0
 involvea journal of mathematics

Minimal k-rankings for prism graphs
Juan Ortiz, Andrew Zemke, Hala King, Darren Narayan and Mirko Horňák

Minimal k-rankings for prism graphs

Juan Ortiz, Andrew Zemke, Hala King, Darren Narayan and Mirko Horňák
(Communicated by Vadim Ponomarenko)

We determine rank numbers for the prism graph $P_{2} \times C_{n}$ (P_{2} being the connected two-node graph and C_{n} a cycle of length n) and for the square of an even cycle.

1. Introduction

A k-ranking of a graph is a vertex labeling using integers between 1 and k inclusive such that any path between two vertices of the same rank contains a vertex of strictly larger rank. When the value of k is unimportant, we will refer to a k-ranking simply as a ranking. A ranking f is minimal if the reduction of any label violates the ranking property [Ghoshal et al. 1996]. Another definition of a minimal ranking is obtained by replacing the reduction of a label by the reduction of labels for any nonempty set of vertices. It was shown in [Jamison 2003] and [Isaak et al. 2009] that these two definitions of minimal rankings are equivalent. The rank number of a graph G, denoted $\chi_{r}(G)$ is the smallest k such that G has a minimal k-ranking.

Recall that a vertex coloring of a graph is a vertex labeling in which no two adjacent vertices have the same label. Hence a k-ranking is a restricted vertex coloring. Then the rank number is similar to the chromatic number. The arank number of a graph G, denoted $\psi_{r}(G)$, is the largest k such that G has a minimal k-ranking.

The study of the rank number was motivated by applications including the design of very large scale integration (VLSI) layout and Cholesky factorizations associated with parallel processing [de la Torre et al. 1992; Ghoshal et al. 1996; 1999;

[^0]Leiserson 1980; Laskar and Pillone 2001; 2000; Sen et al. 1992]. Numerous related papers have since followed [Bodlaender et al. 1998; Hsieh 2002; Jamison 2003; Dereniowski 2006; 2004; Dereniowski and Nadolski 2006; Kostyuk and Narayan ≥ 2010; Kostyuk et al. 2006; Isaak et al. 2009; Novotny et al. 2009a]. Ghoshal, Laskar, and Pillone were the first to investigate minimal k-rankings [Ghoshal et al. 1999; 1996; Laskar and Pillone 2001; 2000]. The determination of the rank number and the arank number was shown to be NP-complete [Laskar and Pillone 2000]. The rank number was explored in [Bodlaender et al. 1998] where the authors showed that $\chi_{r}\left(P_{n}\right)=\left\lfloor\log _{2} n\right\rfloor+1$. Rank numbers are known for a few other graph families such as cycles, wheels, complete bipartite graphs, and split graphs [Ghoshal et al. 1996; Dereniowski 2004]. The rank number for ladder graphs $P_{2} \times P_{n}$ and the square of a path P_{n}^{2} were determined in [Novotny et al. 2009b].

Throughout the paper P_{n} will denote the path on n vertices. We use $G \times H$ to denote the Cartesian product of G and H. The k-th power of a path, P_{n}^{k}, has vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges (v_{i}, v_{j}) for all i, j satisfying $|i-j| \leq k$. The k-th power of a cycle, C_{n}^{k}, is defined similarly.

In this paper we determine rank numbers for the prism graph $P_{2} \times C_{n}$ and the square of an even cycle.

We begin by restating two elementary results from [Ghoshal et al. 1996].
Lemma 1. In any minimal ranking of a connected graph G the highest label must be unique.
Proof. Suppose there exist two vertices u and v that both have the highest label k. Then any path between u and v will not contain a vertex with a higher label. This is a contradiction.

The following lemma gives a monotonicity result involving the rank number.
Lemma 2. Let H be a subgraph of a graph G. Then $\chi_{r}(H) \leq \chi_{r}(G)$.
Proof. The proof is straightforward. Suppose $\chi_{r}(H)>\chi_{r}(G)$. Then we could relabel the vertices of H using the corresponding labels used in the ranking of G. This produces a ranking with fewer labels, and hence a contradiction.
1.1. The ladder graph $\boldsymbol{L}_{\boldsymbol{n}}$. We next describe a family of graphs built using the Cartesian product.

Definition 3. The Cartesian product of G and H written $G \times H$ is the graph with vertex set $V(G) \times V(H)$ specified by putting $\{u, v\}$ adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if $u=u^{\prime}$ and $\left(v, v^{\prime}\right) \in E(H)$ or $v=v^{\prime}$ and $\left(u, u^{\prime}\right) \in E(G)$.

An example is the ladder graph $L_{n}=P_{2} \times P_{n}$, shown in Figure 1.
In this paper we investigate the family of prism graphs $P_{2} \times C_{n}$. We will start with a ladder $P_{2} \times P_{n}$ with n even, and insert either a $P_{2} \times P_{1}$ or $P_{2} \times P_{2}$ and

Figure 1. The ladder graph $L_{n}=P_{2} \times P_{n}$.
"wrap" the ends to form a prism graph $P_{2} \times C_{n+1}$ or $P_{2} \times C_{n+2}$. In order for this construction to work, it is essential that in the labeling of the vertices labeled 1 of the ladder satisfies an "alternating 1 's property": for each vertex v, either v is labeled 1 or all of its neighbors are labeled 1 (Figure 2). That is, the vertices labeled 1 form a particular dominating set of the graph. It was shown in [Novotny et al. 2009b] that in a minimal ranking of a ladder the 1 's can be made to alternate.

Figure 2. A graph with the alternating 1s property.
We can insert in $P_{2} \times P_{n}$ either a 1-bridge (Figure 3, left) or a 2-bridge (Figure 3, right). In general, the bridges will contain the labels k and $k+1$ where $k-1$ is the rank of the original ladder. Our example shows the extension where $k=6$.

In each case we insert four edges to connect the bridge to each end of the ladder. When n is even the wrapping of the ladder L_{n} creates a prism graph where the 1 's alternate. When n is odd the 1 's alternate except in one place where there are two vertices labeled 1 that are distance 3 apart (Figure 4).

Novotny et al. [2009b] determined the rank number of a ladder graph. This result is stated in our next lemma.
Lemma 4. $\chi_{r}\left(L_{n}\right)=\left\lfloor\log _{2}(n+1)\right\rfloor+\left\lfloor\log _{2}\left(n+1-2^{\left\lfloor\log _{2} n\right\rfloor-1}\right)\right\rfloor+1$ for $n \geq 1$.
Applying our construction immediately gives an upper bound for the rank number of the prism graph $P_{2} \times C_{n}$, as stated in our next theorem.
Theorem 5. For $k \geq 2$, both $\chi_{r}\left(P_{2} \times C_{2 k-1}\right)$ and $\chi_{r}\left(P_{2} \times C_{2 k}\right)$ are bounded from above by $r(2 k-2)+2$.

We will show later that this bound is tight.

Figure 3. A 1-bridge (left) and 2-bridge (right).

Figure 4. Prism graphs for n even (left) and n odd (even).

2. Main results

Theorem 6. Let $l=\chi_{r}\left(P_{2} \times C_{n}\right)$ where $n \geq 3$. If f is a minimal l-ranking of $P_{2} \times C_{n}$, then $l \geq 5$ and the largest four labels of f appear exactly once.

Proof. In the minimal ranking $f: V\left(P_{2} \times C_{n}\right) \rightarrow\{1,2, \ldots, l\}$ every label appears at least once. Since $G=P_{2} \times C_{n}$ is (vertex) 3-connected, any two distinct vertices of G are joined by three internally vertex disjoint paths. Hence each of the largest three labels appears exactly once in f.

Assume that $l-3$ appears at least twice with $f(x)=f(y)=l-3$, where $x \neq y$. We have $l \geq 5$ because the independence number of G is $2\lfloor n / 2\rfloor$ and $2\lfloor n / 2\rfloor+3<2 n=|V(G)|$.

Let S be a minimum-sized x, y vertex separating set. It is clear that $|V(S)|=3$. It is well known that every 3-element separating set \tilde{S} is a prism graph P is a neighborhood of a single vertex $\tilde{z} \in V(P)$ and the nontrivial component of $P-\tilde{S}$ is induced by $V(P)-(\tilde{S} \cup\{\tilde{z}\})$. Thus, there exists $z \in\{x, y\}$ such that S is the neighborhood of z. However if z has its neighbors labeled $l-2, l-1$, and l, then $f(x)$ can be reduced to 1 , contradicting the minimality of f.

For a positive integer n let

$$
\begin{equation*}
r(n)=\left\lfloor\log _{2}(n+1)\right\rfloor+\left\lfloor\log _{2}\left(n+1-\left(2^{\left\lfloor\log _{2} n\right\rfloor-1}\right)\right)\right\rfloor+1 \tag{1}
\end{equation*}
$$

Then Lemma 4 states that $\chi_{r}\left(L_{n}\right)=\chi_{r}\left(P_{2} \times P_{n}\right)=r(n)$ for $n \geq 1$.
Theorem 7. For $k \geq 2$, we have

$$
\chi_{r}\left(P_{2} \times C_{2 k-1}\right)=\chi_{r}\left(P_{2} \times C_{2 k}\right)=\chi_{r}\left(P_{2} \times P_{2 k-2}\right)+2=r(2 k-2)+2
$$

Proof. By Theorem 5, both $\chi_{r}\left(P_{2} \times C_{2 k-1}\right)$ and $\chi_{r}\left(P_{2} \times C_{2 k}\right)$ are bounded from above by $r(2 k-2)+2$. In other words, if $m=2 k-1$ or $2 k$, then

$$
\chi_{r}\left(P_{2} \times C_{m}\right) \leq \chi_{r}\left(P_{2} \times P_{2\lceil m / 2\rceil-2}\right)+2=r(2\lceil m / 2\rceil-2)+2
$$

To prove the theorem we will show that this last inequality is in fact equality. If $k=2$ and $m=2 k-1$ or $2 k$, then $r(2\lceil m / 2\rceil-2)+2=5$. So by Theorem 6 , $\chi_{r}\left(P_{2} \times C_{m}\right)=5$.

Now assume that $m=2 k-1$ or $2 k, k \geq 3$, and

$$
\begin{equation*}
\chi_{r}\left(P_{2} \times C_{m}\right)=l \leq r\left(2\left\lceil\frac{m}{2}\right\rceil-2\right)+1 . \tag{2}
\end{equation*}
$$

Let f be an l-minimal ranking of $G=P_{2} \times C_{m}$. If $k=3$, then $5 \leq l=r(4)+1 \leq 5$, $l=5$, and by Theorem 6, the label 1 appears $2 m-4$ times in f. However the independence number of G equals $2\lfloor m / 2\rfloor \leq m<2 m-4$, which is a contradiction.

Let $k \geq 4$. This implies $m \geq 7$. Let i be the maximum label used at least twice. Since $r(2\lceil m / 2\rceil-2)+1 \leq r(m-1)+1<2 m=|V(G)|$, such a label does exist, and $i \leq l-4$ by Theorem 6. Consider vertices $x_{1}, x_{2} \in V(G)$ with $f\left(x_{1}\right)=i=f\left(x_{2}\right)$, and let y_{j} be the neighbor of x_{j} that is not on the "ring" containing x_{j}. We will refer to this vertex as the special neighbor of x_{j} for $j=1,2$. There are two distinct subgraphs G_{1}, G_{2} of G that are ladders with corners $x_{1}, x_{2}, y_{1}, y_{2}$. The restriction $\left.f\right|_{V\left(G_{j}\right)}$ is a ranking of G_{j}; hence there is a minimal separating set $S_{j} \subseteq V\left(G_{j}\right)$ such that $\min f\left(S_{j}\right)>i$ and x_{1}, x_{2} are in distinct components of $G_{j}-S_{j}, j=1,2$. It is easy to see that any minimal separating set that separates two "distant" corners of a ladder on at least six vertices has two vertices and is of one of the two types shown in Figure 3 (consisting of the vertices labeled k and $k+1)$. As all labels in $\{i+1, \ldots, l\}$ are used by f exactly once, any permutation of those labels yields a ranking of G. Therefore, we may suppose without loss of generality that $f\left(S_{1}\right) \cup f\left(S_{2}\right)=\{l-3, l-2, l-1, l\}$. Further, let \bar{S}_{j} be the set consisting of the vertices of S_{j} together with their special neighbors (so that $\left|\bar{S}_{j}\right|$ is 2 or 4). The graph $G-\left(\bar{S}_{1} \cup \bar{S}_{2}\right)$ is a union of two vertex disjoint ladders H_{1} and H_{2}. Clearly if $\left|V\left(H_{1}\right)\right| \geq\left|V\left(H_{2}\right)\right|$, then $H_{1}=P_{2} \times P_{q}$, where $q \geq\lceil(m-4) / 2\rceil$. Now $\left.f\right|_{V\left(H_{1}\right)}$ uses only labels from the set $\{1, \ldots, l-4\}$; hence, by (2),

$$
\begin{equation*}
\chi_{r}\left(H_{1}\right) \leq l-4 \leq r\left(2\left\lceil\frac{m}{2}\right\rceil-2\right)-3 . \tag{3}
\end{equation*}
$$

On the other hand if s, t are positive integers with $s \leq t$, then $P_{2} \times P_{s}$ is a subgraph of $P_{2} \times P_{t}$. Then by Lemma 2 we have $r(s)=\chi_{r}\left(P_{2} \times P_{s}\right) \leq \chi_{r}\left(P_{2} \times P_{t}\right)=r(t)$. Consequently,

$$
\begin{equation*}
\chi_{r}\left(H_{1}\right)=\chi_{r}\left(P_{2} \times P_{q}\right)=r(q) \geq r\left(\left\lceil\frac{m-4}{2}\right\rceil\right) . \tag{4}
\end{equation*}
$$

If m is even, then it follows from Equations (3) and (4) that

$$
r(m-2)=r\left(2 \cdot \frac{m-4}{2}+2\right) \geq r\left(\frac{m-4}{2}\right)+3 .
$$

If m is odd we have

$$
r(m-1)=r\left(2 \cdot \frac{m-3}{2}+2\right) \geq r\left(\frac{m-3}{2}\right)+3 .
$$

However both cases lead to a contradiction. From (1) it is easy to see that

$$
r(2 n+2)-r(n)=2
$$

for any positive integer n.
Since $r(2 k-3)=r(2 k-2)$ for $n \geq 3$, we obtain from Theorem 7:
Theorem 8. $\chi_{r}\left(P_{2} \times C_{n}\right)=\chi_{r}\left(L_{n-2}\right)+2$ for $n \geq 4$.

3. Rankings for other classes of graphs

We now show that the rank number of a prism graph can be used to give the rank number of the square of an even cycle. We recall some earlier facts:
Definition 9 [Ghoshal et al. 1996]. For a graph G and a set $S \subseteq V(G)$ the reduction of G, denoted by G_{S}^{b}, is a subgraph of G induced by $V-S$ with an edge $u v$ in $E\left(G_{S}^{b}\right)$ if and only if there exists a $u-v$ path in G with all internal vertices belonging to S.
Lemma 10 [Ghoshal et al. 1996]. Let G be a graph and let f be a minimal k ranking of G. If

$$
S_{1}=\{x \in V(G): f(x)=1\} \quad \text { and } \quad f^{b}: V\left(G_{S_{1}}^{b}\right) \rightarrow\{1, \ldots, k-1\}
$$

is defined by $f^{b}(x)=f(x)-1$, then f^{b} is a minimal $(k-1)$-ranking of $G_{S_{1}}^{b}$.
3.1. The square of a cycle. Next we reduce even prism graphs to squares of cycles.

Theorem 11. $\chi_{r}\left(C_{n}^{2}\right)=\chi_{r}\left(P_{2} \times C_{n}\right)$ for even $n \geq 4$.
Proof. (Illustrated in Figure 5.) If $n=2$, the result follows from Theorem 7 which states that $\chi_{r}\left(P_{2} \times C_{4}\right)=5$ and from the fact that $\chi_{r}\left(C_{4}^{2}\right)=\chi_{r}\left(K_{4}\right)=4$.

Henceforth suppose that $n \geq 3$. Let $k=\chi_{r}\left(P_{2} \times C_{2 n}\right)$ and let $l=\chi_{r}\left(C_{2 n}^{2}\right)$. Let f be a k-ranking of $P_{2} \times C_{2 n}$ in which the 1's alternate. It is straightforward to see that then $\left(P_{2} \times C_{2 n}\right)_{S_{1}}^{b}$ is isomorphic to $C_{2 n}^{2}$. Therefore, by Lemma $10 \chi_{r}\left(C_{2 n}^{2}\right) \leq k-1$.

Now let g be an l-ranking of $C_{2 n}^{2}$. One can easily see that $C_{2 n}^{2}$ is isomorphic to an n-sided antiprism A_{n}. Pick a new vertex inside each of the $2 n$ triangles of A_{n}, join it to all three vertices of "its" triangle and delete all edges of A_{n}. The result is a graph G_{n} that is isomorphic to $P_{2} \times C_{2 n}$. Consider the mapping $\tilde{g}: V\left(G_{n}\right) \rightarrow\{1, \ldots, l+1\}$ defined as follows: $\tilde{g}(x)=g(x)+1$ if $x \in V\left(C_{2 n}^{2}\right)$ and $\tilde{g}(x)=1$ if $x \in V\left(G_{n}\right)-V\left(C_{2 n}^{2}\right)$. Since \tilde{g} is a ranking of G_{n} (a simple exercise left to the reader), we have $\chi_{r}\left(P_{2} \times C_{2 n}\right) \leq l+1$.

Figure 5. A minimal 7-ranking of $P_{2} \times C_{8}$ (left) and a minimal 6 -ranking of A_{4} (right).

Thus $l=\chi_{r}\left(C_{2 n}^{2}\right) \leq k-1=\chi_{r}\left(P_{2} \times C_{2 n}\right)-1 \leq(l+1)-1=l$, and since both inequalities turn into equalities, we are done.

Combining Theorems 8 and 11 gives:
Corollary 12. Let $n \geq 4$ be even. Then
$\chi_{r}\left(C_{n}^{2}\right)=\chi_{r}\left(P_{2} \times C_{n}\right)-1=\left\lfloor\log _{2}(n-1)\right\rfloor+\left\lfloor\log _{2}\left(n-1-\left(2^{\left\lfloor\log _{2}(n-2)\right\rfloor-1}\right)\right)\right\rfloor+2$.

4. Conclusion

We conclude by posing some problems for future research. In this paper we determined the rank number of $P_{2} \times C_{n}$ using known results for the rank number of $P_{2} \times P_{n}$. It would be interesting to determine the rank numbers for grid graphs $P_{m} \times P_{n}$ and cylinders $P_{m} \times C_{n}$. We found out recently that [Alpert ≥ 2010] gives rank numbers for $P_{3} \times P_{n}$, among other results including an alternate proof of our Theorem 7.

References

[Alpert ≥ 2010] H. Alpert, "Rank numbers of grid graphs", Discrete Math. To appear.
[Bodlaender et al. 1998] H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Z. Tuza, "Rankings of graphs", SIAM J. Discrete Math. 11:1 (1998), 168-181. MR 99b:68143 Zbl 0907.68137
[Dereniowski 2004] D. Dereniowski, "Rank coloring of graphs", pp. 79-93 in Graph colorings, edited by M. Kubale, Contemp. Math. 352, Amer. Math. Soc., Providence, RI, 2004. MR 2076991
[Dereniowski 2006] D. Dereniowski, Parallel scheduling by graph ranking, Ph.D. thesis, Gdańsk University of Technology, 2006.
[Dereniowski and Nadolski 2006] D. Dereniowski and A. Nadolski, "Vertex rankings of chordal graphs and weighted trees", Inform. Process. Lett. 98:3 (2006), 96-100. MR 2006j:68032 Zbl 1187.68340
[Ghoshal et al. 1996] J. Ghoshal, R. Laskar, and D. Pillone, "Minimal rankings", Networks 28:1 (1996), 45-53. MR 97e:05110 Zbl 0863.05071
[Ghoshal et al. 1999] J. Ghoshal, R. Laskar, and D. Pillone, "Further results on minimal rankings", Ars Combin. 52 (1999), 181-198. MR 2000f:05036 Zbl 0977.05048
[Hsieh 2002] S.-y. Hsieh, "On vertex ranking of a starlike graph", Inform. Process. Lett. 82:3 (2002), 131-135. MR 2002k:05085 Zbl 1013.68141
[Isaak et al. 2009] G. Isaak, R. Jamison, and D. Narayan, "Greedy rankings and arank numbers", Inform. Process. Lett. 109:15 (2009), 825-827. MR 2532182
[Jamison 2003] R. E. Jamison, "Coloring parameters associated with rankings of graphs", Congr. Numer. 164 (2003), 111-127. MR 2005d:05129 Zbl 1043.05049
[Kostyuk and Narayan ≥ 2010] V. Kostyuk and D. A. Narayan, "Minimal k-rankings for cycles", Ars Combin.. To appear.
[Kostyuk et al. 2006] V. Kostyuk, D. A. Narayan, and V. A. Williams, "Minimal rankings and the arank number of a path", Discrete Math. 306:16 (2006), 1991-1996. MR 2007b:05094 Zbl 1101. 05040
[Laskar and Pillone 2000] R. Laskar and D. Pillone, "Theoretical and complexity results for minimal rankings", J. Combin. Inform. System Sci. 25:1-4 (2000), 17-33. MR 2001m:05244
[Laskar and Pillone 2001] R. Laskar and D. Pillone, "Extremal results in rankings", Congr. Numer. 149 (2001), 33-54. MR 2002m:05173 Zbl 0989.05058
[Leiserson 1980] C. E. Leiserson, "Area efficient graph layouts for VLSI", pp. 270-281 in 21st Ann. Symposium on Foundations of Computer Science (FOCS), IEEE, 1980.
[Novotny et al. 2009a] S. Novotny, J. Ortiz, and D. Narayan, "Maximum minimal rankings of oriented trees", Involve 2:3 (2009), 289-295. MR 2551126 Zbl 1177.05044
[Novotny et al. 2009b] S. Novotny, J. Ortiz, and D. A. Narayan, "Minimal k-rankings and the rank number of $P_{n}^{2, "}$, Inform. Process. Lett. 109:3 (2009), 193-198. MR 2009m:05067 Zbl 05721970
[Sen et al. 1992] A. Sen, H. Deng, and S. Guha, "On a graph partition problem with application to VLSI layout", Inform. Process. Lett. 43:2 (1992), 87-94. MR 1187395 Zbl 0764.68132
[de la Torre et al. 1992] P. de la Torre, R. Greenlaw, and T. Przytycka, "Optimal tree ranking is in NC", Parallel Process. Lett. 2:1 (1992), 31-41.

Received: 2009-03-25	Revised: 2010-04-15 Accepted: 2010-04-15
jpo208@lehigh.edu	Department of Mathematics, Lehigh University, Bethlehem, PA 18015, United States
anz1206@rit.edu	School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, United States
hking@callutheran.edu	Mathematics Department, California Lutheran University, Thousand Oaks, CA 91360, United States
dansma@rit.edu	School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, United States http://people.rit.edu/~dansma/
mirko.hornak@upjs.sk	Institute of Mathematics, P.J. Šafá rik University, Jesenná 5, 040 01, Košice, Slovakia

involve

pjm.math.berkeley.edu/involve
EDITORS
Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	A Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	University of Wisconsin, USA ono@math.wisc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
David Larson	Texas A\&M University, USA larson@math.tamu.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2010 is US $\$ 100 /$ year for the electronic version, and $\$ 120 /$ year ($+\$ 20$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.

PUBLISHED BY

E. mathematical sciences publishers
http://www.mathscipub.org
A NON-PROFIT CORPORATION
Typeset in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$

involve
 2010 vol. 3 no. 2

Recursive sequences and polynomial congruences 129J. Larry Lehman and Christopher Triola
The Gram determinant for plane curves 149
Józef H. Przytycki and Xiaoqi Zhu
The cardinality of the value sets modulo n of $x^{2}+x^{-2}$ and $x^{2}+y^{2}$ 171
Sara Hanrahan and Mizan Khan
Minimal k-rankings for prism graphs 183
Juan Ortiz, Andrew Zemke, Hala King, Darren Narayan and Mirko HorŇÁk
An unresolved analogue of the Littlewood Conjecture 191
Clarice Ferolito
Mapping the discrete logarithm 197
Daniel Cloutier and Joshua Holden
Linear dependency for the difference in exponential regression 215
Indika Sathish and Diawara Norou
The probability of relatively prime polynomials in $\mathbb{Z}_{p^{k}}[x]$ 223
thomas R. Hagedorn and Jeffrey Hatley
\mathbb{G}-planar abelian groups 233
Andrea DeWitt, Jillian Hamilton, Alys Rodriguez and Jennifer Daniel

[^0]: MSC2000: primary 05C15, 05C78; secondary 05C69, 05C35.
 Keywords: k-rankings, vertex coloring, prism graphs.
 This research started on a National Science Foundation Research Experience for Undergraduates Program at the Rochester Institute of Technology (RIT) during the summer of 2007, which was cofunded by Department of Defense. The project was continued as part of a capstone project for Juan Ortiz at California Lutheran University under the direction of Hala King, and as an undergraduate research project at RIT by Andrew Zemke under the direction of Darren Narayan. The work of Mirko Horňák was supported by the Science and Technology Assistance Agency under contract no. APVV-0007-07, by grant VEGA 1/0428/10 and by the Agency of the Slovak Ministry of Education for the Structural Funds of the EU under the project ITMS:26220120007.

