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INVOLVE 2:5(2009)

On the orbits of an orthogonal group action

Kyle Czarnecki, R. Michael Howe and Aaron McTavish

(Communicated by J6zef H. Przytycki)

Let G be the Lie group SO(n, R) x SO(n, R) and let V be the vector space of
n x n real matrices. An action of G on V is given by

(g, h)v:=gh, (g,h)eG, veV.

We consider the orbits of this group action and demonstrate a cross-section to
the orbits. We then determine the stabilizer for a typical element in this cross-
section and completely describe the fundamental group of an orbit of maximal
dimension.

1. Introduction

Let G be the Lie group SO(n, R) x SO(n, R) and let V be the vector space of n x n
real matrices. An action of G on V is given by

(g, h)v:=g'vh=g oh, (g,h)eG, veV,

where g’ denotes the matrix transpose of g and where the operation on the right is
matrix multiplication. This action is obviously smooth (having continuous deriva-
tives of all orders) since the matrix entries in (g, /).v are polynomial functions of
the matrix entries of g, 4 and v.

For each v € V we define the orbit of v, denoted by G.v C V, as the set

G.v:={(g, h).v|(g, h) G}
For v, w € V the relation

v ~ w if v and w are in the same G-orbit

MSC2000: primary 22C05, 57S15; secondary 55Q52.

Keywords: representation theory, orbit, Lie group, homotopy group, Clifford algebra.
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is an equivalence relation and so V is partitioned into G-orbits. We also define G,
the stabilizer of v, to be the those elements in G that fix v:

G, =:{(g,h) € G| (g, h).o =v}.

For each v € V, G, is a closed (usually not normal) subgroup of G, and so is a Lie
group.

Let G/ G, denote the set of left cosets of G, in G. Since G, is a closed subgroup
of G, G/G, is a differentiable manifold and dimG /G, = dim G — dim G,, where
dim indicates the dimension. Furthermore, G/G, is diffeomorphic to the orbit
G.v. If G, is normal in G, then G/G, is a Lie group [Brocker and tom Dieck
1985, Sectionl.4].

A subset D of V is a cross-section to the orbits if every G-orbit intersects D.
That is, for each v € V there is an element (g, #) € G and an element d € D such
that (g, 7).v =d. Some definitions of a cross-section are more restrictive, requiring
that each orbit intersect the cross-section exactly once.

In this paper we consider the orbits of this group action. In Section 2 we demon-
strate a cross-section of the orbits, and in Section 3 we determine the stabilizer for a
typical element in this cross-section. In Section 4 we discuss the orbits for the case
n = 2 and introduce generic orbits — those of maximal dimension — for arbitrary
n. Section 5 reviews some useful information about fundamental groups, covering
spaces, and the covering group Spin(n). Our main result is in Section 6 where
we connect these ideas in order to completely describe the fundamental group of
a generic orbit, and in Section 7 we work through an example that further exposes
the anatomy. We close with a few remarks in Section 8 regarding those orbits that
do not have maximal dimension.

2. Cross section to the orbits

In this section we show that the diagonal matrices with non-negative entries con-
stitute a cross-section to the group action.

Proposition 2.1. Let G = SO(n) x SO(n) and let V be the vector space of n X n
real matrices. Let G act on'V via (g, h).v = g'vh. Then for each v € V there is a
(k1, k) € G such that (ky, k).0 =diagonal(dy, ..., d,), withd, >d,>--->d, > 0.
Proof. Let v € GL(n, R) where GL(n, R) is the (dense, open) subset of invertible
n x n matrices in V. Then v’v is a symmetric matrix with positive eigenvalues,

and hence is diagonalizable via conjugation by an element in SO(n, R). That is,
there is a k in SO(n, R) such that

k'v'vk =a,

where a = diagonal(ay, ..., a,) witha; >ay > --->a, > 0.
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Now let a~ /2 =diagonal(1/./ay, ..., 1//ay). If $, is the n x n identity matrix
we have

9, = aVPag 1?2 =412 [k'v"vk] a2 = (vka_l/z)’vka_l/z.
It follows that vka~'/? is in O (n, R). Let a'/? = diagonal(\/ai, ..., \/a,). Then
a'? = 9,a"* = (a7 ko' vka"?1a'? = a7 Pk v k.
Thus, if k; = vka~'/2, we can write this as
(k1) vk = (ki, k)0 =a'’?,

where k; € O(n,R) and k € SO(n, R). If k; happens to be in SO(n, R) we are
done. If not, we can change the sign of one of the entries in a~!/? so that k; is
in SO(n, R), proving the result for any V in the dense subset of invertible n x n
matrices. Since our group action is continuous, the result holds for all v € V. We
could also modify the above proof slightly to account for those eigenvalues of v’v
that are equal to zero. O

3. The stabilizer of a representative element

Let I' be an arbitrary group acting on a set X. If x and y are in the same I"-orbit,
then x = y.y for some y € I'. Itis a standard result that y ~'T'yy =T y, that is, the
stabilizers are isomorphic via conjugation. Therefore, it is sufficient to determine
the stabilizers of those elements that are in the cross section.

We start with a simple example that demonstrates the general idea for the situ-
ation that we are considering. Let d € V and (g, h) € G be given by

d 0 0
d=\| 04d 0 |, whered| >d, >0,
0 0 d
81,1 81,2 81,3 hiy hip hyij
g=| &1 &2 &3 |, h=| ha1 hap ha3
83,1 832 £33 h3y hsp h33

We may assume d; > d, since conjugation by a matrix such as

00 —1
01 0]esoB)
10 0

will reorder the entries in d.
If (g, h) stabilizes d then g'dh = d or equivalently, dh = gd, so we have
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dihiy dihip dih digi,1 dig12 dagis
dihy dihyp dihyz | = | diga1 dige2 daga3 | - (3-1)
dohs 1 dyhsp drhsj; digs1 digzp drg33

That is, the first entry in d acts on the first row of £, but acts on the first column of
g, etc. The rows of g and & are orthonormal (considered as vectors in R® with the
usual dot product), and we compare the squared length of the first row of dh with
the first row of gd in (3-1):

(dih11)* + (dih12)* + (d1h1.3)* = (d1g11)” + (d1812)° + (d281.3)".
Since first rows of both / and g have length 1, we have
= (@d)? = @)*[(h1,1)* + (h1,2)* + (h1,3)°]
= (d181.1)" + (d1g12)* + (d2g13)* < (d)?,

since d; > dy. But this is impossible unless g1 3 =0, and hence /1 3 =0. Comparing
the lengths of the second rows shows that g, 3 = /> 3 = 0, and applying this same
reasoning to the columns gives 731 = g3 1 =0and h3» = g3, =0.

We now have

dihi dihip 0 digi1 digip 0O
dihy dihypy 0 =| digo1 digzp O ,
0 0 dahss 0 0 dags3

which immediately implies that 7 = g. The condition that g'g = I gives us that
each of the block submatrices must be orthogonal, and of course g must have
determinant 1. Note that if we were to allow d> = 0 then g3 3 and /3 3 need not be
equal.

An inductive argument on the different eigenvalues of d proves the general case
and is not particularly enlightening, so we state the following result.

Proposition 3.1. Let G = SO(n) x SO(n) and let V be the vector space of n X n
real matrices. Let G act on 'V via (g, h).0o = g'vh. Let

d = diagonal(dy, ..., dy,...,dx,...,dy) €V
—_— ——

51 Sk

withdy > dy > ... > dy > 0, and let G be the stabilizer of d in G. If di > 0, then
Gi=1{(g,8):8€S5(0(s1) x -+ x O(st))}-

That is, each g consists of block-diagonal matrices where each block is an s; X s;
orthogonal matrix and where s; is the multiplicity of the eigenvalue d; in d. The
“S” indicates that the product of the determinants of the blocks is 1. If di =0 then
G4 = (g, h) where g and h consist of block-diagonal matrices with each i-th block
in O(s;), and where g = h except for the k-th block.
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4. Orbits

A natural question is “What are these orbits like?”” From the introduction we know
that, for any element v € V, the orbit G.v is diffeomorphic to the coset space
G/G,, with dim G.0 = dim G — dim G,. Since any two elements in the same G-
orbit have isomorphic stabilizers, it will be sufficient to consider the orbits of those
representative elements d in the cross-section D. In particular, the dimension of
these orbits is completely determined by the multiplicity of the distinct eigenvalues
of d and is independent of their actual values.

Example: n = 2. In low-dimensional cases we can use computer graphics to get
an idea about the nature of these orbits, and we now illustrate this for the two-
dimensional Lie group G = SO(2) x SO(2). Figure 1 shows the orbit of d = ((1) 8),
with a cut-away view on the right. Note that, for n = 2, the orbit lies in Mat(2, R) =
R*, and each figure is a projection of this orbit onto R%. Since G is abelian, G
is normal in G and so G/ G is an abelian Lie group which is compact since the
quotient map is continuous. Since G4 = {($2, $2), (—F2, —F»)} which is discrete,
the orbit G.d has dimension 2. We conclude that this orbit is diffeomorphic to the
2-torus embedded in R?, since this is the only two-dimensional compact abelian
Lie group. Notice that the graphics could be misleading, since we usually picture
the 2-torus in R* as resembling the surface of a donut.

Note that if an element d in the cross-section D has only one eigenvalue, then
the stabilizer G, is isomorphic to SO(2) and so the orbit G.d is one-dimensional
and is diffeomorphic to SO(2), that is, a circle.

Generic orbits. We now move on to consider the following special case of generic
orbits —those with maximal dimension—for arbitrary n. We will reserve the
symbol ¢ for a diagonal matrix in the cross-section D with n distinct eigenvalues.

Figure 1. An orbit for n = 2 projected onto R?. Right: cut-away
view of same orbit.



500 KYLE CZARNECKI, R. MICHAEL HOWE AND AARON MCTAVISH

That is, 6 =diagonal(dy, ..., d,) withd; > dy > - - - > d,, > 0. From Proposition 3.1
we have G5 = (g, g), where g = diagonal(%1, ..., £1) has an even number of
entries equal to —1. Since the stabilizer of J is discrete, the dimension of the
G-orbit of J is equal to the dimension of G.

Proposition 4.1. Let G = SO(n) x SO(n) and let V be the vector space of n X n
real matrices. Let G act on 'V via (g, h).v = g'vh. Let

o0 = diagonal(dy, d, ...,d,) €V

withdy > dp > --- > d,, > 0, and let G be the stabilizer of 6 in G. Then |G|, the
order of G, is =1

Proof. From Proposition 3.1, G consists of n copies of O (1) ==1 lying in SO(n),
so there must be an even number of entries equal to —1. Thus

n n n n
where k =n if n is even and k = n — 1 if n is odd. From the binomial theorem,

2 =141y +(1-1)"
=[©)+ )+ G) -+ )]+ (0) - () + G) == ()]
=2[(0)+ (2)+(3) +--+ ()] 2104 .

Again, what are these orbits like? Figure 2 shows a (projection of a) two-dimen-
sional slice of the orbit of § =diagonal(2, 1, 0) for the case n = 3. Could this be just
a torus in disguise, as was the case n = 2? One way to determine how interesting
the orbits are is to consider their fundamental groups.

Figure 2. A section of an orbit for n = 3. Right: cut-away view
of same section.
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5. Fundamental groups, covering spaces and spin(n)

In order to make this exposition self-contained and to fix notation we review some
background material that will be familiar to many readers.

Review of the fundamental group and covering spaces. Let X be a topological
space and let [0, 1] C R be the closed unit interval. A path in X is a continuous
map f : [0, 1] = X. Two paths f and g from x| to x, are said to be homotopic if
one can be continuously deformed into the other. This is obviously an equivalence
relation, and we denote the equivalence class of f by [ f]. Of special interest will
be loops, or closed paths that start and end at a distinguished base point x € X,
and we can define a multiplication of loops by concatenation. That is, f - g means
first go around f and then go around g. This operation is associative and is well
defined when taking equivalence classes: [f]-[g] = [f - g]. The constant loop
ey : [0, 1] = X given by e, (¢) = x serves as the identity element for this operation
and the loop f~!is the loop f traversed in the opposite direction. We can then
define the first homotopy group or the fundamental group, denoted 7 (X, x), as
the group of (equivalence classes of) loops in X that start and end at x, along
with this multiplication. If x| and x, are connected by a path in X, then (X, x1)
and 71 (X, xp) are isomorphic. Homeomorphic topological spaces have isomorphic
fundamental groups, but the converse need not be true.

We will also require the notion of a covering. Let (X, x), (Y, y) be topological
spaces with base points x and y respectively. A map p : (Y,y) — (X,x) is a
covering map if

@ p(y)=x;
(i1) p is continuous and surjective;

(i) for every x( € X there is an open neighborhood Uy, C X so that p~!(U,,) is
a disjoint union of open sets {V,} and so that for each a, the map p restricted
to V, is a homeomorphism of V,, onto Uy,.

We then say that (Y, y) is a covering space of (X, x) and refer the the covering
space along with the covering map as a cover of (X, x). We will also use the
standard results, roughly stated, that the composition of covers is a cover, and that
the cover of a product is the product of the respective covers.

Remark 5.1. A topological space with trivial fundamental group is called simply
connected. A covering space that is simply connected is called a universal covering
space. It is unique up to homeomorphism.

We will need the notion of /ifting a path from a space to a covering space.
Let p: (Y, y) — (X, x) be a covering map. Let f : [0, 1] — X be a path starting
at x. A lifting of f is a path f : [0, 1] — Y such that po f = f. For the cases we
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are considering, these lifts are unique up to homotopy. That is, let f be a path in
X beginning at x, and let f and g 1 g be two lifts of f both beginning at y. Then £ is
homotopic to g. In particular, f and g must end at the same point in Y.

Let p : (Y,y) — (X, x) be a covering map. A homeomorphism 2 : Y — Y
is called a deck transformation or covering transformation if p o h = p. Clearly
the collection of all such deck transformations is a group with the operation being
composition of maps.

We will use the following fact to determine 7 (G.J, 9).

Theorem 5.2. [Massey 1991, Corollary 7.5] If (Y, y) is a universal covering space
of (X, x), the group of deck transformations of (Y, y) is isomorphic to n1(X, x). If
p: (Y, y):— (X, x) is a covering map, then the order of w (X, x) is equal to the
cardinality of the set p~ (x).

Now consider the map p; : G — G.J given by g > g.d. Since pl_l(é) =
{y € G|y.0 =0} = Gy is discrete, Theorem E4 of [Hall 2003] has the following
consequence.

Proposition 5.3. Let G = SO(n) x SO(n) and let 1 denote the identity element in
G. Let V be the vector space of n x n real matrices and let G act on V by

(g, h).v:=g'vh, (g,h)eG, veV.

If 6 € V is a diagonal matrix with n distinct eigenvalues, and if G.0 is the G-orbit
of 6, then the map p; : (G, 1) — (G.0, 0) given by g+ g.0 is a covering map.

Said another way, G is a fiber bundle over the orbit G.6 with projection map
(g, h) — (g, h).0 and discrete fiber Gy.

Spin(n). We now provide a brief review of the construction of the Lie group
Spin(n) and the covering map from Spin(n) to SO(n). This abridged description
should be sufficient for our purposes, but for a more complete discussion, see
[Brocker and tom Dieck 1985]. The presentation below borrows extensively from
the excellent exposition in [Simon 1996].

Consider the vector space R" with standard basis {ey, ..., e,}. We form C(n),
the Clifford algebra on R", by declaring that multiplication is associative, distribu-
tive over addition, and obeys the relations e;e; +eje; = —26;;. This is just a fancy
way of saying that the basis elements anti-commute and el.2 =—1.1fI =ijip...0
is a multiindex with 1 <i; <--- <if <nweseteg =1, wesete; =e¢;¢;,...¢,
and we set |I| = k. Then C(n) is an algebra with basis {e;} and it follows that the
dimension of C(n) is 2". We also have the subalgebra of even elements

C(n)even = {A € C(n) | A is a linear combination of e¢; with |I| even}.
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Examples. We have canonical isomorphisms:
e CO=ER;
e C(I)=ECviathemap e; — i =+/—1;

e C(2) =H (the quaternion algebra) via the map e| — i, ex — j and so ejer > k.
Here, i, j, and k are those elements in H with 2= j2 =k?=—1and ij=k;

o we also have C(3)even = H via the map ejer — i, eje3 — j, s0O
(ere2)(ere3) = ezez > k.

We can define Spin(n) to be the invertible elements S of C(#)even that (among
other things) leave the vector space W = R" invariant under conjugation:

swstcw.
Now consider the quadratic elements
_1
qij = 3¢€i€j,
for 1 <i < j <n, and observe that they obey the same commutation relations as the
generators L;; of the Lie algebra so(n). Therefore these quadratic elements form a

Lie algebra isomorphic to so(n), and so to get the group Spin(n) we exponentiate
these quadratic elements:

1 1
Sij(t) :=exp(t gij) = 1+ (tqij) + E(HIU)Z + 5(16]ij)3 +---
= cos(t/2) +sin(t/2)(2qi;),

since qizj = —1. As t goes from 0 to 4, S;;(t) gives a copy of U(1) in Spin(n)
which is homeomorphic to a circle in the plane spanned by 1 and 2¢;;.

Now the elements A in Spin(n) act on R” by conjugation and this gives a rep-
resentation of Spin(n) on R”. Consequently, we have a map

R : Spin(n) — SO(n, R)
defined by
Ae;A7! :Zn:Rﬁ(A)ej. (5-1)
We now determine the matrix represel:rzltlation of the group elements
Sij(t) :==exp(tg;;) = cos(t/2) +sin(t/2)(e;e;) (5-2)

by determining the action on the basis vectors. First observe that e;e; commutes
with e; when k is equal to neither i nor j, so in this case

Sij(ex ;' (1) = (cos(t/2) +sin(t/2) (eie)) ex (cos(1/2) —sin(1/2) (eie)) = ex.
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Now conjugating e; by S;;(t) we have

Sij(1)ei S5 (1) = (cos(1/2) +sin(1/2) (eje;) )e; (cos(t/2) — sin(t/2) (eie;))
= (cos(t/2) +sin(t/2)(e;e;) 1 e;
= (cos®(t/2) —sin*(t/2))e; — 2 cos(t/2) sin(t /2)e;

= cos(t)e; —sin(t)e;.
A similar computation applied to e; gives
Sij(t) ej S (1) = sin(t)e; 4 cos(t)e;.

Therefore, conjugation by S;;(¢) = exp(fg;;) induces a rotation by an angle ¢ in the
e;, ¢ plane. Since these rotations generate SO(n), this map is surjective.

The following result is well known (see [Simon 1996, Sections VII.6—VIL.7] or
[Brocker and tom Dieck 1985, Section 1.6].

Proposition 5.4. Spin(n) is simply connected. If A € Spin(n) and if R(A) is
the n x n matrix with entries Rj;(A) described in (5-1) above, then the map
R : (Spin(n), 1) — (SO(n, R), 1) is a twofold universal covering map and a homo-
morphism of Lie groups. The symbol 1 denotes the unit elements in the respective
groups.

6. The fundamental group of a generic orbit

We are now ready to determine the fundamental group for a generic orbit of max-
imum dimension. We will proceed by elaborating on some previously introduced
ideas and connecting them together in order to invoke Theorem 5.2.

As before, 6 € D denotes an element in the cross-section with # distinct eigen-
values. By Proposition 3.1, a typical element in its stabilizer G5 can be represented
by a diagonal matrix with each entry equal to &1, and where an even number of
entries are equal to —1. From now on, let I = iji>---i; be a multiindex with
1<i; <---<ip<n,kevenandset!=k/2. Let ST; be the element in G5 with
those entries that are equal to —1 indexed by /. For example, if n = 6,

_
Lo
oo

coc oo

STi123,5 =

N eNeNel

)
coc oo

c oo L
co—o oo
o L
—ocoocoo

Using this notation, G5 = {(STy, STy) : |I| is even}.
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Let 7 = (f1,..., 1) and let SO;(7) be the matrix consisting of rotations by an
angle ¢; in the planes indexed pairwise by /. These pairs are of the form i, 1, io.

For example, if I =1, 2, 3,5 and © = (#1, t2) then SO, (7) rotates by an angle #
in the 1, 2 plane and by an angle #, in the 3, 5 plane. For instance, if n = 6,

costy sin; O O O O
—sinty cost; O O O O

0 0O costp, O sintr O
SO123s@ =1 (o ’ 1 02 0
0 0 —sint, 0 cost, O

O o0 0 0 0 1

Notice that SO 2 3 5(7) is equal to the matrix product SO 2 (1) SO3 5(t2). It should
be easy to see that

Lemma 6.1. ST; = SO;(£mx, ..., xx).

We next consider product of elements S;;(#) € Spin(n) and relate them to the
corresponding elements in SO(n).

Lemma 6.2. Let [ =iyiy - - - iy be a multiindex with k even and where
1 <ip <---<lIg.

Setl=k/2. Lett =(t1, ..., 1) and let SO (1) be the matrix consisting of rotations
by an angle t; in the planes indexed pairwise by 1. Let S; j(t) be defined as in
(5-2), and let S;(t) designate the product S;(t) = Si,i, (t1)Sizi, (t2) - - - Sip_ i, (t1)-
Let R : Spin(n) — SO(n) be the covering map given by Proposition 5.4. Then
R(S;(7)) =S0;(7).
Further, e; == ejej, - - - €j,, we have e; = Sy (w, ..., ).

Proof. Since the entries in the multiindex I are distinct, the designation SO;(7) =
SO, iy-iy (t) = SO;,i, (t1) SOy, (12) - - - SO, 4, (77) is unambiguous. Since the map
R is a representation, we have

R[S1(t)] = R[Si,i, (t1)] R[Si3i, (22)] - - - R[S, i, (1)1
= S0;,i,(t1) SOy, (2) - - - SO;, i, (7)) = SO (7).

For the last assertion, note that (5-2) gives e;e; = S;;(x) for any i, j, since
cos(r/2) =0 and sin(x /2) = 1. Hence

ey = [eileiz][ei3ei4] e [eik_leik] = Siliz(ﬁ)S[3i4(7T) o Sik_1ik (71') - S](?T, ceey 7T),
as required. O

This next result is proven similarly.
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Lemma 6.3. Denote by n+ an l-tuple n ™ = (%=, ..., £r) with an even number
of entries equal to —n and denote by ©~ an l-tuple t ~ = (x=x, ..., n) with an
odd number of entries equal to —n. Let S;(t) and e; be as in the previous lemma.
Then S;(n %) =e; and S;(x ™) = —e;y.

Finally, let 1 denote the unit element in G = Spin(n) x Spin(n) and let 1 denote
the unit element in G =SO(2, R) x SO(2, R). Then (G, 1) is the universal covering
space (in fact, a covering group) of (G, 1) and the map

p=RxR:(G,1)— (G,1)

is a fourfold covering map. Now recall the covering map p; : (G, 1) — (G.J,J)
from Proposition 5.3. It follows that the composition

P=pop::(G,1)— (G.J,0)
is a covering map and that G is the universal covering space of the orbit G.J.
Definition 6.4. FE(n) = {*e;: || is even}.

Observe that E(n) is closed under multiplication since, if eje; = ex then |K| =
|I]+|J| when [ and J are distinct indices, and the entries of K contract in pairs
when / and J have repeated entries. For example, e; > e 3 = —e; 3. Since (e 1)_1 =
+e;, E(n) is a group under multiplication. A computation very similar to that in
Proposition 4.1 shows that | E (n)| = 2".

Definition 6.5. Consider the set E(T’l) ={(v, xv)|v € E(n)}. This is a subgroup of
G which is isomorphic to the group E (1) x Z, via the identifications (v, 1) — (v, v)
and (v, —1) — (v, —v) for v € E(n).

Proposition 6.6. P~'(5) = E(n).

Proof.

Pl(er,er)] = p1o[R(er), R(ep)],

Lemma 6.3 = = p1 o [R(S;(x ™), R(S;(x )],

Lemma 6.2 = = p; o[SO;(z 1), SO;(z )],

Lemma 6.1 = = p1o[STy, STy],

=0.
The proofs of the other cases such as P[(e;, —e;)] = 0 are similar and hence
E(n) € P71(0).
Now p; ' (6) ={(ST;, STr) : |1] is even} C G has order 2"~ (Proposition 4.1)

and p is a fourfold covering map G — G. Therefore the set P~ () has order 2"*!
which is equal to the order of EE;) O
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The main result of this paper completely describes the fundamental group of a
generic orbit.

Theorem 6.7. Let G = SO(n) x SO(n) and let V be the vector space of n X n real
matrices. Let G acton'V via (g, h).vo = g'vh. Let 6 =diagonal(dy, dy, ...,d,) €V
withd) > dy > ... > d, >0, and let G.0 be the G-orbit of 6 in V. Letey, ..., e,
be the standard basis vectors in R" and let E(n) = {*e;, ...e;, | k is even} be the
group generated by the quadratic units e;jej, i < j in the Clifford algebra on R".
Then the fundamental group 1(G.9, d) is isomorphic to E(n) X Z,.

Proof. We will show that the group of deck transformations Aut(G, P) on the
universal coverlng (G,1)is 1somorphlc to E (n) which is isomorphic to E (n) x Z,.
For each w € E (n) and 5 € G define the left translation map £z : G—>G by
¥5(s) = w’s, the operation on the right-hand side being multiplication in G. Itis
a standard exercise that the set of all such translations L = {¥g | @ € %} is a
group that is isomorphic to Ezn/) via the map @ +— ;. Since G isaLie group, each
translation is continuous with a continuous inverse, hence a homeomorphism from
G to G. Furthermore, for each ¥ € E (n), the composition Po¥z(vV) = P(wv) =4
so each &5 is a deck transformation and therefore L is a subgroup of Aut(G, P).
But Aut(G, P) has order 2"*! by Theorem 5.2, and since both these groups have
the same order, they must be equal. By Theorem 5.2 again we have 7|(G.d, ¢) =
Aut(G, P) = L= E(n) = E(n) x Zo. 0

7. An illustration

We conclude with an example for n = 6 that further illustrates the previous con-
structions. The element

83,5(1) = expl(t/2)ezes] = cos(t/2) + sin(t/2)ezes

in Spin(6) defined in (5-2) is homeomorphic to a circle lying in the plane spanned
by 1 and ezes in the Clifford algebra C(6), and which projects onto the rotation
SO35(¢) in SO(6) via the representation R. Consider the path f~ :[0,47] — G
given by 1 > (835(1), S35(2)).

Since f is homeomorphic to a circle and G is a simply connected covering
group, [f is trivial in 7 (G, 1) Now as ¢ goes from O to 7, we get a path f[o ]
from (1, 1) to (ezes, ezes) in G that projects down via P toaloop f:[0, 7] — G.0
given by f(t) = (SO35(t), SO35(t)).0. By uniqueness of path lifting, f cannot
be homotopic to the trivial loop since ﬁo,”] is not trivial in G. Similarly, as ¢ goes
from 7 to 27, we get a path ﬁﬂ,zﬂ] from (eses, ezes) to (—1, —1) in G that also
projects down to the loop f in the orbit G.J. Not until ¢ travels the entire distance
[0, 47] do we obtain the product f* in G.o that lifts to the (trivial) loop fin G.
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Thus, [ f]* is trivial in 7,(G.6, d). We chart here the information as the path fis
projected onto G and then G.J for the successive landmark values of ¢.

t f(@) p((S35(1), $3.5(1)))  P(S35(1), S3.5(1))
0 (1,1 (6, 96) 0
T (e3es, ezes) (8T3,5, ST3,5) o
2 (—1, —1) (96, 96) 5
3 | (—eses, —eses) (8T35, ST3.5) 0
Az (1,1 (%, %) 0

As in the previous discussion regarding deck transformations in the proof of
Theorem 6.7, we can translate the loop f via left multiplication by the element
(e1e2, e1e2) € E(n). This gives us the loop g: [0, 47 ]1— G given by ¢ — (v(¢), v(¢))
where

V(1) = ejea[cos(t/2) + sin((t/2))ezes] = cos(t/2)e1er + sin(t /2)eerezes.

This is a loop starting at eje, which lies in the plane spanned by eje; and ejesezes
in the Clifford algebra C(6).
We check that
v H(t) = [— cos(t/2)eres + sin(t/2) e erezes]

and that conjugating the basis vectors e¢; € R® by v(¢) produces the map R which
takes v (¢) to the rotation

-10 0 O 0 O
0-1 0 0 O O
0 O cost O sint O
R () = 00 0 1 0 0 € SO(6)
0 0 —sint 0 cost O
00 0 0 0 1

As above, the projection P maps g[o,] to the loop g(z) = R(v(z)).d in the orbit
G.d and [g]* is trivial. Here is part of this information for the path g:

t g(1) p(g(1))) P(g(1)))
0 (ere2, e1e2) (ST12, ST 2) 0
™ (erezezes, erezezes)  (STi23,5,85T123,5) 0
2n (—erez, —erer) (8T 2, ST12) o
3 | (—ejezezes, —ejerezes) (STi35,ST1235) 0

By considering the loops in the orbit G.J that lift to the path from

(1, 1) — (e1e2, e1e2) — (e1ezezes, ejezezes)
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in G we see that g and f cannot be homotopic, so [g] and [ f] are distinct elements
in 7,(G.9, 9).

8. Final remarks on the general case

Determining the first homotopy group for the orbits in the more general case, when
the representative element d in the cross-section contains eigenvalues with multi-
plicities greater than 1, does not lend itself to such direct construction since the
map G — G.d is not a covering map.

Acknowledgments

We would like to thank Professors C. Benson, G. Ratcliff and A. Smith for many
helpful conversations.

References

[Brocker and tom Dieck 1985] T. Brocker and T. tom Dieck, Representations of compact Lie groups,
Grad. Texts in Math. 98, Springer, New York, 1985. MR 86i:22023 Zbl 0581.22009

[Hall 2003] B. C. Hall, Lie groups, Lie algebras, and representations, Grad. Texts in Math. 222,
Springer, New York, 2003. MR 2004i:22001 Zbl 1026.22001

[Massey 1991] W. S. Massey, A basic course in algebraic topology, Grad. Texts in Math. 127,
Springer, New York, 1991. MR 92¢:55001 Zbl 0725.55001

[Simon 1996] B. Simon, Representations of finite and compact groups, Grad. Studies in Math. 10,
American Mathematical Society, Providence, RI, 1996. MR 97¢:22001 Zbl 0840.22001

Received: 2008-04-08 Revised: Accepted: 2009-09-28

czarn005@rangers.uwp.edu Department of Mathematics,
University of Wisconsin— Parkside, 900 Wood Rd.,
P.O. Box 2000, Kenosha, WI 53141-2000, United States

hower@uwec.edu Department of Mathematics, University of Wisconsin—Eau
Claire, 508 Hibbard Humanities Hall,
Eau Claire, WI 54702-4004, United States
http: //www.uwec.edu/math/Faculty /howe.htm

Aaron.D.McTavish@uwsp.edu  Department of Mathematical Sciences,
University of Wisconsin—Stevens Point,
Stevens Point, WI 54481-3897, United States


http://www.ams.org/mathscinet-getitem?mr=86i:22023
http://www.emis.de/cgi-bin/MATH-item?0581.22009
http://www.ams.org/mathscinet-getitem?mr=2004i:22001
http://www.emis.de/cgi-bin/MATH-item?1026.22001
http://www.ams.org/mathscinet-getitem?mr=92c:55001
http://www.emis.de/cgi-bin/MATH-item?0725.55001
http://www.ams.org/mathscinet-getitem?mr=97c:22001
http://www.emis.de/cgi-bin/MATH-item?0840.22001
mailto:czarn005@rangers.uwp.edu
mailto:hower@uwec.edu
http://www.uwec.edu/math/Faculty/howe.htm
mailto:Aaron.D.McTavish@uwsp.edu

INVOLVE 2:5(2009)

Symbolic computation of degree-three covariants
for a binary form

Thomas R. Hagedorn and Glen M. Wilson

(Communicated by Scott Chapman)

We use elementary linear algebra to explicitly calculate a basis for, and the di-
mension of, the space of degree-three covariants for a binary form of arbitrary
degree. We also give an explicit basis for the subspace of covariants comple-
mentary to the space of degree-three reducible covariants.

The study of invariant functions was one of the main influences on the devel-
opment of modern algebra. Consider the following simple example. The group
G = Z acts on R by addition: g-x = g+ x. We define a G-invariant function
to be a real-valued function f(x) on R such that fog = f forall g € G. In
other words, f(x) = f(g + x) for all g € Z, x € R. The invariant functions are
precisely the real-valued functions with period one. Hence, geometric information,
such as periodicity, can be recovered by studying functions with certain algebraic
properties.

In Section 1, we introduce the concepts of an invariant and covariant function
for a binary form Q(x, y). The problem of determining the complete set of these
functions was widely worked on during the late nineteenth century. Gordan [1868]
proved that the ring of invariants (and the ring of covariants) for a degree-n bi-
nary form is finitely generated. A milestone in the history of modern algebra was
Hilbert’s nonconstructive proof [1890] of the following fundamental theorem.

Theorem [Hilbert 1890]. The ring of invariants (and the ring of covariants) for a
degree-n homogeneous polynomial in m variables is finitely generated.

Hilbert’s theorem says that all invariants (resp. covariants) for a homogeneous
polynomial can be expressed as polynomials in a certain finite set of invariants
(resp. covariants). Hilbert [1893] subsequently gave a constructive proof of this
theorem. The minimal size of the generating set is only known for a few values of
(m, n). When m = 2, this number has been determined for n < 8 [Bedratyuk 2009;
Bedratyuk and Bedratyuk 2008].

MSC2000: 13A50, 15A72, 16W22.
Keywords: theory of covariants, invariant theory, symbolic method, binary forms.
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Let € ;, denote the complex vector space of covariants of degree d, order / for a
degree-n binary form (see Section 1 for a definition). Cayley and Sylvester proved a
classical combinatorial formula for dim €} , [Sturmfels 2008, p. 153]. Algorithms
for calculating a basis for 6} , are known, but in principle they have only been
carried out in a few cases. In general, for a degree-n form in m variables, the most
comprehensive treatment is due to Howe [1994], who has given an algorithm for
calculating the set of invariants of degree d < 6.

Here we study the case when d = 3 and use an elementary argument involving
matrix algebra to give an explicit basis for €5 , in Theorem 6.1. While our result
may not be new, we do not find it in the literature and it corrects the incorrect
description of €3 , in [Hilbert 1993, p. 62] (see the Historical remark in Section
6). As a corollary, we obtain an explicit form for the Cayley—Sylvester formula in
this case. Finally, let Redj ;, denote the subspace of ‘65 ;, consisting of reducible co-
variants (those that are polynomials in lower-degree c’ovariants). In Corollary 6.4,
we provide an explicit basis for the subspace in ‘€5 , complementary to Redg" 5 Our
argument is a variant of the classical straightening algorithm in invariant theory.

In the first two sections of this paper, we define the invariants and covariants of a
binary form and review the classical symbolic method. There has been a wealth of
excellent introductions to invariant theory recently written [Dolgachev 2003; Kraft
and Weyman 1999; Olver 1999; Procesi 2007; Sturmfels 2008] and we refer the
reader to them for a more comprehensive introduction to the subject. In the paper’s
next two sections, we introduce the combinatorial concepts of J(-and U-matrices,
and establish the relationship with ‘€% ,. Finally, in Sections 5 and 6, we carry out
calculations to determine an explicit basis for (63‘ .

1. Basic notions

We review the basic definitions of invariants and covariants found, for example, in

[Dolgachev 2003; Kraft and Weyman 1999; Olver 1999]. A binary form Q(x, y)

of degree n is a homogeneous polynomial
Q(x,y)=a0x”+(’;)a1x”’1y+...+( )an—lxynil"i'anyn- (1)

We let V,, denote the complex vector space of all binary forms of degree n with
complex coefficients. The matrix group SL,(C) acts on v € C? by matrix multipli-
cation g - v = go and induces an action on

(C?** = {Linear functions h : C> — C}
by (g-h)(v) =h(g~'v). In this context, we regard x, y as the coordinate functions
on C2. Thus x, y € (C?)* and (C?>)* =Cx & Cy. If

¢= (") esLae),

n
n—1
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the explicit action of g on x, y is given by g-x =dx — by, g-y = —cx + ay.
Defining g - (x“y?) = (g - x)*(g - ¥)?, the SLy(C)-action naturally extends to a
SL,(C)-action on V,. Equivalently, the SL,(C)-action on (C*)* extends to the
tensor product @"_, (C?)*, and preserves the subspace Sym"C? = V,,.

Remark 1.1. V,, is the unique (up to isomorphism) irreducible representation of
SL,(C) of dimension n.

Polynomial functions. Invariants and covariants for a binary form of degree n are
specific examples of polynomial maps.

Definition 1.2. Let W = @le Vy,o A function f: W — (EA is a polynomial map
of degree d if there is a degree-d homogeneous polynomial f € Clx;;l1<i<k,0<j<n;

such that for all binary forms Q; € V,,, expressed as Q;(x,y) = Z;%izo Cl,‘jxn_iyi
as in (1), we have

f(Q1, ..., Q1) = fla).

The polynomial f is uniquely determined and we identify f with f . Let P(W)4
denote the set of all degree-d polynomial maps on W. We say f has multidegree

d=(,...,dy) if
fW 0. Q) =1 X f(Q1,..., Q) forallt; eC, Q; € Vy,,
and we let P(W)q denote the set of all such functions.

Example 1.3. Letk=1,n;=1, and f(xo, x1) =x0x1. Then f defined by f (agx+
a1y) = f(ap, a1) =apa is a polynomial map of degree 2 on W = V. The function
f(aox +a1y) = |ap| is not a polynomial map.

More generally, consider a function f : W — Vj,. Since {x”, x"~1y, ..., y"}is
a basis for V, there are functions f; : W — C such that
f=fox"+ fix" Nyt oy iy 2)

Definition 1.4. A map [ : W — V), is a polynomial map of degree d if f; € P(W)y
for each of the functions f; in (2). We let P(W )4, denote the set of all polynomial
maps on W — V), of degree d. An analogous definition applies if “degree d” is
replaced by “multidegree d”.

Invariants and covariants.

Definition 1.5. A SL,(C)-invariant f : V,, — C of degree d for a binary form of
degree n is a polynomial map f € P(V,)q such that

f(g-Q)=f(Q)  forallg € SLy(C)and Q € V.
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Example 1.6. The first example of an invariant was discovered by Gauss in his
study of binary quadratic forms. Let Q(x, y) = aox”+2a;xy+a,y? and define the
discriminant A (Q) =a%—a0a2. Ifg=(%"%), wehave (g-Q)= box*+2b1xy+byy?,
where

bo = a0d2 — 2a1Cd —I—a202,

b1 = —agbd + a1 (ad + bc) — apac,

by = a0b2 —2ajab + aya®.
A is a degree-two SL, (C)-invariant of a binary quadratic form, as a straightforward
calculation shows A(g-Q)= A(Q). It can be shown thatif f is a degree-d invariant
of a binary quadratic form, then d is even and f is a multiple of A%/2,

Classically, the interest in invariants was to use them to identify geometric
properties of projective curves preserved under SL,(C) transformations. However,
invariants are not general enough to specify all such properties. The more general
notion of covariants is needed to identify these properties.

Definition 1.7. A SL,(C)-covariant f of degree d and order h for a form of degree
n is a polynomial function f € P(Vy,)q,n such that

fg-Q=g-f(Q)  forallgeSLy(C), Q€ V,.

Let €(V,)) denote the vector space of all covariants for a form of degree n, and let
(63,,1 =@ (Vy)a.n denote the space of those of degree d and order h.

Example 1.8. (i) An invariant is a covariant of order 7 = 0.

(i) The simplest example of a covariant is the function f : V,, — V, of degree
1, order n, defined by f(Q) = Q. f € €Y , is a covariant as the condition
f(g-0Q)=g- f(Q) is trivially satisfied.

(iii) A more important covariant is the Hessian function. For Q(x, y) € V,,, define
the Hessian H : V,, — V;,_4 by
020 %0 ( 220 )2
ox? 0y? oxoy/

H(Q) =
The Hessian has the property that H(Q) = 0 precisely when Q is the nth
power of a linear form. It is a covariant of degree 2 and order 2n — 4.

More generally, we have the following definition of a covariant. This definition
is only used in the next section.

Definition 1.9. Let W = @le Vp;- A covariant of degree d, order h for W is a
Sunction f € P(W)g4. satisfying

fg- Q=g -f(Q) forallgeSLy(C)and Q e W.
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We let € (W) denote the set of all covariants for W. A covariant f € €(W) of order
h is said to have multidegree d if f € P(W)q . We let €(W)a, (resp. €(W)q,n)
denote the sets of covariants in 6 of order h and degree d (resp. multidegree d).

2. The symbolic method

To prove our results, we will use the classical symbolic method. We review it
here. Classically, the legitimacy of the symbolic method was questioned, but it has
since been justified [Kung and Rota 1984; Dolgachev 2003]. We now introduce
the symbolic method, following the presentation in [Kraft and Weyman 1999] and
adopting their notations.

Symbolic methodforcﬁ(LJ). LetJ={1,...,k}. Letxyp, x.fora,b,ceJ,a+#b,
denote independent variables and define the polynomial ring

Symk = Clxap, xcla,b,ce J,a # b].
Let P € Sym, be a monomial and write

p= T e [T

a,beJ celJ

The order ord P and weight wt P = (wt, P),cy are defined by

0rdP=Zac, WtaP=Z(lab+lba)+0'a-
celJ bel

We note that the symmetric group S; naturally acts on Sym, by
o (Xap) = Xo (a)o (b)» o (xc) =X, (c)-
Definition 2.1. Letl;,l, € L = V) and let l; = a;ox + a;1y. Define

ap ar
azp azi

([ ] =

Let L/ = @,., L and let I = (I;) € L. L’ can be identified with L¥, where
k =|J|. We denote the maps [/ > [[, [;] and [ — [, by the classical notation (ab)
and c,, respectively. We have (ab), c, € 6(L”).

Theorem 2.2 (First fundamental theorem). The ring C(L’) is generated by all
elements of the forms (ab) and cy, fora, b, c € J, and a # b.

Define the map y : Sym, — 6(L”’) by
X(xab) = (ab), X(xc) = Cx,

and extend it in the natural way to monomials and all of Sym,.
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Corollary 2.3. x : Sym, — 6(L”) is a surjective homomorphism of algebras. x
sends a monomial P of order h and weight w to a covariant y (P) of order h and
multidegree w.
Let a =ker y. Then

Symy /a = €(L7). 3)

We now describe the elements of a. For all distinct a, b, ¢, d € J, we have

(ab) + (ba) =0, (ab)cx + (ca)by + (be)ax =0,
(ab)(cd) + (ad)(bc) — (ac)(bd) = 0.

Traditionally, these equations are called syzygies of the first, second, and third
type. These syzygies motivate the definition of three subideals of a.

ar = (Xap +Xpa |la #b € J),
a2 = (XapXe + XcaXp + XpeX, | distinct a, b, ¢ € J),

a3 = (XapXed + XadXbe — XacXpg | distinct a, b, c,d € J).

The second fundamental theorem (or invariant theorem) for SL, states that these
three syzygies generate all the relationships among the covariants ¢(L”).

Theorem 2.4 (Second fundamental theorem). Let a=ker y. Then a=a;+a,+as.

Notation. (i) Sym, is bigraded by weight and order. Let Sym, , , C Sym, be
those elements with weight w and order 4. Then Sym, = @, ;, Symy ,, -
The ideal a is also bigraded and we let a,, , = a N Symy_,, ;.

(ii) When the weight is w = (n, ..., n), we write w = (n)* as shorthand.

Classical symbolic description of Cﬁz, »- Equation (3) describes @(L”) in terms of
the symbolic algebra. Classically, these same symbols were also used to denote
covariants in %Z » (= €(V)r.n). We now present this alternate symbolic method
and relate the two notations.

Let Q(x, y) be a degree n binary form with coefficients a; as in (1). For each

n—i i

a € J, let a4, a,1 be indeterminates with the property that a a;ll = a;, for

i=0,...,n. Letay, =a,0x +a,y and define
0a0 Gal
(ab) = | " ") = aa00p1 — Ga1po.
Opo Opl
Using these definitions, for a monomial P =[], xi‘g” [1. x& € Symy ¢y 5, the
expression
p(P)= [ [(@by* [ ]z (4)

a#b c
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is a well-defined degree-h binary form whose coefficients are homogeneous degree
k polynomials in the a;. Moreover, the function Q — w(P) can be seen to be a
covariant in 6 ;. Let y(P) denote this covariant. We note that y (P) € @(L”)
and y(P) € €}, are different types of covariants, but the symbolic representation
of y(P) from the previous subsection equals the symbolic representation y (P).

Example 2.5. Let P=x2, € Symy, (5y2 ¢. In the notation just introduced, the symbol
(ab)? for the binary quadratic form Q of (1) represents

2 2 2 2 2 2 2
(ab)” = (aa00p1 — Aq10p0)” = Q001 — 20400410600p1 + 05 04 = 2(aoaz — ay).

Thus w (P) is the covariant Q +— 2(apay — alz). Its symbolic representation (ab)?
is the same as that of y (P) = (ab)* € €(L?).

The two symbolic methods are linked by the following proposition.

Proposition 2.6 [Kraft and Weyman 1999]. There is a surjective homomorphism
of vector spaces

A CLT) gy — €L,
such that the composition A o y : Symy . , — 6 , is surjective with kernel

I'=agy,+(P—0-P:PeSymy ).

If P € Symy (,y  is a monomial, then A(y (P)) = w(P). Moreover, A sends
a symbolic covariant in 6(L”) to the covariant in 6y, with the same symbolic
representation.

Corollary 2.7. The map P+ y (P) induces an isomorphism Symy /1 =€} ;.
This result enables the easy classification of covariants with small degree.

Example 2.8 (Covariants of degree 1). Let J = {a}. By the corollary, C@'{ »=0
when i #n. When h = n, €7 is generated by y (x;) =ay. As I =agy, =0,
C@’l’ﬂ is the one-dimensional space generated by g = a’. g is the trivial covariant
with the property g(Q) = Q for any degree n binary form Q.

Example 2.9 (Covariants of degree 2). Let J = {a, b}. We will show that

1 ifhiseven,h <2n,and h =2n mod 4

dim€, , = i
’ 0 otherwise.

In the former case, 6, , is generated by g = (ab)"*h/zafﬂbi'/z. When h = 2n,
this is the covariant g such that g(Q) = Q%. By the corollary, the vector space

€}, 1s generated by the images w (m) of the monomials m = xi‘zxé’lexg_c. Since

xé’l — (—l)l’xi’2 € a, we only need consider m = x‘fzxfx;' ~¢. Since m has weight
(n)*>,a+c=n=a+ (h—c)and h = 2c. Thus if & is odd, 6y, =10} If his

even, let & = 2c. Then %7 , is at most a one-dimensional space generated by the
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image of m = x{, “x{x5. For thls space to be nontrivial, we must also have ¢ < n.

If o = (12), m — o (m) = (x{;“ — x5, )x{x5 € I. Substituting for x5y,
(1= (=1)"")x]; “x{x5 € I.

Hence, when n —c is odd, m € I and y (m) = 0. Finally, we show that m ¢ I when
h =2c, h <2n and n — c is even. Suppose that m € I. Then the definition of /
shows that

x5 x{xs = (ki +x21) f + [P — 0 (P)], (5)

where f € Sym,, ¢ = (12), and we can assume P is a linear combination of
monomials of the form x{,x3 " ’xcxg Then

2i 2
P —o(P) :xfxEZai(xlgle) [x5 72 — x5

Now (5) is an identity in Sym,, so letting xo; = —x2, we obtain an identity in

Clx1, x2, x12]. But since n — ¢ is even, we obtain x}, “x{x§ = 0, in Sym,, which

gives a contradiction. Hence m ¢ I and 67 , is one-dimensional in this case.

We now define the map Observe that the proof of Theorem 6.1 uses only the
statements of Proposition 2.6 and Corollary 2.7. Consider f € (L’ )nyk.h- By
Theorem 2.2, f =D, cp P, where

P = H(ab)l“" H cle,
a#b ceJ

and wt P = n, ord P = h. We will define A(P) for each monomial P. Then we
can extend the domain of A to all of ¢(L”’ )(nyt,n Dy defining

A(f) =D cpA(P).

P

It remains to define A(P) € 6} ;. We will do so by defining A(P)(g) € Vi, for
g € V,. Among the many possibilities, fix a choice of integers la,-bj, o €10, 1},
fora,b,ce J,i, j,l €{l,...,n} such that

aibj i) ibj ) ibj = ) 1 — Oc-
Z/l b top, =1 Ziab + 04 1 Z/lab Aab Zo'c Oc
i j i, !

Since g is a complex polynomial of degree n in two variables, it factors as g =
g1...8n. Define

A(P)(g) = v)k Z( IT e gwnt™ 1 8:52»)

(Ta)aef a#he-] celJ
€S, 1<i,j<n 1<i<n
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Because of the summation over 7, € S,, A(P)(g) is independent of the choices of
Aaib;» Oc;» and g;. Itis clear that A(P) € P(V,)k,n. More work shows A(P) € € .

Example 2.10. We illustrate the map A. Consider P = (ab)?> € €(L?). We have
k =2 and ord P = 0. Then A,, = 2 is the only nonzero exponent among the
Acd, 0c. Choose 44,5, = Agp, = 1 as the only nonzero exponents in (6). Let
g = apx? + 2a1xy + ary? = ap(x — a;y)(x — a»ry) and let g; = ap(x — a1y),
g>=x —oayy. Then

A(P)(g) = 1 ([g1 811[82 21+ [81 g21(82 811+ [82 811[g1 2] + [82 g21[81 811)
=1 (g1 &1lg2 811+ [g2 811l81 &2)) = —1aj(ar — @)’
=2(apaz — a%),

and A(P) e (6%,0. This calculation also shows that A (y (xazb)) =y (xgb) by Example
2.5, which illustrates the second half of Proposition 2.6.

3. F-matrices and U-matrices

In the previous section, we used Corollary 2.7 to classify the covariants of degrees
one and two by computing €} , = Symy, ) /1. For larger degrees, the combina-
torics in analyzing I are more difficult. In this section, we introduce #-matrices
and %U-matrices to simplify the analysis and then use them in the next section to
classify the covariants of degree 3. Our goal is to define easily computed maps

0 A
Sym3,(n)3,h — Hg,h — Ug’,h’
with ker (Ao @) = I. Then we will be able to explicitly compute ‘6’31 e

. . 2 . .
#-matrices. To a monomial P = [ x/;’ x¢¢ in Sym, we associate a k X k

integral matrix 0(P) = (0;;) by *7*?

0. — Aij ifTF#E ],
Yo e ifi=

celJ

When P € Symy ¢ ,, 0(P) will be an #-matrix of type (n, k, h).

Definition 3.1. Fix integers k,n > 0, h > 0. A k x k-matrix B = (b;;) is an ¥-
matrix of type (n, k, h) if the coefficients b;; are nonnegative integers satisfying

Zl;zl bjj = h and for each i,

k k
Zbij +Zbﬁ —b;; =n.
=1 =1

We define 3, , to be the set of all matrices B of type (n,k, h).
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Example 3.2. Let P = (ab)(bc)aycy € Syms. Then (P) = (é é (f) € %3’2.

Definition 3.3. Let HY , be the complex vector space generated by the basis ele-
ments [H], for H € 3 .

If H, H, € %Z’h, then 2[H] —3[H2] € HZ,h- We note that 2[ H;] is not the matrix
obtained by multiplying the entries of H; by 2. We can extend the map 6 to a map
0 : Symy ¢, , — Hy ), by

0(3 crP) = crlo(P),
P P

where the sum is over monomials P.

The symmetric group Sy has a natural action on ¥ ,, and thus HY ,, defined by
0 - A= (a;-13),-1(j)), for A € %} ;. It follows formally that
Proposition 3.4. The map 9 : Symy ¢ 5 —> Hj , is an Si-equivariant isomorphism
of C-vector spaces.

U-matrices. The following subset of #¥-matrices will be very useful.

Definition 3.5 (U-matrices). A U-matrix is an upper-triangular ¥-matrix (b;;)
whose diagonal elements form a nonincreasing sequence by; > by, > .... Let
Wy , e the set of all U-matrices in ¥, . Let Uy, be the subspace generated by
formal complex linear combinations of Wy, ,-matrices.

323\, . 213\ .
Example 3.6. (8 (2) zlt) is a U-matrix but (i (3) ?) is not.

The U7 , -matrices can be easily parametrized. Whenn—h is odd, U3 , =&. When
n = h mod 2, we define

s r+(n—h)/2 h—s—r+n—h)/2
Ms,r = A/Ls,r,h,n =10 h—s—r S+(n_h)/2 > (7)
0 0 r

for integers r, s. We usually drop the /4, n indices as they are clear from the context.
We also define

Spn={(s,7) € 7%| max(0, 3(h —n)) <r < %h, 3(h—r)<s<h-2r}. (8
Lemma 3.7. Let n, h be nonnegative integers. If n = h mod 2, then U3 , = {A,, |
(s,7) € Sp.n}. Otherwise oug,h = .

Proof. Assumen=h mod 2. If (s, r) € S, p, thens > h—s—r >r and r—l—%(n—h) >
0. Hence (M, € Ou’ih for all (s,r) € S, ,. Now suppose M = (b;;) € Oug,h.
Let s = by, r = b3z. The order condition then shows by = h —r —s. Now
s+bi+biz=n,r+biz+by=n,and h—r—s+bia+by3=nsince M € U3 .
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Solving these equations gives the formulas for by», b;3, b23 found in Jl, . Hence,
M =M, e Ong’,,, for some (s, ) € S,,,5. The bounds follow from s >h—s—r>r >0
and by > 0, proving the first assertion. When n =% h mod 2, the formulas for

b2, by show that these terms cannot be integers if 7, s € Z. Hence U3 , = &. [

Remark 3.8. If n < h/3, then U3 , = .

4. The map A

We,will now construct the maps &, A described at the beginning of Section 3.
A %’3’ » — Uj, will be a S3-invariant map and it will be used to construct a S3-
equivariant ma;’) (Ao0): Sym; )3, — Uj,. Recalling that / C Symys )3 ), is
the kernel of A o y, we can then compute the image of [ in U’3” , under Ao@. In
Section 6, we will be able to use this result to explicitly classify the covariants in
€5 , using Corollary 2.7. We begin with the following lemma that follows from
the calculation of the S3-orbits in %’; e

Lemma 4.1. Let M € %5 . Among the matrices A = (a;;) in the S3-orbit of M in

%gl - there is a unique representative M satisfying three properties:
(@) an = ax > ass.

(b) If a1 = ax, then (a12, a13) is the largest choice in the lexicographical order-
ing among the possible choices for A.

(¢) If ayy = asz # ay1, then (a3, ais) is the largest choice in the lexicographical
ordering among the possible A.

Example 4.2. If M = (1%8), then M = (33{). It M = (%%6),then1\2=
410 104 021 014

(022).
112

Definition 4.3. Let M = (m;;) € 35 ;. We define ey = (—1)"2Fmaitms,

miy mip+my miz+msj .
M*=| 0 man myz+mz |, and M =ey[M*]c Ug’h,
0 0 ns3

where [M] represents the basis element represented by M. We define A(M) = M
and extend it to amap A 1 H5 , — U’3” » by

A( D cH[H])= > cnAH).

He%g’h He%gqh

Example 4.4. Let M = (413 ) € %1% Then A(M) = —[dta, ] € UL,

1
3
312

Letting S3 act trivially on U3 ,, we have:
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Lemma 4.5. A : H; , — U5, is a surjective S3-equivariant homomorphism of
vector spaces.

Proof. If M € U3 ;, then A(M) = [M]. So the subspace in Hj , generated by [M],
for M € U3 ,, surjectively maps onto Uy ;. O

The composition map Ao 6 : Sym; (3 , — U3, is a surjective S3-equivariant
homomorphism of vector spaces. To analyze its kernel, we define the vector spaces

Oy = 01O SYM3 )3 s

0y, (3.5 1= Q2O Sym3 (33 5,

I :=ay,,p, + (P —0-P|PeSym;s ;) CSyms s 5,
g:=(Ao0)(I)) C U'ih,

b= (Aob)(ayuyn) C U3y,

We begin by determining g.

Proposition 4.6. (a) A basis of g is given by {[ B}, with B = (b;;) € U3 ;, and
(1) b11 =by #bszand by =1 mod 2, or
(1) byy = b33 # by and by =1 mod 2, or
(iii) b11 = bzz = b33 and b12 =1 mod 2.

(b) The induced map Ao 8 :Symjy (,\s /11 = UL, /g is an isomorphism of vector
Yms )3 p 3,h
spaces.

Proof of 4.6(a). Since Ao @ is S3-equivariant, g is generated by (6o A)(ay.()3,4)-
Now ay,(,)3 5 is generated by the images (xap+xpq) P, where P =[], xjgb [T, xc*
is an order 4 monomial in Syms with weight (n —1,n—1,n), (n—1,n,n—1), or
(n,n—1,n—1). Let M =6(P). By the S3-equivariancy, we can assume M = (m)
with m > moy > ms3. If my; > myy > m33, then (Ao8)(x,p P) = —(AoB)(xpy P)
and

(Ao 0)((xap + xpa) P) = 0.

Now suppose m | =my > my3 and (a, b) = (1, 2). By working through the various
cases, one finds that the only case when (Ao &) (x12P)+ (Ao8)(x2; P) # 0 occurs
when m |, = my;. In this case, calculation shows (Ao 8)(x;2P) = (Ao &) (x21 P)
and

(Ao &)((x12+x21)P) =2[B],

where B = (b;;) is a matrix described in case (i). In particular, bjp = 2my + 1 is
odd. Similar calculations in the other cases establish the rest of (a). O

Proof of 4.6(b). By the definition of g, the map Ao# is well-defined. More-
over it is surjective as A o @ is surjective. To show it is injective, we need only
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show that ker A C 6(I;) as 8 is an isomorphism. Let a € ker A and express
a =2 yeyr, cu[M]. We can rewrite o as a =3y cqn @, where

ay= > culMl.
Me%g’ﬁ
A(M)=%[N]

Let A(an) = by[N]. Then 0 = A(a) = D, by[N]. Since the elements [N], for
N e Ow;,h, form a basis of Ug,h, we have by =0, A(ay) =0and ay € ker A. We
now fix N € U3 , and show ay € 0(1).

For each Sg—(;rbit C in the set of M € ¥’ such that A(M) = £[N], let dc =
D meccum- Let Mc e U3 ;, to be the unique rebresentative of C specified by Lemma
4.1. Then

ay= . culMl=D dcIMcl+D D em((M]—[Mc),
A(M)==%[N] C C MeC

where the sum is over the finite number of orbits C. Since A is constant on the
orbit C, we have

0=A(an) = chA([Mc])-
C
Taking the difference of the two equations, we have
ay =D de ((Mc] = AQMcI) + Q. > en((M] = [Mc)).
C C MeC

The definition of A shows that [Mc] — A([Mc]) € 0(ay;(,y3,,) C O(I1). As the
second summand is formally in 8(1;), ay € 8(I;) and (b) is proved. O

Define ¢ : U; , — €5, byp =Aoy 06~!, where we restrict the domain of the
isomorphism 6~ : H3 , — Symjy )3, to Ug .
Corollary 4.7. ¢ induces an isomorphism Uy , / (g +b) = €5 ;.
Proof. By Corollary 2.7, we have an isomorphism A o y : Symy (,y3 /1 = €3 .
Since k = 3, the syzygies of the first and second kind generate all the syzygies in
a. Hence I = I; + ay.(,)3,;, and (Ao 0)(I) = g+ b. Using Proposition 4.6(b), it
follows that Ao induces an isomorphism Symj ()3 /I — U5,/ (g +b). Putting

these isomorphisms together and noting that A is the identity on U} ,, gives the
claimed isomorphism ¢. 0

5. Calculation of g + b

In this section, we explicitly calculate g + h. This calculation is then used in the
next section to calculate €% ,. We begin by calculating g.

Proposition 5.1. (a) Ifn+h =0 mod 4, then g = {0}.
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() If n+h =2 mod 4 and a = max(0, (h —n)/2), then g is generated by
{[Mp—orr]:a <r <h/3}U{[Mp—p)2,r]l:a <r <h/3, r=h (mod 2)}.

Proof of 5.1(a). Let n + h = 4t for some t. Now by Proposition 4.6, g is generated

by [M], with matrices M of three types: (i), (ii), and (iii). Suppose M has type (i).

Then r = h — 2s and

n—h n—h n+h
=h—-2s+ T T,

is even, contradicting the definition of M. Similarly, assuming M has types (ii),

(iii) leads to contradictions. Hence, g = {0}.

r+ —2s=2(t —s)

Proof of 5.1(b). By Proposition 4.6, g is generated by [l ], where (i) s =h—r —s
or (ii) h—r —s =r. Thus s = (h—r)/2 or h —2r. Each of the matrices .M, _,,,, for
max(0, (h—n)/2) <r <h/3,and Mp—ry2,r, for0<r <h/3andr=h (mod 2), is
in A% ,. These matrices are distinct except when s =r =h—r —s, h=0 (mod 3),
andr =s = h/3. O

Unfortunately, it is not as simple to describe the generators of h. Instead, we can
determine the generators of (g+§)/g. Then by combining them with the generators
of g, we will have a set of generators for g+ f. Recalling the definition of Jl; , in
(7), we define

mg y = [»A/Ls,r] - [vas—l,r] + [Ms—l,r—l—l] € Ug,}”
for nonnegative integers r, s satisfying r +s < h.

Proposition 5.2. Let S, , be defined as in (8). Then (g + b)/g is generated by
A(ms-‘rl,r)for all (S, l") € Sn—l,h—l-

Before proving Proposition 5.2, we need to establish some lemmas about the
functions ey, M*, M, M, and A(M ), defined in Definition 4.3.

Lemma 5.3. Foro € S3, M € %gﬁh, €5 (M) = €EMEs(M*)-

Proof. Let M = (m;;). The lemma follows from straightforward calculation for
each o € S3. For example, when ¢ = (12), one has

€0 (M) = (_1)m12+m31+m3z — (_1)m21+rn31+m32 (_1)m12+m21 = EMEq(M¥)- O

Lemma 5.4. Suppose we are given o € S3, M € #3 ;, with o (M)* = M*. Then

o (M) = sgn(o)"*M/2 M, where sgn is the nontrivial homomorphism sgn : S3 —
{£1}.

Proof. We have M = € M*. Then by Lemma 5.3,

O'(M) = 451;/16(7(11/[*)0'(M)>|< = E(;(M*)M.
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If 0 = 1, then the lemma trivially holds true. If ¢ # 1, then at least two of the
diagonal elements of M are equal. If ¢ = (12), then m ] =my,. Since (6 (M*))2; =
(n+h)/2—mi1—mp = (n+h)/2mod 2, €,+) = (—1)"+M/2 = sgn(g)#+"/2 and
the lemma is established. Similar calculations establish the lemma for the other
choices of 0. O

Lemma 5.5. Assume n + h is even. If n +h = 0 mod 4 or the diagonal entries of
M € 33 ;, are distinct, then A(M) = €y A(M™). Otherwise, A(M) = £A(M¥).

Proof. Let ¢ € S3 be such that ¢ (M) = M. We then have
O'(M*) = GU(M*)O'(M*)*
= em€s o (M)*  (by Lemma 5.3)
= EMA(M).
Now if the diagonal elements of M are distinct, (ﬁ/*) = o (M™) and thus
AM*) = M* = 5 (M*) = ey A(M).

Now suppose the diagonal entries of M are not distinct. Then (M/\*/) = (o10)(M™),
where o] € S3 has the property that (¢;(c (M)))* = o (M)*. By Lemma 5.4,
AM*) = (o10)(M*) = sgn(a1) "2 (M) = sgn(a1) "2 A(M).
When n +/h =0 mod 4, sgn(o"])(’“rh)/2 = 1; otherwise, it equals 1. Hence, the
lemma is established. 0

Proof of Proposition 5.2. By definition, § is generated by
(Ao O)((xjjxx +xjxxi +xpix;) P), 9

where P € Sym; 4,1 is a monomial. Since A is invariant under the action of
S3 on 93 ,, one can assume that §(P) = 6/(7’/) Then O(P)* = My, with (s, r) €
Su—1.n—1. It is also enough to consider the cases (i, j, k) = (1, 2, 3), (1, 3, 2). As-
sume (i, j, k) = (1, 2, 3). Then 0(x23x1 P)* = Mls11, and (0(xa3x1 P))* = dys1
by the assumption on P, so

(Ao @) (x23x1 P) = €p A(Ms1,).

When n+h =0 mod 4, by Lemma 5.5, 8(x31x2 P)* = M, O(x12x3 P)* = My 41,
and thus

(Ao0)(x31x2P) = —€p A(My,,), (Ao8)(x12x3P) = €p A(My,r41).

Thus (9) equals €p A(mg41,). When (i, j, k) = (1, 3,2), one gets —ep A(mg41,,),
proving the lemma when n 4+ 4 = 0 mod 4. Now suppose n + /4 = 2 mod 4 and
consider x31xp P. If the diagonal elements of #(x3;x,P) are distinct, we have
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(Ao &)(x31x2P) = —epA(M,,) by Lemma 5.5. If they are not distinct, then
(Ao ) (x31x2P) = —epA(My,) in g/(g + b) as both sides are O by Proposition
5.1. The same logic shows (Ao 0)(x12x3P) = €p A(My, 1), establishing (9) and
proving the proposition when n +h =2 mod 4. O
To make the generators of (g + h)/g explicit, we define the following elements
of H ,:
g r = [Ms,r] - (1 + (_1)(n+h)/2)[Ms—l,r],

Psr = (L4 (=D "2l ]+ [My 1411,
for integers s, r > 0. In general, n, ., p, , will not be elements of U’3’> e
Proposition 5.6. (g+ b)/g is generated by the following elements of US
(a) my,, where max(0, (h—n)/2) <r <(h—4)/3,(h—r)/2+1<s<h—-2r—1.
(b) np—osr, where max(0, (h —n)/2) <r < (h—2)/3.
(©) P(h—r+1y2,r» where max(0, (h —n)/2) <r <(h—3)/3andr =h+1 mod 2.
(d) [Mp42)/3,(—1)/3)> if h =1 mod 3.

Proof. By Proposition 5.2, b is generated by A (m; ), where (s —1,7) € S,—1.4—1.
It follows immediately that (s,r) € S, and My, € U5 ,. However, the terms
My—y,, M1 41 might not be in oug e S0 we need to do ’a case-by-case analysis.
Since (s —1,7) € Sy—1,h—1, we have s — 1 > h —s —r > r. We separately analyze
the cases when we have equality or strict inequality.

Case (a): Suppose s —1 >h—s—r >r. Then (s —1,r), (s —1,r+1) € Syp,
and M1, Mg—_1 441 in ou';,h. Thus A(ms ) = ms,. We now prove the claimed
inequalities for s, r. From the assumptions, we have 2s > h —r 4+ 2 and h >
s + 2r + 1, giving the claimed conditions on s. Combining these equations, we
obtain A > (h—r)/2+2r+2 and h > 3r +4. Thus r < (h—4)/3. The lower bound
on r follows from (s — 1,7) € S,—1.4—1. Conversely, if s, r satisfies the bounds in
(a), then one can show thats —1>h—s—r>rand (s —1,r) € Sp—1p-1.

Case (b): Suppose s —1 > h—s—r and h—s—r =r. Then (s —1, r) is an element
of S, but (s —1,r+1) is not. Hence My_1, € U5 ,, but Ms_1 41 €US ,. Since
s = h — 2r, we have ’ ,

A(llg—y ppy) = (=1 THOD2L ] = (=D)L ],
and A(my,,)=ny, € Ug,h' To establish the bounds, we see that s —1 > r+1. Then
Ir+l=r+r+@+)<r+h—-s—-r+@—-1)=h-1

and r < (h—2)/3. Conversely, if r satisfies the stated bounds in (b), and s = h —2r,
one can show that (s —1,r) € S,_1p_1ands—1>h—s—r=r.
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Case (c): Suppose s — 1 =h—s—randh—s—r >r. Then (s—1,r+ 1) is an
element of S, 5, but (s — 1, r) is not. Then Ms_; ,4+1 € %g,h, but M_1 gcug,h. As
r =h+1—2s, r and h have different parities. Then

A1) = (=1) TR0 ] = (=)=

and A(my,) =[1+(=1) "] 14+ [My—1 1] = py.r. Now h—2r —1 > a, 50
b=h+1-2s>h+1-2(h—2r—1)and r < (h—3)/3. Conversely, when the stated
conditions on r hold, one can show that (s, r) € S,—1 s—1, witha = (h —r +1)/2,
ands—1=h—s—r>b.

Case (d): Suppose s —1 =h—s—r=r. Thenh—1=3rand s =1 mod 3. In
this case, neither (s —1,7) nor (s — 1,7+ 1) isin S, 5. Then
A1) = (1) TR ] = (=D)L,
and A(My_1,,41) = (=1)@FM/2LA 1. Thus
AGmy,r) = A ] = [ ]+ [l 1]) = (L 2=D ).

Regardless of whether n + h = 0,2 mod 4, [Als,] € h. Since s = (h + 2)/3,
r = (h — 1)/3, we obtain the result in (d) in the proposition. Il

6. Calculation of degree-three covariants

In this section, we determine an explicit basis for €3 ; in Theorem 6.1 and derive
the formulas for dim €%, in Table 1 as a corollary. We establish these results by
combining the calculation of g+ § from the previous section with Corollary 4.7 to
calculate €3 , . To simplify the statement of the theorem, we use the map ¢: Uy , —
5, defined before Corollary 4.7. ¢ has the property that if M = (m;;) € U3,
then
oM = [ [ @by [T e,
a#b c

where we use the classical symbolic notation for €3 , (see page 516).

Theorem 6.1. Let n, h have the same parity. Then a basis of €%, is given as
follows.

(@) Ifn+h =1 mod 2, then C@g‘,h = {0}.

(b) When n+h =0 mod 4, the elements ¢ ([M¢,—r)/2,-1), where max (0, 1%) <
r <h/3 andr =h mod 2, form a basis.

(¢) If n+h =2 mod 4, the elements ¢ ([M—r+1)/2,71), where max (0, h;”) <r<
(h—1)/3andr =h+ 1 mod 2 form a basis.
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Example 6.2. When n = 10, 7 = 12, Theorem 6.1(c) states that {¢([ls1]),
@ ([Ms3])} is a basis of ‘@;?12. Using the classical symbolic notation (compare
Example 2.5), these covariants are (ac)*(bc)>a’hc, and (ab)?(ac)’(bc)’adbic?

xX7xTx"

Proof of 6.1. By Corollary 4.7,

€5, =Us,/(g+h=U5,/9)/(@+b/9).

By Lemma 3.7, (a) is established. We now consider cases (b) and (c). By the
same lemma, the set

{[Ms,r] | (S, r) € Sn,h}

is a basis for U3 ,. We define an order on the basis elements .Il; , by defining
[Ms ] > [My ]if (s,h—r —s,r) > (s',h —71',s',r) in the lexicographic order.
We will prove the proposition by ordering the generators of g + b, from largest
to smallest, by their largest terms (which will be distinct). Let a = dimUj ;, and
b = dim(g + b). By expressing the generators of g + b in terms of the [Jl; ,],
we obtain a b x a upper-triangular matrix o of relations. A basis of the quotient
space U3 ;, /(g + b) is then given by the cosets of [, ], for (s, r) corresponding
to nonpivot columns of «l. We now separately analyze the details of parts (b) and

(c).

(b) When n+h =0 mod 4, g =0 and we are reduced to calculating the quotient
space U3 , /h. Proposition 5.6 gives a basis for the vector space h and the leading
terms of each of the my ,, ng,, ps, specified in Proposition 5.6 are [l ,]. We
note that by the proof of Proposition 5.6, the specified pairs (s, r) are distinct and
comprise all (s, r) € S, , with (s—1, r) € S,_1 ,—1. Hence the generators of U’ih/h
are the [l ] for those pairs (s, r) € S, , with (s —1,7) & S,—1 4—1. The definition
of S,.» shows that such a pair (s, r) occurs precisely when 3|/ and r = h/3 or
when i — r is even and s = (h —r)/2. In the first case, let A = 3¢. Then r = ¢ and
the condition on s shows s = ¢. As such, this situation is a subcase of the second
case. <6g’ , 18 thus generated by the [y, ], for (s, ) in the second case, and this is
what the proposition states.

(c) By Propositions 5.1 and 5.6, g + b is generated by [, ] where 2s = h —r or
2r =h —s, and by my », np_2.r, P(h—r+1)/2,r- Since n +h =2 mod 4, np_o,, =
[Mp,—2r1, and p—r41)/2,r = [M(n—r—1)/2,r+1] and both of them are included in the
former set. The leading term of m , is [l ] and the corresponding (s, r) specified
in Proposition 5.6 are all those pairs (s, r) € S, , withs —1 > h—s —r > r. Since
(s,r) € Spp implies s > h —s —r >r, the generators of U’ih/(g-l— h) are the [l ]
for which (s,r) € Syp, s —1=h—s—r, and h —s —r > r, which is what the
proposition claims. O
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When n > h:
n+h=0mod 4 n+h=2mod4
h even [5]+1 5]
h+3 h+3
h odd [ 6 ] [ 6 ]

When %h <n<h:

hmod3 |n+h=0 (mod4) | n+h=2 (mod 4)
0 [252]+1 [24=2] +1
1 [3n h]+1 3n71272]
2 [3n h]+1 [3nh2]+1

Table 1. Formulas for dim %g’ n-

Corollary 6.3. The dimension of the vector space ‘€% , is given by the formulas in
Table 1 when n, h have the same parity and n > h/3. Otherwise dim €5 , = 0.

Corollary 6.3 can also be derived via an explicit calculation using the classical
Cayley—Sylvester formula for calculating dim €} , [Sturmfels 2008, p. 153]. We
note that the case n = h appears twice in Table 1 with seemingly different formulas,
but calculation shows that the formulas agree.

Theorem 6.1 parametrizes all the covariants in 65 ,. We say f € €5, is a
reducible covariant if f can be written as a linear combination of products, gh of
covariants g, h with degree less than 3, degg +degh =3, and ordg +ordh = h
Let Redgi » be the subspace of €3, generated by the reducible covariants. An
irreducible covariant f* € 65, is a covariant that is not reducible.

By Example 2.8, the onl’y nonzero covariants of degree one are multiples of
(Ao x)(x]). By Example 2.9, the only nonzero degree-two covariants of order &
occur when 0 </ <2n and h =2n mod 4. In this case, they are given by multiples
of (Ao X)(x" (#/2) h/ 2/ 2) Thus, Redj , is a one-dimensional space precisely
when & > n and h + n =0 mod 4, in whlch case it is generated by M, (h—n)/2-
Otherwise Red; ;, = {0}.

Corollary 6.4. If h < n or h+n % 0 mod 4, then Red3 » = 10} and %g,h con-
tains no reducible covariants. If h > n and h +n = 0 mod 4, then the covariants
¢ ([Mp—ry2,r1), where r = h mod 2 and (h —n)/2 <r < h/3, form a basis for the
subspace of (6'{ , complementary to Red’i i

Proof. Only the second part remains to be shown. In this case, Redg, , 18 gener-
ated by [My,(n—n)/2]. We can assume h < 3n as otherwise there are no nonzero
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covariants. If 4 = 3n, then (n, (h —n)/2) = (n, n), and [M,, (,—n)/2] is one of the
basis elements of €5 , given by Theorem 6.1. By deleting this basis element, the
remaining basis elements give a basis for the subspace of 63 ;, complementary to
Redj ;. Now let i = 3n — 4k, where k > 1. By using a syzygy of the second type,
we have

(Mo, (h—n) /2] = [Myy -2k ] = 2[ My —1 -2k ]

inU;,/(g+h). fk=1,(¢n—1,n—-2k)=((h—r)/2,r) for n = h — 2k, and
(M, (h—n)2] = [M—r)/2,-] is again one of the basis elements of <€’31’h given by
Theorem 6.1. By excluding this basis element, we obtain the desired basis for
the complementary subspace. Now suppose k > 1. Then by applying the second
syzygy k — 1 additional times, we obtain in U3 , /(g + b)

k—1
[l 2] = 2[Mn e n—2i] + D €r [ M2,

r=1

for some constants c,. Now by the ordering introduced in the proof of Theorem 6.1,
[ My —,n—2k] > [My—k p—2k+4-] for 1 <r <k —1, and thus each [M,—k ,—2x+-] in the
summand can be expressed as a linear combination of [/, ] given by Theorem 6.1
with [ M, ] < [My— »—2k]. Let $ be the space generated by the [A,—) 2, ] speci-
fied in the Corollary. Each [Jl,—k ,—2k+-] in the summand can then be expressed as
a linear combination of elements in $. Thus the space generated by [, ,—2x] and $
is also the space generated by [,k ,—2«] and $. Since (n —k,n —2k) = (h%’, r)
for r = n — 2k, this is €% ,, by Theorem 6.1. Thus $ is the subspace of €%,
complementary to Reds ;. ’ 0

Historical remark. We would like to note a correction to a claim in Hilbert’s
fundamental book on covariants [1993]. First, we define the weight w of a covariant
of degree d, order h, and degree-n form to be w = (dn — h)/2. When d = 3,

w=0GBn—h)/2=2n—(m+h)/2.
On [Hilbert 1993, p. 62], there appears the statement:

“Regarding the covariants of degree three, they all have odd weight p =
27 4 1 and are those which occur in the following expression, where
p=3,57,...,n,respectively n — 1:”

Hilbert then gives an explicit formula for a covariant f), of weight p. In total, the
claim is that all degree-three covariants have odd weight and that there is exactly
one nonreducible covariant of each odd weight 3 < p < n. It is clear, both from
the Cayley—Sylvester formula and from Theorem 6.1, that this is incorrect. From
Theorem 6.1, one sees that in general there are many covariants with a given even
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weight when n+4 =0 mod 4. Similarly with n4+h =2 mod 4, there are generally
multiple covariants of a given odd weight.

Comparison with result of Kraft and Weyman. Kraft and Weyman [1999, Theo-
rem 6.7] establish a generating set for the covariants in €% , with similarities to our
Theorem 6.1. We now briefly discuss the differences between these results. Using
the classical symbolic notation (see page 516), let

P = (ab)*(bc)’ (ca)’ a~* b~ PP e 6y,

be a covariant of order h = 3n — 2m, where m = a + f + y. We assume n >
max(a + f,a + v, f+y). We define cat P := max(a, S, y ). Kraft and Weyman
prove:

Theorem 6.5 (Kraft and Weyman’s abc-Theorem). Assume n, h > 0.
(a) If n < h, then P is a linear combination of covariants
Q = (ab)" (be)aly b= H el

with u +n=m, u > 2nand u > cat P.

(b) If h = n, then P belongs to the ideal $ C P(V,) generated by all covariants
of degree k <2 and order h < %n.

(c) If n = h, then P belongs to the ideal $ C P(V,) generated by all covariants
with degree k < 3 and order h < %n.

Since 6%, is generated by P, as a, 8,y vary, part (a) of Theorem 6.5 gives a
spanning,set for the vector space €3, when n < h. However, this spanning set
is almost always linearly dependent and doesn’t give a basis for €% ;. For ex-
ample, when n = 10, h = 12, part (a) shows that (65)12 is generated by the three
symbolic monomials Q corresponding to (u, #) = (6, 3), (7,2), and (8, 1) (the
covariant corresponding to (u, ) = (9, 0) is zero). However, dim C(é_l’?lz =2 by
Table 1, and Example 6.2 shows that the two monomials (ac)*(bc)>a®b3c, and
(ab)*(ac)’(be)’albic? form a basis for 617,

Similarly, parts (b), (c) of Theorem 6.5 show that the vector space of covariants
% ;, is contained in the respective ideals , § of the ring P (V,,), but do not establish
a basis for C@g’ - To see the difference, we consider the case when n =h = 3. Then
part (b) states that %353 is contained in the ideal $ of P (V3) (aring containing both
covariant and noncovariant functions) generated by reducible covariants. However,
by Corollary 6.4, we know that Redg’3 = {0} and ‘6;3 is generated as a vector space
by a single irreducible covariant.
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Isometric composition operators acting on the
Chebyshev space

Thomas E. Goebeler, Jr. and Ashley L. Potter

(Communicated by David Larson)

Norms of certain composition operators are given in terms of their symbols in
some finite-dimensional setting. Then a family of isometric composition opera-
tors acting on certain vector spaces is identified.

1. Introduction

Much research has been done concerning composition operators over the last five
decades. However, this research has primarily focused on a host of standard ques-
tions about composition operators in the realm of complex functions. Recently the
first author has proposed a number of questions regarding composition operators in
the real function area for undergraduate student research supported by the Ursinus
College Summer Fellows Program [Doperak 2006; Gareau 2005; Kunaszuk 2006;
Potter 2007]. This topic offers accessibility for undergraduate research while pro-
viding fertile ground for genuinely new results.

This paper focuses on one particular real function space, the Chebyshev space,
T, where we explore norm-related ideas for composition operators, specifically
norms and isometries. The ultimate goal of this research is to find the norm of
a composition operator C, acting on the Chebyshev space in terms of its sym-
bol g. We begin by considering norms of composition operators in the infinite-
dimensional space, and move on to examine the topic in the finite-dimensional
space. After looking at the various finite-dimensional subspaces, we begin to look
at qualities that would lead to the symbol inducing an isometry.

2. Definitions

We set down some terminology and basic facts here. A composition operator C,
acts on functions f according to the rule C,(f) = fog. The function g is called the
symbol of the operator. Necessarily g must have range contained in the domain of
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533


http://pjm.math.berkeley.edu/inv
http://dx.doi.org/10.2140/inv.2009.2-5

534 THOMAS E. GOEBELER, JR. AND ASHLEY L. POTTER

f for this to make sense. The typical assumptions are that C, has a vector space F
of functions as its domain, that the functions f € & and g have a common domain
D, and that g(D) C D.

To speak of an operator’s norm, it must first be known that the operator is
bounded on its domain space. The following definition is operational for any linear
operator, not just composition operators.

Definition 1. A linear operator A is bounded from a vector space V to another
vector space W provided there exists an M € R such that |[Af|lw <M - || f|v for
all f € V. This constant M in the inequality is referred to as a bound.

If an operator A : ¥ — 4 is known to be bounded, we can give it a norm (the
operator norm), defined as || A|| = SUP £ 40 HAS /Nl f 1l 5.

The setting for the present work is a real function space. This is atypical of
composition operator research, which sees the majority of work done on complex
function spaces. We find this setting surprisingly rich, once we make some modifi-
cations to the questions we ask. The reader interested in more information regard-
ing composition operators on spaces of complex functions can consult [Cowen and
MacCluer 1995], which is widely regarded as the best resource for beginners in
the field.

For the purposes of this paper, we make the following real-function definition
of the Chebyshev space.

Definition 2. The Chebyshev space T is herein the completion of the set of all
continuous functions defined on the interval [—1, 1], taking on real values, and
obeying the following integral convergence condition:

1
||f||2=/ P s dx < .

There are many functions in the vector space T, including polynomials and
many other elementary functions. In fact, the monomials form a basis for 7.

Orthogonalizing the basis vectors {1, x, x2, .. .} with respect to the inner product
1
(u, v) =/ u(x)0 (x) ———=dx
- J1 — x2
leadsto I, x, x> — %, ..., which are the Chebyshev polynomials (of the first kind).

However, the polynomials are most commonly normalized so that if v,, is the n-th
Chebyshev polynomial, v,(1) = 1. Doing so shows the first four are vg = 1, v; =
X, 03 =2x%>—1, v3 =4x3 —3x.

More information about the Chebyshev polynomials can be found in [Lebedev
1972]. Initially we seek a formula for the norm of C, in terms of a calculation
involving the symbol g, but as it will be shown, it seems likely that C, is unbounded
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on the Chebyshev space for all but a few symbols. We thus reconsider the ques-
tion of norm for the restriction of the composition operator to finite-dimensional
subspaces.

Definition 3. The finite dimensional subspace T, of T is the subspace of T that
contains all polynomials of degree at most n. More concisely, we can say that
T, = Span{l, x, x2, ..., x"}.

To say f € T,, means that f is a linear combination of the basis vectors, in other
words, f=co-1+4+c cx4cey x4 4, x"

Since T}, is finite-dimensional we know that C, is automatically bounded, simply
by virtue of being linear. See [Horn and Johnson 1985]. This turns out to be a
crucial restriction that leads to both norm formulas and identification of isometric
composition operators. For more information regarding norms, see [Akhiezer and
Glazman 1993; Dunford and Schwartz 1958; Reed and Simon 1980].

3. Preliminary investigation

As is always the case when the domain and range spaces are the same and use the
same norm, the identity function g(x) = x induces a composition operator with
norm 1:

ICe(HI Nfogl IFl
sup = = =
720 Ifll T

The next example suggests most composition operators will fail to be bounded

1Cell =

on T. Consider the symbol g(x) = ax for |a| < 1. In the following, suppose
0 < a < 1. This condition is imposed to guarantee that range(g) C [—1, 1]. A
straightforward substitution (valid since g is an increasing absolutely continuous
function) leads us to

1
1Cax (I = / Coarx () (00) P dlx = / Lf (@) dx

J— V=

1
[f(u)]z—dX-
—da u 2
1=(2)
But g >u fora € (0,1) so

1 1

\/1—(§)2 - N

Thus,

ICax (F)II* = - du.

1 :
2w
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If this lower bound is not convergent as an improper integral, the operator is
unbounded; therefore this case will be investigated further. Let
1
Jax) = 7——=
la — x|

and observe that f, € T, as

/ ol =

1
dx
V1—x2

Ya—x|

1
= dx < o0
/—1 V1T—x 1T+ x la—x]

is an improper integral with singularities as both endpoints of the interval of inte-
gration and at x =a. Note (Cuy (f,))(x) = fa(ax) = |a|~'/* |1 —x|~'/4. Therefore,

1 1?1

V1—x2 W.f/l—x V1—x2

_ DR S e
Vial Joi J1—x JT—x J/1+x Sal Ji1—x JT+x

The divergence is driven by the factor 1/(1 — x). We conclude that Cyy is
unbounded for a € (0, 1), and, by symmetry, for a € (—1, 0). Note that the operator
C_, is bounded since C, is bounded and the integral and weight are symmetric
about 0. (For the reader with a background in Lebesgue spaces, notice also that
when a = 0, C,, amounts to being the operator of point-evaluation at 0. Since
our space is really the space L?([—1, 1], dx/+/1 —x2), that is, the completion
of the polynomials in the Chebyshev norm, Cy fails to make sense. Indeed, all
point-evaluation operators on such an L?-space are unbounded.)

A similar argument shows that when g(x) = ax + b, with range(g) € [—1, 1],
C, is again unbounded. Algebra shows the conditions on a and b are |a| < 1 and
|b| <1 — |a|. This means graph(g) C [—1, 1] x [—1, 1]; this Cartesian product
of intervals will be called the “box.” We include some examples to illustrate the
phrases “in the box” and “out of the box” (Figure 1).

Again, a test function shows C, is unbounded: let f, ,(x) = 1/J/Ja +b—x]
and perform the norm calculation of Cgyx1(fa,5)-

dx

1Cax )P = / 0T

dx = oo.

4. A change of venue

The unboundedness of operators with such elementary symbols leads us to restrict
the operator C, to finite-dimensional subspaces of T'.
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+6

16

Figure 1. g(x) in the box (top line); g(x) outside the box (bottom).

4.1. Ty = Ty. Inorder for C, to map T, back to T,, g must be at most degree one
and thus g(x) = ax + b for some a, b € R. A concrete subcase would be T} — T,
and thus input functions are of the form ¢+ cjx while g(x) = ax +b. In order for
Cg : T, — T»,, g must be at most degree two, g(x) = ax*+bx+cfora,b,ceR.
A concrete subcase would be Ty — T3, and thus again f € 7T} has the form co+cx
while g(x) = ax? 4+ bx +c.

Employing the definition of the norm of an operator we have

C 2 C 2
||Cg||%‘l*>Tl = sup M = max M
20 Il 0 Ifl

I (c0+c1(ax+b))2 1 s dx
dx

= max
G+c3#0 f (c0+clx)2

a c1 +2b%¢? 1+ 4b0100 + 260
= max
c§+c$7s0 Cl + 2C0

It is proper to replace the supremum with a maximum since we are working
on a finite dimensional space; details of this thought can be found in [Horn and
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Figure 2. Two views of the “ridge”.

Johnson 1985]. The quantity being maximized in the last line will be called the
norm quotient.

After finding partial derivatives, and solving for cj, critical lines are found.
These critical lines correspond to “ridges” of the norm quotient, see Figure 2,
rather than isolated maxima or minima.

The following critical lines were found:

_ co(a® +2b* — 1) £ cov/(a? +2b% — 1)2 + 8b2
N 2b '

After expanding and simplifying, the following formula is obtained:

1

_— V(@ +202—1)2+8b2 +a>+2b> + 1
1Ce 7,7y, = 5 .

At this point an interesting question arises: how do these norms change when
viewing the operators successively 7o — 15, T35 > T3, ..., T, > Ty, .. ., asn— 00?
In other words, can we determine for all symbols g the limit lim |Cgll7,-7,?

n—oo

4.2. Ty = T,. We restrict the domain of C, to polynomials of the form ¢y + c1x
and restrict the form of the symbol to ax? 4+ bx + ¢. Thus we are viewing the
operator as C, : T1 — T5. Throughout this section, we assume a # 0, or else this
reduces to the situation in Section 4.1, T} — Tj.

Before proceeding with the calculation of the norm, we will address the con-
straints on a, b, and ¢ for g(x) to stay within the [—1, 1] interval. By inspection,
|c] < 1 because otherwise g(x) would be outside the box, for then it would have
an intercept outside the box. Using the fact that |c| < 1, it becomes clear that
la + c| < 1. To see this, consider the endpoints. Evaluation of g at —1 yields
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—1 <a—b+c <1.Evaluation of g at 1 yields —1 <a+ b+ ¢ < 1. Adding these
inequalities gives us —2 < 2a + 2¢ < 2 which can be reduced to —1 <a+c <1
and thus |a+c| < 1.

By combining the previous constraints, it must be true that |a| < 2. To put
constraints on b, in terms of a and c, there are two conditions:

o The values of ax? + bx + ¢ at the endpoints of the interval [—1, 1] cannot be
above or below the corners of the [—1, 1] x [—1, 1] box.

« If the vertex of ax® + bx + ¢ occurs for x € [—1, 1], it cannot be above the
upper boundary or below the lower boundary of the [—1, 1] x [—1, 1] box.

The endpoints concerning b will be addressed first:

g=D)=a—-b+c, g)y=a+b+c,
—1<a-b+c<l, —1<a+b+c<l,
—l—-a—-c<-b<l—a-c, —l—a—-c<b<l—-a-c,
—l+@+c)<b=<l4+(a+o), —l—(a+c)<b=<l—(a+o).

For a 4+ ¢ > 0, it is clear that
—l—(@a+o)<—14+@+c)<b=<l—(a+c) <1+ (a+c).

Thus, -1+ (@+c)<b<l—-(a+c),or |b|<|l—(a+c)|. Fora+c <0,
following a similar approach, we arrive at |b| < |1 4+ (a + ¢)|. Combining both
cases, the inequality limiting the values of b is

bl < |1 —la+-cl|.

The next condition for the bounds of b concerns the vertex location within the
[—1, 1] x[—1, 1] box. The vertex is where x = — %. (Recall that we have assumed
a #0.) If the vertex is outside the box (|b| > 2|a|), we need only consider the values
of the symbol at x = =£1, as above. However, if the vertex is in the box (|b| <2|al),
further constraints must be imposed for graph(g) to be in the box.

To find the bounds on » when the vertex is inside the box, calculate:

b b \2 b b
o(-5) =a(-z5) ++(-z)+=
We require |a (=b/2a)*+b (—b/2a) +c| < 1, which simplifies to |c —b?/4a| < 1.
Algebra shows we therefore want —4(1 —c) < b*/a < 4(1 +¢).
This leads to two cases, depending upon the sign of a. If a > 0, the necessary
condition is —4a(l — ¢) < b* < 4a(1 +¢), or, |b| < 2/a(1+¢). If a < 0, the
necessary condition is 4a(1 4 ¢) < b* < —4a(l —¢), or, |b| < 2/—a(1 —0).



540 THOMAS E. GOEBELER, JR. AND ASHLEY L. POTTER
Summarizing, for graph(g) to be in the box, we need

lel <1,
| la+cl<1,

bl <|1—la+c|

5

and if |b| < 2]a|, also

b| <a(l+c¢), a>0,
|b| < /—a(l—c), a <0.

Now that the constraints on a, b, and ¢ for g(x) = ax? + bx + ¢ to stay within
the [—1, 1] x [—1, 1] box have been established, computing the actual norm of the
composition operator will be the next step.

With 0 #£ f € Ty,
1

1

) / [co+c1 (ax2 + bx + c)]z— dx
5 1Ce (O] -1 1 —x2
/ [co+ xlx]2 dx
-1 1—x2

3a2c% +8aci(cc +co) +4(b%c; + 2(czc% + 2ccocy + c(z)))
= max .

4(2c(2) + c%)

The quantity being maximized in the last line will be called the norm quotient.
After finding partial derivatives the following critical points are found:
. co(3a*+8ac+4b>+8c—4)
N 4a+8c

9a*+48a°c+8a*(3b>+14c+1)+64ac(b>+2c2+1)
¢
0 +16b*+32b%(2c2— 1) +64c* +64c>+16
4a+-8c '

To attain a formula, the value for ¢, is substituted into the norm quotient. After
expanding and simplifying using a computer algebra system, the following formula
is obtained:

1

+

\/ 9a*+48a°c+8a*(3b*+14c+1)+64ac(b*+2c>+1)

5 +16b*+32b%(2c>—1)+64c* +64c>+16
||Cg||T|—>T2 = 8

b, 3a’+4
—I-?—Fc +ac+ .

We can raise the companion question as to the norm of the operator when view-
ing it successively o —> Ty, T3 —> T¢, ..., Ty = Toy, ..., a8 1 — 00.




ISOMETRIC COMPOSITION OPERATORS ACTING ON THE CHEBYSHEV SPACE 541
4.3. T; — Ts. Following the template of the previous section, we discover the
norm of a composition operator in the 77 — T3 subspace:

) 5a% 4 12ac 4 2(3b* + 8bhd + 4(c* + 2d* + 1))
1Cell7ry = 6

+1i6 (25a4 + 120a’c +4a (15b* + 40bd + 4(14c* + 5(2d* — 1))
+48ac(3b* + 8bd + 4(c? +2d*> — 1))
+4(9b* +48b°d + 8b*(3c* + 14d” + 1) + 64bd (c* + 2d* + 1))
F64(c* +262(2d% — 1) + 4d* + 4d% + 1)) v

Likewise we can ask about norms viewing the operator 7, — Tg, T3 — To, ...,
T, — T3,,...,asn — oQ.

There are more potentially interesting questions open to us as the number of
coefficients increases. Finding a norm formula for general symbols is the ultimate
goal.

5. Isometries

Definition 4. An isometry is a bijective map f : X — Y between two normed
spaces that preserves lengths, that is, || f(x)|ly = ||x||x, where || - ||x and || - ||y are
the norms associated with the spaces X and Y.

For our purposes, the isometry will be viewed as acting between two finite-
dimensional subspaces T, and T, of T. More precisely, C, will act as an isometry
when the norm of the input || || equals the norm of the output ||C,(f)Il, and thus
automatically [|Ce|| = 1.

Theorem 5. When the symbol g(x) is a normalized Chebyshev polynomial in the
subspace T,,n > 0, the induced operator C, : Ty — T, is an isometry.

Proof. Let v,(x) be the Chebyshev polynomial (so the symbol g(x) is v,(x), the
polynomial of degree n) and f(x) any nonzero linear polynomial. Then

! 21
C12 = sup NG DI f ol _ S leote1 a ()P dx
I = s e = T T T e dx
_1LeoTel —
: 1
— max f71[cg+200010n(x)+cf(vn(x))2]mdx
f_ll[c(z) +2cpc1x +C%x2]\/]1_7 dx
1
f—lc(z)—\/ll_T dx +2cpcy f_llvn(x)—«/ll_7 dx+c% fil(”n(x))zﬁdx
= max |

%[cl2 + 2C(2)]
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1

1

But 0p(x) ——— dx = 0 when 0 # n. So,
/_1 ()\/l—x2 a

2
ICy, I” = max

2,12
nco—i—zncl

%n (c% + 2c(2)) B
This calculation shows that the norm quotient is independent of the choice of cg
and cy, and thus [|C,, (/)| = 1 fl. O

We were encouraged to look for more isometric composition operators and be-
gan with those acting from 77 — 73. With the previous theorem in mind, the first
general form of the symbol considered was g(x) = ax> 4 cx, since that is the form
of the Chebyshev polynomial of degree three. With 0 # f € T},

1
ICuvrpexs(DIP NI fo(axd +cx)?  Joileoterlax® +ex)P s dx

Vi 1112 et exP L dx

B Sazc% + 12acc% + 8(02C% + 203)
B 8(0% + 2c8) .

To find what the values of a and ¢ must be for C, to act as an isometry, we
forced this norm quotient to be 1. This leads to 25a% 4 40c> = 40, the equation of
an ellipse, which amounts to requiring

_ —3a++/16—a?
= 1 )

We can conclude that any symbol of form g(x) = ax? + cx, with ¢ as in (5-1),
will act as an isometry in 77 — T3, assuming the symbol is admissible.

We continued this technique with the symbols g(x) = ax® +d, g(x) = ax® +
bx?>+cx, g(x) =ax3+cx+d, and g(x) = ax>+bx>+d, as well as other examples.
However, each time we found dependence on ¢ and ¢y, and thus C, could not act
isometrically on the whole subspace.

With the success of finding the isometry family for the symbol g (x) =ax>+cx in
comparison to the lack of success with the examples explored above, we wondered
if this was the only form of g that could act as an isometry. We backtracked to the
general form g(x) = ax> + bx? + cx +d and constructed some test functions.

From Section 4.3 where we found ||C, |7, 75, We began testing with various
functions f € Tj to find necessary conditions on the form of g for C, to be an
isometry. The first such functions are f(x) =x+1 and f,(x) =x — 1. Recall that

IC(NIP _
12
Sazc%—i— 12acc%+2(3b2c%+8bcl (dc +co)+4(c20%+2(d20%+2dcocl —|—c(%)))
8(2cg+c)

c

(5-1)
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We see that

ICo(x + D17, _ 5a%+12ac+2(3b* +8b(d + 1) +4(c* +2(d* + 2d + 1)))

Ix+113 24
ICe(x = D7, 54 + 12ac +2(3b> + 8b(d — 1) +4(c +2(d> — 2d + 1)))
Ix—11% 24 '

For C, to qualify as an isometry, each norm quotient must be 1 and thus the
difference of the two norm quotients must be O:

4b —8d

0=|Cyx + DIIT, = 1Co 0 + DI, = —

Thus 2= Sd =0, or b = 2d. Next we used f3(x) =x + % - and fy(x) =x — 7. The
norm quotlents for f3(x) and f4(x) with b = 2d are

[Ce(x+ 1) 7, _ 5a%+ 12ac+4(2c> + 18d% 4 84 + 1)
I+ 112 12 ’

[Colr = DlI7, 50>+ 12ac + 8¢ + 7242 - 16
Ilx — 313, 9 '

We set each new norm quotient equal to 1 and solved for d. In solving

ICe(x + D)7 = llx + 3117,

for d, we find
_ 2 _ 2 _
a* = 2, V2/—45a% — 4(27ac +2(9¢ 13) 52
9 36
While for [|Cq (x — 1) ||2T3 = |x =17, we have

3 2
gl L V25 4(2376ac+2(9c 10) (5-3)

We are seeking coefficients for g that will induce an isometry. Thus a single choice
for d must serve for all test functions. The expressions for d above must therefore
be equal and their difference 0. We examined each of the four pairings and present
the most illuminating one, which turns out to be d1+ =d, . Rearranging terms gives

V2/—45a2 —4(27ac +2(9¢% — 13)) N V2/—45a2 — 4(2Tac +2(9c2 —10)) 1
36 36 3
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which can be solved for ¢ by squaring both sides, isolating the product of radicals
on one side of the equation, squaring again, and simplifying. The solution is

—3a++16—a?
4 b

which is (5-1). When we substitute either expression for ¢ into (5-2), we find
d =0, —%. Likewise, using (5-3), we get d, = 0, %.

Thus, for C, to be an isometry d must be 0, and since we already discovered
b = 2d, necessarily b = 0. Therefore for a symbol g to induce an isometry is for g
to be of the form g(x) = ax? 4 cx. This was the form first investigated at the start
of this subsection where we discovered the only family of the form g(x) =ax>+cx
is when c is as in (5-1). Therefore, the only family that enables g to induce as an
isometry from 7 to T3 is the one described above.

Now that we have specified the form of the symbol g, we must determine the
constraints on g to be in the [—1, 1] x [—1, 1] box. That is, we must make sure
there are symbols satisfying the condition for C, to be an isometry and which are
themselves admissible.

There are two basic criteria for g(x) = ax> 4 cx to stay in the box:

C =

o The values of ax>+cx at the endpoints of the interval [—1, 1] cannot be above
or below the corners of the [—1, 1] x [—1, 1] box (that is, the graph enters the
left side of the box and exits on the right, not the top or the bottom).

o If the local extrema of ax> + cx (if any) occur for x € [—1, 1], they cannot be

above the upper boundary or below the lower boundary of the [—1, 1]x[—1, 1]
box (that is, the graph does not penetrate the top or bottom of the box).

The endpoints will be considered first; we require at the left endpoint —1 <
—(a+c) <1, and at the right endpoint —1 < a + ¢ < 1. These requirements can
be summarized by |a + c¢| < 1. Graphically (with a as the horizontal axis and c as
the vertical axis), this is represented by a “strip” in the ac plane, between the lines
c=1—aand c = —1—a. This is seen in Figure 3.

- //
%/

Figure 3. Strip of admissibility. The slanted shading indicates
regions of inadmissibility.

\s

N
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Figure 4. Regions of admissibility, when a and ¢ have the same
sign (left), and when a and ¢ have opposite signs, |c| > 3|a| (right).
The vertical shading indicates further investigation is needed.

Next, we consider the local extrema of g(x) = ax? + cx which occur when
x? = —c/3a. Two cases arise: when a and ¢ have the same sign, and when a and
¢ have opposite signs. We consider the case when they have the same sign first.

If a and ¢ have the same sign, g’(x) will have no real roots and thus g has no
local extrema. Thus, in addition to the strip described above, quadrants I (a, ¢ > 0)
and III (a, ¢ <0) are part of the admissible region; see Figure 4, left.

If a and ¢ have opposite signs, g has local extrema. The roots of g’ are outside
the box if —c/3a > 1. This corresponds to the cones bounded by ¢ = +3a in the
ac plane; see Figure 4, right.

On the other hand, if —c/3a < 1, or |c| < 3|al, then |g(£v/=c/3a)| < 1 must
be true. Evaluation at the critical points requires that

—1<g(+y/—c/3a) < 1.

Without loss of generality, consider the case of ¢ negative. Now we are considering

— —c\3/2 —
—1§a( _c) +c,f C<1 = —lfa(—c) +c —Cfl =
3a 3a 3a a
<a¥V=C = qe =<t = i<kl Y=ty o

3a V 3a 3a 3

3a§\/—c(—%c+c) <V3a = —+3ac< %c«/—cf«/Sa.

Next, we use this relation to solve for c:

_ 3(,15%(—0)3/2S 3a = _3 34 < (— 6)3/2_3@ N

—c< 3GV = —c<3(M)P VY = >3
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Figure 5. Cubic with cones, a and ¢ of opposite signs, |c| < 3|a|.
The vertical shading indicates regions of inadmissibility.

Similarly, when ¢ > 0, we have
¢ <3(—a/4)'3.

The corresponding region is shown in Figure 5. Keep in mind that the cubic is
relevant only outside the cones.

The combinations of the previous four regions is seen in Figure 6, which repre-
sents the total admissible area for g(x).

Lastly, we consider the graph of ¢ in terms of a from the condition to be an
isometry (5-1). Graphing both the positive and negative roots reveals an ellipse,
seen in Figure 7. This ellipse represents all the possibilities of g(x) within the
family. The parts that lie in the admissible region are shown with heavy printing.
The positive and negative Chebyshev polynomials are at the extreme ends the major
axis of the ellipse, sitting as isolated points. This means there exists a nontrivial
family of isometries acting from T to T3, represented by the continuous arc of the
ellipse in the admissible region, along with the isometries identified by Theorem
5, represented by isolated points at the major vertices of the ellipse. Not only have
these been identified, but these are the totality of all possible composition isome-
tries between these subspaces. This is a very satisfying answer to the question.
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Figure 6. Total region of admissibility for g(x) (unshaded).
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s

), .
__

Figure 7. Admissible isometry-inducing symbols.

_

6. Conclusion

Some simple formulas for computing norms of composition operators on finite-
dimensional subspaces of the Chebyshev space show some direction for future lines
of investigation. We raised the more specific question of isometric composition
operators, especially in the case of 77 — 73. This revealed a family of operators
whose symbols’ coefficients vary over a continuum and a pair of isolated symbols
corresponding to the Chebyshev polynomials of order 3. The geometric connection
to a norm question was surprising and pleasing.
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Markov partitions for hyperbolic sets

Todd Fisher and Himal Rathnakumara

(Communicated by Kenneth S. Berenhaut)

We show that if f is a diffeomorphism of a manifold to itself, A is a mixing
(or transitive) hyperbolic set, and V is a neighborhood of A, then there exists a
mixing (or transitive) hyperbolic set A with a Markov partition such that A C
A C V. We also show that in the topologically mixing case the set A will have
a unique measure of maximal entropy.

1. Introduction

A dynamical system consists of a space and a rule to dictate the evolution of the
points in the space. In particular, a discrete dynamical system (X, f) consists of
a topological space X and a map f : X — X. The nth iterate of f, denoted f”,
is defined as the map f composed n times, where n € N. If f is a bijection, then
its inverse f~! exists and we can form the nth iterate of f~! by composition,
f:X—-X.

We assume in this paper that the maps associated with dynamical systems are
homeomorphisms so that f~! exists and £~ is well-defined. In the study of dy-
namical systems it is important to look at the overall effect of the rule for individual
points in the space. In this analysis we look at orbits of points in the space where
the orbit of a point x € X is defined as

Ox)={f"(x)e X :neZ}.

Throughout the paper we let M be a compact, smooth, boundaryless manifold
and denote the set of diffeomorphisms from M to itself by Diff(M). A set X is
invariant under f if f(X) = X. Invariant sets play an important role in dynamical
systems and often allow one to decompose a space into invariant “indecomposable”
sets. A compact set A C M that is invariant under f € Diff(M) is a hyperbolic set

MSC2000: 37A35, 37D05, 37D15.
Keywords: Markov partitions, hyperbolic, entropy, specification, finitely presented.

549


http://pjm.math.berkeley.edu/inv
http://dx.doi.org/10.2140/inv.2009.2-5

550 TODD FISHER AND HIMAL RATHNAKUMARA

if there exists a splitting of the tangent space T f = E* @ E° and positive constants
C > 1 and 4 < 1 such that for any point x € A and any n € N we have

IDffvll < CA"|lv|| forov € EY,
IDf "ol < CA"lo||  forov e EX.

Hyperbolic sets were introduced by Smale and Anosov in the 1960s. The com-
pactness of the manifold together with the expansion and contraction in the tangent
bundle allows for complicated and interesting orbit structures. Additionally, hyper-
bolic sets are structurally stable, or in other words, the dynamics of a hyperbolic
set are preserved under perturbations.

One of the main tools in studying hyperbolic sets is the use of a Markov partition
introduced by Adler and Weiss for hyperbolic toral automorphisms of the 2-torus
[Adler and Weiss 1967]. Markov partitions are defined in Section 2. It was shown
in [Fisher 2006] that if f € Diff(M), A is a hyperbolic set for f, and V is a neigh-
borhood of £, then there exists a hyperbolic set A for f such that A C A C V and
A has a Markov partition. For a Markov partition there is a canonically associated
symbolic space called a subshift of finite type. (For the definition of a subshift of
finite type see Section 2.)

Often one is interested in studying hyperbolic sets that satisfy additional prop-
erties. Two such properties are topological mixing and transitivity. A dynamical
system (X, f) is topologically mixing if for any open sets U and V there exists
some N € N such that f"(U)NV # & for all n > N. A dynamical system (X, f)
is transitive if there exists a point x € X such that the forward orbit of x,

07 (x) = {f"(x) : neN},

is dense in X. A standard result about transitivity is the following: if X is a locally
compact Hausdorff space, then (X, f) is topologically transitive if and only if for
any open sets U and V in X there exists some n € N such that f"(U) NV # &
[Brin and Stuck 2002, page 31].

The main result of the present work is that we can strengthen the result on

Markov partitions in [Fisher 2006] with respect to topological mixing and transi-
tivity.
Theorem 1.1. If A is a topologically mixing hyperbolic set for f € Diff(M) and V
is a neighborhood of A, then there exists a hyperbolic set A for f containing A and
contained in V such that (A, f) has a Markov partition coming from an associated
mixing subshift of finite type. Furthermore, if A is transitive, then (A, f) has a
Markov partition coming from an associated transitive subshift of finite type.

We note that a standard result is that if the subshift of finite type is mixing
(or transitive) and associated to a Markov partition for a hyperbolic set, then the
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hyperbolic set is mixing (or transitive). Bowen [1974] provided a nice connection
between mixing hyperbolic sets and the entropy for the system. The topological
entropy of a dynamical system, denoted hp(f), is a number that, in a certain
manner, measures the topological complexity of the system. Whereas, the measure
theoretic entropy, denoted /4, (f), of a dynamical system is a number that, in some
manner, measures the complexity of the system as seen by the measure u.

A measure u is invariant for the dynamical system (X, f) if

w(f~H(A) = u(A)

for all measurable sets A. We denote the set of invariant Borel probability measures
as A(f). If X is a compact metrizable space and f is continuous, then we know
that ML(f) # @ [Katok and Hasselblatt 1995, page 135]. The variational principle
says that if f is a homeomorphism of a compact metrizable space, then A, (f) =
sup,, ¢ u( sy hu(f) [Katok and Hasselblatt 1995, page 181]. A measure u € M(f)
such that hyp(f) = h,(f) is a measure of maximal entropy. If there is a unique
measure of maximal entropy, then f is called intrinsically ergodic. From Theorem
1.1 and Bowen’s results we are then able to show the following.

Corollary 1.2. If A is a topologically mixing hyperbolic set and V is a neighbor-
hood of A, then there exists a hyperbolic set A containing A and contained in V
such that A is intrinsically ergodic with respect to f.

2. Background

As we will be looking at subshifts of finite type we first review some definitions
and facts about subshifts of finite type. Let A =[a;;] be an n x n matrix with entries
of zeros and ones such that there is one or more one in each row and column. Such
a matrix is called an adjacency matrix. Let s, = {1, ...,n} and call a transition
from i to j to be admissible for A if a;; = 1. Define

24 = {o= (0)rez | ok € A, and w4y is admissible for all k € Z}.

The map on X4 defined by ¢ (w) = ' where a); = wj41 is called the shift map.
The subshift of finite type is the space (X 4, o) together with the product metric on
X 4. A matrix A is positive if each entry is positive. A matrix A is primitive if
there is some power N € N such that AV is positive.

If a matrix A is primitive, then the subshift of finite type associated with A
is topologically mixing. Furthermore, a subshift of finite type associated with an
M x M matrix A is transitive if and only if for each i, j (1 <i, j < M) there exists
some 7 € N such that a;’j > 0 [Robinson 1999, page 80].
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A topological semiconjugacy between a pair of dynamical systems (X, f) and
(Y, g) exists if there is a continuous surjective map 4 : X — Y such that

hof=goh.

The space (Y, g) is called a factor of (X, f), and (X, f) is called an extension of
¥, 2.

A dynamical system (X, f) where X is a compact metric space and f is a
homeomorphism is expansive if there exists a constant ¢ > 0 such that for all
x,ye Xifd(f"(x), f"(y)) <cforalln € Z, then x = y.

We now review some facts about expansive and finitely presented dynamical
systems. For ¢ > 0 and x € X the &-stable set is

Wix)={yeX|d(f"(x), f"(y)) <e foralln >0},
and the e-unstable set is
Wi(x)={yeX|d(f"(x), f"(y)) <e forall n > 0}.
For x € X and f : X — X, an expansive homeomorphism, the stable set is
Wi(x) ={y e X| lim d(f"(x), f"(y)) =0}
and the unstable set is
Wi ={y e X| lim d(f"(x), f () =0}.

Let (Y, f) be expansive and fix ¢ < ¢/2, where ¢ is an expansive constant of
(Y, f). Following [Fried 1987] we define

D, ={(x,y) €Y x Y | W] (x) meets W} (y)}

and [+, -]: D, — Y so that [x, y] = W} (x) N W¥(y). It follows that [, -] is contin-
uous.

Definition 2.1. A rectangle is a closed set R C Y such that R x R C D,.

For R a rectangle and x € R, denote the stable and unstable sets of x in R,
respectively, as

Wi(x,R)=RNW](x), W"(x,R)=RNW)(x).

A rectangle R is proper if R = E, where R denotes the interior of R.

Definition 2.2. Let (Y, f) be expansive with constant ¢ > 0 and 0 < ¢ < ¢/2. A
finite cover R of Y by proper rectangles with diameter(R) < ¢ forany R € R is a
Markov partition if R;, R; € R, x € R;,and f(x) € I%j, then

W', R) CR;, fT'(W'(f(x),R;))) CR;, and R,NR;=aifi# .
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For a Markov partition % of a system (X, f) we define the adjacency matrix A
such that a;; = 1 if f(R;) N R; # @. The subshift of finite type (L4, 0) is said
to be associated with 9 and there is a canonical semiconjugacy & from (X 4, o) to
X, f).

Fried [1987] defined finitely presented systems as expansive homeomorphisms
of a compact space that are factors of a subshift of finite type. In the same paper
he shows that any finitely presented dynamical system has a Markov partition.

Remark 2.3. For f € Diff(M) and A a hyperbolic set for f, the system (A, f|a)
is expansive. Furthermore, any subshift of finite type is expansive. Also, for a
hyperbolic set A for a diffeomorphism and x € A, the sets W*(x) and W*(x) are
injectively immersed submanifolds of Euclidean spaces.

3. Results

Proof of Theorem 1.1. Before proceeding to the proof of Theorem 1.1 we first
review some facts about shadowing for hyperbolic sets. A sequence {x;}? is an &-
chain if d(f (x), xx+1) <& for all k where —oo <a < b < co. A point y d-shadows
an e-chain {x;} if d(f*(y), xx) < J for all k. We next state the Shadowing Theorem
[Brin and Stuck 2002, page 113].

Theorem 3.1 (Shadowing Theorem). Let M be a Riemannian manifold, d the nat-
ural distance function, f a diffeomorphism of M to itself, and A a hyperbolic set
for f. Then for every > 0 there exists an ¢ > 0 such that if {x,} is an e-chain of
fand d(xi, A) < ¢ for all k, then there is some y € | J,cp B:(x) that 6-shadows
the e-chain {x;}.

Proof of Theorem 1.1. We first assume that A is topologically mixing. To prove
the theorem it will be sufficient to show that the subshift of finite type constructed
in [Fisher 2006] giving the hyperbolic set A will be topologically mixing.

Let U be a neighborhood of A. A standard result for hyperbolic sets states
that there is a neighborhood V of A such that V C U and Ay = MNpez f" (V) is
hyperbolic [Katok and Hasselblatt 1995, page 271]. Letd(, -) be an adapted metric
on Ay. Note that this can be extended continuously to a neighborhood V' C U of
Ay.

Fix # > 0 and ¢ < 7 such that for any two points x, y € Ay, if d(x, y) < J then

FEWE ) N F(WEFTL D) = W) N WE(y)

consists of one point, and the set |, e B2,(x) is contained in V N V’; see [Fisher
2006] for an argument explaining the existence of # and ¢. Fix 0 < ¢ <J/2 as in
the conclusion of the Shadowing Theorem so that every g-orbit is J/2-shadowed
and contained in VN V",
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Letv <¢&/2 such that d(f(x), f(y)) <&/2and d(f~'(x), f~(y)) < &/2 when
d(x,y) <vforany x,y € Ay. Let {p,»}f":1 be a v-dense set of points in A and let
the adjacency matrix A be defined by

N :{ Lifd(f(pi), pj) <e,
Y0 d(f(p), p)) = e

Let (X4, o) be the subshift of finite type associated with A. Then we know there
exists a hyperbolic set A contained in V [Fisher 2006] such that A C Ay, that
contains A and there exists a semiconjugacy f : X4 — A. To see that A is
topologically mixing it is sufficient to see that X 4 is topologically mixing.

We now show that X 4 is topologically mixing by showing that A is primitive.
Given sets B, (p;) and B, (p;) there exists some N;; such that for all n > N;; we
have

fn(Bv(pi)) N Bv(pj) 7’é g,
since A is topologically mixing for f. We let M = max{N;;}. Then

" (Bu(pi)) N By (pj) # &

for all n > M. We now show that this implies that a;’j > 0 for all n > M. This
is equivalent to showing there is a sequence of (n+1)-symbols coming from &y
such that each transition is allowed and the sequence starts with i and ends with j
[Robinson 1999, page 76].

Indeed, let n > M and x € f"(B,(p;)) N B,(p;). Since

N
U rBupy =

k=1

we know that there exists some p;, such that x € f(B,(p;,)). By the definition
of v we know that d(f(p;,), pj) < & and i1 to j is an allowed transition in X 4.
Inductively, let 1 <k <n — 2 and assume that for each / such that 1 </ < k there
is some p;, such that f~/(x) € f(B,(p;,)) and

d(f(pi),pj) <e ifi=1,
d(f(pi[)a pi1_]) <é& else.
Then igiy_y---i1j is a sequence of k+1 symbols in #fy with allowed transitions

and f~'(x) € B, (pi,) for all 1 <[ < k. We know that f-* D (x) e f(B, (Pies1))
for some iy € Ay and

d(f(pik+1), pik) <é&.

Hence, i;4 to iy is an allowed transition in X4 and ixy1i;---i;j iS a sequence
of k+2 symbols in sdy with allowed transitions. Therefore, there is a sequence
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in—1in—p - -11j of n-terms in o with allowed transitions. Finally, we know that
f7"(x) € By(pi) and

F70 D) € F(Bu(p)) N Bu(pi, )

So i to i,—; is an allowed transition. Hence, ii,,—1 - --i;j is an allowed word in X
and al’.’j > 0. Therefore, A is primitive and X 4 is topologically mixing.

The proof of the transitive case is similar. Indeed, given sets B, (p;) and B, (p;)
there exists some N;; such that

£ (B, (p)) N Bu(p)) # 2.

Hence, a similar argument as above shows that a, j” > 0 and X4 is transitive. [

Intrinsic ergodicity for mixing hyperbolic sets. The proof of Corollary 1.2 will
use the property of specification. A specification, S = (z, P), for a dynamical
system consists of

(1) a finite collection T = {[y, ..., I,,} of finite intervals I; = [a;, b;] C Z, and
(2) amap P:Ji-, I; — X such that f27"1(P(1))) = P(tp). forallt;,, € I; € 7.

A specification S is said to be r-spaced, where r € N, if a;41 > b; + r for all
ie{l,...,n— 1} and the minimal such r is called the spacing of S. A specification
S = (z, P) provides a way of parametrizing a collection of orbit segments 7 of f.
We say that S is e-shadowed by x € X if d(f"(x), P(n)) <¢ foralln € Ji_, 1.

Definition 3.2. Let X be a compact metric space and f : X — X a homeomor-
phism. The dynamical system (X, f) is said to have the specification property if
for all &€ > O there exists an M, € N such that any M,-spaced specification S is
g-shadowed by a point of X.

The next result is stated without proof in [Sigmund 1974]. We provide a proof
for completeness.

Lemma 3.3. If (X, f) has the specification property and (Y, g) is a factor of
(X, f), then (Y, g) has the specification property.

Proof. Fix ¢ > 0 and let dy and dy denote metrics for X and Y, respectively. Let
&’ > 0 such that if dy (x1, x2) < &/, then

dy (h(x1), h(x2)) <e,

where x1, xo € X. Such an ¢’ > 0 can always be chosen since 4 is continuous. Fix
M € N such that any M,-spaced specification is ¢’-shadowed by a point of X and
let M, = M, .
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Let S = (7, P) be an M,-spaced specification in (Y, g) where t = {Iy, ..., I,;}
is a collection of M.-spaced intervals. Let

B:{ylayQ.a""yln}CY,

where y; = P(q;) forall 1 <i <m.
Fix A ={x1,...,x,} C X such that & restricted to A is a bijection onto B and
h(x;) = y; for 1 <i <m. The orbit segment for x; in /; is given by

{f9), .. fP(x)}) forl<i<m.

Define Py : Ul'."zl I; — X such that P(a;) = x; for all i such that 1 <i <m.
Now, given that (X, f) has the specification property, we know there exists an
&’-shadowing point x for the specification (z, Px) and h(x) € Y. Furthermore,

h(f“(xi)) = g% ()

since h is a semiconjugacy. Hence, d(h(x), h(P(n))) <e¢forallneJi_, I; and
h(x) is an g-shadowing point for the specification S. U

Theorem 3.4 [Bowen 1974]. Let X be a compact metric space and f be an ex-
pansive homeomorphism with the specification property. Then f is intrinsically
ergodic.

Weiss [1973] showed that a mixing subshift of finite type has the specification
property. Since subshifts of finite type are expansive, we know from Theorem 3.4
that a topologically mixing subshift of finite type is intrinsically ergodic.

From Lemma 3.3 we know that a factor of a mixing subshift of finite type is
intrinsically ergodic.

Corollary 3.5. Any topologically mixing finitely presented system is intrinsically
ergodic.

Proof. Let (X, f) be a topologically mixing finitely presented system. To prove
the corollary we show there is a topologically mixing subshift of finite type that
is an extension of (X, f). Let & be a Markov partition for (X, f) and A be the
adjacency matrix associated with ®. Let R; and R; be rectangles in . Since
(X, f) is topologically mixing and the rectangles are proper, we know there exists
some N;; € N such that (" (I%i)ﬂléj # & forall n > N;;. Using arguments as in the
proof of Theorem 1.1, we know that al’.’j > 0 for all n > N;;. Define N = max(N;;).
Then A" is positive for all n > N and the subshift of finite type associated with the
Markov partition R is topologically mixing. O

Proof of Corollary 1.2. Let f € Diff(M) for some manifold M, let A be a topolog-
ically mixing hyperbolic set for f, and V be a neighborhood of A. From Theorem
1.1 we know that there exists a topologically mixing hyperbolic set A contained
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in V and containing A with a Markov partition. Therefore, A is finitely presented
and from Corollary 3.5 we know that A is intrinsically ergodic. U
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Ineffective perturbations in a planar elastica

Kaitlyn Peterson and Robert Manning

(Communicated by Natalia Hritonenko)

An elastica is a bendable one-dimensional continuum, or idealized elastic rod. If
such a rod is subjected to compression while its ends are constrained to remain
tangent to a single straight line, buckling can occur: the elastic material gives
way at a certain point, snapping to a lower-energy configuration.

The bifurcation diagram for the buckling of a planar elastica under a load
A is made up of a trivial branch of unbuckled configurations for all 1 and a
sequence of branches of buckled configurations that are connected to the trivial
branch at pitchfork bifurcation points. We use several perturbation expansions to
determine how this diagram perturbs with the addition of a small intrinsic shape
in the elastica, focusing in particular on the effect near the bifurcation points.

We find that for almost all intrinsic shapes ¢ f (s), the difference between the
buckled solution and the trivial solution is 0(81/ 3), but for some ineffective f,
this difference is O(¢), and we find functions u;(s) so that f is ineffective at
bifurcation point number j when (f, u;) = 0. These ineffective perturbations
have important consequences in numerical simulations, in that the perturbed bi-
furcation diagram has sharper corners near the former bifurcation points, and
there is a higher risk of a numerical simulation inadvertently hopping between
branches near these corners.

1. Introduction

Consider a common scenario for symmetry breaking in bifurcation theory. A
problem exhibiting some symmetry has a bifurcation diagram with a number of
bifurcation points (BPs). The addition of a perturbation breaks this symmetry and
removes the BPs, splitting the diagram into separate components. An example of
this scenario is shown in Figure 1, in which a pitchfork bifurcation is perturbed to
yield two separate branches.

MSC2000: 34B15, 34E10, 34G99, 74K10.

Keywords: elastic rod, intrinsic shape, undetermined-gauges perturbation expansion, pitchfork
bifurcations.
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Figure 1. Standard perturbation of a pitchfork bifurcation into
two separate branches.

To give a specific example, the buckling of a uniform, isotropic, intrinsically
straight rod in three dimensions has a bifurcation diagram containing pitchfork BPs
corresponding to the classic Euler buckling modes. There is a natural perturbation
to consider for this three-dimensional buckling problem: the presence of intrinsic
curvature. Even rods designed to be straight are likely to have small curvature
imperfections, and these can break the qualitative nature of the bifurcation diagram
from the pitchfork structure seen in the intrinsically straight case.

Such elastic rod models have been used to represent the bending and twisting
of DNA. For many DNA sequences, the intrinsic shape is nearly straight, but the
minimum-energy stacking configurations of consecutive base-pairs do introduce
small intrinsic bends that depend on the specific sequence of the DNA. Multiple
studies have sought to determine these stacking configurations as a function of
sequence [De Santis et al. 1992; Bolshoy et al. 1991; Olson et al. 1998; Dixit
et al. 2005], and then derive from these stacking configurations the corresponding
intrinsic curvature for a continuum elastic rod [Manning et al. 1996].

These DNA models have seen increasing use in studying a phenomenon called
DNA looping: the bending and twisting of DNA a few hundreds of base-pairs long
in response to prescribed relative positions and orientations of the two ends (these
boundary conditions coming from, for example, a bound protein of known structure
[Swigon et al. 2006; Goyal et al. 2007; Kahn and Crothers 1998] or laser tweezer
experiments [Seol et al. 2007; Marko and Siggia 1995]). Given the wide variety
of DNA sequences, and the almost-as-wide variety of parameters for determining
local bending from sequence, it would be beneficial to have an automated algorithm
to compute the lowest-energy components of the bifurcation diagram given spec-
ified choices of DNA sequence, stacking parameters, and boundary conditions. A
strong understanding of the splitting of the unperturbed pitchfork diagram for base
cases such as buckling or periodic boundary conditions is an important precursor
to ensuring that such an automated algorithm finds all relevant components of the
diagra