
inv lve
a journal of mathematics

mathematical sciences publishers

Trace diagrams, signed graph colorings, and matrix minors
Steven Morse and Elisha Peterson

2010 vol. 3, no. 1





INVOLVE 3:1(2010)

Trace diagrams, signed graph colorings, and matrix
minors

Steven Morse and Elisha Peterson

(Communicated by Kenneth S. Berenhaut)

Trace diagrams are structured graphs with edges labeled by matrices. Each
diagram has an interpretation as a particular multilinear function. We provide
a rigorous combinatorial definition of these diagrams using a notion of signed
graph coloring, and prove that they may be efficiently represented in terms of
matrix minors. Using this viewpoint, we provide new proofs of several stan-
dard determinant formulas and a new generalization of the Jacobi determinant
theorem.

1. Introduction

Trace diagrams provide a graphical means of performing computations in multi-
linear algebra. The following example, which proves a vector identity, illustrates
the power of the notation.

Example. For u, v,w ∈ C3, diagrams for the cross product and inner product are

u× v =
u v

and u · v =
u v

.

By “bending” the diagrammatic identity

= − , (1)

and attaching vectors, one obtains

u v w x
=

u wv x
−

u xv w
,

which is the vector identity

(u× v) · (w× x)= (u ·w)(v · x)− (u · x)(v ·w).
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We will later prove (1) and show that every step here can be mathematically rigor-
ous.

In this paper, we define a set of combinatorial objects called trace diagrams.
Each diagram translates to a well-defined multilinear function, provided it is framed
(the framing specifies the domain and range of the function). We introduce the idea
of signed graph coloring to describe this translation, and show that it preserves a
tensorial structure. We prove two results regarding the relationship between multi-
linear algebra and trace diagrams. Under traditional notation, a multilinear function
is characterized by its action on a basis of tensor products in the domain. Theorem
5.5 shows that trace diagram notation is more powerful than this standard notation
for functions, since a single diagrammatic identity may simultaneously represent
several different identities of multilinear functions. In the above example, the di-
agrammatic identity (1) is used to prove a vector identity; another vector identity
arising from the same diagram is given in Section 5.

Our main results concern the “structural” properties of trace diagrams. In partic-
ular, we characterize their decomposition into diagram minors, which are closely
related to matrix minors. Theorem 7.7 describes the condition under which this
decomposition is possible, and Theorem 7.8 gives an upper bound for the number
of matrix minors required in a formula for a trace diagram’s function.

As an application, we use trace diagrams to provide new proofs of classical
determinant identities. Cayley, Jacobi, and other 19th-century mathematicians de-
scribed several methods for calculating determinants in general and for special
classes of matrices [Muir 1882]. The calculations could often take pages to com-
plete because of the complex notation and the need to keep track of indices. In
contrast, we show that diagrammatic proofs of certain classic results come very
quickly, once the theory has been suitably developed. One can easily generalize
the diagrammatic identities by adding additional matrices, which is not as easy to
do with the classical notation for matrices. Theorem 9.2, a novel generalization of
a determinant theorem of Jacobi, is proven in this manner.

While the term trace diagrams is new, the idea of using diagrammatic notations
for algebraic calculations has a rich history [Baez 1996; Bullock 1997; Cvitanović
2008; Lawton and Peterson 2009; Stedman 1990]. In the early 1950s, Roger Pen-
rose invented a diagrammatic notation that streamlined calculations in multilinear
algebra. In his context, indices became labels on edges between “spider-like”
nodes, and tensor contraction meant gluing two edges together [Penrose 1971]. In
knot theory, Kauffman [1991] generalized Penrose’s diagrams and described their
relation to knot polynomials. Przytycki and others placed Kauffman’s work in the
context of skein modules [Bullock et al. 1999; Przytycki 1991]. The concept of pla-
nar algebras [Jones 1999] unifies many of the concepts underlying diagrammatic
manipulations. More recently, Kuperberg [1996] introduced spiders as a means
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of studying representation theory. In mathematical physics, Levinson [Levinson
1956] pioneered the use of diagrams to study angular momentum. This approach
proved to be extremely useful, with several textbooks written on the topic. Work
on these notations and their broader impact on fundamental concepts in physics
culminated in books by Stedman [1990] and Cvitanović [2008].

The name “trace diagrams” was first used in [Peterson 2006] and [Lawton and
Peterson 2009], where diagrams were used to write down an additive basis for a
certain ring of invariants. Special cases of trace diagrams have appeared before in
the above works, but they are generally used only as a tool for algebraic calculation.
This paper differs in emphasizing the diagrams themselves, their combinatorial
construction, and their structural properties.

This paper is organized as follows. Section 2 provides a short review of multi-
linear algebra. In Section 3 we introduce the idea of signed graph coloring, which
forms the basis for the translation between trace diagrams and multilinear algebra
described rigorously in Sections 4 and 5. Section 6 describes the basic properties
of trace diagrams, and Section 7 focuses on the fundamental relationship between
matrix minors and trace diagram functions. New proofs of classical determinant
results are derived in Section 8. Finally, in Section 9 we prove a new multilinear
algebra identity using trace diagrams.

2. Multilinear algebra

This section reviews multilinear algebra and tensors. For further reference, a nice
introductory treatment of tensors is given in Appendix B of [Fulton and Harris
1991].

Let V be a finite-dimensional vector space over a field F. Informally, a 2-tensor
consists of finite sums of vector pairs (u, v) ∈ V × V modulo the relations

(λu, v)= λ(u, v)= (u, λv)

for all λ ∈ F. The resulting term is denoted u ⊗ v. More generally, a k-tensor
is an equivalence class of k-tuples of vectors, where k-tuples are equivalent if
and only if they differ by the positioning of scalar constants. In other words, if∏k

i=1 λi =
∏k

i=1 µi =3 then

λ1u1⊗ · · ·⊗ λk uk = µ1u1⊗ · · ·⊗µk uk =3(u1⊗ · · ·⊗ uk) .

Let N={1, 2, . . . , n}. In what follows, we assume that V has basis {ê1, ê2, . . . , ên}.
The space of k-tensors V⊗k

≡ V ⊗ · · · ⊗ V is itself a vector space with nk basis
elements of the form

êα ≡ êα1 ⊗ êα2 ⊗ · · ·⊗ êαk ;

one for each α = (α1, α2, . . . , αk) ∈ N k . By convention V⊗0
= F.
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Let 〈 · , · 〉 be the inner product on V defined by 〈êi , ê j 〉 = δi j , where δi j is the
Kronecker delta. This extends to an inner product on V⊗k with

〈êα, êβ〉 = δα1β1δα2β2 · · · δαkβk ,

making {êα : α ∈ N k
} an orthonormal basis for V⊗k .

Given another vector space W over F, a multilinear function f : V⊗k
→ W is

one that is linear in each term, so that

f ((λu+µv)⊗ u2⊗ · · ·⊗ uk)= λ f (u⊗u2⊗· · ·⊗uk)+µ f (v⊗u2⊗· · ·⊗uk),

and a similar identity holds for each of the other (k− 1) terms.
Denote by Fun(V⊗ j , V⊗k) the space of multilinear functions from V⊗ j to V⊗k .

There are two standard ways to combine these functions. First, given

f ∈ Fun(V⊗ j , V⊗k), g ∈ Fun(V⊗k, V⊗m),

one may define a composition g ◦ f . Second, given f1 ∈ Fun(V⊗ j1, V⊗k1) and
f2 ∈ Fun(V⊗ j2, V⊗k2), then f1⊗ f2 ∈ Fun(V⊗( j1+ j2), V⊗(k1+k2)) is the multilinear
function defined by letting f1 operate on the first j1 tensor components of V⊗( j1+ j2)

and f2 on the last j2 components.
A multilinear function f ∈ Fun(V⊗k) ≡ Fun(V⊗k, F) is commonly called a

multilinear form. Also, functions f : F→ F may be thought of as elements of F.
In particular, Fun(F, F)∼= F via the isomorphism f 7→ f (1).

The space of tensors V⊗k is isomorphic to the space of forms Fun(V⊗k). Given
f ∈ Fun(V⊗k), the isomorphism maps

f 7→
∑
α∈N k

f (êα)êα ∈ V⊗k . (2)

This is the duality property of tensor algebra. Loosely speaking, multilinear func-
tions do not distinguish between inputs and outputs; up to isomorphism all that
matters is the total number of inputs and outputs.

One relevant example is the determinant, which can be written as a multilinear
function V⊗k

→ F. In particular, if a k × k matrix is written in terms of its col-
umn vectors as A = [a1 a2 · · · ak], then the determinant maps the ordered k-tuple
a1⊗ · · · ⊗ ak to det(A). This may be defined on the tensor product since a scalar
multiplied on a single column may be factored outside the determinant. Deter-
minants additionally are antisymmetric, since switching any two columns changes
the sign of the determinant. Antisymmetric functions can also be considered as
functions on an exterior (wedge) product of vector spaces, which we do not define
here.
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3. Signed graph coloring

This section introduces graph theoretic principles that will be used in defining
trace diagram functions. Although the terminology of colorings is borrowed from
graph theory, to our knowledge the notion of signed graph coloring is new, being
first described in [Peterson 2006]. Some readers may wish to consult a graph
theory text such as [West 2001] for further background on graph theory and edge-
colorings, or an abstract algebra text such as [Fraleigh 1967] for further background
on permutations.

Ciliated graphs and edge-colorings. A graph G = (V, E) consists of a finite col-
lection of vertices V and a finite collection of edges E . Throughout this paper, we
permit an edge to be any one of the following:

(1) a 2-vertex set {v1, v2} ⊂ V , representing an (undirected) edge connecting ver-
tices v1 and v2;

(2) a 1-vertex set {v} ⊂ V called a loop, representing an edge connecting a vertex
to itself; or

(3) the empty set {} ⊂ V , denoted ©, representing a trivial loop that does not
connect any vertices.

In addition, we allow the collection of edges E to contain repeated elements of the
same form.

Two vertices are adjacent if there is an edge connecting them; two edges are
adjacent if they share a common vertex. An edge is adjacent to a vertex if it
contains that vertex. Given a vertex v, the set of edges adjacent to v will be denoted
E(v). The degree deg(v) of a vertex v is the number of adjacent edges, where any
loops at the vertex are counted twice. Vertices of degree 1 are commonly called
leaves.

Definition 3.1. A ciliated graph G = (V, E, σ∗) is a graph (V, E) together with
an ordering σv : {1, 2, . . . , deg(v)} → E(v) of edges at each vertex v ∈ V .

By convention, when such graphs are drawn in the plane, the ordering is speci-
fied by enumerating edges in a counterclockwise fashion from a ciliation, as shown
in Figure 1.

σv(3)
σv(4)

σv(1) σv(2)

v

Figure 1. Proceeding counterclockwise from the ciliation at the
vertex v, one obtains the edge ordering σv(1), σv(2), σv(3), σv(4).
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Definition 3.2. Given the set N = {1, 2, . . . , n}, an n-edge-coloring of a graph
G= (V, E) is a map κ : E→ N . The coloring is said to be proper if the graph does
not contain any loops and no two adjacent edges have the same label; equivalently,
for every vertex v the restriction κ : E(v)→ N is one-to-one. When n is clear from
context, we denote the set of all proper n-edge-colorings of a graph G by col(G).

Note that some graphs do not have proper n-edge-colorings for certain n. As a
simple example, the graph has no 2-edge-colorings.

Permutations and signatures of edge-colorings. Let Sn denote the set of permu-
tations of N = {1, 2, . . . , n}. We denote a specific permutation as follows:

(
1 2 3
1 2 3

)
denotes the identity permutation, and

(
1 2 3
3 2 1

)
denotes the permutation mapping

1 7→ 3, 2 7→ 2, and 3 7→ 1. The signature of a permutation is (−1)k , where k is the
number of transpositions (or swaps) that must be made to return the permutation to
the identity. For example, the permutation

(1 2 3 4
2 4 1 3

)
has signature −1, since it takes

3 transpositions to return it to the identity:

(2, 4, 1, 3) (1, 4, 2, 3) (1, 2, 4, 3) (1, 2, 3, 4).

Proper edge-colorings induce permutations at the vertices of ciliated graphs.
Given a proper n-edge-coloring κ and a degree-n vertex v, there is a well-defined
permutation πκ(v) ∈ Sn defined by

πκ(v) : i 7→ κ(σv(i)).

In other words, 1 is taken to the label on the first edge adjacent to the vertex, 2 is
taken to the label on the second edge, and so on. An example is shown in Figure 2.

Definition 3.3 [Peterson 2006]. Given a proper n-edge-coloring κ of a ciliated
graph G = (V, E, σ∗), the signature sgnκ(G) is the product of permutation signa-
tures on the degree-n vertices:

sgnκ(G)=
∏
v∈Vn

sgn(πκ(v)),

where Vn is the set of degree-n vertices in V and sgn(πκ(v)) is the signature of the
permutation πκ(v). If there are no degree-n vertices, the signature is +1.

e3
e4

e1 e2

−→

13

2 4

Figure 2. The proper edge-coloring at right induces the permu-
tation

(1 2 3 4
2 4 1 3

)
on the ciliated vertex shown. The signature of the

coloring is −1.
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The signed chromatic index χ(G) is the sum of signatures over all proper edge-
colorings:

χ(G)=
∑

κ∈col(G)

sgnκ(G).

Example. For n = 2, the ciliated graph G =
w

v

has exactly two proper edge-
colorings:

κ1↔
w

v

12 and κ2↔
w

v

21 . (3)

With the counterclockwise ordering, πκ1(w) =
(

1 2
1 2

)
and πκ1(v) =

(
1 2
2 1

)
, so the

signature of the first coloring is

sgnκ1
(G)= sgn(πκ1(w)) sgn(πκ1(v))= sgn

(
1 2
1 2

)
sgn

(
1 2
2 1

)
=−1.

In the second case, the permutations are
(

1 2
2 1

)
at w and

(
1 2
1 2

)
at v, so the signature

is again−1. Therefore, the signed chromatic index of this ciliated graph is χ(G)=
−2.

Pre-edge-colorings.

Definition 3.4 [Peterson 2006]. A pre-edge-coloring of a graph G = (E, V ) is an
edge-coloring κ̌ : Ě→ N of a subset Ě ⊂ E of the edges of G. A leaf-coloring is
a pre-edge-coloring of the edges adjacent to the degree-1 vertices.

Two pre-edge-colorings κ̌1 : Ě1→ N and κ̌2 : Ě2→ N are compatible if they
agree on the intersection Ě1 ∩ Ě2. In this case, the map κ̌1 ∪ κ̌2 defined by (κ̌1 ∪

κ̌2)|Ěi
= κ̌i |Ěi

is also a pre-edge-coloring.
If κ̌1 : Ě1 → N and κ̌2 : Ě2 → N are compatible and Ě1 ⊂ Ě2, we say that

κ̌2 extends κ̌1 and write κ̌2 � κ̌1. We denote the (possibly empty) set of proper
edge-colorings that extend κ̌ by

colκ̌(G)≡ {κ ∈ col(G) : κ � κ̌}.

The signed chromatic subindex of a pre-edge-coloring κ̌ is the sum of signatures
of its proper extensions:

χκ̌(G)=
∑
κ�κ̌

sgnκ(G).

Example. For n = 3, the pre-edge-coloring κ̌↔
1 2

extends to exactly two
proper edge-colorings:

κ1↔
1 2

3

1 2

and κ2↔
2 1

3

1 2

. (4)
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One computes the signed chromatic subindex by summing over the signature of
each coloring. In the first case,

sgnκ1
(G)= sgn

(
1 2 3
1 2 3

)
sgn

(
1 2 3
3 2 1

)
=−1,

where the permutations are read in counterclockwise order from the vertex. In the
second case, the permutations are

(
1 2 3
1 2 3

)
and

(
1 2 3
3 1 2

)
, so

sgnκ2
(G)= sgn

(
1 2 3
1 2 3

)
sgn

(
1 2 3
3 1 2

)
=+1.

Summing the two signatures, the signed chromatic subindex is

χκ̌(G)= sgnκ1
(G)+ sgnκ2

(G)=−1+ 1= 0.

4. Trace diagrams

Penrose [1971] was probably the first to describe how tensor algebra may be per-
formed diagrammatically. In his framework, edges in a graph represent elements
of a vector space, and nodes represent multilinear functions. Trace diagrams are
a generalization of Penrose’s tensor diagrams, in which edges may be labeled by
matrices and nodes represent the determinant.

The closest concept in traditional graph theory is a voltage graph (also called
a gain graph), in which the edges of a graph are marked by group elements in an
“orientable” way [Gross 1974]. Diagrams labeled by matrices also make frequent
appearances in skein theory [Bullock 1997; Sikora 2001] and occasional appear-
ances in the work of Stedman [1990] and Cvitanović [2008].

Definition. In the remainder of this paper, V will represent an n-dimensional vec-
tor space over a base field F (with n ≥ 2), and {ê1, ê2, . . . , ên} will represent an
orthonormal basis for V .

Definition 4.1. An n-trace diagram is a ciliated graph D= (V1 t V2 t Vn, E, σ∗),
where Vi is comprised of vertices of degree i , together with a labeling AD : V2→

Fun(V, V ) of degree-2 vertices by linear transformations. If there are no degree-1
vertices, the diagram is said to be closed.

A framed trace diagram is a diagram together with a partition of the degree-1
vertices V1 into two disjoint ordered collections: the inputs VI and the outputs VO .

Thus, trace diagrams contain vertices of degree 1, 2, or n only, and the degree-2
vertices represent matrices. An example is shown in Figure 3. Note that in the
case n = 2, the vertices in V2 and Vn have the same degree but are disjoint sets.
By convention, framed trace diagrams are drawn with inputs at the bottom of the
diagram and outputs at the top. Both are assumed to be ordered left to right.
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A B

Figure 3. An unframed 4-trace diagram. Degree-n vertices are
ciliated and degree-2 vertices are marked by matrices in an ori-
ented manner.

As shown in Figure 3, we represent matrix markings at the degree-2 vertices as
follows:

A↔ A , A−1
↔ A .

Note that when drawing the inverse of a matrix in a diagram, we use the shorthand
A because the traditional notation A−1 is overly cumbersome.

The ordering at a degree-2 vertex v given by the ciliation is implicit in the
orientation of the node. Precisely, the ciliation σ : {1, 2}→ E(v) orders the adjacent
edges as follows:

σv(1)
A

σv(2)
.

We refer to the first edge σv(1) as the “incoming” edge and the second edge σv(2)
as the “outgoing” edge. In general,

A 6=

A

since the nodes occur with opposite orientations.

Trace diagram colorings and their coefficients. Trace diagrams require a slightly
different definition of edge-coloring:

Definition 4.2. A coloring of an n-trace diagram D is a map κ : E → N . The
coloring is proper if the labels at each n-vertex are distinct. The (possibly empty)
space of all colorings of D is denoted col(D).

Note that in a proper coloring of a trace diagram, the edges adjoining a matrix may
have the same label.

Definition 4.3. Given a coloring κ of a trace diagram D with matrix labeling AD :

V2→ Fun(V, V ), the coefficient ψκ(D) of the coloring is defined to be

ψκ(D)≡
∏
v∈V2

(AD(v))σv(2)σv(1),

where (A(v))σv(2)σv(1)=〈êσv(2), A(v)êσv(1)〉 represents the matrix entry in row σv(2)
and column σv(1).
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Example. In the simplest colored diagram with a matrix,

ψ

(
j

A

i )
= (A)i j . (5)

Similarly,

ψ

(
k

B
j

A
i )
= (A)i j (B) jk .

Example. In the colored diagram A

1

2
A

2

1
, the coefficient is (A)21(A)12.

Trace diagram functions. Recall that {ê1, . . . , ên} represents an orthonormal basis
for the vector space V . In a framed trace diagram, a basis element êα ∈ V⊗|VI |

is equivalent to a labeling of the input vertices by basis elements. This labeling
induces a precoloring on the adjacent edges: if a vertex is labeled by êi , then its
adjacent edge is labeled by i . We denote this precoloring by α. Likewise, a basis
element êβ ∈V⊗|VO | induces a precoloring on edges adjacent to the output vertices,
which we denote β. Since VI and VO comprise all degree-1 vertices in the diagram,
if α and β exist (and are compatible) then α ∪β is a leaf-coloring of the diagram.

We now define the key concept relating trace diagrams and multilinear functions.
Each diagram corresponds to a unique function, whose coefficients are the signed
chromatic subindices of these leaf-colorings, weighted by coloring coefficients.

Definition 4.4. Given a trace diagram D, the weight χγ (D) of a leaf-coloring γ is

χγ (D)=
∑
κ�γ

sgnκ(D)ψκ(D). (6)

The value of a closed diagram D is

χ(D)=
∑

κ∈col(D)

sgnκ(D)ψκ(D).

Definition 4.5. Given a framed trace diagram D, the trace diagram function fD :

V⊗|VI |→ V⊗|VO | is the linear extension of the basis mappings

fD : êα 7→
∑

β∈N |VO |

χα∪β(D)êβ, (7)

where fD : êα 7→ 0 if êα does not induce a precoloring or does not extend to any
proper colorings.

Remark 4.6. If n is odd, trace diagrams may be drawn without ciliations, since
sgn(σ ) is invariant under cyclic reorderings:

sgn
(

1 · · · n− 1 n
a1 a2 · · · an

)
= sgn

(
1 · · · n− 1 n
a2 · · · an a1

)
.
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We will sometimes abuse notation by using the diagram D interchangeably with
fD. When describing a diagram’s function, we will sometimes mark the input
vertices by vectors to indicate the input vectors. For example,

u v

is used as shorthand for f (u⊗v). We also write formal linear sums of diagrams
to indicate the corresponding sums of functions. See the next section for explicit
details on why this is permissible.

Computations and examples. The next few examples show how to compute the
value of a closed diagram. Later examples will demonstrate how trace diagram
functions are computed.

Example. The “barbell” diagram has no proper colorings, since in any
coloring the same color meets a vertex twice. Therefore, the diagram’s value is
χ( )= 0.

Example. The simple loop© (with no vertices) has n proper colorings,
{
©

i
}

for
i = 1, 2, . . . , n. Since there are no vertices, the weight of each coloring is +1.
Hence, the value of the circle is χ(©)=

∑n
i=1 1= n.

The next example is the reason for the terminology “trace” diagram.

Example. The simplest closed trace diagram with a matrix is A . There are n
proper colorings of the form A

i
, for i = 1, 2, . . . , n. The coefficient of the i-th

coloring is (A)i i ≡ ai i , so the diagram’s value is

χ

(
A

)
= a11+ · · ·+ ann = tr(A). (8)

The propositions that follow will be used later in this paper, but they are also
intended as examples illustrating how to compute trace diagram functions.

Proposition 4.7. The function of the diagram is the identity v 7→ v.

Proof. To compute f|(êi ), one considers the precoloring α in which the input edge
has been labeled i . But this is also a full coloring, and since there are no vertices
and no matrices, the weight of that coloring is +1. Hence, β = α = (i) is the only
summand in (7) and f|(êi ) = êi . By linear extension, this means f|(v) = v for all
v ∈ V , so the diagram’s function is the identity on V . �

Proposition 4.8. (i) f
A
: v 7→ Av for any n× n matrix A.

(ii) Given n × n matrices A and B, the diagrams
B

A
and AB have the same

function.



44 STEVEN MORSE AND ELISHA PETERSON

Proof. Recall that the coefficient of a coloring of A is (A)i j , where i is the label at
the top of the diagram and j is the label at the bottom of the diagram (5). Thus,

f
A
: ê j 7→

∑
i=1,...,n

ψ

(
j

A

i )
=

∑
i=1,...,n

(A)i j ≡ Aê j .

By linear extension, f
A
: v 7→ Av, verifying the first result.

In the case of the diagram
B

A
, one reasons similarly to show that the diagram’s

function maps êk to∑
i=1,...,n

∑
j=1,...,n

ψ

(
k

B
j

A
i )
=

∑
i=1,...,n

∑
j=1,...,n

(A)i j (B) jk ≡ AB êk .

Thus, v 7→ (AB)v, verifying the second result. �

We can now prove the diagrammatic identity (1) stated in the introduction.

Proposition 4.9. As a statement about the functions underlying the corresponding
3-trace diagrams,

= − .

Proof. Proposition 4.7 implies that

: u⊗ v 7→ v⊗ u and : u⊗ v 7→ u⊗ v.

Now consider the function for the 3-diagram D = . The basis element

êi ⊗ êi , where i ∈ {1, 2, 3}, corresponds to α = (i, i) and induces the precoloring
α↔

i i
, which does not extend to any proper colorings. Hence fD : êi⊗ êi 7→0.

The basis element êi ⊗ ê j , where i 6= j , induces the precoloring α↔
i j

.

The summation in (7) is nominally over 9 possibilities (the number of elements
in N × N ), but we only need to consider the two full colorings that extend this
precoloring. These are

α ∪β1↔

i j

k

i j

and α ∪β2↔

j i

k

i j

,

where k ∈ {1, 2, 3} is not equal to i or j . The signatures are sgnα∪β1
(D)=−1 and

sgnα∪β2
(D) = +1. This statement was proven in detail for the case of i = 1 and

j = 2 in (4); the other cases are proven similarly. Since there are no matrices in
the diagram, the coefficients of the colorings are both 1, and the weights are equal
to the signatures. Summing over êβ gives

fD : êi ⊗ ê j 7→ −êi ⊗ ê j + ê j ⊗ êi .



TRACE DIAGRAMS, SIGNED GRAPH COLORINGS, AND MATRIX MINORS 45

Combining this with the fact that fD : êi ⊗ êi 7→ 0 proves the general statement

fD : u⊗ v 7→ v⊗ u− u⊗ v,

which completes the proof. �

We close this section with the diagrams for the inner and cross products.

Proposition 4.10. The inner product u ⊗ v 7→ u · v of n-dimensional vectors is
represented by the n-trace diagram .

Proof. Since there is only one edge, êi⊗ ê j does not induce a coloring unless i = j .
In this case, the weight of the coloring is 1. Therefore, êi ⊗ ê j 7→ 1 if i = j , or 0
if i 6= j . By extension,

u v
= u · v. �

Proposition 4.11. The cross product u⊗ v 7→ u× v of 3-dimensional vectors is

represented by the 3-diagram .

Proof. The input êi ⊗ ê j corresponds to the precoloring
i j

. If i = j , there

is no proper coloring extending this precoloring, so the diagram’s function maps

êi ⊗ êi 7→ 0. Otherwise, the only proper coloring is
k

i j
, where k is not equal

to i or j . The signature of this coloring is
( 1 2 3

i j k
)
. Thus, êi ⊗ ê j 7→ sgn

( 1 2 3
i j k

)
êk .

It is straightforward to check that this extends to the standard cross product; for
instance, ê1⊗ ê2 7→ sgn

(
1 2 3
1 2 3

)
ê3 = ê3. The other cases are similar. �

Transpose diagrams. Given a trace diagram D, we define the transpose diagram
D∗ to be the trace diagram in which all orientations of matrix vertices in D have
been reversed. The following result describes the relationship between the func-
tions of D and D∗.

Proposition 4.12 (Transpose diagrams). Let D be a trace diagram and let DT

represent the same diagram in which all matrices have been replaced by their
transpose. Then fD∗ = fDT .

Proof. By (5),

ψ

( i

j

A

)
= (A) j i = (AT )i j = ψ

(
j

AT

i )
.

Thus, the impact of transposing matrices on the underlying function is the same as
that of reversing 2-vertex orientations. �
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5. Multilinear functions and diagrammatic relations

Composition and tensor product diagrams. Given the base field F, we let D(I, O)
denote the free F-module over framed trace diagrams with I = |VI | inputs and
O = |VO | outputs. There are two ways to combine elements of these spaces.
Given D1 ∈ D(I1, O1) and D2 ∈ D(I2, O2) with |O1| = |I2|, one may form the
composition diagram D2◦D1 by gluing the output strands of D1 to the input strands
of D2. Since by convention inputs are drawn at the bottom of a diagram and outputs
at the top, this composition involves drawing one diagram above another. Second,
given arbitrary framed diagrams D1 ∈ D(I1, O1) and D2 ∈ D(I2, O2), we define
the tensor product diagram D1⊗D2 ∈D(I1+ I2, O1+O2) to be that obtained by
placing D2 to the right of D1. See Figure 4 for depictions of these two diagram
operations.

D2 ◦D1

· · ·

· · ·

≡

D1

D2

· · ·

· · ·

· · ·

D1⊗D2
· · ·

· · ·

≡ D1
· · ·

· · ·

D2
· · ·

· · ·

Figure 4. The composition of trace diagrams is formed by draw-
ing one diagram above another (left). The tensor product of trace
diagrams is found by drawing diagrams side by side (right).

Both of these structures are preserved under the mapping D 7→ fD. The proof
is rather technical, but straightforward.

Theorem 5.1. Let D1 ∈D(I1, O1) and D2 ∈D(I2, O2). The trace diagram func-
tion fD satisfies (i) fD1⊗D2 = fD1 ⊗ fD2 , and (ii) fD2◦D1 = fD2 ◦ fD1 (when the
composition D2 ◦D1 is defined).

Proof. To see that the tensorial structure is preserved, observe that

fD1⊗D2(êα1 ⊗ êα2)=
∑

β1,β2∈N |O1|+|O2|

χα1∪α2∪β1∪β2(D1⊗D2)êβ1 ⊗ êβ2

=

∑
β1∈N |O1|

∑
β2∈N |O2|

χα1∪β1(D1)χα2∪β2(D2)êβ1 ⊗ êβ2

=

( ∑
β1∈N |O1|

χα1∪β1(D1)êβ1

)
⊗

( ∑
β2∈N |O2|

χα2∪β2(D2)êβ2

)
= fD1 ⊗ fD2 (êα1 ⊗ êα2).
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For composition, assume D2 ◦D1 is defined. Apply (7) twice to get

fD2 ◦ fD1 : êα 7→
∑

γ∈N |O2|

( ∑
β∈N |O1|

χα∪β(D1)χβ∪γ (D2)

)
êγ . (9)

The following lemma simplifies the term in parentheses:

Lemma 5.2.
∑

β∈N |O1|

χα∪β(D1)χβ∪γ (D2)= χα∪γ (D2 ◦D1). (10)

Proof. Recall that by definition χα∪γ (D2 ◦D1) is defined as a sum over all proper
colorings κ of the composition diagram D2 ◦D1 that extend the precoloring α∪γ .
A proper coloring κ induces proper colorings κ1 of D1 and κ2 of D2 that agree on
the common edges. So we may write the right-hand side of (10) as

χα∪γ (D2 ◦D1)=
∑
κ�α∪γ

sgnκ(D2 ◦D1)ψκ(D2 ◦D1)

=

∑
β∈N |O1|

∑
κ�α∪β∪γ

sgnκ(D2 ◦D1)ψκ(D2 ◦D1)

=

∑
β∈N |O1|

∑
κ1�α∪β

∑
κ2�β∪γ

sgnκ1
(D1) sgnκ2

(D2)ψκ1(D1)ψκ2(D2)

=

∑
β∈N |O1|

χα∪β(D1)χβ∪γ (D2). �

Returning to the proof of the theorem, since by definition

fD2◦D1(êα)=
∑

γ∈N |O2|

χα∪γ (D2 ◦D1)êγ ,

it follows from the lemma and (9) that fD2 ◦ fD1 = fD2◦D1 . �

Intuitively, this result means that a trace diagram’s function may be understood
by breaking the diagram up into little pieces and gluing them back together. For
example, the diagram in the introduction is decomposed as follows:

= ◦

(
⊗

)
.

This is why the input u⊗v⊗w⊗ x is mapped by the diagram to (u×v) · (w× x).

Trace diagram relations.

Definition 5.3. A (framed) trace diagram relation is a summation
∑

D cDD ∈

D(I, O) of framed trace diagrams for which
∑

D cD fD = 0.
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Under Theorem 5.1, one can apply trace diagram relations locally on small
pieces of larger diagrams. This is exactly what was done in the introduction using
the dot and cross product diagrams of Propositions 4.10 and 4.11.

Trace diagram relations also exist for unframed diagrams, provided the degree-1
vertices are ordered. Let D(m) denote the free F-module over tensor diagrams with
m ordered degree-1 vertices. Recall that a framing is a partition of these vertices
into a set of inputs and a set of outputs. This provides a mapping D(m)→D(I, O)
defined whenever I + O = m, which we call a framing.

Definition 5.4. A (general) trace diagram relation is a summation
∑

D cDD ∈

D(m) that restricts under some partition to a framed trace diagram relation.

Theorem 5.5. Given a framing D(m)→D(I, O), every (general) trace diagram
relation in D(m) maps to a (framed) trace diagram relation in D(I, O).

Proof. By Definition 4.5, the weights of a function depend only on the leaf labels,
and not on the partition or framing of the diagram. Since the weights are the same
under different partitions, the relations do not depend on the framing. �

The fact that diagrammatic relations are independent of framing is very pow-
erful. One may sometimes read off several identities of multilinear algebra from
the same diagrammatic relation, as was done in the introduction with (1). Here is
another identity of 3-dimensional vectors:

Example. Using an alternate framing of (1),

u v w
=

u wv
−

u v w
.

This proves the identity

(u× v)×w = (u ·w)v− (v ·w)u.

It is even possible for certain diagrams to be decomposed in multiple ways,
leading to algebraic identities.

Example. The single diagram

u v w
=

u v w
=

u v w
=

u v w

implies the vector identities

(u× v) ·w = u · (v×w)= (w× u) · v = det[u v w].

(The fact that u v w = det[u v w] will be proven in the next section.)
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6. Diagrammatic building blocks

This section builds a library of local diagrammatic relations that are needed to
reason about general diagrams.

Notation 6.1. Let N = {1, 2, . . . , n}. Given an ordered k-tuple α = (α1, α2, . . . ,

αk) ∈ N k consisting of distinct elements of N , let ←α denote (αk, . . . , α2, α1). The
switch between α and ←α requires bn/2c transpositions, where bn/2c = n/2 if n is
even and bn/2c = (n− 1)/2 if n is odd, and so sgn(←α)= (−1)bn/2c sgn(α).

Let Sc
α represent the set of permutations of N \{α1, α2, . . . , αk}. If β = (β1, β2,

. . . , βn−k) ∈ Sc
α, let (α

←

β ) denote the permutation

(α
←

β )≡

(
1 · · · k k+ 1 · · · n
α1 · · · αk βn−k . . . β1

)
.

Proposition 6.2. If α ∈ N k has no repeated elements, then

n−k.n−k.n−k.n−k

k
.
k
.
k
.

k
: êα 7−→

∑
β∈Sc

α

sgn(α
←

β )êβ .

If α ∈ N k has any repeated elements, then the diagram maps êα to 0.

Proof. By Definition 4.5, the image of êα is automatically 0 if there are repeated
elements, since the signature at the node is 0. Otherwise, the diagram maps êα to∑

β∈N n−k

χα∪β(D)êβ =
∑

β∈N n−k

∑
κ�α∪β

sgnκ(D)êβ =
∑

β∈N n−k

sgnα∪β(D)êβ .

Since there are no matrices in the diagram, the coefficient of the coloring is 1. Note
that α ∪ β is a coloring of all edges of the diagram. If β includes any of the same
elements as α, the signature of the coloring is zero. Therefore, we may restrict to
the summation in which β ∈ Sc

α. In this situation, α∪β is a proper coloring of the
entire diagram, and the signature is then

sgnα∪β(D)= sgn(α
←

β ). �

Some special cases of this result are particularly useful. When k= n, this propo-
sition states that

n
.
n
.
n
.

n : êα 7−→ sgn(α)= det(êα1 · · · êαn ). (11)

Therefore, by linear extension,

u1 u2 un
n

.
n
.
n

.
n = det(u1 · · · un). (12)
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When k = 0, Proposition 6.2 states that
n.n.n.n
: 1 7−→

∑
β∈Sn

sgn(
←

β )êβ = (−1)bn/2c
∑
β∈Sn

sgn(β)êβ . (13)

The case k=n−1 provides a generalization of the three-dimensional cross product.

Proposition 6.3. If α ∈ N k has no repeated elements, then
k.k.k.k

n−k.n−k.n−k.n−k

k
.
k
.
k
.

k

: êα 7−→ (−1)bn/2c(n− k)!
∑
σ∈Sα

sgn
(
α
σ

)
êσ(α),

where sgn
(
α
σ

)
= (−1)t when t transpositions are required to transform α into σ .

If α ∈ N k has any repeated elements, then the diagram maps êα to 0.

Proof. Applying Proposition 6.2 twice (and noting that if β ∈ Sc
α then Sc

β = Sα),
the image of êα is ∑

β∈Sc
α

sgn(α
←

β )
∑
σ∈Sα

sgn(β←σ )êσ .

We claim that sgn(α
←

β ) sgn(β←σ ) = sgn(α
←

β ′) sgn(β ′←σ ) for any β, β ′ ∈ Sc
α. To

see this, consider the process of transposing elements to change β into β ′. If this
process requires t transpositions, then sgn(β)= (−1)t sgn(β ′), which implies both
sgn(α

←

β )= (−1)t sgn(α
←

β ′) and sgn(β←σ )= (−1)t sgn(β ′←σ ). The claim follows.
Given this claim, every β ∈ Sc

α makes the same contribution to the sum, and the
expression reduces to

(n− k)!
∑
σ∈Sα

sgn(α
←

β ) sgn(β←σ )êσ ,

where β is an arbitrary element of Sc
α. The signature term simplifies as follows:

sgn(α
←

β ) sgn(β←σ )= sgn(α
←

β )(−1)bn/2c sgn(σ
←

β )

= (−1)bn/2c sgn
(
α
σ

)
sgn(α

←

β )2 = (−1)bn/2c sgn
(
α
σ

)
. �

The next result depends on the previous proof, and will be used repeatedly.

Lemma 6.4 (Cut-and-paste lemma). If α ∈ N k has no repeated elements, β ∈ Sc
α,

and A is any n× n matrix, then

A AA

α1α2 · · ·αk

k.k.k .k

n−k.n−k.n−k.n−k
= sgn(α

←

β )(n− k)! A A A

β1 · · · βn−k

k.k.k.k

. (14)

If α ∈ N k has repeated elements, then the diagram maps êα to 0.
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Proof. By Proposition 6.2, the left-hand side of (14) evaluates to

∑
β∈Sc

α

sgn(α
←

β )
A A A

β1 · · · βn−k

k.k.k .k

.

As in the proof of Proposition 6.3, the result is true because every choice of β
contributes the same value to the summand. In this case, a transposition of elements
of β corresponds to swapping two of the strands labeled by βi in the diagram.
But swapping two strands in the diagram leads to a change of signature at the
node. In particular, if β, β ′ ∈ Sc

α are related by t transpositions, then sgn(α
←

β ) =

(−1)t sgn(α
←

β ′) and

A A A

β1 · · · βn−k

k.k.k .k

= (−1)t
A A A

β ′1 · · · β
′

n−k

k.k.k .k

.

Consequently, the summation may be replaced by the number of elements in Sc
α,

which is (n− k)!. �

This result is called the “cut-and-paste lemma” because it allows nodes to be re-
moved or added on to certain parts of a trace diagram. It will be used frequently
in later sections.

The following result is vital to manipulating matrices within diagrams. Note
that both statements in the theorem are general trace diagram relations.

Proposition 6.5 (Matrix action at nodes). If A is any n× n matrix, then

A A An
.

n
.
n

.
n

. . .
= det(A) n

.
n
.
n

.
n

. . . . (15)

If A is an invertible n× n matrix, and A represents its inverse A−1, then

A A A

k. k.k .k

n−k
.
n−k
.

n−k
.

n−k

= det(A)

A A A

n−k
.
n−k
.

n−k
.

n−k

k. k.k .k

. (16)

Proof. Theorem 5.1 greatly simplifies this proof, since it allows one to compute a
diagram’s function by starting from an arbitrary input at the bottom, and working
upward through the diagram. Let êα ∈ N n represent a basis input to (15) and let
Ai denote the i-th column of A. Then

A A A

α1 α2 · · · αn

=
Aα1 Aα2 Aαn

. . . = det(Aα1 Aα2 · · · Aαn ),
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where the last step follows from (12). Observe that

det(Aα1 Aα2 · · · Aαn )= sgn(α) det(A),

since the number of transpositions required to restore α to the identity permutation
is the same number of column switches required to restore the matrix (Aα1 Aα2 · · ·

Aαn ) to the original matrix A. The proof is completed by noting that sgn(α) det(A)
is the value of the right-hand side of (15) for the input êα.

The second statement (16) follows from the first, by insertion of an explicit copy
of the identity matrix in the form of AA−1 on the top strands, and application of
(15):

A A A

k. k.k .k

n−k
.
n−k
.

n−k
.

n−k

=

A

A

A

A

A

A

A A A

k. k.k .k

n−k
.
n−k
.

n−k
.

n−k

= det(A)

A A A

n−k
.
n−k
.

n−k
.

n−k

k. k.k .k

. �

Example. One can use (15) to prove that det(AB)=det(A) det(B). Applying (15)
directly gives

AB AB ABn
.

n
.
n

.
n

. . . = det(AB) n
.

n
.
n

.
n

. . . .

On the other hand, one may use the fact that
B

A
= AB to write the same diagram as

AB AB ABn
.

n
.
n

.
n

. . .
=

A

B

A

B

A

Bn
.

n
.
n

.
n

. . .
= det(A) B B Bn

.
n
.
n

.
n

. . .
= det(A) det(B) n

.
n
.
n

.
n

. . . .

One can similarly apply Proposition 4.12 to the relation (15) to show that det(AT )=

det(A).

Proposition 6.6 (Determinant diagram).

A A A
n.n.n.n
= (−1)bn/2cn! det(A). (17)

Proof. Proposition 6.5 gives the factor det(A), while Proposition 6.3 with k = 0
gives the factor (−1)bn/2cn!. �

7. Matrix minors

This section reveals the fundamental role of matrix minors in trace diagram func-
tions. We begin with notation and a review of matrix minors. For a good classical
treatment of matrix minors see [Lancaster and Tismenetsky 1985, Section 2.4].
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Matrix minors and cofactors. Let A be an n× n matrix over a field F with

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 .
A submatrix of a matrix A is a smaller matrix formed by “crossing out” a number
of rows and columns in A.

Let N ≡ {1, 2, . . . , n}. Let I = (I1, . . . , Ik1) and J = (J1, . . . , Jk2) be ordered
subsets of N in which 1≤ I1 < · · ·< Ik1 ≤ n and similarly for J . Let AI,J denote
the submatrix formed from the rows in I and the columns in J . The complementary
submatrix Ac

I,J is formed by crossing out the rows in I and the columns in J . For
n ≥ 3, the interior int(A) is the submatrix Ac

(1,n),(1,n).

Example. Let I = (1, 2) and J = (3, 4). If

A =


a b c d
e f g h
i j k l
m n o p

 ,
then AI,J =

( c d
g h
)
, Ac

I,J =
(

i j
m n

)
, and int(A)=

( f g
j k

)
.

Definition 7.1. If I and J have the same number of entries, the minor [AI,J ] is
the determinant of the submatrix AI,J . The complementary minor [Ac

I,J ] is the
determinant of the complementary submatrix Ac

I,J .

A direct formula for the k× k minor is

[AI,J ] =
∑
σ∈Sk

sgn(σ )aI1,Jσ(1)aI2,Jσ(2) · · · aIk ,Jσ(k) . (18)

In the above example, [AI,J ] = ch− gd .

Definition 7.2. The (i, j)-cofactor of A is

Ci j ≡ (−1)i+ j
[Ac

i, j ].

The (I, J )-cofactor of A is

C I,J = (−1)I1+···+Ik+J1+···+Jk [Ac
I,J ].

The adjugate (or adjoint) adj(A) of a square matrix is the matrix comprised of
entries (adj(A))i j ≡ C j i .
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A student often sees cofactors first in the cofactor expansion formula useful for
by-hand calculations of the determinant:

det(A)=
n∑

j=1

ai j Ci j , (19)

where i ∈ N is an arbitrary row. Adjugates are sometimes used to compute the
matrix inverse since A−1

= (1/ det(A)) adj(A) when A is invertible.

Diagrams for matrix minors.

Proposition 7.3. Let A be an n× n matrix. Then

[AI,J ] = sgn(J c←J )
AA A

I1 I2 · · · Ik

J c
1 · · · J c

n−k

= sgn(I c←I )

A A A

J1 J2 · · · Jk

I c
1 · · · I c

n−k

. (20)

Proof. By Proposition 6.3 and the minor formula (18),

AA A

I1 I2 · · · Ik

n−k.n−k.n−k.n−k

J1 J2 · · · Jk

= (−1)bn/2c(n− k)!
∑
σ∈Sk

sgn(σ ) A A A. . .

Jσ(1) · · · Jσ(k)

I1 I2 · · · Ik

= (−1)bn/2c(n− k)![AI,J ].

Using the cut-and-paste lemma (14), the same diagram reduces to

(n− k)! sgn(J
←

J c)
AA A

I1 I2 · · · Ik

J c
1 · · · J c

n−k

= (n− k)!(−1)bn/2c sgn(J c←J )
AA A

I1 I2 · · · Ik

J c
1 · · · J c

n−k

.

This verifies the first function. The second case is similar. �

The next section requires understanding the following diagrams for the cofactor
and the adjugate:

Proposition 7.4. Let A be an n× n matrix. Then

C I,J =
(−1)bn/2c

(n− k)!
A AA

J1 J2 · · · Jk

I1 I2 · · · Ik

n−k.n−k.n−k.n−k
and adj(A)=

(−1)bn/2c

(n− 1)!

A AAn−1.n−1.n−1.n−1
. (21)
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Proof. By Proposition 7.3 and the cut-and-paste lemma (14) (and replacing I with
I c and J with J c), the complementary minor is

[Ac
I,J ] = sgn(J

←

J c)
A AA

I c
1 · · · I c

n−k

J1 J2 · · · Jk

= sgn(J
←

J c)
sgn(I c←I )
(n− k)!

A AA

J1 J2 · · · Jk

I1 I2 · · · Ik

n−k.n−k.n−k.n−k
. (22)

Matching this up with the cofactor C I,J = (−1)I1+···+Ik+J1+···+Jk [Ac
I,J ] requires a

little bit of work with the signs.

Lemma 7.5. Let J = (J1, . . . , Jk) and J c
= (J c

1 , . . . , J c
n−k) be ordered increasing

subsets of N whose union is N. Then

sgn(J c←J )= (−1)nk+J1+J2+···+Jk .

Proof. Move the {Ji } one at a time to their “proper” positions among the J c. The
ordering implies

(. . . , J c
Jk−k+1, . . . , J c

n−k, Jk, . . .)= (. . . , Jk + 1, . . . , n, Jk, . . .),

so n− Jk transpositions are required to return Jk to its proper place. Repeating this
for each other Ji gives the identity after a total of nk−(J1+· · ·+ Jk) transpositions.

�

Thus sgn(J
←

J c)sgn(I c←I )= (−1)bn/2c(−1)I1+···+Ik+J1+···+Jk , verifying the diagram
for the general cofactor is as stated.

The adjugate diagram is the case k = 1 with matrix orientations reversed to
handle the transpose. �

Decomposition of trace diagrams.

Definition 7.6. Given a matrix A, a diagram A-minor is an (unframed) diagram
with a single n-vertex in which a subset of the edges may be labeled by A, in such
a way that all matrix markings are compatibly oriented. In particular, the diagram
may be written as ±1 times a diagram of the form

AA A
. . .

. . .
or

A A A. . .

. . .
.

(The sign comes from the possible need to switch the order of edges at the n-vertex
so that all edges with matrices are adjacent.)

By Proposition 7.3, a diagram A-minor evaluates to a matrix minor ±[AI,J ]

when the ends of the strands are labeled by I and J . The next result states the
conditions under which a trace diagram may be decomposed into diagram minors.
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Theorem 7.7. Let D be a trace diagram in which every matrix marking is adjacent
to an n-vertex. Then D = CD′ for some D′ that may be decomposed into diagram
minors, where C is a constant that does not depend on any matrix entries.

Proof. In this proof “equivalence” will mean equal up to a constant factor that does
not depend on any matrix entries. The key step in the theorem is to use the cut-and-
paste lemma to introduce additional n-vertices as necessary to separate matrices
by node. For instance, the diagram

AA A

B B B

. . .

. . .

cannot be decomposed into minors. However, using the cut-and-paste lemma and
Proposition 6.3, it is equivalent to

AA A

B BB. . .

. . .

...
...

.

Proceeding in this manner, since every matrix is adjacent to an n-vertex, one may
introduce enough vertices in D to obtain an equivalent diagram D′ such that every
n-vertex in D is adjacent to a unique matrix with consistent orientation. One may
then cut around each n-vertex in a diagram, including the adjacent matrices, to
decompose the diagram into diagram minors. �

It follows immediately from this theorem that any such diagram may be ex-
pressed as a polynomial function of matrix minors. This in itself is not surprising,
since the entries of a matrix are technically minors. The power of the result is that
the structure of trace diagrams allows one to accomplish this decomposition “effi-
ciently” by giving an upper bound for the number of minors in the decomposition.

For the purposes of the next theorem, we say that a collection of matrix markings
form a compatible matrix collection if (i) they have the same matrix label, (ii) they
are adjacent to the same n-vertex, and (iii) they have the same orientation relative
to the n-vertex. Given a trace diagram D in which every matrix is adjacent to an
n-vertex, define the compatible partition number ND of a trace diagram to be the
minimum number of collections in a partition of all matrix markings in a diagram
into compatible collections. For example,

AA A

B B B

. . .

. . .
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contains two compatible matrix collections, and the compatible partition number
is 2.

Theorem 7.8. Let D be a trace diagram in which every matrix marking is adjacent
to a vertex, and let ND be the compatible partition number of D. Then, the trace
diagram function fD may be expressed as a summation over a product of ND matrix
minors.

Proof. In the proof of Theorem 7.7, one may ensure that every compatible matrix
collection remains adjacent to the same vertex. Thus, one may write D = CD′,
where D′ decomposes into ND diagram minors (and possibly some additional n-
vertices without matrix markings). Given this decomposition, both D and D′ may
be expressed as summations over a product of ND matrix minors. �

While ND provides an upper bound for the minimum number of minors, it is
not necessarily sharp. For example, the diagram

A

A

A

A

A

An.n.n.n

has a compatible partition number of 2, but evaluates to (−1)bn/2cn!.

8. Three short determinant proofs

There are several standard methods for computing the determinant. The Leibniz
rule is the common definition using permutations. Cofactor expansion provides
a recursive technique that lends itself well to by-hand calculations. Laplace ex-
pansion is similar but uses generalized cofactors. A lesser-known technique is
Dodgson condensation [Dodgson 1866], which involves recursive computations
using 2× 2 determinants.

Diagrammatic techniques can unify these various approaches. Theorem 7.7
leads to a straightforward diagrammatic approach to finding determinant identities:
decompose the diagram for the determinant into pieces containing at most one
node, and express the result as a summation over matrix minors. This approach
gives the cofactor and Laplace formulae.

Cofactor and laplace expansion.

Proposition 8.1 (Cofactor expansion). For an n×n matrix A and j ∈{1, 2, . . . , n},

det(A)=
n∑

i=1

ai j Ci j =

n∑
i=1

a j i C j i . (23)
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Proof. Proposition 6.6 states that

A A A
n.n.n.n
= (−1)b

n
2 cn! det(A).

The diagram for the cofactor was found in Proposition 7.4. The main idea in the
proof is that it is possible to label one strand of the diagram arbitrarily, a conse-
quence of two applications of the cut-and-paste lemma (14):

A A A
n.n.n.n
= n! sgn(β) AA A

β1β2 · · · βn

=
n!

(n− 1)!
sgn(β)2

βn

A AA

A

βn

...
= n

i

A AA

A

i

...
,

where i =βn . This diagram may be evaluated by summing along an interior strand:

n

i

A AA

A

i

...
= n

n∑
j=1

i

A AA

j

... j

A

i
= (−1)bn/2cn(n− 1)!

n∑
j=1

Ci j ai j .

Canceling the common (−1)bn/2cn! factor proves the first equality. The second
equality follows by transposing the diagrams. �

This result is easily generalized by labeling several strands instead of just one
(for a classical proof of this result, [Lancaster and Tismenetsky 1985, Theorem 1
in Section 2.4]).

Proposition 8.2 (Laplace expansion).

det(A)=
∑

1≤J1<···<Jk≤n

C I,J [AI,J ] =
∑

1≤J1<···<Jk≤n

CJ,I [AJ,I ].

Proof. This proof is a variation of the one above, this time cutting open the diagram
along k strands. First,

A A A
n.n.n.n
=

n!
(n− k)!

A AA

AA A

I1 I2 · · · Ik

I1 I2 · · · Ik

. . .
.

We now use the cut-and-paste lemma 6.4 to add an additional node at the bottom of
the diagram, and then express the diagram as a summation over the interior labels
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to obtain

n!
(n−k)! k!

sgn(I c←I )

A AA

A A A

I c
1 · · · I c

k

I1 I2 · · · Ik

...

... =
n! k!

(n−k)! k!
sgn(I c←I )

∑
1≤J1<···
<Jk≤n

A AA

J1 J2 · · · Jk

I1 I2 · · · Ik

n−k.n−k.n−k.n−k A A A

J1 J2 · · · Jk

I c
1 · · · I c

n−k

.

By Propositions 7.4 and 7.3, the first diagram here is (−1)bn/2c(n − k)!C I,J , and
the second is sgn(I c←I )[AI,J ]. Matching up terms, we have now proven that

det(A)=
∑

1≤J1<···<Jk≤n

C I,J [AI,J ].

The second statement is proven similarly. �

A determinant theorem of Jacobi. We now turn to the Jacobi determinant theo-
rem, first stated in [Jacobi 1841], which is used to derive Dodgson condensation
[Rice and Torrence 2007]. In contrast with the previous proofs, we state first the
diagrammatic theorem, and show Jacobi’s result as a corollary. This proof was first
given in [Morse 2008].

Proposition 8.3. Let A be an invertible n× n matrix, and let I and J be ordered
subsets of N . Then

AAAn−1.n−1.n−1.n−1 AAAn−1.n−1.n−1.n−1 AAAn−1.n−1.n−1.n−1

k. k.k .k

I c
1 I c

2 · · · I
c
n−k

J c
1 J c

2 · · · J
c
n−k

= c1c2 det(A)k−1

A A A

J1 J2 · · · Jk

I1 I2 · · · Ik

n−k.n−k.n−k.n−k
, (24)

where c1c2 =
(
(−1)bn/2c(n− 1)!

)k sgn(J c←J )sgn(I c←I )(k!/(n− k)!).

Proof. Use Proposition 6.5 to move each group of n− 1 matrices in the left-hand
diagram of (24) onto a single edge labeled by A = A−1, then use Proposition 6.3
with k = 1 to eliminate the “bubbles” in the graph, as follows:

A AAn−1.n−1.n−1.n−1
= det(A)

A

n−1.n−1.n−1.n−1 = det(A)(−1)bn/2c(n− 1)! A .



60 STEVEN MORSE AND ELISHA PETERSON

This reduces the diagram to

c1 det(A)k A A A

J c
1 · · · J c

n−k

I c
1 · · · I c

n−k

k.k.k .k
= c1 det(A)k−1

A A A

J c
1 · · · J c

n−k

I c
1 · · · I c

n−k

k.k.k .k
= c1c2 det(A)k−1

A A A

J1 J2 · · · Jk

I1 I2 · · · Ik

n−k.n−k.n−k.n−k
.

The second step is also a consequence of Proposition 6.5. The third step uses the
cut-and-paste lemma (14) twice. The constants are c1 =

(
(−1)bn/2c(n− 1)!

)k and
c2 = sgn(J c←J )sgn(I c←I )(k!/(n− k)!). �

Corollary 8.4 (Jacobi determinant theorem). Let A be an n× n invertible matrix,
and let AI,J be a k× k submatrix of A. Then

[adj(A)I,J ] = CJ,I det(A)k−1, (25)

where [adj(A)I,J ] is the corresponding minor of the adjugate of A.

Proof. Rewrite (24) as D1 = c1c2 det(A)k−1D2. By (21),

D2 = (−1)bn/2c(n− k)!CJ,I ≡ c3CJ,I . (26)

To see the meaning of D1, consider the following restatement of (22):

[AI,J ] =
sgn(J c←J ) sgn(I

←

I c)

k!
A A A

J c
1 · · · J c

n−k

I c
1 · · · I c

n−k

k.k.k .k
.

From this, one obtains a diagram for [adj(A)I,J ] by replacing each A with the
adjugate diagram (21). The result is a multiple of D1:

[adj(A)I,J ] =
sgn(J c←J ) sgn(I

←

I c)
(
(−1)bn/2c

)k

k! ((n− 1)!)k
D≡ c4D1. (27)

Combining (24), (26), and (27) gives

[adj(A)I,J ] = c4D1 = c1c2c4 det(A)k−1D2 = c1c2c3c4 det(A)k−1CJ,I .

It is straightforward to check that c1c2c3c4 = 1. �
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The first proofs of this theorem took several pages to complete, and required
careful attention to indices and matrix elements. A modern proof is given in [Rice
and Torrence 2007] that also takes several pages, and relies on expressing the minor
as the determinant of an n×n matrix derived from A. By contrast, the diagrammatic
portion of the proof (Proposition 8.3) contains the essence of the result and was
relatively easy. The more difficult part was showing that the diagrammatic relation
corresponded to the correct algebraic statement.

Many identities in linear algebra are simply special cases of this theorem. For
example, when I = J = N , then [Ac

I,J ] = 1 trivially and so

det(adj(A))= det(A)n−1.

Charles Dodgson’s condensation method [1866] also depends on this result. The
following example shows the condensation method at work on a 4×4 determinant.∣∣∣∣∣∣∣∣

−2 −1 −1 −4
−1 −2 −1 −6
−1 −1 2 4

2 1 −3 −8

∣∣∣∣∣∣∣∣−→
∣∣∣∣∣∣

3 −1 2
−1 −5 8

1 1 −4

∣∣∣∣∣∣−→
∣∣∣∣ 8 −2
−4 6

∣∣∣∣−→−8,

where−8 is the determinant of the original matrix. Each step involves taking 2×2
determinants, making the process easy to do by hand. However, the technique fails
for some matrices since it involves division.

The method relies on the particular case I = J = {1, n}. Then [Ac
I,J ] is the

determinant of the interior entries, and

[adj(A)I,J ] = C11Cnn −C1nCn1,

where Ci j is the cofactor, so (25) becomes

det(A)=
C11Cnn −C1nCn1

det(int(A))
. (28)

For 3× 3 matrices, this is precisely Dodgson’s method. Larger determinants are
computed using several iterations of this formula.

9. Generalizations using trace diagrams

One of the advantages of using trace diagrams is the ease with which certain proofs
are generalized. This is because, in contrast with traditional proofs, patterns in trace
diagram proofs are more easily recognized. For example, the proof of Proposition
8.3 is readily generalized when ik ≤ n to the following:
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Proposition 9.1. Let A be an invertible n× n matrix, and let I and J be ordered
subsets of N . Then

. . .

AAAn−i.n−i.n−i.n−i

...

AAAn−i.n−i.n−i.n−i

...

AAAn−i.n−i.n−i.n−i

k. k.k .k

I1 · · · Ii · · · · · · · · · Iik

J c
1 J c

2 · · · J
c
n−ik

= c1c2 det(A)k−1

A A A

J1 J2 · · · Jik

I1 I2 · · · Iik

n−ik.n−ik.n−ik.n−ik

, (29)

where c1c2 =
(
(−1)bn/2c(n− i)!

)k
(sgn(J

←

J c)/(n− ik)!).

Proof. The proof is similar to that of Proposition 8.3. Begin by reducing the
diagram at left by applying the following steps at each small collection of n − i
matrices in the diagram:

A A An−i.n−i.n−i.n−i

i. i.i .i

i
.
i
.
i
.

i

= det(A)

AA A

n−i.n−i.n−i.n−i

i. i.i .i

i
.
i
.
i
.

i

−→ det(A)(−1)bn/2c(n− i)! A A A
i.i.i .i
.

Note that the last step is only true in the context of the larger diagram, in which
case it follows by two applications of the cut-and-paste lemma (14). After this
step, the diagram reduces to

c1 det(A)k AA A

I1 I2 · · · Iik

J c
1 · · · J c

n−ik

= c1c2 det(A)k−1

A A A

J1 J2 · · · Jik

I1 I2 · · · Iik

n−ik.n−ik.n−ik.n−ik

,

where c1 =
(
(−1)bn/2c(n− i)!

)k and c2 = (sgn(J
←

J c)/(n− ik)!). The details here
are identical to those in the proof of Proposition 8.3. �

We will use this result to prove a generalization of the Jacobi determinant the-
orem, which concerns a more general notion of a matrix minor. We must first
introduce some new concepts. Let V be an n-dimensional vector space. Given
a multilinear transformation A : V⊗i

→ V⊗i , one can represent the value of the
transformation by the coefficients

(A)α,β ≡ 〈êα, Aêβ〉,
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where α, β ∈ N i . Diagrammatically, A is represented by an oriented node with i
inputs and i outputs:

i
.
i
.
i
.
i

A .

The i -adjugate of a matrix A (0 ≤ i ≤ n) is the multilinear transformation
adji (A) : V

⊗i
→ V⊗i whose coefficients are general cofactors:(

adji (A)
)

I,J = CJ,I ,

where I and J are ordered subsets of N with i elements. It follows from Proposi-
tion 7.4 that

adji (A)=
(−1)bn/2c

(n− i)!

A A An−i.n−i.n−i.n−i

i. i.i .i

i
.
i
.
i
.

i

. (30)

We also need to generalize the idea of a matrix minor. Let A be a multilinear
transformation, as defined above. Let a positive integer k be chosen for which
0≤ ik ≤ n. Let I = (I1, . . . , Ik) consist of k i-tuples with I j ≡ (I j,1, . . . , I j,i ) and
all elements of I distinct. Let the order of indices be chosen so that

1≤ I1,1 ≤ · · · ≤ I1,i ≤ · · · ≤ Ik,1 ≤ · · · ≤ Ik,i .

Let J be similarly chosen. The I, J-minor of A is defined to be

[AI,J ] =
∑
σ∈Sik

sgn(σ )(A)I1,σ (J1)(A)I2,σ (J2) · · · (A)Ik ,σ (Jk).

Generalizing Proposition 7.3 gives

[AI,J ] = sgn(Jc←J )
i
.
i
.
i
.
i

A

i
.
i
.
i
.
i

A

i
.
i
.
i
.
i

A

I1 · · · Ii · · · · · · Iik

J c
1 · · · J c

n−ik

. (31)

We can now use the diagrammatic result (29) to generalize the Jacobi determi-
nant theorem.

Theorem 9.2. Let A be an n × n invertible matrix, and let A I,J be an ik × ik
submatrix of A. Then

[adji (A)I,J ] = C J,I det(A)k−1. (32)



64 STEVEN MORSE AND ELISHA PETERSON

Proof. Rewrite (29) as D1 = c1c2 det(A)k−1D2. As in the proof of the Jacobi
determinant theorem (Corollary 8.4), D2 = (−1)bn/2c(n− ik)!C J,I ≡ c3C J,I . The
diagram D1 is obtained by inserting k copies of the i-adjugate diagram (30) into
the generalized minor diagram (31), and so

[adj(A)I,J ] =
((−1)bn/2c

(n− i)!

)k
sgn(Jc←J )D1 ≡ c4D1.

Combining these results, one has [adj(A)I,J ] ≡ c1c2c3c4 det(A)k−1C J,I , and it is
straightforward to verify that c1c2c3c4 = 1. �

10. Final remarks

The main purpose of this paper has been to introduce the ideas of signed graph
colorings and trace diagrams. A secondary purpose has been to provide a lexicon
for their translation into linear algebra. The advantage in this approach to linear
algebra lies in the ability to generalize results, as was done in Section 9.

There is much more to be said about trace diagrams. The case n = 2 was the
starting point of the theory [Levinson 1956] and has been studied extensively, most
notably providing the basis for spin networks [Carter et al. 1995; Kauffman 1991]
and the Kauffman bracket skein module [Bullock et al. 1999]. In the general case,
the coefficients of the characteristic equation of a matrix can be understood as the
n+ 1 “simplest” closed trace diagrams [Peterson 2009].

The diagrammatic language also proves to be extremely useful in invariant the-
ory. It allows for easy expression of the “linearization” of the characteristic equa-
tion [Peterson 2009], from which several classical results of invariant theory are
derived [Drensky 2007]. Diagrams have already given new insights in the theory of
character varieties and invariant theory [Bullock 1997; Lawton and Peterson 2009;
Sikora 2001], and it is likely that more will follow.
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