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Proof of the planar double bubble conjecture
using metacalibration methods

Rebecca Dorff, Gary Lawlor, Donald Sampson and Brandon Wilson

(Communicated by Frank Morgan)

We prove the double bubble conjecture in R2: that the standard double bubble
in R2 is boundary length-minimizing among all figures that separately enclose
the same areas. Our independent proof is given using the new method of meta-
calibration, a generalization of traditional calibration methods useful in mini-
mization problems with fixed volume constraints.

1. Introduction

Isoperimetric problems have had a long history. The earliest proofs that the circle
maximizes area for a figure of given perimeter can be traced to the ancient Greeks.
The first results are attributed to the second century mathematician Zenodorus.
After more than a millennium, Steiner was the first to realize that the ancient
Greek proofs were insufficient by modern standards and worked to complete them.
Weierstrass, however, was the first to give a rigorous proof of the isoperimetric
inequality, and furthered the development of analysis and calculus in order to do
so [Siegel 2003].

While many different proofs exist for the isoperimetric inequality in two di-
mensions, few of these methods can be applied to generalizations of the prob-
lem, including having multiple enclosed areas or higher dimensional analogs. The
traditional approach, and so far most successful, has been to use the calculus of
variations to isolate properties of the boundary-minimizing figure and compare all
possible figures of this type. Some advancements in “multiple bubble” problems
were made this way by Frederick Almgren [1976], Jean Taylor [1976], and Frank
Morgan [1994], who proved regularity results in Rn for n ≥ 4, n = 3, and n = 2,
respectively. Morgan realized that a careful analysis of minimizers in the plane was
absent from the literature, and providing this, showed that perimeter-minimizing
planar figures must consist of circular arcs meeting at vertices of degree three,
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forming 120-degree angles. This reduced the argument to listing all the combina-
torial types meeting these requirements, possibly subject to some bounds on the
number of components that each area may be broken up into. Using this result,
students of the 1990 SMALL group under Frank Morgan proved that the standard
double bubble was perimeter-minimizing among all figures separately enclosing
two fixed areas [Foisy et al. 1993]. This method was also employed by Wacharin
Wichiramala, whose doctoral dissertation proves the corresponding result for three
separated areas. Unfortunately, this approach is marked by an ever-increasing com-
binatorial complexity. For example, Wichiramala’s dissertation [2004] considered
some fifty-four possible configurations in order to prove minimization of the stan-
dard triple bubble. This complexity proves to be a significant barrier to further
results.

We present new proofs of the isoperimetric inequality in the plane, for one
and two areas, using metacalibration, a new method of proof developed by Gary
Lawlor. Metacalibration is an extension of previous work in the field of calibration
that has been modified to handle a new class of minimization problems. Section
2 discusses metacalibration in further detail. A reformulation of ideas by Gromov
[Milman and Schechtman 1986], Lawlor’s proof of the two-dimensional isoperi-
metric inequality is given in Section 3. Lawlor also showed using metacalibration
that the standard double bubble is perimeter-minimizing among all figures enclos-
ing two equal areas. Section 4 contains the authors’ generalization of this proof to
any two fixed areas. Metacalibration has a strong potential for other applications
in which the standard variational approach fails. Further work is currently being
made in extending our results to other multiple bubble problems, including the
as-yet-unproven triple bubble conjecture in R3.

2. Metacalibration

Each minimization problem1 can be expressed in the following terms. Let a set of
constraints C be given. Let S be the set of all competitors σ that satisfy C . For
each competitor σ ∈ S, we define the function P(σ )which expresses the quantity to
be minimized (perimeter, energy, etc.). The minimizing property of a conjectured
minimizer µ ∈ S is shown by proving P(µ)≤ P(σ ) for all σ ∈ S.

Metacalibration solves minimization problems by comparing P(σ ) to an in-
termediary function G(σ ) which simplifies the conditions for comparison. This
function is called a calibration function and is defined as follows.

1As the methods of metacalibration work identically for minimization as well as maximization
problems, we will present these methods in the context of a minimization problem. Maximization
problems are solved identically with the obvious inequalities reversed.
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Definition 2.1. A function G calibrates a conjectured minimizer, µ ∈ S, if for
every competitor σ ∈ S,

(1) P(µ)= G(µ),

(2) G(µ)≤ G(σ ), and

(3) G(σ )≤ P(σ ).

The following theorem encapsulates this idea.

Theorem 2.2. Calibration Theorem. If a function G calibrates a conjectured
minimizer µ with respect to P , then µ minimizes the function P.

Proof. Take any competitor σ ∈ S. By the definition of a calibration, P(µ) =
G(µ)≤ G(σ )≤ P(σ ). Thus for any σ ∈ S, P(µ)≤ P(σ ) and µ minimizes P . �

One can see from the above arguments that this method yields simple and elegant
results if we are able to identify a suitable calibration function G(σ ). Finding such
a function is one of the difficulties of this method. Following is a short description
of some characteristics of calibration functions.

In order to establish the necessary identities, calibration functions typically have
the form of an integral. For example, if we parametrize σ by some variable t , the
necessary relations may be established by comparing the rate of change of G(σ )
and P(σ ) with respect to t . Suppose we find a function d fσ/dt = f ′σ such that
f ′σ (t) ≤ P ′σ (t), with equality on the minimizer. Letting σ be parametrized by
t ∈ [t0, t1], we define the function G(σ ) =

∫ t1
to

f ′σdt . We find that G(σ ) will be
a calibration function if fσ (t1)− fσ (t0) is constant for all competitors, or at least
minimal on µ. If this is the case, f ′σ is called a calibration. In many cases these
conditions allow us to explicitly determine the function f ′σ . In any case however,
solving these conditions will often give insight into the form or character of the
necessary function f ′σ .

In the past, calibrations have been functions of spacial variables, such as position
or tangent vectors. In metacalibration, we also allow the calibration function G(σ )
to depend on characteristics of σ itself. These may include variables such as arc
length or enclosed area. Another useful tool of metacalibration is that it allows
other variables to be defined abstractly, such as characteristics of the competitor
under mapping or projection. These additional allowances of metacalibration al-
low calibration functions to consider a wider range of competitors, enabling meta-
calibration to take on various problems beyond the reach of standard methods.

In the following sections we show how two classical geometric optimization
problems may be solved using the methods of metacalibration. While each is a
previously solved problem, they demonstrate the usefulness of this method and its
future extension into yet unsolved problems.
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3. The circle is perimeter-minimizing in R2

We begin our application of metacalibration with the classic example of the isoperi-
metric inequality in R2. Of all figures that enclose the same area in the plane, we
wish to show that the circle of that area minimizes total perimeter. The minimizing
property of the circle is shown using the calibration theorem of the previous section.
To do this, we first define the function G(σ ), and subsequently prove that it satisfies
each of the conditions for calibration.

Take an arbitrary competing figure σ in S, the set of competitor figures (C1

manifolds) that enclose a fixed area A0. We assume that the boundary of the figure
is equal to the boundary of its interior. This ensures that σ will have no obviously
unnecessary perimeter elements that do not enclose area. Let an arbitrary axis
for the parameter t be given. We will parametrize σ by a set of slicing lines
perpendicular to the t-axis, whose position is determined by the variable t . In
our depictions, this is an upward sweeping line with a vertical t-axis. We let t0 be
the bottom of the figure and t1 the top, so that σ is fully contained in the sweeping
interval [t0, t1]. Let Rσ be the projection of σ in the t-axis. Note that Rσ ⊆ [t0, t1].

For any slicing line, given by the parameter t , we define the following functions
for use in the calibration function. Let a(t) be the area enclosed by the figure and
contained in the sweeping interval [t0, t] (that is, below the slicing line t). Thus
a(t0) = 0 and a(t1) = A0 for any competitor. Let l(t) be the total length of the
intersection of the slicing line t with the interior of σ :

l̂l

a
a

h
r

µσ

To complete our definition of the calibration function we define a map F from
a slicing line on the competitor to a slicing line on the conjectured minimizer, the
circle enclosing area A0. Let r denote the radius of this circle. We also parametrize
the circle with a set of parallel slicing lines. The position of these lines will be
defined by the variable h, the y-coordinate of the lines, where h= 0 passes through
the center of the circle. Let F(t)= h match the slicing line of the circle such that
the area enclosed by the circle under the line h is equal to a(t). Let l̂ be the length of
the intersection of the slicing line h with the interior of the circle. These functions
are taken as C1, since any competitor for which they are not may be shown to be
nonminimal by a standard variational argument. While the functions defined above
are all functions of the parameter t , we typically suppress the notation.
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Using the above functions we are now able to define the calibration function
G(σ ).

Theorem 3.1. The function G(σ )=
∫

Rσ
f ′σdt calibrates the circle, where fσ (t)=(

2a(t)− h(t)l(t)
)
/r .

Proof of each condition for calibration will be given separately in Lemmas 3.2,
3.3, 3.4.

Lemma 3.2. For µ, the circle enclosing area A0, P(µ)= G(µ).

Proof. Note that G(µ) =
∫

Rµ
f ′dt = g(t1)− g(t0) = 2A0/r + 0. Noting that in a

circle A0 = πr2, we find 2A0/r = 2πr2/r = 2πr , which is the perimeter of the
circle. Thus P(µ)= G(µ). �

Lemma 3.3. For any competitor σ ∈ S and the circle µ, G(µ)= G(σ ).

Proof. Note that since σ may be disconnected with several components, Rσ =⋃m
1 [xi , yi ] where x1 = t0, ym = t1, and yi < xi+1. Thus

G(σ )=
∫

Rσ

f ′dt =
m∑
1

∫ yi

xi

f ′dt =
m∑
1

f (yi )− f (xi ).

Note that l(xi )= l(yi )= 0 and a(yi )= a(xi+1) for all i . Thus

G(σ )=
m∑
1

f (yi )− f (xi )=

m∑
1

2a(yi )

r
−

2a(xi )

r
=

2a(ym)

r
−

2a(x1)

r
.

But a(ym)= a(t1)= A0 and a(x1)= a(t0)= 0. This implies that G(σ )= 2A0/r ,
which is constant among all competitors in S, including µ. Thus G(µ) = G(σ )
for all σ ∈ S. �

Lemma 3.4. For any competitor σ , G(σ )≤ P(σ ).

Proof. Differentiating f by t we find f ′ = (2A′ − h′l − hl ′)/r . Now from the
definition of A and of h we can see that A′ = l in the competitor σ and A′ = h′l̂ in
the conjectured minimizer µ. Substitution reveals

f ′ =
(2− h′)l − hl ′

r
=
(2− h′)h′l̂ − hl ′

r
.

Noting that (2− h′)h′ has a maximum at 1 for h′ = 1, we find

f ′ ≤
l̂ − hl ′

r
=

1
r
(

l̂
2
,−h) · (2, l ′).

Now 1
r (

l̂
2 ,−h) is a unit vector in the circle µ, so by the Cauchy–Schwartz inequal-

ity,

f ′ ≤ ‖(2, l ′)‖ = 2
√

1+ (l ′/2)2.
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Since the slicing line at height t will intersect the figure at least twice if l 6= 0,
2
√

1+ (l ′/2)2 realizes the minimum of P ′ via a symmetrization argument. Thus
f ′ ≤ P ′(σ ), and since fσ (0) = Pσ (0) = 0, this implies G(σ ) =

∫
Rσ

g′dt ≤∫
Rσ

P ′(σ ) dt = P(σ ). �

Lemmas 3.2, 3.3, and 3.4 show that the function G(σ ) defined in Theorem 3.1
calibrates the circle. Thus by the calibration theorem, the circle minimizes perime-
ter of all C1 manifolds enclosing a fixed area. Similar proofs that the sphere and
n-sphere are boundary-minimizing in their respective dimensions have been found
by the authors. In this paper, however, we investigate generalizations to multiple
bubbles in two dimensions. The next section uses the methods of metacalibration
to prove perimeter minimization of the standard double bubble in R2.

4. The standard double bubble is perimeter-minimizing in R2

The double bubble conjecture in R2 was first proved by students of Frank Morgan
in an NSF funded REU in 1990 [Foisy et al. 1993]. They showed that the way to
separately enclose two given areas with the least perimeter is the “standard double
bubble,” a figure with three circular arcs meeting two vertices at 120 angles. Here
we present a new independent proof of the double bubble conjecture using the
method of metacalibration.

Theorem 4.1. The standard double bubble in R2 minimizes total perimeter of fig-
ures (unions of C1 manifolds) enclosing two separate fixed areas.

This will result from the calibration theorem using the calibration function de-
fined below.

As with the calibration for the circle, we use a map from slices of the competitor
to slices of our conjectured minimizer, the standard double bubble.

Each competitor double bubble σ ∈ S will consist of two enclosed regions B1

and B2, with fixed areas A1 and A2. For a given competitor σ , parametrize parallel
lines traversing the figure with the variable t . We let ai (t) be the area of Bi below
the line t , and let li (t) be the length of the intersection of the line t with Bi .

There is a unique standard double bubble that separately encloses areas A1 and
A2 [Foisy et al. 1993]. Let B̂1 and B̂2 be the regions of this standard double
bubble (of areas A1 and A2, respectively), and let r1 and r2 be the radii of the outer
arcs bordering B̂1 and B̂2. Without loss of generality we assume that r1 ≥ r2, or
equivalently A1 ≥ A2. We denote the radius of the arc separating B̂1 and B̂2 by r3.
We also denote the centers of each of these three arcs as o1, o2, and o3 respectively.
It is known that 1/r3= 1/r2−1/r1 for all standard double bubbles [Isenberg 1978,
pp. 88–95]. We also use the parameter h to define slices of the standard double
bubble. However, in order to map slicing lines t in the competitor to slicing lines



THE PLANAR DOUBLE BUBBLE THEOREM USING METACALIBRATION 617

in the standard bubble, matching both areas as before, slicing lines in the standard
bubble must be allowed to tilt. Thus we parametrize slicing lines in the standard
double bubble with two variables: h1 and h2, the signed distance from the slicing
line to o1 and o2, respectively (hi < 0 if the line passes below oi ). As with the
competitor, we let âi (t) be the area of B̂i below the line (h1, h2), and let l̂i (t) be
the length of the intersection of the line (h1, h2) with B̂i :

â1

â2

h1
h2

B̂1

l̂1

l̂2

B̂2

o1 o2

o3

r1

r2

r3

Each slice of a competitor defines a point (a1, a2) ∈ [0, A1] × [0, A2]. In this
sense, each competitor σ , when parametrized by t , describes a path σ : [0, 1] →
[0, A1]×[0, A2] such that σ(0)= (0, 0), σ(1)= (A1, A2) and σ(t)= (a1(t), a2(t)).

We will define a map F : [0, A1] × [0, A2] → [−r1, r1] × [−r2, r2] between
slices of the competitor and slices of the standard double bubble where F(a1, a2)=

(h1, h2). We will also define F such that for all (a1, a2) ∈ [0, A1]× [0, A2],

ai = âi (F(a1, a2)).

There are, however, some points in [0, A1] × [0, A2] that do not have such a map
into the double bubble. For example, if A1 6= A2, no slice (h1, h2) of the standard
double bubble gives rise to (â1, â2) = (A1, 0). Thus we will need to restrict F to
some K ⊆ [0, A1]× [0, A2] such that F |K exists and is one-to-one.

To define K , we first define H ⊂ [−r1, r1] × [−r2, r2] which will be the image
of K under F . Let

H= {(h1, h2) ∈ [−r1, r1]× [−r2, r2] such that |h1− h2| ≤ |o1− o2|},

where |o1−o2| is the distance between the centers o1 and o2. This limits, by stan-
dard geometric properties, the parametrization (h1, h2) to slices that are realizable
on the standard double bubble. Let E : [−r1, r1] × [−r2, r2] → [0, A1] × [0, A2]

be the function that takes a slicing line in the standard double bubble and returns
the area in each bubble under the slice. Thus we let K = E(H).
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Lemma 4.2. The map F = E−1
: K→H exists, is one-to-one, and is continuously

differentiable.

Proof. Proof follows by application of the inverse function theorem on F−1.
Consider E : int(H)→ int(K ) where E(h1, h2) = (â1, â2). Note that the map

E is continuously differentiable. Note also that

DE =


∂a1
∂h1

∂a1
∂h2

∂a2
∂h1

∂a2
∂h2

 .
To show that DE is invertible, we merely need to show that det(DE) 6= 0, or that

∂a1

∂h1

∂a2

∂h2
6=
∂a2

∂h1

∂a1

∂h2
.

It is easy to see from the figure below that, as hi increases, so must ai ; therefore
∂ai/∂hi > 0.

o1 o2

h′1
+

+

Claim. When h2 increases, ∂a1/∂h2 ≤ 0 and |∂a1/∂h2|< |∂a1/∂h1|.

Proof. Let B1 be a single bubble, as in the figure:

−

h′1
+

C

Note that h1 is constant here. Since the slicing line must be tangent to the circle
centered at o1 with a radius of h1, both slicing lines must intersect at a point,
losing area on the left and gaining area on the right. By basic trigonometry, these
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two areas will be additive inverses. Now if we add B2, some of the area on the
right is lost to B2, like this:

−

h′1
O ′1

a′1

So as h2 increases, a1 will lose more area than it gains, making ∂a1/∂h2≤ 0. Note
also that |∂a1/∂h2|, the area lost by adding B2, represents a subset of the area
gained by a2 as h2 increases (|∂a2/∂h2|). So |∂a1/∂h2|< |∂a1/∂h1|. �

We claim by the same method that ∂a2/∂h1 ≤ 0 and |∂a2/∂h1|< |∂a2/∂h2|.
It follows that (∂a1/∂h1)(∂a2/∂h2) and (∂a1/∂h2)(∂a2/∂h1) are always non-

negative,

(∂a1/∂h2)(∂a2/∂h2) < (∂a1/∂h1)(∂a2/∂h2),

and det(DE) 6= 0. Hence DE is invertible everywhere on int(H).
Thus the inverse function theorem implies that E is locally a bijection (F = E−1

exists) and that F is continuously differentiable. The map F is also one-to-one
since F(a1, a2)= F(b1, b2)= (h1, h2) implies (a1, a2)= (b1, b2)= E(h1, h2).

We complete the proof of Lemma 4.2 by showing that F = E−1
: ∂K → ∂H

exists and is one-to-one. We do this by describing a smooth bijection from ∂K
onto ∂H.

For the slicing line to be on the boundary of K , it must be tangent to the boundary
of at least one of the bubbles (save on the extremes where |h1− h2| = |o1− o2|).
Imagine the line tangent to both bubbles on the bottom, marked a in the figure:

a

b c

d

fe
a

b
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We’ll move the line upward in bubble 1, keeping the line tangent to the bottom
of bubble 2, until we reach line b, where it is vertical, touching the left side of
bubble 2. It then slides horizontally to the right to touch the vertices of the bubbles
(line c). The line will rotate upwards in bubble 2 while touching the boundary of
bubble 1 until it is tangent to the top of both bubbles (line d). Then the line will
stay touching the boundary of bubble 2 and rotate down through bubble 1 until
it is once again vertical touching the boundary (line e). It will shift right until it
touches the intersections (line f ). Finally, the line will touch bubble 1’s boundary
and move down through bubble 2 until reaching the bottom of both bubbles and
the starting point (line a). In this way, we’ve smoothly and bijectively traversed
all of the slicing lines that are on the boundary of K . (Note that slicing lines are
of necessity oriented, as each slicing line has a defined region below the line.) �

This implies that if σ(t)∈ K for all t ∈ [0, 1], F(σ (t)) describes a continuously
differentiable path in H where (â1, â2)|F(σ (t))= σ(t). To ensure that σ(t) is always
in the domain of F , we place the following restriction on the parametrizations of
a competitor σ . Let t0 denote the line that passes through the centroids of B1 and
B2. (If these coincide, any line passing through them is sufficient.) Parametrize the
competitor σ such that all slicing lines are parallel to t0. Since t0 passes through the
centroids of B1 and B2, it cuts their areas exactly in half, and σ(t0)= (A1/2, A2/2)
for all competitors σ . Now σ(t) is nondecreasing in both a1 and a2, so σ(t) ∈
[0, A1/2] × [0, A2/2] ∪ [A1/2, A1] × [A2/2, A2] ⊂ K for all t . confining it to the
white part of the figure. Hence the mapping F may be applied to any competitor
σ given this orientation of slicing lines.

a1

a2

1
2

1
2

This map allows the following definition of G(σ ).

Theorem 4.3. Let fσ =
∑
(2Ai − hi li )/ri for i = 1, 2. The function G(σ ) =∫ t1

t0
f ′σdt calibrates the standard double bubble.

We prove the three conditions for a calibration function separately in Lemmas
4.4, 4.5, and 4.10.

Lemma 4.4. G(µ)= P(µ) for µ a standard double bubble.
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Proof. Consider the vector fields V = (x, y)/r1 and W = (x−m, y)/r2, where
(0, 0) = o1 and (m, 0) = o2. We claim the total perimeter of a standard double
bubble, P(µ), is equal to ∫

∂ B̂1

V · Nds+
∫
∂ B̂2

W · Nds, (1)

where N is the unit normal to the surface at that point. To see this, note that on
the outer arcs of radius r1 and r2, V = N and W = N , and the integral over these
arcs reduces to

∫
1ds. The integral over the center arc reduces to

∫
(W−V ) ·Nds,

with the appropriate normal vector. However,

W − V = 1
r2
(x −m, y)− 1

r1
(x, y)=

( 1
r2
−

1
r1

)
(x, y)− 1

r2
(m, 0)

=
1
r3
(x, y)− 1

r2
(m, 0)= 1

r3

(
x − r3

r2
m, y

)
.

If we denote the intersection of the three arcs in a standard double bubble by p,
we see by the fact that these arcs meet at 120◦ angles that m 6 o1 po2 = 60◦ and
m 6 o1 po3 = 120◦. By application of the law of sines we find that

|o1− o2|

sin 60◦
=

r2

sin(m 6 o2o1 p)
and

|o1− o3|

sin 120◦
=

r3

sin(m 6 o2o1 p)
,

which reduces to

|o1− o2|

r2 sin 60◦
=
|o1− o3|

r3 sin 120◦
r3|o1− o2|

r2
= |o1− o3|

r3

r2
m = |o1− o3|.

Thus o3 = (
r3
r2

m, 0), and the vector W − V = 1
r3
(x − r3

r2
m, y) is equal to the unit

normal on the remaining arc. Thus the line integral on this arc also evaluates to∫
1ds. Since the line integrals over all three arcs evaluate to

∫
1ds, or the length

of each arc, the expression in (1) above is equal to P(µ). As a consequence of the
divergence theorem, however, we have

P(µ)=
∫
∂ B̂1

V · N ds+
∫
∂ B̂2

W · N ds =
∫

B̂1

div V d A+
∫

B̂2

div W d A

=

∫
B̂1

∂
∂x

( x
r1

)
+
∂
∂y

( y
r1

)
d A+

∫
B̂2

∂
∂x

( x−m
r2

)
+
∂
∂y

( y
r2

)
d A

=

∫
B̂1

1
r1
+

1
r1

d A+
∫

B̂2

1
r2
+

1
r2

d A =
∫

B̂1

2
r1

d A+
∫

B̂2

2
r2

d A = 2A1
r1
+

2A2
r2
.
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Now consider G(σ ):

G(σ )=
∫ 1

0
f ′σ dt = fσ (1)− fσ (0)=

∑ 2ai − hi li

ri
|t=1−

∑ 2ai − hi li

ri
|t=0

=

∑ 2Ai − 1 · 0
ri

−

∑ 2 · 0− 1 · 0
ri

=
2A1

r1
+

2A2

r2
.

This is true for all competitors σ , including the standard double bubble µ; thus
P(µ)= G(µ). �

Lemma 4.5. G(σ ) = G(µ) for all competitors σ , where µ is the standard double
bubble.

Proof. It was shown in Lemma 4.4 that G(σ )=2A1/r1+2A2/r2 for all competitors
σ , including µ. Thus G(σ )= G(µ) for all competitors σ . �

The final condition for calibration, that G(σ )≤ P(σ ) for all competitors σ , will
be proved in Lemma 4.10 as a result of the following propositions. For this section
we introduce the notation Gσ (t) =

∫ t
t0

f ′σdt and Pσ (t) = the total perimeter of σ
lying below the slicing line t . We will show that G ′σ (t)≤ P ′σ (t) for all t ∈ [t0, t1],
and G(σ )≤ P(σ ) will result by integration.

In the following propositions we will use the notation shown in these figures:

a1

a2

m1 m2
o1 o2

o3

r1
r2

r3

a1

a2

h1
h2

l11

l12
l21 l22

o1 o2

s1 s↗2

v

Let m1 = |o1 − o2| (the m of Lemma 4.4) and m2 = |o2 − o3|. Also let v be
the intersection of the slicing line (h1, h2) with the center arc between B̂1 and B̂2.
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Define s1, s2, as the distances between v and o1, o2 respectively. The lengths l11,
l12, l21, and l22 are defined as shown, where l11+ l12 = l̂1 and l21+ l22 = l̂2.

Proposition 4.6. For all slices (h1, h2) of the standard double bubble,

l2
11− l2

12

r1
=

l2
21− l2

22

r2
.

Proof. It was shown in Lemma 4.4 that o1o3 = m1+m2 = (r3/r2)m1. Given that
r3 = r1r2/(r1−r2), we find that m1/m2 = (r1−r2)/r2. Noting that cos(6 o1o2v)=

− cos(6 vo2o3), by application of the law of cosines we find

m2
1+ s2

2 − s2
1

2s2m1
=−

s2
2 +m2

2− r2
3

2s2m2
,

from which we obtain, successively,

−s2
2

(
1+

m1

m2

)
= m2

1+
m1

m2
(m2

2− r2
3 )− s2

1 ,

−s2
2

(
1+

r1− r2

r2

)
= r2

1 + r2
2 − r1r2+

r1− r2

r2
(r2

2 + r2
3 − r2r3− r2

3 )− s2
1 ,

−s2
2

r1

r2
= r2

1 + r2
2 − r1r2+

r1− r2

r2

(
r2

2 − r2
r1r2

r1− r2

)
− s2

1 ,

r1r2− s2
2

r1

r2
= r2

1 + r2
2 +

r1− r2

r2

−r3
2

r1− r2
− s2

1 = r2
1 − s2

1 ,

r2
2 − s2

2

r2
=

r2
1 − s2

1

r1
.

Now by the Pythagorean theorem we find l2
21− l2

22 = r2
2 −h2

2− (s
2
2 −h2

2)= r2
2 − s2

2
and l2

11−l2
12= r2

1−h2
1−(s

2
1−h2

1)= r2
1−s2

1 . Substitution shows that (l2
11−l2

12)/r1=

(l2
21− l2

22)/r2. �

Proposition 4.7.
∑
((2− h′i )a

′

i )/ri ≤
∑

l̂i/ri .

Proof. Let l11, l12, l21, l22, h1, and h2 be defined as above. Consider the diagram

a′1 a′1 a′2 a′2

l11

112

l21

l22h′1
h′2

v
↙
θ

x

which describes the instantaneous change in (h1, h2). Unlike the parametrizations
of slicing lines in the circle, in the standard double bubble slicing lines may rotate.
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This rotation is described by the relative angle θ ′ and the distance x between the
axis of rotation and the double bubble.

We can compute the total change in area in both B̂1 and B̂2 as follows:

A′1 =
1
2θ
′
(
(x + l̂2+ l̂1)

2
− (x + l̂2)

2)
=

1
2θ
′(2x + 2l̂2+ l̂1)(l̂1),

A′2 =
1
2θ
′
(
(x + l̂2)

2
− (x)2

)
=

1
2θ
′(2x + l̂2)(l̂2).

We also note that h′1 = θ
′(x + l̂2+ l12) and h′2 = θ

′(x + l22). Thus∑ (2−h′i )A
′

i

ri

=
(2−h′1)(θ

′/2)(2x+2l̂2+l̂1)(l̂1)

r1
+
(2−h′2)(θ

′/2)(2x+l̂2)(l̂2)

r2

=

(2−h′1)
h′1

2(x+l̂2+l12)
(2x+2l̂2+l̂1)(l̂1)

r1
+

(2−h′2)
h′2

2(x+l22)
(2x+l̂2)(l̂2)

r2
.

Both of these components are maximized when h′1 = h′2 = 1, so we have:∑ (2− h′i )A
′

i

ri
≤
(2x + 2l̂2+ l̂1)(l̂1)

2(x + l̂2+ l12)r1
+
(2x + l̂2)(l̂2)

2(x + l22)r2

=
l̂1

r1
+

l̂2

r2
+
(l11− l12)(l12+ l11)

2(x + l̂2+ l12)r1
+
(l21− l22)(l22+ l21)

2(x + l22)r2

=
l̂1

r1
+

l̂2

r2
+

l2
11− l2

12

2(x + l̂2+ l12)r1
+

l2
21− l2

22

2(x + l22)r2
.

By Proposition 4.6 we find l2
11−l2

12
r1
=

l2
21−l2

22
r2

. Using this substitution we find

l2
11− l2

12

2(x + l̂2+ l12)r1
+

l2
21− l2

22

2(x + l22)r2
=

l2
21− l2

22

2r2

(
−1

x + l̂2+ l12
+

1
x + l22

)

=
l2
21− l2

22

2r2

l12+ l21

(x + l̂2+ l12)(x + l22)
.

Now since x+l22> 0 and l22> l21, this term is always negative, and maximized
at zero as a→∞. Thus∑ (2− h′i )A

′

i

ri
≤

l̂1

r1
+

l̂2

r2
+

l2
21− l2

22

2r2

l12+ l21

(x + l̂2+ l12)(x + l22)

≤
l̂1

r1
+

l̂2

r2
=

∑ l̂i

ri
. �
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Proposition 4.8. For all slices of a standard double bubble, we have(
l12

r1
+

l21

r2

)2

+

(
h1

r1
−

h2

r2

)2

= 1.

Proof. We will show that

h1

r1
−

h2

r2
=− cos η and

l12

r1
+

l21

r2
=− sin η, (2)

where the angle η is defined in the figure:

o1 o2

↙
o3

r1

r2

r3

h1 h2

← h3

a1

a2

l̂1

l̂2
η

φ2

φ1

n↙
θ

The proposition results from the equalities in (2). To show them, we prove that

cosφ1− cosφ2+ cos η = 0.

for any slice of a standard double bubble. Note that cosφ1= h1/r1, cosφ2= h2/r2,
and cos η = h3/r3. (Here h3 is the signed distance from the slicing line to o3,
measured similarly to h1 and h2.) Let n be the signed distance from o3 to the
intersection of the slicing line and the line through the centers, and θ the angle
formed at the intersection, as in the figure above.

We find that h1 = (m1 +m2 + n) sin θ , h2 = (m2 + n) sin θ , and h3 = n sin θ .
Hence

cosφ1− cosφ2+ cos η

=
h1

r1
−

h2

r2
+

h3

r3
=
(m1+m2+ n) sin θ

r1
−
(m2+ n) sin θ

r2
+

n sin θ
r3

=
(
r2(m1+m2+n)− r1(m2+n)+ (r1−r2)n

)sin θ
r1r2

=

(
r2

(m1

m2
+ 1

)
− r1

)
m2 sin θ

r1r2
=

(
r2

(r1− r2

r2
+ 1

)
− r1

)
m2 sin θ

r1r2
= 0.

This implies immediately that h1/r1−h2/r2 =− cos η. Now consider a slicing
line perpendicular to the original at v, as in the figure on the top of the next page. In
this slicing, we see that l12/r1= cosφ1 and l21/r2=− cosφ2. By the property just
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o1

r1

h1

l̂12

φ1

η

φ2

r2

↑l̂21
↖h2

← o2

Towards the proof of Proposition 4.8.

proven, cosφ1−cosφ2=− cos(90◦+η), or equivalently l12/r1+ l21/r2=− sin η.
These two relations together finish the proof. �

Proposition 4.9. The following identity holds for all slices t of any competitor σ :√
1−

(h1
r1

)2
+

√
1−

(h1
r1
−

h2
r2

)2
+

√
1−

(h2
r2

)2
+

∑ −hi l ′i
ri
≤ P ′σ (t).

Proof. Suppose the slicing line t intersects σ in three locations. Consider P ′σ (t),
shown in the figure:

a1 a2 dt

C1 C2 C3

Note that ‖(c1, dt)‖ + ‖(c2, dt)‖ + ‖(c3, dt)‖ = P ′σ (t) dt. Now consider the unit
vectors (

−h1,
√

1− h2
1
)
,
(
−h1+ h2,

√
1− (h1− h2)2

)
, (−h2,

√
1− h2

2
)
.

By the Cauchy–Schwartz inequality,(
−h1,

√
1−h2

1
)
·(c1,dt)+

(
h2−h1,

√
1−(h1−h2)2

)
·(c2,dt)+

(
−h2,

√
1−h2

2
)
·(c3,dt)

≤ ‖(c1, dt)‖+‖(c2, dt)‖+‖(c3, dt)‖ = P ′σ (t) dt.

Noting that (c1+ c2)/dt = l ′1 and (c3− c2)/dt = l ′2, this reduces to√
1−

(h1
r1

)2
+

√
1−

(h1
r1
−

h2
r2

)2
+

√
1−

(h2
r2

)2
+

∑ −hi l ′i
ri
≤ P ′σ (t).
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Now this inequality still holds even if t intersects σ in more than three locations
by ignoring any additional intersections. There are however additional cases that
are not covered by the above proof (such as when there are only two intersections),
but for the sake of brevity we simply assert that proof of all other cases continues
in much the same fashion. �

Lemma 4.10. G(σ )≤ P(σ ) for all competitors σ .

Proof. We use the preceding propositions to show that G ′σ (t) ≤ P ′σ (t) for all
t ∈ [0, 1]:

G ′σ (t)=
∑ 2A′i − h′i li − hi l ′i

ri
=

∑ (2− h′i )A
′

i − hi l ′i
ri

≤

∑ l̂i − hi l ′i
ri

(by Proposition 4.7)

=
l11

r1
+

l12

r1
+

l21

r2
+

l22

r2
+

∑ −hi l ′i
ri

=

√
1−

(h1
r1

)2
+

√
1−

(h1
r1
−

h2
r2

)2
+

√
1−

(h2
r2

)2
+

∑ −hi l ′i
ri

(by the Pythagorean theorem and Proposition 4.8)

≤ P ′σ (t) (by Proposition 4.9).

Noting that Pσ (0)= 0, we complete the proof by integration: G ′σ (t)≤ P ′σ (t), so∫ 1

0
G ′σ (t) dt ≤

∫ 1

0
P ′σ (t) dt,

and therefore G(σ )≤ Pσ (1)− Pσ (0) and G(σ )≤ P(σ ). �

This completes the proof of Theorem 4.3, namely that the standard double bub-
ble minimizes perimeter among all figures (unions of C1 manifolds) that separately
enclose two fixed areas.

5. Further research

Extending the work that we have here presented seems well within the grasp of
many undergraduate researchers. We are currently working on extending it to in-
clude many other such problems including soap films on wire frames, both with
and without trapped bubbles. These problems are uniquely suited to metacalibra-
tions because they include both fixed volume and fixed boundary constraints. The
planar problem for three or more bubbles has proven somewhat more difficult to
tackle, in large part because we no longer have the topological property of be-
ing able to match areas under a given slicing line, which was possible with two
areas. Alternative slicing methods are being investigated to attack this problem.
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Another interesting problem under investigation is that of generalizing the above
double bubble proof to n dimensions, hopefully providing a compelling alternative
to current proofs for the double bubble in Rn . It is hoped that metacalibrations will
become a useful tool to solve problems in geometric optimization.
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