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We determine rank numbers for the prism graph P2×Cn (P2 being the connected
two-node graph and Cn a cycle of length n) and for the square of an even cycle.

1. Introduction

A k-ranking of a graph is a vertex labeling using integers between 1 and k inclusive
such that any path between two vertices of the same rank contains a vertex of
strictly larger rank. When the value of k is unimportant, we will refer to a k-ranking
simply as a ranking. A ranking f is minimal if the reduction of any label violates
the ranking property [Ghoshal et al. 1996]. Another definition of a minimal ranking
is obtained by replacing the reduction of a label by the reduction of labels for any
nonempty set of vertices. It was shown in [Jamison 2003] and [Isaak et al. 2009]
that these two definitions of minimal rankings are equivalent. The rank number of
a graph G, denoted χr (G) is the smallest k such that G has a minimal k-ranking.

Recall that a vertex coloring of a graph is a vertex labeling in which no two
adjacent vertices have the same label. Hence a k-ranking is a restricted vertex
coloring. Then the rank number is similar to the chromatic number. The arank
number of a graph G, denoted ψr (G), is the largest k such that G has a minimal
k-ranking.

The study of the rank number was motivated by applications including the design
of very large scale integration (VLSI) layout and Cholesky factorizations associ-
ated with parallel processing [de la Torre et al. 1992; Ghoshal et al. 1996; 1999;
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Leiserson 1980; Laskar and Pillone 2001; 2000; Sen et al. 1992]. Numerous related
papers have since followed [Bodlaender et al. 1998; Hsieh 2002; Jamison 2003;
Dereniowski 2006; 2004; Dereniowski and Nadolski 2006; Kostyuk and Narayan
≥ 2010; Kostyuk et al. 2006; Isaak et al. 2009; Novotny et al. 2009a]. Ghoshal,
Laskar, and Pillone were the first to investigate minimal k-rankings [Ghoshal et al.
1999; 1996; Laskar and Pillone 2001; 2000]. The determination of the rank number
and the arank number was shown to be NP-complete [Laskar and Pillone 2000].
The rank number was explored in [Bodlaender et al. 1998] where the authors
showed that χr (Pn) = blog2 nc + 1. Rank numbers are known for a few other
graph families such as cycles, wheels, complete bipartite graphs, and split graphs
[Ghoshal et al. 1996; Dereniowski 2004]. The rank number for ladder graphs
P2× Pn and the square of a path P2

n were determined in [Novotny et al. 2009b].
Throughout the paper Pn will denote the path on n vertices. We use G × H

to denote the Cartesian product of G and H . The k-th power of a path, Pk
n , has

vertices v1, v2, . . . , vn and edges (vi , v j ) for all i , j satisfying |i − j | ≤ k. The
k-th power of a cycle, Ck

n , is defined similarly.
In this paper we determine rank numbers for the prism graph P2 ×Cn and the

square of an even cycle.
We begin by restating two elementary results from [Ghoshal et al. 1996].

Lemma 1. In any minimal ranking of a connected graph G the highest label must
be unique.

Proof. Suppose there exist two vertices u and v that both have the highest label k.
Then any path between u and v will not contain a vertex with a higher label. This
is a contradiction. �

The following lemma gives a monotonicity result involving the rank number.

Lemma 2. Let H be a subgraph of a graph G. Then χr (H)≤ χr (G).

Proof. The proof is straightforward. Suppose χr (H) > χr (G). Then we could
relabel the vertices of H using the corresponding labels used in the ranking of G.
This produces a ranking with fewer labels, and hence a contradiction. �

1.1. The ladder graph Ln. We next describe a family of graphs built using the
Cartesian product.

Definition 3. The Cartesian product of G and H written G×H is the graph with
vertex set V (G)×V (H) specified by putting {u, v} adjacent to (u′, v′) if and only
if u = u′ and (v, v′) ∈ E(H) or v = v′ and (u, u′) ∈ E(G).

An example is the ladder graph Ln = P2× Pn , shown in Figure 1.
In this paper we investigate the family of prism graphs P2 ×Cn . We will start

with a ladder P2 × Pn with n even, and insert either a P2 × P1 or P2 × P2 and
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· · ·

Figure 1. The ladder graph Ln = P2× Pn .

“wrap” the ends to form a prism graph P2 × Cn+1 or P2 × Cn+2. In order for
this construction to work, it is essential that in the labeling of the vertices labeled
1 of the ladder satisfies an “alternating 1’s property”: for each vertex v, either v
is labeled 1 or all of its neighbors are labeled 1 (Figure 2). That is, the vertices
labeled 1 form a particular dominating set of the graph. It was shown in [Novotny
et al. 2009b] that in a minimal ranking of a ladder the 1’s can be made to alternate.

2 1 5 1 3 1

1 3 1 4 1 2

Figure 2. A graph with the alternating 1s property.

We can insert in P2×Pn either a 1-bridge (Figure 3, left) or a 2-bridge (Figure 3,
right). In general, the bridges will contain the labels k and k+1 where k−1 is the
rank of the original ladder. Our example shows the extension where k = 6.

In each case we insert four edges to connect the bridge to each end of the ladder.
When n is even the wrapping of the ladder Ln creates a prism graph where the 1’s
alternate. When n is odd the 1’s alternate except in one place where there are two
vertices labeled 1 that are distance 3 apart (Figure 4).

Novotny et al. [2009b] determined the rank number of a ladder graph. This
result is stated in our next lemma.

Lemma 4. χr (Ln)= blog2(n+ 1)c+
⌊

log2(n+ 1− 2blog2 nc−1)
⌋
+ 1 for n ≥ 1.

Applying our construction immediately gives an upper bound for the rank num-
ber of the prism graph P2×Cn , as stated in our next theorem.

Theorem 5. For k ≥ 2, both χr (P2×C2k−1) and χr (P2×C2k) are bounded from
above by r(2k−2)+ 2.

We will show later that this bound is tight.

k + 1

k

k + 1 1

1 k

Figure 3. A 1-bridge (left) and 2-bridge (right).
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Figure 4. Prism graphs for n even (left) and n odd (even).

2. Main results

Theorem 6. Let l = χr (P2 × Cn) where n ≥ 3. If f is a minimal l-ranking of
P2×Cn , then l ≥ 5 and the largest four labels of f appear exactly once.

Proof. In the minimal ranking f : V (P2×Cn)→{1, 2, . . . , l} every label appears
at least once. Since G = P2×Cn is (vertex) 3-connected, any two distinct vertices
of G are joined by three internally vertex disjoint paths. Hence each of the largest
three labels appears exactly once in f .

Assume that l − 3 appears at least twice with f (x) = f (y) = l − 3, where
x 6= y. We have l ≥ 5 because the independence number of G is 2bn/2c and
2bn/2c+ 3< 2n = |V (G)|.

Let S be a minimum-sized x, y vertex separating set. It is clear that |V (S)| = 3.
It is well known that every 3-element separating set S̃ is a prism graph P is a
neighborhood of a single vertex z̃ ∈ V (P) and the nontrivial component of P − S̃
is induced by V (P)− (S̃ ∪ {z̃}). Thus, there exists z ∈ {x, y} such that S is the
neighborhood of z. However if z has its neighbors labeled l − 2, l − 1, and l, then
f (x) can be reduced to 1, contradicting the minimality of f . �

For a positive integer n let

r(n)= blog2(n+ 1)c+ blog2(n+ 1− (2blog2 nc−1))c+ 1. (1)

Then Lemma 4 states that χr (Ln)= χr (P2× Pn)= r(n) for n ≥ 1.

Theorem 7. For k ≥ 2, we have

χr (P2×C2k−1)= χr (P2×C2k)= χr (P2× P2k−2)+ 2= r(2k− 2)+ 2.

Proof. By Theorem 5, both χr (P2 ×C2k−1) and χr (P2 ×C2k) are bounded from
above by r(2k− 2)+ 2. In other words, if m = 2k− 1 or 2k, then

χr (P2×Cm)≤ χr (P2× P2dm/2e−2)+ 2= r(2dm/2e− 2)+ 2.
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To prove the theorem we will show that this last inequality is in fact equality.
If k = 2 and m = 2k − 1 or 2k, then r(2dm/2e − 2)+ 2 = 5. So by Theorem 6,
χr (P2×Cm)= 5.

Now assume that m = 2k− 1 or 2k, k ≥ 3, and

χr (P2×Cm)= l ≤ r
(

2
⌈m

2

⌉
− 2

)
+ 1. (2)

Let f be an l-minimal ranking of G= P2×Cm . If k=3, then 5≤ l=r(4)+1≤5,
l = 5, and by Theorem 6, the label 1 appears 2m − 4 times in f . However the
independence number of G equals 2bm/2c≤m< 2m−4, which is a contradiction.

Let k ≥ 4. This implies m ≥ 7. Let i be the maximum label used at least twice.
Since r(2dm/2e−2)+1≤ r(m−1)+1<2m=|V (G)|, such a label does exist, and
i ≤ l−4 by Theorem 6. Consider vertices x1, x2 ∈ V (G) with f (x1)= i = f (x2),
and let y j be the neighbor of x j that is not on the “ring” containing x j . We will
refer to this vertex as the special neighbor of x j for j = 1, 2. There are two
distinct subgraphs G1,G2 of G that are ladders with corners x1, x2, y1, y2. The
restriction f |V (G j ) is a ranking of G j ; hence there is a minimal separating set
S j ⊆ V (G j ) such that min f (S j ) > i and x1, x2 are in distinct components of
G j − S j , j = 1, 2. It is easy to see that any minimal separating set that separates
two “distant” corners of a ladder on at least six vertices has two vertices and is of
one of the two types shown in Figure 3 (consisting of the vertices labeled k and
k+ 1). As all labels in {i + 1, . . . , l} are used by f exactly once, any permutation
of those labels yields a ranking of G. Therefore, we may suppose without loss of
generality that f (S1) ∪ f (S2) = {l − 3, l − 2, l − 1, l}. Further, let S̄ j be the set
consisting of the vertices of S j together with their special neighbors (so that |S̄ j |

is 2 or 4). The graph G−(S̄1∪ S̄2) is a union of two vertex disjoint ladders H1 and
H2. Clearly if |V (H1)| ≥ |V (H2)|, then H1 = P2 × Pq , where q ≥ d(m − 4)/2e.
Now f |V (H1) uses only labels from the set {1, . . . , l − 4}; hence, by (2),

χr (H1)≤ l − 4≤ r
(

2
⌈m

2

⌉
− 2

)
− 3. (3)

On the other hand if s, t are positive integers with s≤ t , then P2×Ps is a subgraph
of P2× Pt . Then by Lemma 2 we have r(s)= χr (P2× Ps)≤ χr (P2× Pt)= r(t).
Consequently,

χr (H1)= χr (P2× Pq)= r(q)≥ r
(⌈m−4

2

⌉)
. (4)

If m is even, then it follows from Equations (3) and (4) that

r(m− 2)= r
(

2 · m−4
2
+ 2

)
≥ r

(m−4
2

)
+ 3.
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If m is odd we have

r(m− 1)= r
(

2 · m−3
2
+ 2

)
≥ r

(m−3
2

)
+ 3.

However both cases lead to a contradiction. From (1) it is easy to see that

r(2n+ 2)− r(n)= 2

for any positive integer n. �

Since r(2k− 3)= r(2k− 2) for n ≥ 3, we obtain from Theorem 7:

Theorem 8. χr (P2×Cn)= χr (Ln−2)+ 2 for n ≥ 4.

3. Rankings for other classes of graphs

We now show that the rank number of a prism graph can be used to give the rank
number of the square of an even cycle. We recall some earlier facts:

Definition 9 [Ghoshal et al. 1996]. For a graph G and a set S⊆V (G) the reduction
of G, denoted by G[

S , is a subgraph of G induced by V − S with an edge uv
in E(G[

S) if and only if there exists a u − v path in G with all internal vertices
belonging to S.

Lemma 10 [Ghoshal et al. 1996]. Let G be a graph and let f be a minimal k-
ranking of G. If

S1 = {x ∈ V (G) : f (x)= 1} and f [ : V (G[
S1
)→ {1, . . . , k− 1}

is defined by f [(x)= f (x)− 1, then f [ is a minimal (k− 1)-ranking of G[
S1

.

3.1. The square of a cycle. Next we reduce even prism graphs to squares of cycles.

Theorem 11. χr (C2
n)= χr (P2×Cn) for even n ≥ 4.

Proof. (Illustrated in Figure 5.) If n = 2, the result follows from Theorem 7 which
states that χr (P2×C4)= 5 and from the fact that χr (C2

4)= χr (K4)= 4.
Henceforth suppose that n≥ 3. Let k=χr (P2×C2n) and let l =χr (C2

2n). Let f
be a k-ranking of P2×C2n in which the 1’s alternate. It is straightforward to see that
then (P2×C2n)

[
S1

is isomorphic to C2
2n . Therefore, by Lemma 10 χr (C2

2n)≤ k−1.
Now let g be an l-ranking of C2

2n . One can easily see that C2
2n is isomorphic

to an n-sided antiprism An . Pick a new vertex inside each of the 2n triangles
of An , join it to all three vertices of “its” triangle and delete all edges of An .
The result is a graph Gn that is isomorphic to P2 × C2n . Consider the mapping
g̃ : V (Gn)→{1, . . . , l+1} defined as follows: g̃(x)= g(x)+1 if x ∈ V (C2

2n) and
g̃(x) = 1 if x ∈ V (Gn)− V (C2

2n). Since g̃ is a ranking of Gn (a simple exercise
left to the reader), we have χr (P2×C2n)≤ l + 1.



MINIMAL k-RANKINGS FOR PRISM GRAPHS 189

2
17

1

3
1 4

1

1

61

2

1

5 1

3

1

5

6
1

2

4

3
2

Figure 5. A minimal 7-ranking of P2 × C8 (left) and a minimal
6-ranking of A4 (right).

Thus l = χr (C2
2n)≤ k− 1= χr (P2×C2n)− 1≤ (l+ 1)− 1= l, and since both

inequalities turn into equalities, we are done. �

Combining Theorems 8 and 11 gives:

Corollary 12. Let n ≥ 4 be even. Then

χr (C2
n)= χr (P2×Cn)−1= blog2(n−1)c+

⌊
log2

(
n−1− (2blog2(n−2)c−1)

)⌋
+2.

4. Conclusion

We conclude by posing some problems for future research. In this paper we de-
termined the rank number of P2×Cn using known results for the rank number of
P2 × Pn . It would be interesting to determine the rank numbers for grid graphs
Pm× Pn and cylinders Pm×Cn . We found out recently that [Alpert ≥ 2010] gives
rank numbers for P3× Pn , among other results including an alternate proof of our
Theorem 7.
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