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The squares of an m × n checkerboard are alternately colored black and red.
It has been shown that for every pair m, n of positive integers, it is possible to
place coins on some of the squares of the checkerboard (at most one coin per
square) in such a way that for every two squares of the same color the numbers
of coins on neighboring squares are of the same parity, while for every two
squares of different colors the numbers of coins on neighboring squares are of
opposite parity. All solutions to this problem have been what is referred to as
trivial solutions, namely, for either black or red, no coins are placed on any
square of that color. A nontrivial solution then requires at least one coin to
be placed on a square of each color. For some pairs m, n of positive integers,
however, nontrivial solutions do not exist. All pairs m, n of positive integers are
determined for which there is a nontrivial solution.

1. Introduction

Suppose that the squares of an m×n checkerboard (m rows and n columns), where
1≤m ≤ n and n ≥ 2, are alternately colored black and red. Figure 1 shows a 4×5
checkerboard (where a shaded square represents a black square). Two squares
are said to be neighboring if they belong to the same row or to the same column
and there is no square between them. Thus every two neighboring squares are of
different colors.

The checkerboard conjecture [Okamoto et al. 2010]. For every pair m, n of pos-
itive integers, it is possible to place coins on some of the squares of an m × n
checkerboard (at most one coin per square) in such a way that for every two
squares of the same color the numbers of coins on neighboring squares are of the
same parity, while for every two squares of different colors the numbers of coins
on neighboring squares are of opposite parity.
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Figure 1. A 4× 5 checkerboard.

Figure 2 shows a placement of 5 coins on the 4 × 5 checkerboard such that
the number of coins on neighboring squares of every black square is even and the
number of coins on neighboring squares of every red square is odd. Thus for every
two squares of different colors, the numbers of coins on neighboring squares are
of opposite parity. Consequently, the checkerboard conjecture is true for a 4× 5
checkerboard. Observe that each of the five coins on the 4× 5 checkerboard of
Figure 2 is placed on a black square. Thus the number of coins on neighboring
squares of each black square is 0, while the number of coins on neighboring squares
of each red square is either 1 or 3. For a given checkerboard, if it is possible to
place all coins on squares of one of the two colors, say black, in such a way that
the number of coins on neighboring squares of a square is even if and only if that
square is black; such a coin placement is called a trivial solution. Hence, the coin
placement for the 4×5 checkerboard in Figure 2 is a trivial solution. In [Okamoto
et al. ≥ 2010] it is shown that every m × n checkerboard has a trivial solution,
through the analysis of a vertex coloring of graphs called the modular coloring.

The checkerboard theorem. Every m× n checkerboard has a trivial solution.

A nontrivial solution to the m × n checkerboard problem requires at least one
coin to be placed on a square of each color. As we will see in this work, some
m × n checkerboards have no nontrivial solution. For an m × n checkerboard C ,
we consider the following two related problems.

Problem 1.1. Place coins on some of the red squares of C (at most one coin per
square) in such a way that the number of coins on neighboring squares of every
black square is even.

Figure 2. A trivial solution for a 4× 5 checkerboard.
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Figure 3. Some 3× n checkerboards for n = 3, 4, 7.

Problem 1.2. Place coins on some of the black squares of C (at most one coin per
square) in such a way that the number of coins on neighboring squares of every
red square is odd.

Note that in Problem 1.1 there is no restriction on whether or not there are coins
on black squares, since coins on black squares do not affect the number of coins on
neighboring squares of each black square. Similarly, in Problem 1.2 placing coins
on red squares is allowed. Of course, every solution to Problem 1.2 must place at
least one coin on a black square of C ; while Problem 1.1 has a trivial solution of
placing no coins at all on the red squares of C .

In Figure 3, the checkerboards of size 3×3 and 3×7 are shown with coins placed
on some of the squares. Since both m and n are odd, every square on the four
corners must be of the same color. Observe that the 3×3 checkerboard whose four
corner squares are all black has a nontrivial solution to each of Problems 1.1 and
1.2, while the 3× 3 checkerboard having four red corner squares has no solution
to Problem 1.2. On the other hand, each of the two 3 × 7 checkerboards has a
nontrivial solution to each of Problems 1.1 and 1.2 regardless of the color of the
corner squares. As another example, consider the 3×4 checkerboard, which must
have two black corner squares and two red corner squares. In this case, the only
possible solution to Problem 1.1 is the trivial solution, while there is a solution to
Problem 1.2 as shown in Figure 3.

Next consider a checkerboard of size 1× n with n ≥ 2. The following is easy
to verify.

Observation 1.3. A 1× n checkerboard (n ≥ 2) has a nontrivial solution to Prob-
lem 1.1 if and only if the two corner squares are both red. Also, there is a solution
to Problem 1.2 if and only if n 6≡ 1 (mod 4) or at least one of the two corner
squares is black.

As a result, every 1 × n checkerboard belongs to one of the three categories
described in the next corollary.

Corollary 1.4. For every integer n ≥ 2, a 1 × n checkerboard has a nontrivial
solution to at least one of Problems 1.1 and 1.2. In particular:
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(A) There is a nontrivial solution to each of Problems 1.1 and 1.2 if and only if
n ≡ 3 (mod 4) and the two corner squares are both red.

(B) There is a nontrivial solution to Problem 1.1 but not to Problem 1.2 if and
only if n ≡ 1 (mod 4) and the two corner squares are both red.

(C) There is a nontrivial solution to Problem 1.2 but not to Problem 1.1 if and
only if at most one of the two corner squares is red.

Let C=CR∪CB be the set of m×n checkerboards with mn≥ 2, where C ∈CR

if C contains a red corner square; while C ∈CB if C contains a black corner square.
Hence, a checkerboard belongs to CR ∩CB if and only if the number of squares
is even. Our goal in this paper is to classify all checkerboards (size and color
configuration) for which (A) there is a nontrivial solution to each of Problems 1.1
and 1.2; (B) there is a nontrivial solution to Problem 1.1 but not to Problem 1.2;
(C) there is a nontrivial solution to Problem 1.2 but not to Problem 1.1; and (D)
there is a nontrivial solution to neither Problem 1.1 nor Problem 1.2.

2. Even and odd extensions

Definitions and notation. Before considering checkerboards having multiple rows
and multiple columns, we give additional definitions and notation. For an m × n
checkerboard C , let S = B ∪ R be the set of mn squares in C , where B and R are
the sets of black squares and red squares, respectively, and let si, j ∈ S be the square
in the i-th row and j-th column for 1≤ i ≤ m and 1≤ j ≤ n.

We express a coin placement for C using a coin placement function f : S→{0, 1}
defined by f (s) = 1 if and only if there is a coin placed on the square s. The
corresponding neighbor sum of a square s, denoted by σ f (s) (or simply σ(s)), is
the number of coins placed on the neighboring squares of s. For simplicity, we
further assume that σ(s) is expressed as one of 0 and 1 modulo 2.

An even placement f is a coin placement such that f (s) = σ(s) = 0 for every
s ∈ B. Hence, a checkerboard C has a solution to Problem 1.1 if and only if C has
an even placement. In particular, C has a nontrivial solution to Problem 1.1 if and
only if C has a nontrivial even placement. An odd placement g is a coin placement
such that g(s) = 0 and σ(s) = 1 for every s ∈ R. Then a checkerboard C has a
solution to Problem 1.2 if and only if C has an odd placement. Recall that every
solution to Problem 1.2 must place at least one coin on a black square, implying
that there is no trivial odd placement.

To achieve the goal described in the first section, therefore, we investigate the
conditions on the size and color configuration of checkerboards under which (A)
there are a nontrivial even placement and an odd placement; (B) there is a nontrivial
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even placement but no odd placement; (C) there is an odd placement but no non-
trivial even placement; and (D) there is neither an odd placement nor a nontrivial
even placement.

Let S = S1 ∪ S2 ∪ · · · ∪ Sn , where S j = {si, j : 1≤ i ≤ m} for 1≤ j ≤ n. Hence,
S j is the set of the m squares in the j-th column. Further, let S′i = S1∪ S2∪· · ·∪ Si

for 1 ≤ i ≤ n. (Hence S′1 = S1 and S′n = S.) Let f1 : S′1→ {0, 1} be an arbitrary
coin placement for the squares in S′1 such that f1(s) = 0 for every s ∈ B ∩ S′1.
Observe then that there exists a unique coin placement f2 : S′2→ {0, 1} such that
f2(s)= 0 for every s ∈ B∩S′2; f2 restricted to S′1 equals f1; and σ(s)= 0 for every
s ∈ S′1. After finding such a coin placement f2, observe further that there exists a
unique coin placement f3 : S′3→ {0, 1} such that f3(s) = 0 for every s ∈ B ∩ S′3;
f3 restricted to S′2 equals f2; and σ(s) = 0 for every s ∈ S′2. In general, for every
integer j (1 ≤ j ≤ n− 1), suppose that f j : S′j → {0, 1} is a coin placement such
that f j (s)= 0 for every s ∈ B∩S′j and σ(s)= 0 for every s ∈ S′j−1 (if j ≥ 2). Then
there exists a unique coin placement f j+1 : S′j+1→{0, 1} such that f j+1(s)= 0 for
every s ∈ B∩ S′j+1; f j+1 restricted to S′j equals f j ; and σ(s)= 0 for every s ∈ S′j .

Similarly, let g1 : S′1 → {0, 1} be an arbitrary coin placement for the squares
of S′1 such that g1(s) = 0 for every s ∈ R ∩ S′1. Then there exists a unique coin
placement g2 : S′2→ {0, 1} such that g2(s) = 0 for every s ∈ R ∩ S′2; g2 restricted
to S′1 equals g1; and σ(s) = 1 for every s ∈ R ∩ S′1. In general, for every integer
j (1 ≤ j ≤ n − 1), suppose that g j : S′j → {0, 1} is a coin placement such that
g j (s)= 0 for every s ∈ R∩ S′j and σ(s)= 1 for every s ∈ R∩ S′j−1 (if j ≥ 2). Then
there exists a unique coin placement g j+1 : S′j+1→ {0, 1} such that g j+1(s) = 0
for every s ∈ R ∩ S′j+1; g j+1 restricted to S′j equals g j ; and σ(s) = 1 for every
s ∈ R ∩ S′j .

These observations yield the following two lemmas.

Lemma 2.1. For each coin placement f1 : S1 → {0, 1} such that f1(s) = 0 for
every s ∈ B ∩ S1, there exists a unique coin placement F : S → {0, 1} such that
(i) F(s) = 0 for every s ∈ B, (ii) F restricted to S1 equals f1, and (iii) σ(s) = 0
for every s ∈ S′n−1(= S − Sn). Furthermore, F is nontrivial if and only if f1 is
nontrivial.

Lemma 2.2. For each coin placement g1 : S1 → {0, 1} such that g1(s) = 0 for
every s ∈ R ∩ S1, there exists a unique coin placement G : S→ {0, 1} such that (i)
G(s) = 0 for every s ∈ R, (ii) G restricted to S1 equals g1, and (iii) σ(s) = 1 for
every s ∈ R ∩ S′n−1.

For the coin placements f1 and F for a checkerboard C described in Lemma
2.1, we say that F is the even extension of f1; while for the coin placements g1

and G of C described in Lemma 2.2, G is said to be the odd extension of g1. We
also say that F and G are the even and odd extensions for C , respectively.



114 HEIRES, JONES, OKAMOTO, RENZEMA AND ROBERTS

(a)

(b)

(a)

(b)

Figure 4. An even extension for a 5× 15 checkerboard.

Properties of even extensions. Consider an m×n checkerboard, where n is suffi-
ciently large. Let f1 : S1→{0, 1} be an arbitrary coin placement such that f1(s)=0
for every s ∈ B∩ S1. Obtain the unique even extension F of f1. We will next show
that F(s) = 0 for every s ∈ S j whenever j ≡ 0 (mod m + 1). Before we verify
this, let us consider an example. In Figure 4(a), there is a 5× 15 checkerboard in
CB−CR with coins placed on some of the red squares in S1. Figure 4(b) shows its
even extension and observe that there are no coins placed on the squares in S6∪S12.

Proposition 2.3. For an m× n checkerboard with 2 ≤ m ≤ n, let f1 : S1→ {0, 1}
be an arbitrary coin placement with f1(s)= 0 for every s ∈ B∩ S1. Then for every
j ≡ 0 (mod m + 1), the unique even extension of f1 assigns 0 to every square in
S j .

Proof. We begin by assuming that m is even. Furthermore, we may assume that
s1,1 ∈ R. Therefore, si, j ∈ R if and only if i + j is even. Let f1 : S1→ {0, 1} be
given by

f1(si,1)=

{
a(i+1)/2 if i is odd,
0 if i is even,

for 1 ≤ i ≤ m. Furthermore, for each integer j (1 ≤ j ≤ m/2) let A j =
∑ j

i=1 ai

while A0 = 0. Now define a coin placement F1 : S→{0, 1} by F1(s)= 0 if s ∈ B
and

F1(si, j )=



A(i+ j)/2+ A(i− j)/2 if j ≤ i and i + j ≤ m,
F1(s(m+1)− j,(m+1)−i ) if j ≤ i and i + j ≥ m+ 2,
F1(s j,i ) if i + 2≤ j ≤ m,
0 if j = m+ 1,
F1(s(m+1)−i, j−(m+1)) if m+ 2≤ j ≤ 2m+ 2,
F1(si, j−(2m+2)) if j ≥ 2m+ 3,

if si, j ∈ R (and so i + j is even), where addition is performed modulo 2 except on
the subscripts. Note that F1(si,2m+2) = F1(s(m+1)−i,m+1) = 0 and so F1(si, j ) = 0
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whenever j ≡ 0 (mod m + 1). Also, F1(si,1) = A(i+1)/2 + A(i−1)/2 = a(i+1)/2 =

f1(si,1) for i = 1, 3, . . . ,m− 1, so F1 restricted to S1 equals f1.
We now show that F1 is the even extension of f1, that is, F1 = F . To do this,

we need only verify that σ(s) = 0 for every s ∈ B ∩ S′n−1. Hence, we show that
σ(si, j )= 0 for integers i and j with 1≤ i ≤m and 1≤ j ≤ n−1 such that i+ j is
odd. By symmetry, we may further suppose that either 1≤ j < i ≤m or j =m+1.

Case 1: 1≤ j < i ≤ m. First suppose that j = 1. If 2≤ i ≤ m− 2, then

σ(si,1)= F1(si,2)+ F1(si−1,1)+ F1(si+1,1)

=
(

A(i+2)/2+ A(i−2)/2
)
+
(

Ai/2+ A(i−2)/2
)
+
(

A(i+2)/2+ Ai/2
)
= 0,

while

σ(sm,1)= F1(sm,2)+ F1(sm−1,1)= F1(sm−1,1)+ F1(sm−1,1)= 0.

Next suppose that i = m and 3≤ j ≤ m− 1. Then

σ(sm, j )= F1(sm, j−1)+ F1(sm, j+1)+ F1(sm−1, j )

= F1(sm− j+2,1)+ F1(sm− j,1)+ F1(sm− j+1,2)

= (A(m− j+3)/2+ A(m− j+1)/2)+ (A(m− j+1)/2+ A(m− j−1)/2)

+(A(m− j+3)/2+ A(m− j−1)/2)= 0.

Hence, suppose next that 2≤ j < i ≤ m− 1. If i + j ≤ m− 1, then

σ(si, j )= F1(si, j−1)+ F1(si, j+1)+ F1(si−1, j )+ F1(si+1, j )

= (A(i+ j−1)/2+ A(i− j+1)/2)+ (A(i+ j+1)/2+ A(i− j−1)/2)

+ (A(i+ j−1)/2+ A(i− j−1)/2)+ (A(i+ j+1)/2+ A(i− j+1)/2)= 0.

For i + j = m+ 1,

σ(si, j )= F1(si, j−1)+ F1(si, j+1)+ F1(si−1, j )+ F1(si+1, j )

= F1(si, j−1)+ F1(sm− j,m−i+1)+ F1(si−1, j )+ F1(sm− j+1,m−i )

= (Am/2+ A(i− j+1)/2)+ (Am/2+ A(i− j−1)/2)

+ (Am/2+ A(i− j−1)/2)+ (Am/2+ A(i− j+1)/2)= 0.

Similarly, if i + j ≥ m+ 3, then

σ(si, j )= F1(si, j−1)+ F1(si, j+1)+ F1(si−1, j )+ F1(si+1, j )

= F1(sm− j+2,m−i+1)+F1(sm− j,m−i+1)+F1(sm− j+1,m−i+2)+F1(sm− j+1,m−i )

= (A(2m−i− j+3)/2+ A(i− j+1)/2)+ (A(2m−i− j+1)/2+ A(i− j−1)/2)

+ (A(2m−i− j+3)/2+ A(i− j−1)/2)+ (A(2m−i− j+1)/2+ A(i− j+1)/2)= 0.
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Case 2: j = m+ 1. Then i is even and 2≤ i ≤ m. If 2≤ i ≤ m− 2, then

σ(si,m+1)= F1(si,m)+ F1(si,m+2)+ F1(si−1,m+1)+ F1(si+1,m+1)

= F1(sm,i )+ F1(sm−i+1,1)+ 0+ 0

= F1(sm−i+1,1)+ F1(sm−i+1,1)= 0.

Finally,

σ(sm,m+1)= F1(sm,m)+ F1(sm,m+2)+ F1(sm−1,m+1)

= F1(s1,1)+ F1(s1,1)+ 0= 0.

Therefore, F1 is the even extension of f1 as claimed.
Next we assume that m is odd. If {s1,1, sm,1} ⊆ R, then let f1 : S1→ {0, 1} be

given by

f1(si,1)=

{
a(i+1)/2 if i is odd,
0 if i is even,

for 1 ≤ i ≤ m. For each integer j (1 ≤ j ≤ (m + 1)/2) let A j =
∑ j

i=1 ai , while
A0 = 0. Then define a coin placement F2 : S→ {0, 1} by F2(s)= 0 if s ∈ B and

F2(si, j )=



A(i+ j)/2+ A(i− j)/2 if j ≤ i and i + j ≤ m+ 1,
F2(s(m+1)− j,(m+1)−i ) if j ≤ i and i + j ≥ m+ 3,
F2(s j,i ) if i + 2≤ j ≤ m,
0 if j = m+ 1,
F2(s(m+1)−i, j−(m+1)) if m+ 2≤ j ≤ 2m+ 2,
F2(si, j−(2m+2)) if j ≥ 2m+ 3,

if si, j ∈ R (and so i + j is even), where addition is performed modulo 2 except on
the subscripts. Then it can be verified that F2 = F in a manner similar to that used
to show that F1 = F when m is even.

Similarly, if {s1,1, sm,1} ⊆ B, then let f1 : S1→ {0, 1} be given by

f1(si,1)=

{
ai/2 if i is even,
0 if i is odd,

for 1 ≤ i ≤ m. For each integer j (1 ≤ j ≤ (m − 1)/2) let A j =
∑ j

i=1 ai while
A0 = 0. Then define a coin placement F3 : S→ {0, 1} by F3(s)= 0 if s ∈ B and

F3(si, j )=



A(i+ j−1)/2+ A(i− j−1)/2 if j ≤ i − 1 and i + j ≤ m,
F3(s(m+1)− j,(m+1)−i ) if j ≤ i − 1 and i + j ≥ m+ 2,
F3(s j,i ) if i + 1≤ j ≤ m,
0 if j = m+ 1,
F3(s(m+1)−i, j−(m+1)) if m+ 2≤ j ≤ 2m+ 2,
F3(si, j−(2m+2)) if j ≥ 2m+ 3,
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if si, j ∈ R (and so i + j is odd), where addition is performed modulo 2 except on
the subscripts. Then again it can be verified that F3 = F . �

Properties of odd extensions. Next we present some properties of odd extensions.
Again consider an m × n checkerboard, where n is sufficiently large, and let
g1 : S1 → {0, 1} be an arbitrary coin placement such that g1(s) = 0 for every
s ∈ R∩ S1. Obtain the unique odd extension G of g1. It turns out that the behavior
of odd extensions can be sometimes different from that of even extensions, de-
pending on the size and color configuration of checkerboards. Before continuing
our discussion, we first define a special odd extension.

Definition 2.4. For the trivial coin placement g1 : S1 → {0, 1}, its unique odd
extension is called the trivial odd extension and denoted by G0.

See Figure 5 for examples of the trivial odd extensions. We state the following
observation without a proof.

Observation 2.5. If G0 is the trivial odd extension for an m × n checkerboard,
then G0(s) = 0 for every s ∈ S j , where j ≡ 0 (mod 2m + 2). Furthermore, if
j ≡ m + 1 (mod 2m + 2), then (i) G0(s) = 0 for every s ∈ S j if {s1,1, sm,1} 6⊆ R,
while (ii) G0(s)= 1 for every s ∈ B ∩ S j if {s1,1, sm,1} ⊆ R.

In fact, every odd extension has the property described in Observation 2.5, as
shown in the next result.

Proposition 2.6. For an m× n checkerboard with 2 ≤ m ≤ n, let g1 : S1→ {0, 1}
be an arbitrary coin placement with g1(s)= 0 for every s ∈ R∩ S1. Then for every
j ≡ 0 (mod 2m + 2), the unique odd extension G of g1 assigns 0 to every square
in S j . Furthermore, if j ≡m+1 (mod 2m+2), then (i) G(s)= 0 for every s ∈ S j

if {s1,1, sm,1} 6⊆ R, while (ii) G(s)= 1 for every s ∈ B ∩ S j if {s1,1, sm,1} ⊆ R.

Figure 5. Trivial odd extensions.
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Proof. First suppose that m is even. We may assume that s1,1 ∈ B. Therefore,
si, j ∈ B if and only if i + j is even. Let g1 : S1→ {0, 1} be given by

g1(si,1)=

{
a(i+1)/2 if i is odd,
0 if i is even,

for 1 ≤ i ≤ m. Also, for each integer j (1 ≤ j ≤ m/2) let A j =
∑ j

i=1 ai while
A0 = 0. Then define the coin placement G1 : S→{0, 1} by G1 = F1+G0, where
F1 is the even extension defined in the proof of Proposition 2.3 and G0 is the trivial
odd extension. (See Figure 6 for an example.)

If m is odd and {s1,1, sm,1} ⊆ B, then let g1 : S1→ {0, 1} be given by

g1(si,1)=

{
a(i+1)/2 if i is odd,
0 if i is even,

for 1 ≤ i ≤ m. For each integer j (1 ≤ j ≤ (m + 1)/2) let A j =
∑ j

i=1 ai while
A0 = 0. Then let G2 : S→ {0, 1} be a coin placement such that G2 = F2 + G0,
where F2 is the even extension defined in the proof of Proposition 2.3.

Finally, if m is odd and {s1,1, sm,1} ⊆ R, then let g1 : S1→ {0, 1} be given by

g1(si,1)=

{
ai/2 if i is even,
0 if i is odd,

for 1 ≤ i ≤ m. For each integer j (1 ≤ j ≤ (m − 1)/2) let A j =
∑ j

i=1 ai while
A0 = 0. Then consider the coin placement G3 = F3 +G0, where again F3 is the
even extension defined in the proof of Proposition 2.3.

Observe that G1, G2, and G3 are the odd extensions of g1 depending on the
parity of m and color configuration of the checkerboard. Furthermore, each Gi

(1≤ i ≤ 3) has the desired properties by Proposition 2.3 and Observation 2.5. �

F  =
1

g  =
1

F     G 
1 0
+ = =

G  =0

Figure 6. Illustrating F1, G0, and G1 = F1+G0.
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3. Extensions and reductions of checkerboards

In this section we explore possibilities of obtaining an even (odd) placement for a
checkerboard of a certain size and color configuration from an even (odd) place-
ment for another checkerboard of a different size and color configuration.

For example, a 5× 8 checkerboard with an even placement is shown in Figure
7(a). Extending this coin placement, we are able to obtain an even placement for
a 5× 11 checkerboard as well as an even placement for an 8× 11 checkerboard,
as shown in Figure 7(b). Therefore, the even placement for the 5×8 checkerboard
in Figure 7(a) can be extended to even placements for a 5× 11 checkerboard and
an 8× 11 checkerboard. On the other hand, we may also say that the even place-
ment for the 5× 11 checkerboard shown in Figure 7(b) can be reduced to an even
placement for a 5× 8 checkerboard.

The following observation describes a fact on this process of extending and
reducing even (odd) placements. Recall that if f is an even placement for an m×n
checkerboard, then σ f (s) = 0 for every s ∈ B; while if F is an even extension
for an m × n checkerboard, then σF (s) = 0 for every s ∈ B except possibly for
those in B∩Sn . Similarly, if g is an odd placement for an m×n checkerboard, then
σg(s)=1 for every s ∈ R; while if G is an odd extension for an m×n checkerboard,
then σG(s)= 1 for every s ∈ R except possibly for those in R ∩ Sn .

Observation 3.1. Suppose that `, m, and n are positive integers such that m ≤ n
and `< n. Then there exists an even (odd) placement for an m×` checkerboard in
CR if and only if there exists an even (odd) extension F for an m×n checkerboard
in CR such that F(s) = 0 for every s ∈ S`+1. Similarly, there exists an even (odd)
placement for an m×` checkerboard in CB if and only if there exists an even (odd)
extension F for an m×n checkerboard in CB such that F(s)= 0 for every s ∈ S`+1.

As a consequence of Propositions 2.3 and 2.6 and Observation 3.1, we obtain a
result for m×m checkerboards.

(a)

(b)

(a)

(b)

Figure 7. Examples of extension and reduction of checkerboards.
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Corollary 3.2. For every integer m≥ 2, an m×m checkerboard C has a nontrivial
even placement. Furthermore, C has an odd placement if and only if C ∈ CB .

In the following subsections we discuss in more detail a way to extend or to
reduce a given even (odd) placement for a checkerboard to obtain even (odd)
placements for checkerboards of different sizes and color configurations.

Determining the existence of even placements. By Observation 3.1, we take a
closer look at the even extensions for checkerboards. Recall the construction of
an even extension F ∈ {F1, F2, F3} described in Proposition 2.3. We make the
following observation on F .

Observation 3.3. Let F be an even extension for an m × n checkerboard with
2≤ m ≤ n.

(a) Suppose that F(s) = 0 for every s ∈ Sk for some k. Then F(s) = 0 for every
s ∈ S` whenever ` ≡ ±k (mod m + 1). Also, F(s) = 0 for every s ∈ S`
whenever ` is a multiple of k.

(b) Suppose that F(s) = 1 for some s ∈ Sk for some k. Then F(s) = 1 for some
s ∈ S` whenever ` ≡ ±k (mod m + 1). In particular, if F is nontrivial, then
F(s)= 1 for some s ∈ S` whenever `≡±1 (mod m+ 1).

The following is a consequence of Observations 3.1 and 3.3 and Corollary 3.2.

Corollary 3.4. Let C be an m× n checkerboard with 1≤ m ≤ n and n ≥ 2.

(a) If n ≡ m (mod m+ 1), then C has a nontrivial even placement.

(b) Suppose that ` is a positive integer with `≡ n (mod `+ 1). If there exists an
`×m checkerboard C ′ such that either {C,C ′} ⊆ CR or {C,C ′} ⊆ CB and
there exists a nontrivial even placement for C ′, then there exists a nontrivial
even placement for C.

(c) If n ≡ 0 (mod m + 1) or n ≡ m − 1 (mod m + 1), then C has no nontrivial
even placement.

We are now prepared to present a complete result on even placements.

Theorem 3.5. Let C be an m × n checkerboard with 1 ≤ m ≤ n and n ≥ 2. Then
C has a nontrivial even placement if and only if either (i) m ≡ n ≡ ` (mod `+ 1)
for some integer `≥ 2, or (ii) C ∈ CR −CB .

Proof. We may assume that m ≥ 2 since the result holds for m = 1 by Corollary
1.4. If (i) occurs, then first suppose that C ∈CR and consider an `×` checkerboard
C ′ ∈CR . By Corollary 3.2, there exists a nontrivial even placement for C ′. Then by
Corollary 3.4(a) there exists a nontrivial even placement for an `×m checkerboard
C ′′ ∈ CR , which in turn implies that there exists a nontrivial even placement for C
by Corollary 3.4(b). Observe also that the same argument holds if C ∈ CB . If (ii)
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Figure 8. Two 7× 11 checkerboards.

occurs, then observe that the coin placement f : S→{0, 1} defined by f (si, j )= 1
if and only if both i and j are odd is an even placement for C .

For the converse, assume, to the contrary, that there exists an m×n checkerboard
in CB having a nontrivial even placement with no integer `≥ 2 such that m ≡ n ≡
` (mod ` + 1). In particular, n 6≡ m (mod m + 1). Suppose that C is such a
checkerboard with the smallest number of squares. Since C ∈CB , we may assume
that s1,n ∈ B. Let f be a nontrivial even placement for C . Hence, n 6≡ 0,m − 1
(mod m + 1) by Corollary 3.4(c). This implies that there exists an integer k with
1≤ k≤m−2 such that n≡ k (mod m+1). However then, f restricted to S−S′n−k
induces an even placement for an k ×m checkerboard belonging to CB , which is
impossible since km < mn. �

Figure 8 shows even placements for the two 7× 11 checkerboards. Note that
7 ≡ 11 ≡ 3 (mod 4), so we use an even placement for a 3× 3 checkerboard as a
building block.

Determining the existence of odd placements for checkerboards in CB . We now
show that every checkerboard in CB has an odd placement. We start with:

Proposition 3.6. An m × ` checkerboard in CB , where ` ∈ {1,m,m ± 1}, has an
odd placement.

Proof. Since the result holds for ` ∈ {1,m} by Corollaries 1.4 and 3.2, we first
assume that ` = m − 1. Let C be an m × m checkerboard, where s1,1 ∈ B. If
m is odd, then the trivial odd extension assigns 0 to every s ∈ Sm . If m is even,
then define g1 : S1 → {0, 1} by g1(s) = 0 if and only if s ∈ R ∩ S1 and observe
that the odd extension of g1 assigns 0 to every s ∈ Sm . Therefore, an m× (m− 1)
checkerboard in CB has an odd placement by Observation 3.1. This also implies
that an m× (m+ 1) checkerboard in CB has an odd placement. �

Let us also recall the construction of an odd extension G ∈{G1,G2} for checker-
boards in CB described in Proposition 2.6. We saw that G(s)= 0 for every s ∈ S j

whenever j ≡ 0 (mod m+ 1). This together with Observation 3.1 leads to:

Proposition 3.7. Let `, m, and n be integers with 1 ≤ ` ≤ m + 1 and n ≡ `

(mod m+1). If an m×n checkerboard in CB has an odd placement, then so does
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an m× ` checkerboard in CB . Conversely, if an m× ` checkerboard in CB has an
odd placement, then so does an m× n checkerboard in CB .

Proof. First suppose that g is an odd placement for an m × n checkerboard with
s1,n ∈ B. Then g(s)=0 for every s∈ S j whenever j≡0 (mod m+1) by Proposition
2.6. This implies that g restricted to the set S− S′n−` induces an odd placement for
an m× ` checkerboard in CB .

Conversely, suppose that g is an odd placement for an m×` checkerboard with
s1,` ∈ B. Then extending g to the right, we obtain an odd placement for an m× n
checkerboard C . Furthermore, at least one of s1,n and sm,n belongs to B. Therefore,
C ∈ CB . �

We state the following as a corollary of Propositions 3.6 and 3.7.

Corollary 3.8. Let C be an m × n checkerboard in CB . If n ≡ ` (mod m + 1),
where ` ∈ {1,m,m+ 1}, then C has an odd placement.

We are now prepared to show that every checkerboard in CB has an odd place-
ment. We first introduce the following algorithm that allows us to obtain a sequence
X = 〈`0, `1, . . . , `k〉 of positive integers for each m×n checkerboard (2≤m < n)
in CB , where `0 = n and `1 = m. For a sequence X , we denote the sequence X
followed by ` by 〈X, `〉.

Algorithm 3.9.

Input: Two integers m and n with 2≤ m < n.

Output: A sequence X =〈`0, `1, . . . , `k〉 of positive integers with `0= n and
`1 = m.

Step 1. Let `0← n, `1← m, and X1← 〈`0, `1〉. Let i← 1.
Step 2. Let `i+1 be the integer with 1≤ `i+1 ≤ `i + 1 such that

`i+1 ≡ `i−1 (mod `i + 1).

Step 3. If `i+1 ∈ {1, `i , `i ± 1}, then go to Step 4. Otherwise, let i ← i + 1 and
X i ← 〈X i−1, `i 〉. Return to Step 2.

Step 4. Output X = 〈X i , `i+1〉.

As an example, consider a 12 × 23 checkerboard in C ∈ CB . Then X =
〈23, 12, 10, 1〉. Let C1, C2, and C3 be checkerboards in CB , whose sizes are 1×10,
10 × 12, and 12 × 23, respectively. We saw that C1 has an odd placement by
Corollary 3.8 (or by Corollary 1.4). Then by Proposition 3.7, so does C2, which in
turn implies that so does C3 = C . We illustrate how we obtain an odd placement
for each of C1, C2, and C3 in Figure 9.

We have proved the result for checkerboards having some black corner squares:

Theorem 3.10. Every checkerboard in CB has an odd placement.
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Figure 9. Obtaining odd placements for C1, C2, and C3.

Determining the existence of odd placements for checkerboards in CR − CB .
Finally, we consider those checkerboards in CR − CB , whose corner squares are
all red. Note that if C is an m × n checkerboard in CR −CB , then both m and n
are odd. We have seen in Figure 3 that the 3× 7 checkerboard in CR − CB has
an odd placement while the 3× 3 checkerboard in CR −CB does not. Hence, our
goal here is to characterize the checkerboards in CR−CB for which there are odd
placements.

Recall the construction of the odd extension G3 described in Proposition 2.6.
We saw that

G(s)= 0 for every s ∈ S j whenever j ≡ 0 (mod 2m+ 2). (1)

As a consequence of (1) with Observation 3.1, we state the following. Note also
that the result holds for m = 1 by Corollary 1.4.

Corollary 3.11. An m× (2m+1) checkerboard in CR−CB has an odd placement
for every m ≥ 1.

Here is another useful fact.

Proposition 3.12. Let ` and m be odd integers with m ≥ 3 and 1 ≤ ` ≤ 2m − 1.
Then an m × ` checkerboard in CR −CB has an odd placement if and only if an
m× (2m− `) checkerboard in CR −CB has an odd placement.
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Proof. Let C be an m×` checkerboard in CR−CB and let g be an odd placement
for C . Let G be the odd extension of g for an m × (2m + 3) checkerboard in
CR −CB and observe that {s1,`+2, sm,`+2, s1,2m+1, sm,2m+1} ⊆ R. By Proposition
2.6 and Observation 3.1, G(s)= 0 for every s ∈ S`+1∪ S2m+2. This implies that G
restricted to the set S′2m+1− S′`+1 induces an odd placement for an m × (2m − `)
checkerboard in CR −CB . The converse can be verified in the same manner. �

The following is another consequence of (1) and Observation 3.1, stated without
a proof since it will be almost identical to that of Proposition 3.7.

Proposition 3.13. Let `, m, and n be odd integers with 1 ≤ ` ≤ 2m+ 1 and n ≡ `
(mod 2m + 2). Then an m× n checkerboard in CR −CB has an odd placement if
and only if an `×m checkerboard in CR −CB has an odd placement.

By Proposition 3.13 with Corollaries 3.2 and 3.11, we have the following. Note
again that the result holds for m = 1 as well.

Corollary 3.14. Let C be an m× n checkerboard in CR −CB .

(a) If n ≡ 2m+ 1 (mod 2m+ 2), then C has an odd placement.

(b) If n ≡ m (mod 2m+ 2), then C does not have an odd placement.

We now present an algorithm that finds a sequence Y of positive integers for
each m× n checkerboard C in CR −CB , where m and n are positive odd integers
with m ≤ n. We then use Y to determine whether or not C has an odd placement.

Algorithm 3.15.

Input: Two odd integers m and n with 1≤ m ≤ n and n ≥ 3.

Output: A sequence Y = 〈`0, `1, . . . , `k〉 of positive integers with `0= n and
`1 = m.

Step 1. Let `0← n, `1← m, and Y1 = 〈`0, `1〉. Let i← 1.
Step 2. Let `′i+1 be the odd integer with 1≤ `′i+1 ≤ 2`i +1 such that `′i+1 ≡ `i−1

(mod 2`i + 2).
Step 3. If `′i+1 ∈ {`i , 2`i+1}, then let `i+1= `

′

i+1 and go to Step 4. Otherwise, let
`i+1 be the odd integer with 1≤ `i+1 ≤ `i−2 such that either `i+1≡ `

′

i+1
(mod 2`i ) or `i+1≡−`

′

i+1 (mod 2`i ). Let i← i+1 and Yi←〈Yi−1, `i 〉.
Return to Step 2.

Step 4. Output Y = 〈Yi , `i+1〉.

We present the result on odd placements for checkerboards in CR − CB as a
consequence of Propositions 3.12 and 3.13 and Corollary 3.14.

Theorem 3.16. Let C ∈CR−CB and obtain the sequence Y = 〈`0, `1, . . . , `k〉 for
C. Then C has an odd placement if and only if `k−1 6= `k .
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Figure 10. An odd placement for the 7× 17 checkerboard in CR −CB .

For example, the 1 × 9 checkerboard in CR − CB has no odd placement, as
verified in Corollary 1.4, since Y = 〈9, 1, 1〉. Also, the 5× 29 checkerboard in
CR −CB has no odd placement since Y = 〈29, 5, 5〉.

On the other hand, the 7 × 17 checkerboard in CR − CB , whose associated
sequence is Y = 〈17, 7, 1, 3〉, has an odd placement. To actually build an odd
placement using Y , we start with the 1× 3 checkerboard C1 in CR −CB with an
odd placement g1. (Note also that this is the unique odd placement for C1.) Since
7 ≡ 3 (mod (2 · 1+ 2)), obtain an odd placement g2 for the 1× 7 checkerboard
in CR −CB by extending g1. Since 17 ≡ 1 (mod (2 · 7+ 2)), we can extend g2

to obtain an odd placement for the 7× 17 checkerboard in CR −CB , as shown in
Figure 10.

As another example, let us consider the 7×21 checkerboard in CR−CB . Then
Y = 〈21, 7, 5, 3, 1, 3〉. We again start with the 1× 3 checkerboard C1 in CR −CB

with the unique odd placement g1 for C1. Since 5 ≡ −1 (mod (2 · 3)), we can
obtain an odd placement g2 for the 3× 5 checkerboard in CR −CB from the odd
placement for the 3×(2 ·3+1) checkerboard in CR−CB obtained by extending g1

(see Figure 11 on the next page). Similarly, since 7≡−3 (mod (2 · 5)), obtain an
odd placement g3 for the 5× 7 checkerboard in CR −CB from the odd placement
for the 5×(2 ·5+1) checkerboard in CR−CB obtained by extending g2 (again see
Figure 11). Finally, since 21 ≡ 5 (mod (2 · 7+ 2)), we obtain an odd placement
for the 7× 21 checkerboard in CR −CB by simply extending g3.

4. Conclusion

The following two theorems summarize the results obtained in the previous sec-
tions.

Theorem 4.1. Every checkerboard in C has a nontrivial solution to at least one of
Problems 1.1 and 1.2.
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Figure 11. An odd placement for the 7× 21 checkerboard in CR −CB .

Proof. If C ∈ CR −CB , then C has a nontrivial even placement. If C ∈ CB , then
C has an odd placement. �

Theorem 4.2. Let C be an m × n checkerboard, where 1 ≤ m ≤ n and n ≥ 2. If
C ∈ CR −CB , then let Y be the associated sequence obtained by Algorithm 3.15.

(A) C has a nontrivial solution to each of Problems 1.1 and 1.2 if and only if either
(i) C ∈ CR −CB and the last two terms in Y are not equal or (ii) C ∈ CB and
m ≡ n ≡ ` (mod `+ 1) for some integer `≥ 2.

(B) C has a nontrivial solution to Problem 1.1 but not to Problem 1.2 if and only
if C ∈ CR −CB and the last two terms in Y are equal.

(C) C has a nontrivial solution to Problem 1.2 but not to Problem 1.1 if and only
if C ∈ CB and there is no integer `≥ 2 such that m ≡ n ≡ ` (mod `+ 1).

We conclude this paper with related open questions.

Problem 4.3. If a checkerboard has a nontrivial solution to Problem 1.1 (or 1.2),
how many solutions (up to symmetry) are there? Which checkerboards have unique
nontrivial solutions?

Problem 4.4. If a checkerboard has a nontrivial solution to Problem 1.1 (or 1.2),
what is the minimum number of coins necessary to construct such a solution? Also,
what is the maximum number of coins that can be used in a solution?
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