of generality, assume that this set is
{ f1,. . . , fn}. Choosing the dual basis {γ1, . . . , γn} to { f1, . . . , fn}, characterized
by

γ j ( fi )= δi j , for all i, j ∈ {1, 2, . . . n},

we obtain
n∑

j=1
γ j ( fi ) f j = fi .

Thus if we enlarge the set {γ j }
n
j=1 by setting γ j = 0 if j > n, then

fi =
k∑

j=1
γ j ( fi ) f j

and by linearity

y =
k∑

j=1
γ j (y) f j for any y ∈ Zn

2 .

In the final step of the proof, we apply the preceding lemma which yields for
each γ j a corresponding vector g j satisfying γ j (y)= (y, g j ) for all y ∈ Zn

2 . �

3. Parseval frames for Zn
2

In this section we present the definition of Parseval frames for Zn
2 and illustrate the

conceptual differences between such frames in the real or complex case and in the
binary case.

Definition 3.1. A family of vectors F= { f1, . . . , fk} in Zn
2 is a Parseval frame if

x =
k∑

j=1

(x, f j ) f j for all x ∈ Zn
2 . (3-1)

Observe that a binary Parseval frame necessarily spans Zn
2 , and moreover if F is a

Parseval frame, we must have k ≥ n.
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It is natural to ask if, in analogy with the real and complex cases, being a Parseval
frame in Zn

2 is equivalent to having a Parseval identity as in (2-2). It turns out that
this is not the case.

Proposition 3.2. If F= { f1, . . . , fk} is a Parseval frame for Zn
2 , then

k∑
j=1

(x, f j )
2
= (x, x) for all x ∈ Zn

2 . (3-2)

However, in general, the converse does not hold.

Proof. If F is a Parseval frame, then using the Z2-linearity of the first component
of the dot product, for any x ∈ Zn

2 we have

(x, x)=
( k∑

j=1

(x, f j ) f j , x
)
=

k∑
j=1

(x, f j )( f j , x)=
k∑

j=1

(x, f j )
2.

To see that the converse does not hold in general, consider
(

1
1

)
∈ Z2

2, then for
any x =

( a1
a2

)
∈ Z2

2 we have(
x,
(

1
1

))
= a1+ a2 = a2

1 + a2
2 = (x, x).

Hence F=
{(

1
1

)}
satisfies (3-2). However, F contains one element, so F does not

span Z2
2, and F is not a Parseval frame. �

Remark 3.3. More generally, we can produce counterexamples for any n ≥ 2,
meaning sets which give the Parseval property without spanning Zn

2 . First we con-
sider even n. Let { f1, . . . , fk} be the family of all vectors which contain exactly
two 1’s. Thus, there are k =

( n
2

)
such vectors. If the first vector is chosen as

f1 = (1, 1, 0, . . . , 0)t and x = (a1, a2, . . . , an)
t , then over Z2,

(x, f1)
2
= (a1+ a2)

2
= a2

1 + a2
2 .

Evaluating other dot products similarly gives

k∑
j=1

(x, f j )
2
=

n∑
i=1

a2
i

because each a2
i appears in n − 1 terms in the sum, and n − 1 mod 2 = 1 by the

assumption that n is even.
However, the vectors { f j }

k
j=1 are not spanning for Zn

2 , because they contain an
even number of 1’s and so does any linear combination of them.

If n is odd, then we split Zn
2 = Z2 ⊕ Zn−1

2 and construct the above family
{ f1, f2, . . . , fk} for the second summand. Now this family can be enlarged by
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the first canonical basis vector e1 to {e1, f1, f2, . . . , fk} which has the Parseval
property but is not spanning, because { f1, f2, . . . , fk} does not span Zn−1

2 .

4. Towards a catalogue of binary Parseval frames

In principle, all Parseval frames for Zn
2 could be catalogued individually, but even

for relatively small n this is already an extensive list. In order to obtain a more
efficient way of enumerating Parseval frames, we use an equivalence relation which
has been called switching equivalence for real or complex frames [Goyal et al.
2001; Holmes and Paulsen 2004; Bodmann and Paulsen 2005]. It is most easily
formulated in terms of the Grammian of a Parseval frame, as defined below. The
catalogue of frames can then be reduced to representatives of each equivalence
class. To prepare the definition of the equivalence relation, we discuss certain
matrices related to frames.

We write A ∈ Mm,n(Z2) when A an m × n matrix with entries in Z2. We often
view A as a linear map from Zm

2 to Zn
2 by left multiplication. In particular, A ∈ Mn

denotes an n×n matrix which is associated with a map from Zn
2 to itself. We write

Ai, j for the (i, j)th entry of A, and we let A∗ denote the transpose of A; that is,
A∗ ∈ Mn,m(Z2) with A∗i, j := A j,i . By the rules of matrix multiplication, we have
(Ax, y)= (x, A∗y) for all A ∈ Mn(Z2).

Definition 4.1. If U ∈ Mn(Z2), then we say U is a unitary if U is invertible and
U−1
=U∗.

Lemma 4.2. If x ∈ Zn
2 and (x, y)= 0 for all y ∈ Zn

2 , then x = 0.

Proof. Write

x =

a1
...

an

 .
If {e1, . . . , en} is the standard basis for Zn

2 , then for all 1 ≤ i ≤ n we have ai =

(x, ei )= 0. Thus x = 0. �

Proposition 4.3. Let U ∈Mn(Z2), then U is a unitary if and only if for all x, y∈Zn
2

we have (U x,U y)= (x, y).

Proof. If U is a unitary, then U∗ =U−1 and for all x, y ∈ Zn
2 we have

(U x,U y)= (x,U∗U y)= (x, I y)= (x, y).

Conversely, if (U x,U y)= (x, y) for all x, y ∈ Zn
2 , then for a given x ∈ Zn

2 we see
that (U∗U x, y) = (U x,U y) = (x, y) for all y ∈ Zn

2 , and Lemma 4.2 implies that
U∗U x = x . Since x was arbitrary, this shows that U∗U = I , and because U is
square, we have that U is invertible and U−1

=U∗. �
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In contrast the case of Hilbert spaces over F=R or C, the condition 〈U x,U x〉=
〈x, x〉 for all x ∈ Fn is not equivalent to unitarity when the field F is Z2.

We have the following counterexamples for n ≥ 2.

Proposition 4.4. For any n≥2, there exist A∈Mn(Z2) such that (Ax, Ax)= (x, x)
for all x ∈ Zn

2 but A is not invertible, and thus not unitary.

Proof. We define the matrix A by

Ai, j =

{
1 if i = j = 1 or j − i = 1 ,
0 else.

This means, the last row of A contains only zeros and thus A does not have full
rank and is not invertible.

However, given x = (a1, a2, . . . , an)
t we have

Ax =



a1+ a2

a3

a4
...

an

0


,

and thus

(Ax, Ax)= (a1+ a2)
2
+ a2

3 + · · ·+ a2
n =

n∑
i=1

a2
i = (x, x). �

Definition 4.5. Let F = { f1, . . . , fk} ⊆ Zn
2 . The analysis operator for F is the

k× n matrix containing the frame vectors as rows,

2F =

← f1 →

...

← fk →

 .
The synthesis operator for F is the n× k matrix

2∗F =

↑ ↑

f1 · · · fk

↓ ↓

 ,
with the elements of F as columns. The frame operator for F is the n× n matrix

SF :=2
∗

F2F,

and the Grammian operator for F is the k× k matrix

GF :=2F2
∗

F.
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Note that (GF)i, j = ( f j , fi ) for all 1≤ i, j ≤ k. When there is no ambiguity in the
choice of F, we shall omit the F subscript on these matrices and simply write 2,
2∗, S, and G.

Theorem 4.6. Let F = { f1, . . . , fk} ⊆ Zn
2 , then F is a Parseval frame if and only

if SF is equal to the identity matrix.

Proof. Let {e1, . . . , en} be the standard basis for Zk
2. Observe that for any x ∈ Zn

2
we have 2Fx =

∑k
i=1(x, fi )ei . Also, for any 1≤ i ≤ n we have 2∗Fei = fi . Thus

we have

SFx =2∗F2Fx =2∗F

( k∑
i=1

(x, fi )ei

)
=

k∑
i=1

(x, fi )2
∗

Fei =

k∑
i=1

(x, fi ) fi .

It follows that
∑k

i=1(x, fi ) fi = x for all x ∈ Zn
2 if and only if SFx = x for all

x ∈ Zn
2 . Thus F is a Parseval frame if and only if SF is the identity matrix. �

Definition 4.7. Given two families F = { f1, . . . , fk} and G = {g1, . . . , gk} in Zn
2 ,

then we say F is unitarily equivalent to G if there exists a unitary U ∈Mn(Z2) such
that U fi = gi for all 1≤ i ≤ k.

It is easy to show that unitary equivalence is an equivalence relation.

Proposition 4.8. Let F={ f1, . . . , fk}⊆Zn
2 and G={g1, . . . , gk}⊆Zn

2 be Parseval
frames, then F is unitarily equivalent to G if and only if GF = GG.

Proof. Since F and G are Parseval frames, it follows from Theorem 4.6 that SF

and SG are the identity matrices. Suppose that GF =GG. Define U to be the n×n
matrix U :=2∗G2F, then

U∗U = (2∗G2F)
∗2∗G2F =2

∗

F2G2
∗

G2F =2
∗

FGG2F

=2∗FGF2F =2
∗

F2F2
∗

F2F = SFSF = I.

Since U is square, it follows that U is invertible and U−1
= U∗, so that U is a

unitary. Furthermore,

U2∗F =2
∗

G2F2
∗

F =2
∗

GGF =2GGG =2
∗

G2G2
∗

G = SG2
∗

G =2
∗

G.

Thus U times the i th column of 2∗F is equal to the i th column of 2∗G. Thus for all
1≤ i ≤ k we have U fi = gi , so that F and G are unitarily equivalent.

Conversely, if F and G are unitarily equivalent, then there exists a unitary U ∈
Mn(Z2) such that U fi = gi for all 1≤ i ≤ k. Thus Proposition 4.3 implies that

(GF)i, j = ( f j , fi )= (U f j ,U fi )= (g j , gi )= (GG)i, j .

Hence GF = GG. �
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Example 4.9. We present two examples of unitary equivalence. First set

F=

{( 0
1
0
0
1

)
,

( 0
1
0
1
1

)
,

( 0
1
1
0
1

)
,

( 1
0
1
1
1

)
,

( 1
1
0
0
1

)
,

( 1
1
1
1
0

)}
,

H=

{( 0
1
0
1
0

)
,

( 0
1
0
1
1

)
,

( 0
1
1
1
0

)
,

( 1
0
1
1
1

)
,

( 1
1
0
1
0

)
,

( 1
1
1
0
1

)}
.

Computing the Grammian for both F and H we find

GF = GH =



0 0 0 1 0 1
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 1
0 0 0 0 1 0
1 0 0 1 0 0


.

First notice the structure of 2∗ created by F and H:

2∗F =


0 0 0 1 1 1
1 1 1 0 1 1
0 0 1 1 0 1
0 1 0 1 0 1
1 1 1 1 1 0

 , 2∗H =


0 0 0 1 1 1
1 1 1 0 1 1
0 0 1 1 0 1
1 1 1 1 1 0
0 1 0 1 0 1

 .

The fourth and fifth rows have swapped places, so naturally one would expect the
unitary operator to reflect that. In fact, the proof gives a direct way to compute U ,
namely if fi =Uhi then U =2∗F2H. Computing U confirms this:

2∗F2H =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 .

Next, take for F and H two Parseval frames found in Z5
2 with six elements:

F=

{( 0
0
0
1
1

)
,

( 0
0
1
0
1

)
,

( 0
1
0
0
1

)
,

( 1
0
0
0
1

)
,

( 1
1
1
1
0

)
,

( 1
1
1
1
1

)}
,

H=

{( 0
1
1
1
1

)
,

( 1
0
0
0
1

)
,

( 1
0
0
1
0

)
,

( 1
0
1
0
0

)
,

( 1
1
0
0
0

)
,

( 1
1
1
1
1

)}
.
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Here, while not quite as obvious, differences in the two Parseval frames can be
expressed in terms of row manipulations of the synthesis operator, which amount
to left multiplication with a unitary U , 2∗F =U2∗H.

We introduce an additional way to identify frames which coarsens the equiva-
lence relation.

Definition 4.10. Two families F={ f1, f2, . . . , fk} and G={g1, g2, . . . , gk} in Zn

are called switching equivalent if there is a unitary U and a permutation π of the
set {1, 2, . . . , k} such that

f j =Ugπ( j) for all j ∈ {1, 2, . . . } .

Theorem 4.11. Two Parseval frames F and H are switching equivalent if and only
if there exists a permutation π of the index set such that (GF)i, j = (GH)π(i),π( j).

Proof. The condition on the Grammians amounts to the identity

GF = MGH M∗

for a permutation matrix with entries

Mi, j =

{
1 if π(i)= j,
0 else .

Being identical up to conjugation by permutation matrices defines an equivalence
relation for Grammians, and thus for frames, which is coarser than unitary equiv-
alence.

Moreover, with a similar proof as in the preceding proposition, we see that the
two Grammians are related by conjugation with a permutation matrix M if and
only if there exists a unitary U such that

2∗F =U2∗H M∗ . �

Apart from switching equivalence, there are other simple ways in which two
Parseval frames can be related to each other. For example, adding zero vectors to
a Parseval frame gives another Parseval frame. Moreover, adding pairs of arbitrary
vectors to a Parseval frame preserves the Parseval property. In both cases, we have
artificially increased the redundancy by enlarging the frame. In our catalogue, we
discard Parseval frames with such a trivial source of redundancy.

Definition 4.12. A Parseval frame F = { f1, f2, . . . , fk} for Zn
2 is called trivially

redundant if there is j ∈ {1, 2, . . . k} with f j = 0, or if there are two indices i 6= j
with fi = f j .

After repeated vectors are removed, Parseval frames can be interpreted as sets
of vectors. We consider the set-theoretic complement of such a Parseval frame.
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Theorem 4.13. Let n ≥ 3. Let F = { fi }
k
i=1 be a family without repeated vectors

in Zn
2 and G = Zn

2 \F. If F is a Parseval frame for Zn
2 , then G is also a Parseval

frame.

Proof. Let X =
{

x ∈ Zn
2

}
, then we count 2n

− 1 nonzero elements in X. Thinking
of X as a sequence { fi }

m
i=0 where m = 2n

−1 and the entries of fi are given by the
binary expansion of i , let 2∗X be the matrix with fi as the i th column.

By simple counting, there are 2n−1 elements with 1 in the i th position. This
means, in each row of 2∗X the number 1 appears exactly 2n−1 times. Furthermore
there are 2n−2 elements with 1 in the i th and j th position, similarly for any fixed
choice of 1 or 0 in the i th and j th position. If n ≥ 3, then 2n−2 is even and
consequently, the dot product of any row of 2∗X with itself or any other row is
equal to 0, i.e. 2∗X2X = 0.

If F is a Parseval frame, then 2∗F2F = I which implies via the matrix product
that there is an odd number of elements in F with 1 in the i th position, and that
among the elements with a 1 in the i th position there is an even number of elements
with a 1 in the j th position.

As remarked above, in the entire space there is an even number of elements
with 1 in the i th position and an even number of elements with 1 in the i th and j th
position. Thus there is an odd number of elements in the complement G = X \F

with 1 in the i th position and an even number of such elements with 1 in the j th
position, that is 2∗G2G = I . Hence G is a Parseval Frame. �

Corollary 4.14. If F is a Parseval frame for Zn
2 which is not trivially redundant,

and G is its set-theoretic complement, then both F and G \ {0} are Parseval frames
and one of them contains at most 2n−1

− 1 vectors.

Proof. After removing the zero vector from G, the union of both Parseval frames
F and G \ {0} contains 2n

− 1 vectors. This implies that one of the two frames
contains at most half this number, meaning at most 2n−1

− 1 vectors. �

To complete the catalogue of binary Parseval frames for Zn
2 , it is only necessary

to find one representative from each switching equivalence class of Parseval frames
with at most 2n−1

− 1 vectors. Once these Parseval frames have been found, their
complements complete the list, because the switching equivalence of a pair of
frames is equivalent to that of their complements.

Proposition 4.15. Two frames that are not trivially redundant are switching equiv-
alent if and only if their set-theoretic complements are.

Proof. This is a consequence of the fact that unitaries are one-to-one maps on the
set Zn

2 . Thus, if a unitary U maps a frame F to a frame G, then it also maps the
complement of F to the complement of G, and vice versa. �
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n k vectors

3 3 1 2 4
4 3 5 6 7

4 4 1 2 4 8
5 1 6 10 12 14
6 1 3 5 9 14 15
7 1 2 3 7 11 12 15
8 4 5 6 8 9 10 13 14
9 2 4 6 7 8 10 11 12 13

10 2 3 4 5 7 8 9 11 13 15
11 3 5 6 7 9 10 11 12 13 14 15

Table 1. Representatives of all switching-equivalence classes, ex-
cluding trivially redundant Parseval frames, for Z3

2 and Z4
2.

We conclude with Table 1, a complete list of representatives of switching-equi-
valence classes of Parseval frames for n = 3 and n = 4, excluding ones that are
trivially redundant. Each frame vector in our list is recorded by the integer obtained
from the binary expansion with the entries of the vector. For example, if a frame
vector in Z4

2 is f1= (1, 0, 1, 1), then it is represented by the integer 20
+22
+23
=13.

Accordingly, in Z4
2, the standard basis is recorded as the sequence of numbers

1, 2, 4, 8.
As explained above, the part of the table with k > 2n−1

− 1 vectors has been
obtained by taking complements of Parseval frames with k ≤ 2n−1

− 1 vectors,
according to Corollary 4.14 and Proposition 4.15. An exhaustive search shows
that there is only one switching equivalence class for n = 3 and k ∈ {3, 4} and for
n = 4 and each k ∈ {4, 5, 6, 7}, consequently also for k ∈ {8, 9, 10, 11}.

References

[Bodmann and Paulsen 2005] B. G. Bodmann and V. I. Paulsen, “Frames, graphs and erasures”,
Linear Algebra Appl. 404 (2005), 118–146. MR 2006a:42047 Zbl 1088.46009
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