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Robert J. Plemmons
Carl B. Pomerance
Bjorn Poonen
James Propp
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Recursive sequences and polynomial congruences
J. Larry Lehman and Christopher Triola

(Communicated by Kenneth S. Berenhaut)

We consider the periodicity of recursive sequences defined by linear homoge-
neous recurrence relations of arbitrary order, when they are reduced modulo a
positive integer m. We show that the period of such a sequence with characteris-
tic polynomial f can be expressed in terms of the order of ω= x+〈 f 〉 as a unit
in the quotient ring Zm[ω]=Zm[x]/〈 f 〉. When m= p is prime, this order can be
described in terms of the factorization of f in the polynomial ring Zp[x]. We use
this connection to develop efficient algorithms for determining the factorization
types of monic polynomials of degree k ≤ 5 in Zp[x].

1. Introduction

This article grew out of an undergraduate research project, performed by the second
author under the direction of the first, to determine if results about the periodicity
of second-order linear homogeneous recurrence relations modulo positive integers
could be extended to higher orders. We arrived, somewhat unexpectedly, at algo-
rithms to determine the degrees of the irreducible factors of quintic and smaller
degree polynomials modulo prime numbers. The algebraic properties of certain
finite rings, particularly automorphisms of those rings, provided the connection
between these two topics.

To illustrate some of the ideas in this article, we begin with the famous example
of the Fibonacci sequence, defined by Fn = Fn−1+ Fn−2 with F0 = 0 and F1 = 1.
If, for some positive integer m, we replace each Fn by its remainder on division
by m, we obtain a new sequence of integers. For example, the Fibonacci sequence
modulo m = 10 begins

0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, . . . ,

with the n-th term simply the last digit of Fn . We can also view such a sequence as
having terms in Zm=Z/〈m〉, the ring of integers modulo m. This has the advantage

MSC2000: 11B50, 11C08, 11T06.
Keywords: linear homogeneous recurrence relations, polynomial congruences, finite rings, finite
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130 J. LARRY LEHMAN AND CHRISTOPHER TRIOLA

that, rather than computing each Fn and dividing that term by m, we can merely
begin with 0 and 1 and calculate successive terms of the sequence by adding the
two preceding terms in Zm . This viewpoint makes it obvious that if there is a
positive integer ` for which F` = 0 and F`+1 = 1 (in Zm), the sequence will then
repeat the pattern of F0, F1, . . . , F`−1 indefinitely. For the Fibonacci sequence, it
is known that such a value of ` exists for every positive integer m. (For m = 10, it
can be verified that `= 60.)

Upper limits on the period length of the Fibonacci sequence modulo prime num-
bers are implicit in Theorem 180 of [Hardy and Wright 1979], one proof of which
employs properties of the powers of a root of f (x)= x2

− x−1, the characteristic
polynomial of the Fibonacci sequence. Expanding on this approach, when consid-
ering recursive sequences of arbitrary order in this article, we work in rings, Zm[ω],
of integers modulo m with a purely formal root ω of the characteristic polynomial
f of the sequence adjoined. Our first main result (Corollary 5) is that under minor
restrictions on m and the initial terms of the sequence, the period of the recursive
sequence modulo m is equal to the order of ω in the group of units in Zm[ω].

Possible orders of ω in the group of units Zp[ω]
×, where p is prime, are deter-

mined by the factorization of f in the polynomial ring Zp[x]. In particular, using
properties of ring automorphisms of Zp[ω], we find in Theorem 9 that if f has no
repeated factors in Zp[x], and t is the least common multiple of the degrees of the
irreducible factors of f in Zp[x], then t is the smallest positive integer for which
the order of ω divides pt

− 1. For the Fibonacci sequence, and for other second-
order recursive sequences, the important details of the factorization are obtained
from standard results about quadratic congruences (particularly calculation of Le-
gendre symbols via the quadratic reciprocity theorem). For sequences of higher
order, with characteristic polynomials of higher degree, methods of determining
this factorization are less apparent. Finally though, reversing the approach taken
with second-order sequences, we show, in Theorem 11 and its corollaries, that in-
formation about powers of ω in the rings Zp[ω] lead to highly efficient algorithms
for determining the factorization types of monic polynomials f with deg f ≤ 5
modulo most primes p.

To outline this article: In Section 2, we define recursive sequences of order
k, we consider the simple but instructive case in which k = 1, and we establish
a criterion for periodicity of recursive sequences modulo arbitrary positive inte-
gers m. We introduce the characteristic polynomial f of a recursive sequence in
Section 3, which we use to define the rings Zm[ω] referred to above. We show
that the periodicity of recursive sequences modulo m can be easily described in
terms of powers of the element ω in the ring Zm[ω]. This leads us, in Section 4,
to consider algebraic properties of these rings. We find that, for a prime modulus
p, the relevant properties depend on the factorization of f (e.g., the degrees of
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irreducible factors, existence of repeated factors) in the ring of polynomials Zp[x].
In Section 5, we apply well known properties of quadratic congruences to obtain
general results about periodicity modulo primes when k = 2, with the Fibonacci
sequence as a special case. Finally, in Section 6, we obtain efficient algorithms for
finding the factorization type of cubic, quartic, and quintic polynomials f modulo
most primes p, using calculation of periods of recursive sequences modulo p, or
computation of powers of ω. (Adams [1984] and Sun [2003] have separately used
certain recursive sequences to develop algorithms for factorization of cubic and
quartic polynomials modulo primes. Our algorithm differs in details from both of
these.)

The authors are grateful to the referee for pointing out several sources of which
we were not aware during the preparation of this article. Engstrom [1931], Ward
[1933], and Fillmore and Marx [1968] have extensive details on linear recurrence
relations modulo positive integers. See in particular Chapter 8 of [Lidl and Nieder-
reiter 1983] for more results and notes about this aspect of the problem. Further-
more, Skolem [1952] has provided criteria for the factorization type of quartic
polynomials modulo primes, similar to our result in Corollary 13, and [Sun 2006]
notes a criterion for the factorization of a polynomial into linear factors modulo
a prime number, which is essentially the same as the statement of part (1) in our
Theorem 15.

2. Periodicity of recursive sequences modulo integers

Let m be a positive integer. We say that a sequence {an}
∞

n=0 of integers is periodic
modulo m or `-periodic modulo m if there is a positive integer ` such that a`+i ≡ ai

(mod m) for all i ≥ 0. We also say that {an}
∞

n=0 is periodic in Zm in this case, and
when it is clear that we are referring to equality in this ring, we write a`+i = ai

rather than a`+i ≡ ai (mod m). If ` is the smallest positive integer for which
{an}

∞

n=0 is `-periodic modulo m, we call ` the period of the sequence modulo m.

Proposition 1. If a sequence {an}
∞

n=0 is periodic modulo m with period `, then for
a positive integer k, the sequence is k-periodic modulo m if and only if ` divides k.

Proof. Suppose that {an}
∞

n=0 is periodic in Zm with period `. Then a2`+i =

a`+(`+i) = a`+i = ai for all i , and inductively, a`q+i = ai for all positive integers
q . So if ` divides k > 0, then {an}

∞

n=0 is k-periodic in Zm . Conversely then,
suppose that {an}

∞

n=0 is k-periodic in Zm for some positive integer k. We can write
k = `q+r for some integers q and r with 0≤ r <`. Now for every i ≥ 0, we have
ai = ak+i = a`q+(r+i) = ar+i , since, as noted above, the sequence is `q-periodic.
If r > 0, this contradicts the definition of ` as the period of the sequence. So we
must conclude that r = 0 and so that ` divides k. �
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In this article, we are primarily interested in the periodicity of sequences defined
recursively. We fix the following notation for the sequences of interest. Let k be a
positive integer, let r1, r2, . . . , rk be integers, and let (a0, a1, . . . , ak−1) be a k-tuple
of integers. Define a sequence of integers {an}

∞

n=0 by setting

an = r1an−1+ r2an−2+ · · ·+ rk−1an−k+1+ rkan−k =
k∑

i=1
ri an−i , (2-1)

when n ≥ k. A sequence of this form is called a linear homogeneous recurrence
relation of order k; we will refer to it as a recursive sequence of order k for short.
We call r1, r2, . . . , rk the coefficients, and a0, a1, . . . , ak−1 the initial terms of this
recursive sequence.

Remark. To establish that {an}
∞

n=0 as defined in (2-1) is `-periodic in Zm , it suf-
fices, as we noted in Section 1 for the Fibonacci sequence, to show that a`+i = ai

for 0≤ i ≤ k− 1.

We can describe the periodicity of recursive sequences of order k = 1 using
standard results about linear congruences from elementary number theory.

Example. Define an for n ≥ 0 by setting an = ran−1 when n > 0, with r and
a0 integers. Then an = a0rn for all n, and the sequence is periodic modulo m if
there is a positive integer ` such that a0r` ≡ a0 (mod m). If gcd(a0,m) = d , this
congruence is equivalent to r` ≡ 1 (mod m/d), and such a value of ` exists if and
only if r is relatively prime to m/d . In that case, the period of the sequence equals
ordm/d(r), the order of r in the group Z×m/d of units in Zm/d .

Remark. This example illustrates that we are unlikely to obtain a precise formula
for the period of a recursive sequence modulo every positive integer m. For ex-
ample, if a0 = 1 and an = 2an−1 for n > 0, then the sequence {an}

∞

n=0 is periodic
modulo every odd positive integer m, with period the order of 2 in Z×m . We know
that this order divides φ(m) = |Z×m |, but a more specific formula for this value is
difficult to obtain. Similarly, for larger values of k, we will generally be able to
provide only upper limits on the period of a recursive sequence modulo an arbitrary
integer m.

The following theorem provides a criterion for the periodicity of recursive se-
quences modulo positive integers m. Our proof follows that of a similar result in
[Wall 1960] for the Fibonacci sequence.

Theorem 2. Let {an}
∞

n=0 be a recursive sequence with coefficients r1, r2, . . . , rk ,
defined as in (2-1). Let m be a positive integer. If gcd(rk,m)= 1, then the sequence
is periodic modulo m.

Proof. There are mk distinct k-tuples of elements of Zm . By the pigeonhole princi-
ple, it follows that there are integers s and t with 0≤ s< t≤mk such that as+i =at+i
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in Zm for 0≤ i ≤ k−1. We may assume that s is the smallest nonnegative integer
for which this is true. But if s > 0, then as+k−1 = at+k−1 implies that

r1as+k−2+ r2as+k−3+ · · ·+ rk−1as + rkas−1

= r1at+k−2+ r2at+k−3+ · · ·+ rk−1at + rkat−1

in Zm , by the recursive definition of the sequence. It follows that rkas−1 = rkat−1,
and if gcd(rk,m) = 1, so that rk is a unit in Zm , then as−1 = at−1 in Zm . This
contradicts our assumption about s, so we must conclude that s = 0. By the note
above, it follows that {an}

∞

n=0 is periodic modulo m. �

Remark. If gcd(rk,m) > 1, then {an}
∞

n=0 defined by (2-1) may or may not be
periodic modulo m, depending on the initial terms of the sequence. For example,
if (a0, a1, . . . , ak−1) = (1, 0, . . . , 0), then it is easy to see that rk divides an for
all n > 0, and so a` ≡ a0 (mod m) is not possible for any ` > 0. On the other
hand, the sequence with initial terms (a0, a1, . . . , ak−1) = (0, 0, . . . , 0) is clearly
1-periodic modulo m. This trivial example is generally not exclusive. For instance,
if an=an−1+an−2+2an−3, with (a0, a1, a2)= (1, 0, 1), then the sequence {an}

∞

n=0
is 3-periodic modulo m= 2. In any event, the proof of Theorem 2 shows that every
recursive sequence defined as in (2-1) will exhibit an infinitely repeating pattern
of terms modulo m, possibly following some initial terms. In the remainder of
this article, given a recursive sequence of order k, we will restrict our attention to
moduli m that are relatively prime to the k-th order coefficient rk .

3. Polynomial extensions of Zm

If {an}
∞

n=0 is a recursive sequence given as in (2-1), then we define the characteristic
polynomial of that sequence to be

f (x)= xk
− r1xk−1

− r2xk−2
− · · ·− rk−1x − rk .

It is well known that each an can be expressed in terms of n-th powers of the
solutions of f (x) = 0, with the combination of those powers determined by the
initial terms of the sequence. In considering arithmetic properites of the sequence
{an}

∞

n=0 modulo m, we will find it useful to work in rings, Zm[ω], of the integers
modulo m with a purely formal solution, ω, of f (x)= 0 adjoined. We define these
rings as follows.

For a positive integer m, consider the quotient ring Zm[x]/〈 f 〉, where Zm[x] is
the ring of polynomials with coefficients in Zm and 〈 f 〉 is the principal ideal of
Zm[x] generated by f . Since f is a monic polynomial, that is, its leading coefficient
is 1, then for every polynomial g in Zm[x], there exist unique polynomials q and
r in Zm[x] such that g = f · q + r , with r of smaller degree than f , or r = 0. In
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that case, g+ 〈 f 〉 = r + 〈 f 〉. Writing the coset x + 〈 f 〉 as ω f , or as ω when f is
apparent from context, we can identify Zm[x]/〈 f 〉 with the ring Zm[ω] defined by

Zm[ω] ={
bk−1ω

k−1
+bk−2ω

k−2
+· · ·+b1ω+b0

∣∣bi ∈Zm and ωk
=

k∑
i=1

riω
k−i
}
. (3-1)

Here bk−1ω
k−1
+ · · · + b0 = ck−1ω

k−1
+ · · · + c0 if and only if bi = ci in Zm for

0 ≤ i ≤ k − 1, so in general, Zm[ω] has mk elements. We refer to Zm[ω] as the
extension of Zm by the polynomial f or more generally as a polynomial extension
of Zm . We write elements of Zm[ω] using Greek letters, or in the form g(ω) where
g is a polynomial in Zm[x].

We establish a connection between the ring Zm[x]/〈 f 〉 and recursive sequences
with characteristic polynomial f as follows. Let {an}

∞

n=0 be defined as in (2-1),
and for 1≤ j ≤ k and n ≥ k, let a( j, n)=

∑k
i= j ri an−i . Notice that, for all n ≥ k,

a(k, n)= rkan−k (3-2)
and

a( j + 1, n)+ r j an− j = a( j, n) if 1≤ j < k. (3-3)

Now define α to be the following element of Zm[ω], determined by the initial
terms and coefficients of the sequence:

α=ak−1ω
k−1
+a(2, k)ωk−2

+a(3, k+1)ωk−3
+· · ·+a(k−1, 2k−3)ω+a(k, 2k−2)

= ak−1ω
k−1
+

k∑
j=2

a( j, k+ j − 2) ·ωk− j , (3-4)

here viewing ak−1 and each a( j, k+ j − 2) as elements of Zm .

Theorem 3. Let {an}
∞

n=0 be defined recursively as in (2-1), and let α be defined by
(3-4). Then for every integer n ≥ 0,

αωn
= an+k−1ω

k−1
+

k∑
j=2

a( j, n+ k+ j − 2) ·ωk− j . (3-5)

Remark. If n ≥ 1, then an+k−1 =
∑k

i=1 ri an+k−1−i = a(1, n + k − 1) by the
recursive definition of the sequence. So for n ≥ 1, we can also express (3-5) as

αωn
=

k∑
j=1

a( j, n+ k+ j − 2) ·ωk− j . (3-6)

Proof. We use induction on n. Equation (3-5) is true for n= 0 by (3-4). So suppose
that (3-5) holds for some integer n ≥ 0. Then
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αωn+1
= (αωn)ω = an+k−1ω

k
+

k∑
j=2

a( j, n+ k+ j − 2) ·ωk− j+1

=

k∑
j=1

r j an+k−1 ·ω
k− j
+

k∑
j=2

a( j, n+ k+ j − 2) ·ωk− j+1,

using the equation for ωk in (3-1). Splitting off the last term in the first sum, and
replacing j by j + 1 in the second sum, we have that

αωn+1
= rkan+k−1+

k−1∑
j=1

r j an+k−1 ·ω
k− j
+

k−1∑
j=1

a( j + 1, n+ k+ j − 1) ·ωk− j

= rkan+k−1+

k−1∑
j=1

(r j an+k−1+ a( j + 1, n+ k+ j − 1)) ·ωk− j

= rkan+k−1+

k−1∑
j=1

a( j, n+ k+ j − 1) ·ωk− j ,

using (3-3). But rkan+k−1 = a(k, n+ 2k− 1) by (3-2), so that

αωn+1
=

k∑
j=1

a( j, n+ k+ j − 1) ·ωk− j .

This is (3-6) with n+1 in place of n. Since n+1≥ 1, (3-5) is then true with n+1
in place of n, and so (3-5) holds for all integers n ≥ 0 by induction. �

Theorem 4. Let k be a positive integer, and let {an}
∞

n=0 be a recursive sequence
with coefficients r1, . . . , rk and characteristic polynomial f , defined as in (2-1).
Let m be a positive integer such that gcd(rk,m)= 1, let Zm[ω] = Zm[x]/〈 f 〉, and
let α be given as in (3-4). Then {an}

∞

n=0 is `-periodic modulo m if and only if
αω` = α in Zm[ω].

Proof. If a`+i = ai for all i ≥ 0, then, in particular, a`+k−1 = ak−1, and it is easy to
see that a( j, `+k+ j−2)= a( j, k+ j−2) for 2≤ j ≤ k. Thus αω`= α by (3-5).

Conversely, suppose that αω` = α. Comparing the equations in (3-4) and (3-5),
we know that a`+k−1 = ak−1 and a( j, `+ k + j − 2) = a( j, k + j − 2) in Zm for
2 ≤ j ≤ k. But if gcd(rk,m) = 1, so that rk is a unit in Zm , we can use the latter
equations to show inductively that a`+ j−2=a j−2 for 2≤ j≤k, which is sufficient to
establish that the sequence is `-periodic. If j=k, then a(k, `+2k−2)=a(k, 2k−2)
implies that rka`+k−2 = rkak−2, so that a`+k−2 = ak−2. Now let j be an integer
with 2≤ j < k, and suppose that we have shown that a`+i−2 = ai−2 for j < i ≤ k.
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Then a( j, `+ k+ j − 2)= a( j, k+ j − 2) implies that

r j a`+k−2+ r j+1a`+k−3+ · · ·+ rk−1a`+ j−1+ rka`+ j−2

= r j ak−2+ r j+1ak−3+ · · ·+ rk−1a j−1+ rka j−2,

which, by the inductive hypothesis and the assumption that rk is a unit, implies
that a`+ j−2 = a j−2. The result follows by induction. �

Corollary 5. Let k be a positive integer, and let {an}
∞

n=0 be a recursive sequence
with coefficients r1, . . . , rk and characteristic polynomial f , defined as in (2-1).
Let m be a positive integer such that gcd(rk,m)= 1, let Zm[ω] = Zm[x]/〈 f 〉, and
let α be given as in (3-4). Then ω is a unit in Zm[ω], and {an}

∞

n=0 is periodic
modulo m, with period ` dividing ordm(ω), the order of ω in the group, Zm[ω]

×,
of units in Zm[ω]. If A = {β ∈ Zm[ω] | αβ = 0}, then ` is the order of ω+ A in the
group of units of the quotient ring Zm[ω]/A.

Remark. It is easy to see that the set A defined in the corollary is an ideal of
Zm[ω]. This ideal, called the annihilator of α in Zm[ω], is trivial if α is a unit in
Zm[ω], so in that case, `= ordm(ω).

Proof. If gcd(rk,m) = 1, then rk is a unit in Zm , say with inverse r−1
k . Then it

is easy to verify that r−1
k (ωk−1

− r1ω
k−2
− · · · − rk−2ω − rk−1) · ω = 1, so that

ω is a unit in Zm[ω]. Since Zm[ω]
× is finite, there is an integer t = ordm(ω) for

which ωt
= 1. But then αωt

= α, and Theorem 4 implies that {an}
∞

n=0 is t-periodic
modulo m. If ` is the period of this sequence modulo m, we know that ` divides t
by Proposition 1. Furthermore, ` is the smallest positive integer such that αω`=α,
which is true if and only if ω`− 1 is in the annihilator of α. But then ` is the the
order of ω+ A as a unit in the quotient ring Zm[ω]/A. �

Example. Consider the recursive sequence of order k = 1 defined by an = ran−1

for n > 0, with a0 and r fixed integers, as in a previous example. Let m be a
positive integer that is relatively prime to r , in which case the sequence is periodic
modulo m. The characteristic polynomial of {an}

∞

n=0 is f (x) = x − r , so that
ω= x+〈 f 〉= r+〈 f 〉 in Zm[x]/〈 f 〉. It is easy to see that Zm[x]/〈 f 〉 is isomorphic
to Zm , so that we can identify ω with r . By (3-4), we have that α = a0, and if
gcd(a0,m) = d, then we find that the annihilator A of α in Zm[ω] is generated
by m/d . Corollary 5 implies that the period of {an}

∞

n=0 is the order of r + A in
(Zm[ω]/A)×, which we can view as the order of r in Z×m/d . Thus we see that
Corollary 5 generalizes our results for recursive sequences of order k = 1 to higher
orders.

Example. It can be verified that the period of the Fibonacci sequence modulo
m=5 is 20. On the other hand, the Lucas sequence, defined for n≥0 by (L0, L1)=

(2, 1), and Ln = Ln−1 + Ln−2 if n > 1, has period four modulo m = 5. This is
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possible because, for the Fibonacci sequence, α = ω is a unit in Z5[ω], where
ω2
= ω+ 1, while for the Lucas sequence, α = ω+ 2 has a nontrivial annihilator

in Z5[ω].

Remark. If the initial terms of a recursive sequence are (a0, . . . , ak−2, ak−1) =

(0, . . . , 0, 1), then α = ωk−1 is a unit, when ω is a unit in Zm[ω]. In this case,
Corollary 5 implies that the period of the sequence modulo m is the same as the
order of ω in Zm[ω]

×. We will restrict our attention to this special case for the
initial terms in what follows.

In the remainder of this article, we will further restrict our attention to the case
in which the modulus m of interest is prime, using the following observations. First
suppose that {an}

∞

n=0 is periodic modulo s with period k, and periodic modulo t
with period `. If gcd(s, t) = 1, it is straightforward to show, using Proposition 1,
that {an}

∞

n=0 is periodic modulo st with period lcm(k, `). (This does not require
the assumption that the sequence is defined recursively.) For powers of primes, we
can invoke the following result.

Theorem 6. Let p be a prime number and j a positive integer. Let f be a poly-
nomial with integer coefficients, and suppose that p does not divide the constant
coefficient of f , so that ω is a unit in Zp j [ω] = Zp j [x]/〈 f 〉. Let s = ordp j (ω) and
t = ordp j+1(ω). Then either t = s or t = ps.

Remark. If d divides m, then it is easy to see that the function φ :Zm[ω]→Zd [ω]

defined by φ(g(ω))= g(ω) is a well-defined ring homomorphism, with kernel 〈d〉.
So if g(ω) = h(ω) in Zm[ω], then g(ω) = h(ω) in Zd [ω]. On the other hand,
if g(ω) = h(ω) in Zd [ω], then the strongest statement that we can make is that
g(ω)= h(ω)+ d · δ for some element δ in Zm[ω].

Proof. Let s be the order of ω in Zp j [ω] and let t be the order of ω in Zp j+1[ω].
Since ωt

= 1 in Zp j+1[ω], then ωt
= 1 in Zp j [ω] by the remark above, so that s

divides t . By the same remark, since ωs
= 1 in Zp j [ω], then ωs

= 1+ p j
· δ for

some δ in Zp j+1[ω]. But now

ωps
= (ωs)p

= (1+ p j
· δ)p
= 1+

( p
1

)
p j
· δ+

( p
2

)
p2 j
· δ2
+ · · ·+ p pj

· δ p
= 1

in Zp j+1[ω], since all terms in the sum aside from the first are divisible by p j+1.
Thus t divides ps. Since s | t and t | ps, with p prime, we conclude that t = s or
t = ps. �

So if ` is the period of a recursive sequence modulo p, then the period of the
same sequence modulo p j must divide p j−1

·`. Interesting questions about periods
of recursive sequences modulo prime powers remain open. For example, Sun and
Sun [1992] showed that if a prime exponent p were a counterexample to the first
case of Fermat’s Last Theorem, then the period of the Fibonacci sequence modulo
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p and modulo p2 would have to be the same. It is not known whether any such
primes exist for the Fibonacci sequence. (Of course, it is now known that no such
counterexamples to Fermat’s Last Theorem can exist.) For our purposes, we will
simply note that the upper limit given above is not always obtained as the exact
period of a recursive sequence modulo p j , as the following example shows.

Example. Define an for n ≥ 0 by (a0, a1, a2)= (0, 0, 1) and

an = an−1+ an−2+ 2an−3

for n > 2. We find that {an}
∞

n=0 has period ` = 6 both modulo p = 3 and modulo
p2
= 9.

4. Algebraic properties of Z p[ω]

With these restrictions in place, our main task, given the characteristic polynomial
f of a recursive sequence, is to describe the order of ω = ω f = x + 〈 f 〉 as a unit
in the quotient ring Zp[ω] = Zp[x]/〈 f 〉, for all primes p not dividing the constant
coefficient of f . We will see that our description of ordp(ω) depends largely on
how f factors in the polynomial ring Zp[x]. We begin by compiling some useful
general statements about these polynomial extensions.

(1) If g divides f , then the function φ :Zp[ω f ]→Zp[ωg] defined by φ(h(ω f ))=

h(ωg) is a well-defined ring homomorphism with kernel 〈g(ω f )〉. It follows
that if r(ω f ) = s(ω f ) in Zp[ω f ], then r(ωg) = s(ωg) in Zp[ωg], while if
r(ωg) = s(ωg) in Zp[ωg], then r(ω f ) = s(ω f ) + g(ω f ) · δ for some δ in
Zp[ω f ].

(2) The set of all (ring) automorphisms of Zp[ω] forms a group under composi-
tion. If h is a polynomial in Zp[x] and σ :Zp[ω]→Zp[ω] is an automorphism,
then σ(h(ω)) = h(σ (ω)). In particular, 0 = σ(0) = σ( f (ω)) = f (σ (ω)), so
that σ(ω) is a root of f .

(3) For an automorphism σ of Zp[ω], if σ(ω) = ω, then σ(h(ω)) = h(σ (ω)) =
h(ω) for all h ∈ Zp[x]. That is, σ(ω) = ω if and only if σ is the identity
automorphism.

(4) The function σp : Zp[ω] → Zp[ω] defined by σp(β) = β
p is a ring homo-

morhism, since Zp[ω] has characteristic p. Furthermore, σp is an automor-
phism if and only if the polynomial f has no repeated irreducible factors in
Zp[x]. (If f = g2h for some irreducible polynomial g, then g(ω)h(ω) is a
nonzero element in the kernel of σp. On the other hand, if f has no repeated
irreducible factors, then the uniqueness of irreducible factorization in Zp[x]
shows that f divides h p if and only if f divides h. In that case, the kernel of
σp is trivial, and since Zp[ω] is finite, σp is a bijection.)
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(5) If f is irreducible in Zp[x], with deg f = k, then Zp[ω]=Zp[x]/〈 f 〉 is a field
with pk elements. In this case, the group Aut(Zp[ω]) of automorphisms of
Zp[ω] is cyclic of order k, generated by σp [Dummit and Foote 2004, p. 556].

(6) If f = f1 · f2 · · · f j is a product of pairwise relatively prime polynomials in
Zp[x], then the quotient ring Zp[ω] = Zp[x]/〈 f 〉 is isomorphic to the direct
product of quotient rings Zp[x]/〈 f1〉×Zp[x]/〈 f2〉×· · ·×Zp[x]/〈 f j 〉 [Dummit
and Foote 2004, p. 313].

We can draw some conclusions about the order of ω in Zp[ω]
× from these state-

ments. We begin with the case in which f is irreducible in Zp[x].

Theorem 7. Let f (x)= xk
− r1xk−1

−· · ·− rk . Let p be a prime for which p - rk ,
and suppose that f is irreducible in Zp[x]. Let t be the order of (−1)k+1rk as
an element of Z×p . Then ordp(ω), the order of ω as a unit in Zp[ω] = Zp[x]/〈 f 〉,
divides pk

−1
p−1 t , but ordp(ω) divides neither pi

− 1 for 0 < i < k nor pk
−1

p−1 s for
0< s < t .

Proof. By statement (5), we know that Aut(Zp[ω]) is cyclic of order k, generated by
σp. The composition of i copies of σp is the same as σpi , defined by σpi (β)= β pi

.
Statement (3) implies that ωpi

6= ω, and so ωpi
−1
6= 1, for 0< i < k.

Statement (2) now implies that f has k distinct roots in Zp[ω], each of the form
σpi (ω)= ωpi

for 0≤ i < k, and therefore

f (x)= (x −ω)(x −ωp)(x −ωp2
) · · · (x −ωpk−1

).

Comparing constant coefficients of these polynomials, we find that−rk = (−1)kω ·
ωp
·ωp2
· · ·ωpk−1

, and so

(−1)k+1rk = ω
1+p+p2

+···+pk−1
= ω

pk
−1

p−1 .

If t is the order of (−1)k+1rk in Z×p , then ω
pk
−1

p−1 t
= 1, but ω

pk
−1

p−1 s
6= 1 for 0< s< t .

�

Secondly, we consider the case in which f is a power of an irreducible polyno-
mial.

Theorem 8. Let f be a monic polynomial of degree k with integer coefficients.
Suppose that f = gt , where g is an irreducible polynomial of degree s in Zp[x] (so
that st= k). Let p be a prime number not dividing the constant coefficient of g (and
so not dividing the constant coefficient of f ). Let j be the smallest nonnegative
integer for which p j

≥ t . Let Zp[ω f ] = Zp[x]/〈 f 〉 and Zp[ωg] = Zp[x]/〈g〉, and
suppose that ωg has order ` as a unit in Zp[ωg]. Then the order of ω f as a unit in
Zp[ω f ] equals pi` for some i with 0≤ i ≤ j .
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Proof. Let m be the order of ω f in the group Zp[ω f ]
×. Since (ω f )

m
=1 in Zp[ω f ],

then (ωg)
m
= 1 in Zp[ωg] by statement (1), so that ` divides m. Since (ωg)

`
= 1 in

Zp[ωg], statement (1) also implies that (ω f )
`
= 1+g(ω f )·δ for some δ in Zp[ω f ].

Now note that

(ω f )
p j`
= ((ω f )

`)p j
= (1+ g(ω f ) · δ)

p j
= 1+ g(ω f )

p j
· δ p j
= 1,

in Zp[ω f ], using the facts that Zp[ω f ] has characteristic p and that f = gt divides
g p j

, by the definition of j . So m divides p j`, and the conclusion of Theorem 8
follows immediately. �

Finally, if f factors as a product of pairwise relatively prime polynomials, say
f = f1 · f2 · · · f j with each fi a power of a distinct irreducible polynomial in Zp[x],
then Zp[ω f ] is isomorphic to

Zp[ω f1]×Zp[ω f2]× · · · ×Zp[ω f j ]

by statement (6). If a prime number p does not divide the constant coefficient of f ,
then it is easy to see that the order of ω f in Zp[ω f ]

× is the least common multiple
of the orders of each ω fi in the appropriate group of units. We can place a further
restriction on the order of ω f when no irreducible factor of f is repeated.

Theorem 9. Let f be a monic polynomial of degree k with integer coefficients, and
let p be a prime number not dividing the constant coefficient of f . Suppose that
f = f1 · f2 · · · f j for distinct irreducible polynomials fi of degree ki in Zp[x] (so
that k = k1+k2+· · ·+k j ). Let t = lcm(k1, k2, . . . , k j ). Then in the group Zp[ω]

×

of units in the ring Zp[ω] = Zp[x]/〈 f 〉, the order of ω divides pt
−1, but does not

divide pi
− 1 for 0< i < t .

Proof. By statement (4), the function σp : Zp[ω]→ Zp[ω] defined by σp(β)= β
p

is an automorphism of Zp[ω]. With Zp[ω f ] isomorphic to Zp[ω f1] × Zp[ω f2] ×

· · ·×Zp[ω f j ] and each Zp[ω fi ] a field, it is straightforward to show that the order
of σp in Aut(Zp[ω]) is t = lcm(k1, k2, . . . , k j ). By statement (3), it follows that
ωpt
= ω, but ωpi

6= ω if 0 < i < t . Since ω is a unit in Zp[ω], the conclusion of
Theorem 9 follows. �

5. Recursive sequences of order two

We illustrate our results so far with some general statements about recursive se-
quences of order two. Define an for n ≥ 0 by (a0, a1)= (0, 1), and an = r1an−1+

r2an−2 for n > 1, where r1 and r2 are integers. Let p be a prime number, let
f (x)= x2

−r1x−r2, and let Zp[ω] =Zp[x]/〈 f 〉. If p - r2, then {an}
∞

n=0 is periodic
modulo p, with period ` equal to the order of ω in Zp[ω]

×. The factorization of f
in Zp[x] is determined by its discriminant, D = D( f )= r2

1 +4r2, and we can use
that factorization to describe `.
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Case 1: f is irreducible in Zp[x]. For odd p, this is the case if and only if the
Legendre symbol

( D
p

)
equals −1, while for p = 2 this occurs precisely when

D ≡ 5 (mod 8). Theorem 7 implies that ` divides (p+ 1)t , where t is the order
of −r2 in Z×p , but that ` divides neither p− 1 nor (p+ 1)s for 0< s < t .

Case 2: f factors as a product of distinct linear polynomials in Zp[x]. For odd p,
this is the case if and only if

( D
p

)
= 1, while for p= 2, this occurs in general when

D≡ 1 (mod 8). (Of course, it is impossible for a quadratic polynomial f to factor
into distinct linear terms in Z2[x] unless 2 divdes its constant coefficient, which
we assume is not the case here.) Theorem 9 implies that ` divides p − 1. More
precisely, if f (x) = (x − b)(x − c) in Zp[x], then ` is the least common multiple
of the orders of b and c in Z×p . (If f1(x) = x − b, then ω f1 = x + 〈 f1〉 = b+ 〈 f1〉

in Zp[x]/〈 f1〉, which is isomorphic to Zp.)

Case 3: f factors as the square of a linear polynomial in Zp[x]. This is the case if
and only if p divides D. Since p ≥ 2 for every prime p, Theorem 8 implies that `
divides p(p− 1). In this case, we can make the following precise statement as a
corollary of Theorem 8.

Corollary 10. Let f (x)= x2
− r1x − r2 with r1 and r2 integers. Let p be a prime

number dividing D= r2
1 +4r2 but not dividing r2, so that f (x)= (x−c)2 in Zp[x]

for some c 6= 0 in Zp. If t is the order of c in Z×p , then the order of ω = x +〈 f 〉 as
a unit in Zp[ω] = Zp[x]/〈 f 〉 is pt .

Proof. Let g(x) = x − c, and let t be the order of c in Z×p . Since ωg = x + 〈g〉 =
c+ 〈g〉, then t is the order of ωg as a unit in Zp[ωg]. Theorem 8 implies that the
order ofω f in Zp[ω f ]

× is either t or pt . But (ω f )
t
=1 if and only if f (x)= (x−c)2

divides h(x)= x t
−1 in Zp[x]. If so, then h(c) and h′(c) are both zero in Zp. This

is impossible since h′(c) = tct−1, but p - t (a divisor of p− 1) and p - c. So the
order of ω f in Zp[ω f ]

× must be pt . �

Example. For the Fibonacci sequence, r1 = 1, r2 = 1, and D = 5. Since p - r2

for all primes p, the Fibonacci sequence is periodic modulo p, say with period
`p. The polynomial x2

− x − 1 is irreducible in Z2[x], since D ≡ 5 (mod 8). The
order of −r2 = −1 in Z×2 is 1, and so for p = 2, we have that `p is a divisor of
p+1= 3, but not p−1= 1. The only possibility is `2= 3, which is easy to verify
directly. Since x2

− x − 1 = (x − 3)2 in Z5[x], and c = 3 has order four in Z×5 ,
Corollary 10 implies that `5 = 20. (Note that these two results, together with the
remark preceding Theorem 6, verify the claim made in the introduction that the
Fibonacci sequence has period `= 60 modulo m = 10.)

If p 6= 2, 5, then since 5≡ 1 (mod 4), quadratic reciprocity implies that
( 5

p

)
=( p

5

)
, so that factorization of x2

− x − 1 is determined by the value of p modulo 5.
If p ≡ 1 or 4 (mod 5), then

( 5
p

)
= 1 and x2

− x − 1 factors as a product of linear
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factors in Zp[x]. Theorem 9 implies that `p divides p− 1. If p ≡ 2 or 3 (mod 5)
for an odd prime p, then

( 5
p

)
=−1 and x2

− x − 1 is irreducible in Zp[x]. In this
case, the order of −r2 = −1 in Z×p is 2, and so `p divides 2(p + 1), but divides
neither p+ 1 nor p− 1. The period of the Fibonacci sequence modulo p can be
smaller than the upper limits noted here for p 6= 2, 5. For example, `29 = 14, a
proper divisor of 29− 1, and `47 = 32, a proper divisor of 2(47+ 1) = 96 that
divides neither 48 nor 46.

As we see here, unless the discriminant D of a quadratic polynomial f is identi-
cally zero, there are only finitely many primes p for which f has repeated factors in
Zp[x]. The following generalization of the discriminant for higher degree polyno-
mials similarly allows us (in theory) to determine all values of p for which a given
polynomial f factors into distinct irreducible terms in Zp[x]. Let f be a monic
polynomial of degree k with integer coefficients, which we can view as elements
of Z or of Zp for a prime p. Then f has k roots (not necessarily distinct) in some
extension field of Q or Zp, and we can write

f (x)= xk
− r1xk−1

− · · ·− rk−1x − rk = (x −α1)(x −α2) · · · (x −αk).

By definition, the discriminant of f is the product of the squares of all differences
between the roots of f :

D = D( f )=
∏

1≤i< j≤k

(α j −αi )
2.

It immediately follows that D( f )= 0 if and only if f has a repeated root, that is,
αi =α j for some i 6= j . Note that D is a symmetric polynomial in {α1, α2, . . . , αk},
meaning that it is unchanged by any permutation of the elements of that set. It is
known that any such symmetric polynomial can be expressed in terms of elemen-
tary symmetric polynomials, which are, up to sign, the same as the coefficients of
f . In general, if the coefficients of f are integers, then D( f ) is an integer which
can be expressed in terms of those coefficients. (See [Edwards 1984] or [Swan
1962] for more details on computation of D.)

6. Criteria for factorization of polynomials modulo primes

Let f be a monic polynomial with integer coefficients, having degree k and dis-
criminant D. In this section, we restrict our attention to primes p for which p - D, so
that f has no repeated irreducible factors in Zp[x]. We say that f has factorization
type [k1, k2, . . . , k j ] modulo p if f can be written in Zp[x] as a product of distinct
irreducible polynomials having degrees k1≥ k2≥ · · ·≥ k j . The number of possible
factorization types of a polynomial of degree k is the number of partitions of k,
that is, the number of ways of writing k as a sum of positive integers.
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Theorem 9 implies that if we know the factorization type of a polynomial f
modulo a prime p that divides neither D( f ) nor the constant coefficient of f , then
we can use the order of the automorphism σp of Zp[x]/〈 f 〉 to obtain information
about the period length of a corresponding recursive sequence modulo p. We show
in this section that we can reverse this implication for polynomials f of degree
k ≤ 5, using Theorem 9 together with the following application of the discriminant
due to Stickelberger, adapted from [Driver et al. 2005] and [Swan 1962].

Stickelberger’s parity theorem. Let f be a monic polynomial of degree k in Z[x]
and let p be a prime number not dividing the discriminant D of f . Suppose that
f factors as a product of j distinct irreducible polynomials in Zp[x]. If p is odd,
then

( D
p

)
= (−1)k− j , while if p = 2, then D ≡ 5k− j (mod 8).

Before stating our main theorem for this section, we illustrate, with an example,
how knowledge of the period of a recursive sequence modulo p can help determine
the factorization type of its characteristic polynomial modulo p.

Example. Define an for n≥0 by (a0, a1, a2, a3)= (0, 0, 0, 1) and an=an−3+an−4

for n ≥ 4. The characteristic polynomial for {an}
∞

n=0 is

f (x)= x4
− x − 1,

which can be shown to have discriminant D =−283. So f is a product of distinct
irreducible polynomials in Zp[x] for all primes p 6=283. Suppose that we calculate
that modulo p = 61, the sequence {an}

∞

n=0 has period ` = 75660, which must be
the same as the order of ω as a unit in Z61[ω] =Z61[x]/〈 f 〉. We find that ` divides
neither p− 1 nor p2

− 1, but does divide p3
− 1. Theorem 9 implies that t = 3 is

the least common multiple of the degrees of the irreducible factors of f in Z61[x],
and we conclude that f must have factorization type [3, 1]. Modulo p = 71, the
same sequence has period ` = 1008. This time we find that ` does not divide
p− 1, but does divide p2

− 1. Now f could have factorization type either [2, 2]
or [2, 1, 1]. But since

(
−283

71

)
= 1, Stickelberger’s theorem implies that the number

of irreducible factors of f in Z71[x] has the same parity as k = 4, and so f has
factorization type [2, 2].

Remark. For computational purposes in this application, we can bypass direct
calculation of the period of a recursive sequence. As noted in the example, this
period ` is the same as the order of ω as a unit in a corresponding ring Zp[ω], so
that ` divides an integer n precisely when ωn

= 1. Powers of ω can be computed
very efficiently by the process of successive squaring. If we write n in its binary
expansion as

n = c0+ c1 · 2+ c2 · 22
+ c3 · 23

+ · · · ,
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where ci = 0 or 1 for all i , with only finitely many nonzero values of ci , then

ωn
= ωc0 · (ω2)c1 · (ω4)c2 · (ω8)c3 · · · .

Each power of ω in parentheses is the square of the preceding power of ω, and
only those values for which ci = 1 contribute to the product. Squares and other
products in

Zp[ω] = Zp[x]/〈 f 〉

are easily calculated by multiplying polynomials, replacing products by their re-
mainders on division by f , when necessary.

Our next theorem states that we can determine the factorization type of a poly-
nomial f of degree k ≤ 5 modulo most primes p (assuming that neither the
discriminant nor the constant coefficient of f is identically zero) from knowl-
edge of the discriminant of f and calculation of certain powers of ω in the ring
Zp[ω] = Zp[x]/〈 f 〉.

Theorem 11. Let f be a monic polynomial with integer coefficients, having degree
k ≤ 5 and discriminant D. Let p be a prime number that divides neither D nor the
constant coefficient of f . Let Zp[ω] =Zp[x]/〈 f 〉, and let t be the smallest positive
integer such that ωpt

−1
= 1 in Zp[ω]. Then the following statements are true about

the factorization of f in the ring Zp[x].

(1) If t = 1, then f is a product of k distinct linear polynomials.

(2) If t = 2, and p is odd and
( D

p

)
= 1, then f is a product of two distinct

irreducible quadratic polynomials and k− 4 linear polynomials.

(3) If t = 2, and p is odd and
( D

p

)
= −1, or p = 2 and D ≡ 5 (mod 8), then f

is a product of an irreducible quadratic polynomial and k − 2 distinct linear
polynomials.

(4) If t = 3, then f is a product of an irreducible cubic polynomial and k − 3
distinct linear polynomials.

(5) If t = 4, then f is a product of an irreducible quartic polynomial and k − 4
linear polynomials.

(6) If t = 5, then f is an irreducible quintic polynomial.

(7) If t = 6, then f is a product of an irreducible cubic polynomial and an irre-
ducible quadratic polynomial.

Remark. As defined, the integer t is the same as the order of the automorphism
σp in Aut(Zp[ω]), so must exist. It is understood that not all of the cases listed
above can occur for every value of k ≤ 5, nor for every prime p. For example, case
(2) is impossible when p= 2, since there are not two distinct irreducible quadratic
polynomials in Z2[x].
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Proof. The table lists the seven partitions [k1, k2, . . . , k j ] of k = 5.

[k1, k2, . . . , k j ] (−1)k− j t = lcm(k1, k2, . . . , k j )

[1, 1, 1, 1, 1] 1 1
[2, 1, 1, 1] −1 2
[3, 1, 1] 1 3
[2, 2, 1] 1 2
[4, 1] −1 4
[3, 2] −1 6
[5] 1 5

In the second column of the table, we note the parity of k− j by listing (−1)k− j ,
and in the third column, we list the least common multiple of the summands of the
partition, which we label as t . Theorem 9 implies that if a polynomial f of degree
five has factorization type [k1, k2, . . . , k j ], then t is the smallest positive integer for
which ωpt

−1
= 1 in Zp[ω] = Zp[x]/〈 f 〉, as in the statement of Theorem 11. The

table shows that t ≤ 6, and that if t 6= 2, the factorization type of f is determined
by the value of t . If t = 2, the factorization type of f is determined by t together
with the value of

( D
p

)
= (−1)k− j or D ≡ 5k− j (mod 8).

Removal of a term of 1, from those partitions containing 1, affects neither
(−1)k− j nor t . (If a 1 is removed, both k and j are decreased by one, so that
the value of k− j is unchanged.) So the first five rows of the table lead to the same
conclusion about polynomials of degree four; the first three rows imply the same
about polynomials of degree three; and so forth. �

We now state three corollaries of Theorem 11, which can be viewed as algo-
rithms for determining the factorization types of cubic, quartic, and quintic poly-
nomials modulo prime values. Here we take better advantage of the Legendre
symbol

( D
p

)
, which is easy to calculate for a given D and odd prime p, as a first

test to distinguish between factorization types. We omit the proofs, which follow
the same arguments from the table exhibited in the proof of Theorem 11.

Corollary 12. Let f be a monic polynomial of degree three with discriminant D,
let p be a prime number that divides neither D nor the constant coefficient of f ,
and let Zp[ω] = Zp[x]/〈 f 〉.

• If p is odd and
( D

p

)
= 1 or p = 2 and p ≡ 1 (mod 8), then:

(1) If ωp−1
= 1, then f has factorization type [1, 1, 1].

(2) If ωp−1
6= 1, then f has factorization type [3].

• If p is odd and
( D

p

)
=−1 or p = 2 and p ≡ 5 (mod 8), then:

(3) f has factorization type [2, 1].
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Corollary 13. Let f be a monic polynomial of degree four with discriminant D,
let p be a prime number that divides neither D nor the constant coefficient of f ,
and let Zp[ω] = Zp[x]/〈 f 〉.

• If p is odd and
( D

p

)
= 1 or p = 2 and p ≡ 1 (mod 8), then:

(1) If ωp−1
= 1, then f has factorization type [1, 1, 1, 1].

(2) If ωp−1
6= 1, but ωp2

−1
= 1, then f has factorization type [2, 2].

(3) If ωp2
−1
6= 1, then f has factorization type [3, 1].

• If p is odd and
( D

p

)
=−1 or p = 2 and p ≡ 5 (mod 8), then:

(4) If ωp2
−1
= 1, then f has factorization type [2, 1, 1].

(5) If ωp2
−1
6= 1, then f has factorization type [4].

Corollary 14. Let f be a monic polynomial of degree five with discriminant D, let
p be a prime number that divides neither D nor the constant coefficient of f , and
let Zp[ω] = Zp[x]/〈 f 〉.

• If p is odd and
( D

p

)
= 1 or p = 2 and p ≡ 1 (mod 8), then:

(1) If ωp−1
= 1, then f has factorization type [1, 1, 1, 1, 1].

(2) If ωp−1
6= 1, but ωp2

−1
= 1, then f has factorization type [2, 2, 1].

(3) If ωp2
−1
6= 1, but ωp3

−1
= 1, then f has factorization type [3, 1, 1].

(4) If ωp2
−1
6= 1 and ωp3

−1
6= 1, then f has factorization type [5].

• If p is odd and
( D

p

)
=−1 or p = 2 and p ≡ 5 (mod 8), then:

(5) If ωp2
−1
= 1, then f has factorization type [2, 1, 1, 1].

(6) If ωp2
−1
6= 1, but ωp4

−1
= 1, then f has factorization type [4, 1].

(7) If ωp4
−1
6= 1, then f has factorization type [3, 2].

Remark. If t is the order of σp in the group of automorphisms of Zp[ω], then
ωps
−1
= 1 if and only if t divides s. For example, in case (7) of Corollary 14, if

ωp4
−1
6= 1, we are also claiming that ωp2

−1
6= 1.

Remark. As an example to illustrate the efficiency of these algorithms, a computer
program written by the first author, based on Corollary 13, found the factorization
type of f (x)= x4

−x−1 modulo all primes p<10000 (p 6=283) in approximately
two seconds. On the same computer, a program to factor f in Zp[x] for the same
primes p, using brute force calculations, required four hours and 42 minutes to run.
(The second program confirmed all of the results predicted by the first program.)
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Polynomials of degree k > 5 cannot be distinguished from each other, in every
case, by the same data. For example, if a polynomial f of degree six satisfies(D( f )

p

)
=−1 and (ω f )

p−1
6= 1 but (ω f )

p2
−1
= 1,

then f could have factorization type either [2, 2, 2] or [2, 1, 1, 1, 1]. We conclude,
however, with some results that hold for any value of k.

Theorem 15. Let f be a monic polynomial of degree k with discriminant D, let p
be a prime number that divides neither D nor the constant coefficient of f , and let
Zp[ω] = Zp[x]/〈 f 〉.

(1) If ωp−1
= 1, then f is a product of k linear factors in Zp[x].

(2) If ωp2
−1
= 1, then all irreducible factors of f in Zp[x] have degree one or

two. The number of irreducible quadratic factors of f is even if and only if p
is odd and

( D
p

)
= 1 or p = 2 and D ≡ 1 (mod 8).

(3) If ωpq
−1
= 1 for some odd prime q, then all irreducible factors of f in Zp[x]

have degree one or q. This case can occur only when p is odd and
( D

p

)
= 1

or p = 2 and D ≡ 1 (mod 8).

Proof. Let the factorization type of f modulo p be [k1, k2, . . . , k j ], and let t =
lcm(k1, k2, . . . , k j ). If ωp−1

= 1, then t = 1, which is possible only when ki = 1
for 1≤ i ≤ j , so that j = k. If ωpq

−1
= 1 for some prime q , then t divides q. This

is possible only when there is some 0 ≤ ` ≤ j so that ki = q for i ≤ ` and ki = 1
for ` < i ≤ j . (We allow the possibility that ` = 0, so that t = 1.) In this case,
notice that k = ` · q + ( j − `), so that k − j = `(q − 1). If q = 2, then k − j has
the same parity as `. If q is odd, then k− j is even in every case. �
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The Gram determinant for plane curves
Józef H. Przytycki and Xiaoqi Zhu

(Communicated by Kenneth S. Berenhaut)

We investigate the Gram determinant of the pairing arising from curves in a
planar surface, with a focus on the disk with two holes. We prove that the
determinant based on n − 1 curves divides the determinant based on n curves.
Motivated by the work on Gram determinants based on curves in a disk and
curves in an annulus (Temperley–Lieb algebra of type A and B, respectively),
we calculate several examples of the Gram determinant based on curves in a disk
with two holes, and advance conjectures on the complete factorization of Gram
determinants.

1. Introduction

Gram matrices and Gram determinants. Let B be a finite set and R a commutative
ring. A pairing over B is a map B × B → R, denoted by 〈 · , · 〉. A very simple
case is the Kronecker delta,

〈i, j〉 = δi j :=

{
1 if i = j,
0 if i 6= j,

for i, j ∈ B.

Let b1, . . . , bn be a list of the elements of B, with bi 6= b j if i 6= j . The Gram
matrix of the pairing 〈 · , · 〉 is the n× n matrix

G = [〈bi , bj 〉]1≤i, j≤n,

and the Gram determinant is the determinant of this matrix.
The name is derived from the classical case where R is a field, B = {b1, . . . , bn}

is a set of points in a vector space V over R, and the pairing is given by an inner
product 〈 · , · 〉 on V . This situation is familiar; for instance, B is an orthonormal
basis of V if and only if V has dimension n and the pairing coincides with the
Kronecker delta described above.

MSC2000: 05A99, 57M99.
Keywords: Gram determinants, planar curves, noncrossing partitions, chromatic joins,

Temperley–Lieb.
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The Gram determinant plays a significant role in the classical case; for example,
a set of vectors B = {b1, . . . , bn} ⊂ V is linearly independent if and only if the
Gram determinant of B is nonzero.

In our situation B will be a certain set of equivalence classes arising from sets of
curves on a disk with holes. The ring R is a polynomial ring in many variables, and
the pairing describes the interaction between the sets of curves when two copies
of the disk are glued along their outer boundaries.1

The Gram matrix for a system of plane curves. Let Fn
0 be a unit disk with 2n

points on its boundary. Let Bn
0 be the set of all possible diagrams, up to deforma-

tion, in Fn
0 with n noncrossing chords connecting these 2n points. It is known that

|Bn
0 | is equal to the n-th Catalan number Cn :=

(2n
n

)
/(n+1); see [Stanley 1999],

for example. Accordingly, we will call Bn
0 the set of Catalan states.

Consider the following generalized setup. Let Fk ⊂ D2 be a plane surface with
k+1 boundary components, which are given distinct labels. In particular, F0= D2,
and for k ≥ 1, Fk is equal to D2 with k holes. Let Fn

k be Fk with 2n points,
a0, . . . , a2n−1, arranged counterclockwise along the outer boundary; see Figure 1,
left. Throughout this paper, we use ak and ak−1 to denote two adjacent points along
the outer boundary, where k is taken modulo 2n.

Let Bn
k be the set of all possible diagrams, up to equivalence, in Fn

k with n
noncrossing chords connecting these 2n points, where equivalence is defined as
follows: for each diagram b ∈ Bn

k , there is a corresponding diagram γ(b) ∈ Bn
0

obtained by filling the k holes in b. We call γ(b) the underlying Catalan state of b
(see Figure 1, right).

Figure 1. Left: notational conventions for Fn
k . Right: action of γ.

1A pairing over B extends to a bilinear form on the free R-module over B; this form is similar
to the inner product on a vector space. Note, however, that the inner product over a complex vector
space is linear in the first variable only, and conjugate-linear in the second; additionally, it is positive
definite and conjugate-symmetric (skew-symmetric). The corresponding bilinear form in the more
general setting need not be positive definite, symmetric, or conjugate-symmetric, although we will
see echos of these properties in our situation.
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Figure 2. List of diagrams in B2
= B2

2 .

A given diagram in Fn
k partitions Fk into n + 1 regions. Two diagrams are

equivalent if and only if they have the same underlying Catalan state and the labeled
holes are distributed in the same manner across regions. Accordingly, Bn

k has
elements (n+ 1)k−1

(2n
n

)
. See Figure 2 for the 18 diagrams in B2

2 .
We remark that if k = 0 or k = 1, two diagrams are equivalent only if they are

homotopic, but for k > 2, this need not be true; see Figure 3 for a counterexample.
The study of noncrossing partitions of n points has a long history in enumera-

tive combinatorics. Beyond purely combinatorial questions, noncrossing partitions
arise in the study of a number of problems lying at the intersection of combina-
torics and topology. Lickorish examines the matrix of a bilinear form defined
on noncrossing planar diagrams in a disk, motivated by the theory of 3-manifold
invariants. Motivated by the work of Birkhoff and Lewis [1946] on the four color
conjecture, Tutte [1991] introduced the matrix of chromatic joins.

In this paper, we define a pairing over Bn
k and investigate the Gram matrix of the

pairing. This concept is a generalization of a problem posed by W. B. R. Lickorish
[1991; 1997] for type A Gram determinants — those based on a disk, i.e., k = 0 —

Figure 3. Two nonisotopic but equivalent diagrams in F2
2 ; they

correspond to the same state in B2.
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and by Rodica Simion for type B Gram determinants [Schmidt 2004; Simion 2000]
(these are related to k = 1 and the Kauffman bracket skein module of an annulus;
see [Przytycki 1999]). Simion was motivated by Tutte’s work [1991; 1993] on
chromatic joins; see also [Chen and Przytycki 2008].

Significant research has been completed for the Gram determinants for type A
and B. In particular, Di Francesco [1998] and Westbury [1995] gave a closed
formula for the type A Gram determinant; a complete factorization of the type B
Gram determinant was conjectured by Gefry Barad, and a closed formula (quoted
in Theorem 7.4) was proved by Martin and Saleur [1993] and by Chen and Przy-
tycki [2009]. The type A Gram determinant was used by Lickorish to find an ele-
mentary construction of Reshetikhin–Turaev–Witten invariants of oriented closed
3-manifolds.

We specifically investigate the Gram determinant Gn of the bilinear form defined
over Bn

2 and prove that det Gn−1 divides det Gn for n> 1. Furthermore, we investi-
gate the diagonal entries of Gn and give a method for computing terms of maximal
degree in det Gn . We conclude the paper by briefly discussing generalizations of
the Gram determinant and presenting some open questions.

2. Definitions and basic facts for Bn
2

Consider Fn
2 , a unit disk with two holes, along with 2n points along the outer

boundary. Denote the holes in Fn
2 by X1 and Y1. To differentiate between them,

we will always place X1 to the left and Y1 to the right if labels are not present.
Let

Bn
:= Bn

2 =:
{
b1, . . . , b(n+1)(2n

n )
}

be the set of all possible diagrams with n noncrossing chords connecting these 2n
points, up to equivalence in Fn

2 .
Recall that in complex analysis an inversion (in the unit circle) is the involution

defined on the sphere S2
= C∪∞ by z↔ z/|z|2. Let X2 and Y2 be the inversions

of X1 and Y1, respectively, and let S = {X1, X2, Y1, Y2}. Given bi ∈ Bn , let b∗i
denote the inversion of bi . Given bi , b j ∈ Bn , we glue bi with b∗j along the outer
boundary, respecting the labels of the marked points. Since bi and b j each contains
n noncrossing chords, bi ◦ b∗j can have at most n closed curves. The resulting
diagram, denoted by bi ◦ b∗j , is a set of up to n closed curves in the 2-sphere
S2
= D2

∪ (D2)
∗ with four holes, X1, X2, Y1, Y2. (Since we glued along ∂D2, it is

no longer a boundary.) Each closed curve partitions the set S into two sets. Two
closed curves are of the same type if they partition S the same way.
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We define a pairing 〈 · , · 〉 over Bn by associating with bi , b j ∈ Bn a monomial
in the variables d, x1, x2, y1, y2, z1, z2, z3, as follows. The exponent of each vari-
able is obtained by counting the number of curves in bi ◦ b∗j that partition the set
{X1, X2, Y1, Y2} in the corresponding way, the correspondence being this:

x1 : {X1}, {X2,Y1,Y2} z1 : {X1, X2}, {Y1, Y2}

x2 : {X2}, {X1,Y1,Y2} z2 : {X1, Y1}, {X2, Y2}

y1 : {Y1}, {X1, X2,Y2} z3 : {X1, Y2}, {X2, Y1}

y2 : {Y2}, {X1, X2,Y1} d : ∅, {X1, X2,Y1,Y2}

Table 1. Indeterminates and partitions. In the monomial 〈bi , b j 〉,
the exponent of each variable is the number of curves in bi ◦ b∗j
that partition the set {X1, X2, Y1, Y2} in the given way.

Thus 〈bi , b j 〉 is a monomial of degree at most n. Some example paired diagrams,
with their corresponding monomials, are given in Figure 5.

We can now form the Gram matrix Gn = [gi j ] = [〈bi , b j 〉]1≤i, j≤(n+1)(2n
n )

of this
pairing. We write it explicitly for n = 1. Order the elements of B1 as in the first

Figure 4. Diagrams of six states b1, b2, b3, b4, b5, b6 ⊂ B3. The
indices are used in the examples, but are not intrinsic.

〈b2, b4〉= x1 〈b5, b2〉= x1x2 〈b6, b2〉=dz1 〈b1, b3〉= x2

Figure 5. Diagrams for bi ◦b j on S2 and the corresponding values
of 〈bi , b j 〉. Indices are as in Figure 4.
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Figure 6. Array of bi ◦ b∗j for bi , b j ∈ B1.

column of Figure 6 (we’re looking at the disk inside the dotted circle). Then we see
from the array of diagrams in Figure 6, each of which represents one pair (bi , b j ),
that the Gram matrix of the pairing is

G1 =


d y2 x2 z2

y1 z1 z3 x1

x1 z3 z1 y1

z2 x2 y2 d

 .
Therefore the Gram determinant is

det G1 = (dz1− z1z2− dz3+ z2z3− x1x2+ x2 y1+ x1 y2− y1 y2)

(dz1+ z1z2+ dz3+ z2z3− x1x2+ x2 y1− x1 y2+ y1 y2).

This paper is mostly devoted to exploring possible factorizations of det Gn , and
is the first step toward computing det Gn in full generality, which we conjecture to
have a nice decomposition.

Though the pairing (and hence the Gram matrix) is not symmetric, it is skew-
symmetric with respect to an certain involution of the ring R. (An involution is
isomorphism equal to its own inverse.) Specifically, given bi , b j ∈ Bn , we can
obtain b j ◦ b∗i from bi ◦ b∗j by inversion in the unit circle, which interchanges X1

with X2 and Y1 with Y2. Consequently, 〈b j , bi 〉 can be obtained from 〈bi , b j 〉

by interchanging x1 with x2 and y1 with y2, as these interchanges have the same
effect in the corresponding partition (see Table 1) as the hole interchange X1↔ X2,
Y1↔ Y2. Note that z1, z2, z3, and d are mapped to themselves under this variable
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Figure 7. Action of the embedding i0. Note the relabeling of the
boundary points: each ak on the left becomes ak+1 on the right,
and the two new points are labeled a0 and a2n+1.

swap, because their partitions are invariant under the interchange of holes. (See
also Theorem 3.3(4) below.)

To summarize, let ht be the involution of Gn that interchanges x1 with x2 and
y1 with y2. Then

〈bi , b j 〉 = ht(〈b j , bi 〉),

and the transpose of Gn is given by applying ht to each individual entry of Gn .

Embedding Bn in Bn+1. Let i0 : Bn
→ Bn+1 be the embedding (injection) de-

fined as follows: for bi ∈ Bn , the image i0(bi ) ∈ Bn+1 is given by adding to bi a
noncrossing chord close to the outer boundary and joining two points between a0

and a2n−1, as suggested in Figure 7. The two new points on the edge become the
new a0 and a2n+1, and each of the old points ak becomes ak+1. This relabeling
explicitly makes i0(bi ) an element of Bn+1.

Another embedding we will need, denoted by i1 : Bn
→ Bn+1 and illustrated in

Figure 8, is defined by a construction similar to that of i0, but this time the added
chord joins two points between the old a0 and a1, rather than between a0 and a2n−1.
These two new points become a0 and a1, while the old a0 becomes a2n+1 and each
ak , for 1< k < 2n, becomes ak+1.

More formally, we define i1 in terms of i0 by using the notion of a Dehn twist,
borrowed from surface topology and knot theory. Fix an annulus in the complex
plane — the region between two concentric circles, say R′ ≤ |z| ≤ 1. Imagine
keeping the inner boundary circle fixed, while the outer one is rotated clockwise
by an angle α. The stuff in between also gets rotated, by an amount that depends
on how far it is from each circle. The resulting homeomorphism of the annulus is

Figure 8. Action of the embedding i1.
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Figure 9. A Dehn twist rα, with α = π/4.

called a Dehn twist through an angle α. As an explicit formula we can take

rα(z)= z exp
(

iα
|z|−R′

1− R′

)
,

which says the amount of rotation experienced by a point is proportional to the
distance to the inner circle, growing from 0 at |z| = R′ to the full angle α at |z| = 1.
Figure 9 gives a qualitative picture in the case α = π/4.

Now we get back to the disk with two holes, Fn
2 . If we choose R′ close enough

to 1 that the holes X1 and Y1 lie within the circle of radius R′, we can extend rα to
a homeomorphism of Fn

2 by setting rα(z)= z for |z| ≤ R′.
Moreover, if α=π/n, then rα takes each of the 2n marked points ak on the edge

of Fn
2 to the next such point ak+1; consequently, it takes a system of noncrossing

curves in Fn
2 to another such. This defines the action of rπ/n on Bn; it is a permu-

tation because the inverse of a Dehn twist is also a Dehn twist through the opposite
angle.2 The first arrow in Figure 10 illustrates the action of rπ/4−1 on a certain
element of B4, and the last arrow shows the action of rπ/5 on an element of B5.

We can now express i1 in terms of i0 and Dehn twists:

i1 = rπ/(n+1) ◦ i0 ◦ rπ/n
−1.

This is illustrated in Figure 10. Note that the two Dehn twists are not quite inverse
to each other, since their angles differ.

Figure 10. The embedding i1, illustrated in Figure 8, is obtained
from i0 (Figure 7) by composing with appropriate Dehn twists.

2Obviously the repeated application of k Dehn twists through α is a Dehn twist by kα, so any
rkπ/n also induces an action on Bn . Note that the Dehn twist by a full 2π , though it is not the identity
homeomorphism, gives the identity map on Bn ; an example of its action was shown in Figure 3.
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3. More properties of the Gram determinant

Theorem 3.1. det Gn 6= 0 for all integers n ≥ 1.

Lemma 3.2. 〈bi , b j 〉 is a monomial of maximal degree if and only if γ(bi )= γ(b j ).

Proof. Recall that 〈bi , b j 〉 has maximal degree if and only if bi ◦ b∗j has n closed
curves; this in turn is equivalent to having each closed curve made of exactly two
arcs, one in bi and one in b∗j . In this situation, any two points connected by a chord
in bi must also be connected by a chord in b j , so γ(bi )= γ(b j ). �

Proof of Theorem 3.1. Assume 〈bi , b j 〉 is a monomial of maximal degree consisting
only of the variables d and z1. Because γ(bi )=γ(b j ) by Lemma 3.2, it follows that
any two points connected in bi are also connected in b j . Each connection in bi can
be drawn in four different ways with respect to X and Y , since there are two ways
to position the chord relative to each hole. Because 〈bi , b j 〉 is assumed to consist
only of the variables d and z1, it follows that each pair of arcs that form a closed
curve in bi ◦ b∗j either separates {X1, X2} from {Y1, Y2} or has {X1, X2, Y1, Y2} on
the same side of the curve. One can check each of the four cases to see that this
condition implies that any two arcs that form a closed curve in bi ◦ b∗j must be
equal, so bi = b j . Using Laplacian expansion, this implies that the product of the
diagonal of Gn is the unique summand of degree n(n+1)

(2n
n

)
in det Gn consisting

only of the variables d and z1. �

We need the following notation for the next theorem: let f : α1↔ α2 denote a
function f which acts on the entries of Gn by interchanging variables α1 with α2.
We can extend the domain of f to Gn . Let f (Gn) denote the matrix formed by
applying f to all the individual entries of Gn .

Define involutions h1, h2, h3, ht acting on the entries of Gn as follows:

h1 : x1↔ y1 z1↔ z3

h2 : x2↔ y2 z1↔ z3

h3 = h1h2 : x1↔ y1 x2↔ y2

ht : x1↔ x2 y1↔ y2

Theorem 3.3.

(1) det h1(G1)=−det G1, and for n > 1, det h1(Gn)= det Gn .

(2) det h2(G1)=−det G1, and for n > 1, det h2(Gn)= det Gn .

(3) det h3(Gn)= det Gn .

(4) det ht(Gn)= det Gn .

Proof. For assertion (1), note that h1(Gn) corresponds to exchanging the positions
of the holes X1 and Y1 for all bi ∈ Bn . b∗j is unchanged, so h1 can be realized by
a permutation of rows. For states where X1 and Y1 lie in the same region, their
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corresponding rows are unchanged by h1. The number of such states is given by
|Bn
|/(n+1). Thus, the total number of row transpositions is equal to

1
2

(
|Bn
| −
|Bn
|

n+ 1

)
=

n
2

(
2n
n

)
=

n(n+1)
2

Cn.

It is known that Cn is odd if and only if n = 2m
− 1 for some m; see for instance

[Deutsch and Sagan 2006]. Hence, Cn being odd implies that

n(n+ 1)
2

=
2m(2m

− 1)
2

= 2m−1(2m
− 1),

which is even for all m > 1. Thus, h1(Gn) can be obtained from Gn by an even
permutation of rows for n > 1, so det h1(Gn)= det Gn . Similarly, h1(G1) is given
by an odd number of row transpositions on G1, so det h1(G1)=−det G1.

Assertion (2) can be shown using the same argument, except that h2 corresponds
to interchanging the positions of the holes X2 and Y2, rather than X1 and Y1.

Since h3= h1h2, it follows immediately that det h3(Gn)= det Gn for n> 1. The
sum of two odd permutations is even, so the equality also holds for n = 1, which
proves (3). Assertion (4) follows because det ht(Gn)= det tGn = det Gn . �

Theorem 3.4. det Gn is preserved under the following involutions:

g1 : x1↔−x1 x2↔−x2 z2↔−z2 z3↔−z3

g2 : y1↔−y1 y2↔−y2 z2↔−z2 z3↔−z3

g3 : x1↔−x1 y2↔−y2 z1↔−z1 z2↔−z2

g1g2 : x1↔−x1 x2↔−x2 y1↔−y1 y2↔−y2

g1g3 : x2↔−x2 y2↔−y2 z1↔−z1 z3↔−z3

g2g3 : x1↔−x1 y1↔−y1 z1↔−z1 z3↔−z3

g1g2g3 : x2↔−x2 y1↔−y1 z1↔−z1 z2↔−z2

Proof. We first show that g1 can be realized by conjugating the matrix Gn by a
diagonal matrix Pn of all diagonal entries equal to ±1. Define the diagonal entries
of Pn by

pi i = (−1)q(bi ,Fx ),

where q(bi , Fx) is the number of times bi intersects Fx modulo 2; see Figure 11,
where Fx , F∗x , Fy, F∗y and F̃x are defined. Fx and Fy touch the unit circle between
a0 and a2n−1.

This proves the result about g1, because curves corresponding to the variables
x1, x2, z2 and z3 intersect Fx ∪ Fx

∗ in an odd number of points, whereas curves
corresponding to the variables d , z2, y1 and y2 cut it an even number of times.
More precisely, for

gi j = 〈bi , b j 〉 = dnd x1
nx1 x2

nx2 y1
ny1 y2

ny2 z1
nz1 z2

nz2 z3
nz3 ,
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Figure 11. Toward the proof of Theorem 3.4(1).

the entry g′i j of PnGn Pn
−1 satisfies

g′i j = pi i gi j p j j = pi i p j j gi j = (−1)q(bi ,Fx )+q(b j ,Fx )gi j = (−1)nx1+nx2+nz2+nz3 gi j

= dnd (−x1)
nx1 (−x2)

nx2 y1
ny1 y2

ny2 z1
nz1 (−z2)

nz2 (−z3)
nz3 .

The results about g2 and g3 follow by the same argument, but using Fy and
Fy ∪ Fy

∗ for g2 and F̃x and F̃x ∪ Fy
∗ for g3. The statements about compositions

follow directly from the first three. �

4. Terms of maximal degree in det Gn

Theorem 3.1 proves that the product of the diagonal entries of Gn is the unique
term of maximal degree, n(n+1)

(2n
n

)
, in det Gn consisting only of the variables d

and z1. More precisely, the product of the diagonal of Gn is given by

δ(n)=
∏

bi∈Bn

〈bi , bi 〉 = dα(n)zβ(n)1 ,

with α(n)+β(n)= n(n+ 1)
(2n

n

)
. The value of δ(n) for the first few n are

δ(1)= d2z2
1, δ(2)= d20z16

1 , δ(3)= d144z96
1 , δ(4)= d888z512

1 .

Computing the general formula for δ(n) can be reduced to a purely combinato-
rial problem. We conjectured that β(n)= (2n)4n−1 and this was proven by Louis
Shapiro (personal communication, 2008) using an involved generating function
argument. The result is stated formally below.

Theorem 4.1. δ(n)= dn(n+1)(2n
n )−(2n)4n−1

z(2n)4n−1

1 .

Let h(det Gn) denote the truncation of det Gn to terms of maximal degree, that
is, of degree n(n+1)

(2n
n

)
. Each term is a product of (n+1)

(2n
n

)
entries in Gn , each

of which is a monomial of degree n. By Lemma 3.2, 〈bi , b j 〉 has degree n if and
only if bi and b j have the same underlying Catalan state. Divide Bn into subsets
corresponding to underlying Catalan states, that is, into subsets A1, . . . , ACn , such
that for all bi , b j ∈ Ak , γ(bi )= γ(b j ). Then from Lemma 3.2 we have:
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Proposition 4.2. For 1≤ k≤Cn , let Ik be the set of indices such that Ak ={bi }i∈Ik ,
and let 〈Ak, Ak〉 be the submatrix of Gn whose rows and columns are indexed by
Ik . Then

h(det Gn)=

Cn∏
k=1

det〈Ak, Ak〉.

Note that the 〈Ak, Ak〉 are simply blocks in Gn , and their determinants can
be multiplied together to give the highest terms in det Gn . Finding the terms of
maximal degree in det Gn can give insight into the decomposition of det Gn for
large n.

Example 4.3. B1 corresponds to the single Catalan state in B1
0 . Thus, det G1 =

h(det G1), a homogeneous polynomial of degree 4 (given on page 154).

Example 4.4. We can divide B2 into two sets, corresponding to the two Catalan
states in B2

0 . Thus h(det G2) can be found by computing two 9×9 block determi-
nants. The two Catalan states in B2

0 are equivalent up to rotation, so the two block
determinants are equal. Specifically, we have:

h(det G2)= d6(x1x2+ x2 y1+ x1 y2+ y1 y2− dz1− z1z2− dz3− z2z3)
4

(−x1x2+ x2 y1+ x1 y2− y1 y2+ dz1− z1z2− dz3+ z2z3)
4

(−x1x2z1− y1 y2z1+ dz1
2
+ x2 y1z3+ x1 y2z3− dz3

2)2

(−2x1x2 y1 y2+ dx1x2z1+ dy1 y2z1− d2z1
2
+ dx2 y1z3+ dx1 y2z3− d2z3

2)2

= d6det G1
4(−x1x2z1− y1 y2z1+ dz1

2
+ x2 y1z3+ x1 y2z3− dz3

2)2

(−2x1x2 y1 y2+ dx1x2z1+ dy1 y2z1− d2z1
2
+ dx2 y1z3+ dx1 y2z3− d2z3

2)2.

Example 4.5. B3 can be divided into five subsets, corresponding to the five Catalan
states in B3

0 . We can thus find h(det G3) by computing the determinants of five
blocks in B3. The determinant of each block gives a homogeneous polynomial of
degree 240/5= 48. B3

0 forms two equivalence classes up to rotation, so there are
only two unique block determinants. The result is

h(det G3)

= h(det G2)
6det G1

−9d30w3w̄3

= d66(−x1x2+x2 y1+x1 y2−y1 y2+dz1−z1z2−dz3+z2z3)
15

(−x1x2−x2 y1−x1 y2−y1 y2+dz1+z1z2+dz3+z2z3)
15

(−x1x2z1−y1 y2z1+dz2
1+x2 y1z3+x1 y2z3−dz3

2)12

(2x1x2 y1 y2−dx1x2z1−dy1 y2z1+d2z1
2
−dx2 y1z3−dx1 y2z3+d2z3

2)12

(x1x2 y1 y2z1−dx1x2z1
2
−dy1 y2z1

2
+d2z1

3
−x1x2 y1 y2z3+dx2 y1z3

2
+dx1 y2z3

2
−d2z3

3)3

(x1x2 y1 y2z1−dx1x2z2
1−dy1 y2z2

1+d2z1
3
+x1x2 y1 y2z3−dx2 y1z3

2
−dx1 y2z3

2
+d2z3

3)3.
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5. det Gn−1 divides det Gn

We defined in Section 2 the embeddings i0, i1 : Bn
→ Bn+1. We now introduce

inverses of sort for these two maps.
Given bi ∈ Bn , imagine adding to bi a noncrossing chord connecting a0 and

a2n−1 outside the circle, and then pushing this chord inside the circle, together
with the points a0 and a2n−1; see Figure 12. With the removal of these two points
from the boundary, we relabel the remaining ones so the old ak becomes ak−1, for
0 < k < 2n − 1. So now there are 2n − 2 marked points on the boundary; this
establishes a projection Bn

→ Bn−1, with one caveat soon to be discussed. We
denote this projection by p0.

The procedure we’ve described works fine so long as bi does not include a chord
joining a0 and a2n−1. Indeed, if a0 and a2n−1 are connected respectively to a j and
ak in bi , the added exterior chord ends up, in p0(bi ), as part of a chord joining
a j−1 to ak−1 (see again Figure 12). However, a problem arises when bi has a
chord from a0 to a2n−1. In this case, the procedure creates a closed curve inside
the disc, coming from the two chords joining the old a0 to a2n−1, one internal and
one external. One could imagine erasing this loop to obtain an element of Bn−1,
but the loop carries information — it may enclose an arbitrary subset of {X1, Y1}.
So we keep it at present, and we make p0 take values in the set Bn−1 of equivalence
classes of diagrams in Fn−1

2 consisting of n − 1 chords joining marked points on
the boundary together with an optional closed loop disjoint from the boundary.

These observations can be summarized as follows:

Lemma 5.1. An element bi ∈ Bn is taken under p0 : Bn
→ Bn−1 to an element of

Bn−1 if and only if bi contains no chord connecting a0 and a2n−1.

A bit of experimentation will persuade the reader of the correctness of the next
result — which, incidentally, justifies our decision to expand the range of p0 to
include diagrams with a loop.

Proposition 5.2. For any bi ∈ Bn and b j ∈ Bn−1, we have

bi ◦ i0(b j )
∗
= p0(bi ) ◦ b∗j ,

where the equivalence relation implicit in this equality consists of isotopies of the
four-holed sphere, not necessarily preserving the unit disk.

Figure 12. Action of the projection p0.
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We’re gearing up toward a demonstration that the Gram determinant for n − 1
chords divides the Gram determinant for n chords. We need one more lemma.

Lemma 5.3. Fix bi ∈ Bn . There exists an element bα(i) ∈ Bn−1 and a monomial
q ∈ {1, d, x1, y1, z2} such that

〈p0(bi ), b j 〉 = q 〈bα(i), b j 〉 for all b j ∈ Bn−1.

Proof. If p0(bi )∈ Bn−1 we can take bα(i)= p0(bi ) and q= 1. Otherwise, it follows
from Lemma 5.1 that bi contains a chord connecting a0 and a2n−1, and p0(bi ) is
the union of some bα(i) ∈ Bn−1 with a loop enclosing a subset of {X1, Y1}. Let q
be the variable corresponding to the partition of the holes effected by extra loop,
according to Table 1. Then 〈p0(bα(i)), b j 〉 = q 〈bα(i), b j 〉 for any b j . �

For the remainder of the paper we adopt the following notation: if B and B ′ are
subsets of Bn , let

〈B, B ′〉 :=
[
〈bi , b j 〉

]
i : bi∈B
j : b j∈B ′

be the submatrix of Gn whose rows correspond to the elements of B and whose
columns correspond to the elements of B ′.

Theorem 5.4. For n > 1, det Gn−1 divides det Gn .

Proof. We use the easily checked equality (also proved in detail as Lemma 6.1)

〈i0(bi ), i1(b j )〉 = 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉 for all bi , b j ∈ Bn−1.

In the notation defined before the theorem, this means that 〈bi , Bn−1
〉 (the i-th row

of Gn−1) coincides with the row in the submatrix 〈Bn, i0(Bn−1)〉 of Gn given by
〈i1(bi ), i0(Bn−1)〉.

Reorder the elements of Bn so that 〈i0(Bn−1), i0(Bn−1)〉 forms the upper left
block of Gn and 〈i1(Bn−1), i0(Bn−1)〉 forms a block directly underneath it:

Gn =



〈i0(Bn−1), i0(Bn−1)〉 ∗ ∗ ∗ ∗ ∗

〈i1(Bn−1), i0(Bn−1)〉 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗


=



〈i0(Bn−1), i0(Bn−1)〉 ∗ ∗ ∗ ∗ ∗

Gn−1 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗


.

Lemma 5.3 implies that every row of 〈Bn, i0(Bn−1)〉 is a multiple of some row
in Gn−1. Let j1, . . . , jk denote the indices of all rows of 〈Bn, i0(Bn−1)〉 other
than those in 〈i1(Bn−1), i0(Bn−1)〉. Let G ′n be the matrix obtained by properly
subtracting multiples of rows in 〈i1(Bn−1), i0(Bn−1)〉 from rows j1, . . . , jk of Gn
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so that the submatrix obtained by restricting G ′n to rows j1, . . . , jk and columns
corresponding to states in i0(Bn−1) is equal to 0:

G ′n =



0 ∗ ∗ ∗ ∗ ∗

Gn−1 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗


.

Thus, G ′n restricted to the columns corresponding to states in i0(Bn−1) contains
precisely n

(2n−2
n−1

)
nonzero rows, each equal to some unique row of Gn−1. The

determinant of this submatrix is equal to det Gn−1. Since det Gn−1 divides det G ′n
and det G ′n = det Gn , this completes the proof. �

6. Further relations between det Gn−1 and det Gn

As noted in the previous proof, there is a submatrix of Gn equal to Gn−1. We
will now focus on identifying multiple nonoverlapping submatrices in Gn equal to
multiples of Gn−1. This will help in simplifying the computation of det Gn . We
start with a detailed justification of the first assertion in the proof of Theorem 5.4:

Lemma 6.1. For any bi , b j ∈ Bn−1, 〈i0(bi ), i1(b j )〉 = 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉.

Proof. We begin with the equality 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉. By Proposition 5.2,
i1(bi ) ◦ i0(b j )

∗
= p0i1(bi ) ◦ b∗j , so it suffices to prove that

p0i1(bi )= p0rπ/n i0rπ/(n−1)
−1(bi )= bi .

This is demonstrated pictorially in Figure 13.

Figure 13. Proof that p0 B i1 is the identity.
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Thus, 〈i1(bi ), i0(b j )〉 = 〈bi , b j 〉. Recall that 〈bi , b j 〉 = ht(〈b j , bi 〉). From this
and the previous equality, it follows that

〈i0(bi ), i1(b j )〉 = ht(〈i1(b j ), i0(bi )〉)= ht(〈b j , bi 〉)= ht
2(〈bi , b j 〉)= 〈bi , b j 〉. �

Corollary 6.2. 〈i0(Bn−1), i1(Bn−1)〉 = 〈i1(Bn−1), i0(Bn−1)〉 = Gn−1.

Lemma 6.3. For any bi , b j ∈ Bn−1,

〈i0(bi ), i0(b j )〉 = 〈i1(bi ), i1(b j )〉 = d〈bi , b j 〉.

Proof. i0(bi ) ◦ i0(b j )
∗ is composed of bi ◦ b∗j in addition to a chord close to the

boundary glued with its inverse. These two chords form a trivial loop. Thus,
〈i0(bi ), i0(b j )〉 = d〈bi , b j 〉 for all bi , b j ∈ Bn−1.

By symmetry, 〈i1(Bn−1), i1(Bn−1)〉 = dGn−1. �

Corollary 6.4. 〈i0(Bn−1), i0(Bn−1)〉 = 〈i1(Bn−1), i1(Bn−1)〉 = dGn−1.

Using these facts, we can construct from Gn a (|Bn|−2|Bn−1|)×(|Bn|−2|Bn−1|)

matrix whose determinant is equal to

det Gn

(1− d2)n(
2n−2
n−1 )

(det Gn−1)
2.

This allows us to compute det Gn with greater ease, assuming we know det Gn−1.
This process is shown in the next theorem.

Theorem 6.5. There is a nonnegative integer3 k such that, for all integers n > 1,

det Gn−1
2 divides det Gn(1− d2)k .

Proof. Order the elements of Bn (or equivalently, the rows and columns of Gn), as
shown in Theorem 5.4. Apply the procedure from Theorem 5.4 to construct G ′n ,
whose form is roughly

G ′n =



0 (1−d2)Gn−1 ∗ ∗ ∗ ∗

Gn−1 dGn−1 ∗ ∗ ∗ ∗

0
0
0
0

∗

∗

∗

∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


.

Consider the block in G ′n whose columns correspond to states in i1(Bn−1) and
whose rows correspond to states in neither i0(Bn−1) nor i1(Bn−1) (boxed above).
Every row in this submatrix is a linear combination of two rows from Gn−1. More

3Clearly this integer is bounded above by (n+ 1)
(2n

n
)
, or even better, by |Bn

| − 2|Bn−1
|. Better

bounds are possible, but we do not address them in this paper.
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precisely, each row is of the form a1l1− a2dl2, where l1 and l2 are two rows, not
necessarily distinct, in Gn−1, and a1, a2 ∈ {1, d, x1, y1, z2}. If we assume 1− d2

is invertible in our ring (for example, if we consider a ring of rational functions),
then each row is a linear combination of two rows from (1− d2)Gn−1. We then
simplify G ′n as follows.

Let G ′′n be the matrix obtained by properly subtracting linear combinations of
the first n

(2n−2
n−1

)
rows of G ′n from the rows which correspond to states in neither

i0(Bn−1) nor i1(Bn−1) so that the submatrix obtained by restricting G ′′n to columns
corresponding to states in i1(Bn−1) and rows corresponding to states in neither
i0(Bn−1) nor i1(Bn−1) is equal to 0:

G ′′n =



0 (1− d2)Gn−1 ∗ ∗ ∗ ∗

Gn−1 dGn−1 ∗ ∗ ∗ ∗

0
0
0
0

0
0
0
0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


.

The block decomposition so far proves that det G ′′n equals (1−d2)n(
2n−2
n−1 )(det Gn−1)

2

times the determinant of the boxed block, which we denote by Gn . The latter
contains a power of (1− d2)−1, whose degree is unspecified. Thus,

det Gn−1
2 divides det G ′′n(1− d2)k,

for some integer k ≥ 0. We remind the reader that G ′′n is obtained from G ′n via
determinant-preserving operations, and hence det G ′n = det Gn . �

Note that if det Gn has fewer than n
(2n−2

n−1

)
powers of (1− d2)−1, then

det Gn−1
2 divides det Gn.

It remains an open problem as to whether the former is true. For an example of
this decomposition, we mention the equality

det G2 =
det G2

(1− d2)4det G1
2 .

7. Future directions

In this section, we discuss briefly generalizations of the Gram determinant and
present a number of open questions and conjectures.

The case of a disk with k holes. We can generalize our setup by considering Fn
k , a

unit disk with k holes, in addition to 2n points, a0, . . . , a2n−1, arranged in a similar
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way to points in Fn
2 . For bi , b j ∈ Bn

k , let bi◦b∗j be defined in the same way as before.
Each paired diagram bi ◦b∗j consists of up to n closed curves on the 2-sphere with
2k holes. Let S denote the set of all 2k holes. We differentiate between the closed
curves based on how they partition S. We define a bilinear form by counting the
multiplicities of each type of closed curve in the paired diagram. In the case k = 2,
we assigned to each paired diagram a corresponding element in a polynomial ring
of eight variables, each variable representing a type of closed curve. In the general
case, the number of types of closed curves is equal to

2|S|

2
=

22k

2
= 22k−1,

so we can define the Gram matrix of the bilinear form for a disk with k holes
and 2n points with (n+ 1)k−1

(2n
n

)
× (n+ 1)k−1

(2n
n

)
entries, each belonging to a

polynomial ring of 22k−1 variables. We denote this Gram matrix by G Fk
n . For n= 1

and k= 3, we can easily write this 8×8 Gram matrix. For purposes of notation, let
us denote the holes in Fn

0,3 by ∂1, ∂2 and ∂3, and their inversions by ∂−1, ∂−2 and
∂−3, respectively. Hence, each closed curve in the surface encloses some subset
of S= {∂1, ∂−1, ∂2, ∂−2, ∂3, ∂−3}. Let xa1,a2,a3 denote a curve separating the set of
holes {∂a1, ∂a2, ∂a3} from S−{∂a1, ∂a2, ∂a3}. We can similarly define xa1,a2 and xa1 .
The Gram matrix is then

G F3
1 =



d x−3 x−2 x−2,−3 x−1 x−1,−3 x−1,−2 x1,2,3

x3 x3,−3 x−2,3 x1,−1,2 x−1,3 x1,2,−2 x1,2,−3 x1,2

x2 x2,−3 x2,−2 x1,−1,3 x−1,2 x1,−2,3 x1,3,−3 x1,3

x2,3 x1,−1,−2 x1,−1,−3 x1,−1 x1,−2,−3 x1,−2 x1,−3 x1

x1 x1,−3 x1,−2 x1,−2,−3 x1,−1 x1,−1,−3 x1,−1,−2 x2,3

x1,3 x1,3,−3 x1,−2,3 x−1,2 x1,−1,3 x2,−2 x2,−3 x2

x1,2 x1,2,−3 x1,2,−2 x1,−3 x1,−1,2 x−2,3 x3,−3 x3

x1,2,3 x−1,−2 x−1,−3 x−1 x−2,−3 x−2 x−3 d


.

It would be tempting to conjecture that the determinant of the matrix above has
a straightforward decomposition of the form (u + v)(u − v). We found that this
is the case when any two variables of the form xa1 and xa1,a2 are replaced by 0;
explicitly, we have, with a1, a2 ∈ {−3,−2,−1, 1, 2, 3},

det G F3
1 |xa1=xa1,a2=0

=−(d − x1,2,3)(d + x1,2,3)

× (x1,2,−2x1,−1,3x1,−1,−2+ x1,3,−3x1,−1,2x1,−1,−3− x1,2,−3x1,−1,3x1,−1,−3

− x1,−1,−2x1,−1,−2x1,−2,3− x1,2,−2x1,3,−3x1,−2,−3+ x1,2,−3x1,−2,3x1,−2,−3)
2.

In general, however, preliminary calculations suggest that det G F3
n may be an irre-

ducible polynomial.
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Finally, we observe that many of the results we have proved for det G F2
n also

hold for general det G Fk
n . For example, det G Fk

n is nonzero and divides det G Fk+1
n .

In the specific case of det G F3
n , we conjecture that the diagonal term is of the form

δ(n)= dα(n)(x1,−1x2,−2x3,−3)
β(n), where

α(n)+ 3β(n)= n(n+ 1)2
(2n

n

)
and β(n)= n(n+ 1)4n−1.

Speculation on the factorization of det Gn. Section 5 establishes that

det Gn−1 divides det Gn,

but we conjecture that there are many more powers of det Gn−1 in det Gn . Indeed,
even in the base case, det G1

k divides det G2 for k up to 4. Finding the maximal
power of det Gn−1 in det Gn in the general case is an open problem and can be
helpful toward computing the full decomposition of det Gn .

Examining the terms of highest degree in det Gn , that is, h(det Gn) may also
yield helpful hints toward the full decomposition. In particular, we note that

det G1
4 divides h(det G2) and

h(det G2)
6

det G1
9 divides h(det G3).

We can conjecture that (det G2
6)/(det G1

9) divides det G3, from which it fol-
lows that det G1

15 divides det G3. We therefore offer the following conjecture:

Conjecture 7.1. det G1
( 2n

n−1) divides det Gn for n ≥ 1.

The next conjecture is motivated by observations of det G1 and det G2.

Conjecture 7.2. Let Hn denote the product of factors of det Gn not in det Gn−1.
Then Hn−1

2n divides det Gn .

Conjecture 7.3. Let, as before, R = Z[d, x1, x2, y1, y2, z1, z2, z3], and let R1 be
the subgroup of R of elements invariant under h1, h2, ht , and g1, g2, g3. Similarly,
let R2 be the subgroup of R composed of elements w ∈ R such that

h1(w)= h2(w)=−w and ht(w)= g1(w)= g2(w)= g3(w).

Then:

(1) det Gn = u2
− v2, where u ∈ R1 and v ∈ R2.

(2) det Gn =
∏
α(u

2
α−v

2
α), where uα ∈ R1 and vα ∈ R2, and uα−vα and uα+vα

are irreducible polynomials.

(3) det Gn =
∏n

i=1(ui
2
− vi

2)(
2n

n−i), where ui ∈ R1 and vi ∈ R2.

Notice that if w1 = u2
1− v

2
1 and w2 = u2

2− v
2
2 , then

w1w2 = (u1u2+ v1v2)
2
− (u1v2+ u2v1)

2.
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We have little confidence in Conjecture 7.3(3). It is closely, maybe too closely,
influenced by the case of det G F1

n , the Gram determinant of type B:

Theorem 7.4 [Martin and Saleur 1993; Chen and Przytycki 2009].

det G F1
n =

n∏
i=1

(
Ti (d)2− a2)( 2n

n−i) ,

where Ti (d) is the Chebyshev polynomial of the first kind (recursively defined by
T0 = 2, T1 = d, Ti = d Ti−1−Ti−2), and d and a correspond to the trivial and the
nontrivial curves in the annulus F1, respectively.
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The cardinality of the value sets modulo n of
x2
+ x−2 and x2

+ y2

Sara Hanrahan and Mizan Khan

(Communicated by Filip Saidak)

Consider the modular circle Ca,n={(x, y) : x2
+y2
≡a (mod n), 0≤ x, y≤n−1}

and the modular hyperbola Hn = {(x, y) : xy ≡ 1 (mod n), 0 ≤ x, y ≤ n − 1}.
We provide explicit formulas for the cardinality of the sets

{a mod n : Ca,n ∩Hn 6=∅} and {a mod n : Ca,n 6=∅}.

Introduction

Let Hn denote the modular hyperbola

{(x, y) : xy = 1 (mod n), 0≤ x, y ≤ n− 1}.

This simply defined discrete set of points has connections to a variety of other
mathematical topics including Kloosterman sums, consecutive Farey fractions, and
quasirandomness. These connections have inspired a closer look at the distribution
of the points of Hn , and many questions remain open. For a discussion of recent
results and open problems on modular hyperbolas, see [Shparlinski 2007].

The propensity of the points on Hn to collect on lines of slope ±1 was inves-
tigated in [Eichhorn et al. 2009]. In the course of that investigation, formulas for
the cardinalities of the sets

{(x − y) mod n : (x, y) ∈Hn} and {(x + y) mod n : (x, y) ∈Hn},

were derived. The techniques used to determine these formulas are elementary —
within the grasp of an undergraduate mathematics major who has had a course in
number theory or abstract algebra.

In this article we investigate the intersection of Hn with the modular circles

Ca,n = {(x, y) : x2
+ y2
≡ a (mod n), 0≤ x, y ≤ n− 1},
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and in particular we determine the cardinality of the set

{a mod n : Ca,n ∩Hn 6=∅} = {(x2
+ y2) mod n : (x, y) ∈Hn}.

Figure 1 contrasts the modular circle C1,997 with the modular hyperbola H997.
Figure 2 shows the two superimposed, and the intersection C1,997 ∩H997.

This short note is a concise version of SH’s honors thesis. It is also a natural
addendum to [Eichhorn et al. 2009], as we used the formulas found there to prove
our results.

Figure 1. Left: The modular hyperbola H997. Right: The modular
circle C1,997.

Figure 2. Left: Superposition of the preceding two sets. Points of
the modular circle are represented by crosses; those of the modular
hyperbola by solid circles. Right: The intersection C1,997∩H997=

{(91, 252), (252, 91), (745, 906), (906, 745)}.
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1. Preliminary results

Let f ∈ Z[x1, . . . , xk] and let S ⊆ Zk
n (where Zn = Z/nZ is the set of integers

modulo n). Then I ( f, S) will denote the set

I ( f, S)= { f (x1, . . . , xk) mod n : (x1, . . . , xk) ∈ S}.

We also define two subsets of I ( f, S):

I ′( f, S)= {a : a ∈ I ( f, S), gcd(a, n)= 1},
I ′′( f, S)= {a : a ∈ I ( f, S), gcd(a, n) 6= 1}.

Our first result is that the quantity #I ( f,Hn) is a multiplicative function of n.
Furthermore, by replacing each occurrence of Hn with Z2

n in the statement and
proof of the theorem, we get that #I ( f,Z2

n) is also a multiplicative function of n.

Proposition 1. Let f ∈ Z[x, y] and define fn :Hn→ Zn by

fn((x, y))= f (x, y) mod n.

If n = a · b with gcd(a, b)= 1, then

#I ( f,Hn)= #I ( f,Ha) · #I ( f,Hb).

It follows that if n =
∏m

i=1 pei
i is the canonical factorization of n, then

#I ( f,Hn)=

m∏
i=1

#I ( f,Hpei
i
). (1)

Proof. The Chinese remainder theorem says that the map r :Zn→Za×Zb given by

r(x)= (x mod a, x mod b)

is an isomorphism of rings. Hence the map R :Hn→Ha ×Hb defined by

R((x, y))= ((x mod a, y mod a), (x mod b, y mod b))

is a bijection. The result now follows from the observation that the diagram

Hn
R

−−−→ Ha ×Hb

fn

y y fa× fb

Zn
r

−−−→ Za ×Zb.

commutes. �

Thus we have reduced the problem of determining formulas for #I (x2
+ y2,Hn)

(or #I (x2
+ y2,Z2

n)) to determining them for prime powers. From this point, we
shall refer to the set I (x2

+ y2,Hn) as I (x2
+ x−2,Zn). All of our formulas were



174 SARA HANRAHAN AND MIZAN KHAN

discovered through extensive numerical experimentation with Maple. Maple was
the most valuable research tool at our disposal — only in discovering the formu-
las, but also in the proving stage. In the remainder of this section, we list the
mathematical results we need to prove these formulas.

It is more convenient to work with the value set I ((x + x−1)2,Zn) than with
I (x2
+ x−2,Zn). The following lemma justifies the change.

Lemma 2. For any positive integer n,

#I (x2
+ x−2,Zn)= #I ((x + x−1)2,Zn). (2)

Proof. The map z 7→ (z + 2) mod n defines a bijection between I (x2
+ x−2,Zn)

and I ((x + x−1)2,Zn). �

We next state a basic criterion on the solvability of quadratic congruences mod-
ulo prime powers: x2

≡ a (mod pt).

Proposition 3 [Ireland and Rosen 1982, Propositions 4.2.3, 4.2.4, p. 46]. Let p be
prime and let a be an integer such that gcd(a, p)= 1.

(1) Suppose p > 2. If the congruence x2
≡ a (mod p) is solvable, then for every

t ≥ 2 the congruence x2
≡ a (mod pt) is solvable with precisely 2 distinct

solutions.

(2) Suppose p = 2. If the congruence x2
≡ a (mod 23) is solvable, then for every

t ≥ 3 the congruence x2
≡ a (mod 2t) is solvable with precisely 4 distinct

solutions.

Proposition 4 [Stangl 1996]. Let p be an odd prime. Then

#I (x2,Zpt )=
pt+1

2(p+ 1)
+ (−1)t−1 p− 1

4(p+ 1)
+

3
4
. (3)

For the special case p = 2 we have

#I (x2,Z2t )=
2t−1

3
+
(−1)t−1

6
+

3
2
, t ≥ 2. (4)

Proposition 5 [Eichhorn et al. 2009].

#I (x + x−1,Zpt )=
(p− 3)pt−1

2
+

2pt−1
+ (−1)t−1(p− 1)

2(p+ 1)
+

3
2
. (5)

2. The formulas for #I ((x+ x−1)2, Zpt )

The central result of this paper is as follows.
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Theorem 6. For p = 2 and t ≥ 7,

#I ((x + x−1)2,Z2t )=
2t−7

3
+
(−1)t−1

6
+

3
2
. (6)

If p ≡ 1 (mod 4) then

#I ((x + x−1)2,Zpt )=
(p− 5)pt−1

4
+

2pt−1
+ (−1)t−1(p− 1)

2(p+ 1)
+

3
2
. (7)

If p ≡ 3 (mod 4) then

#I ((x + x−1)2,Zpt )=
(p− 3)pt−1

4
+

2pt−1
+ (−1)t−1(p− 1)

4(p+ 1)
+

3
4
. (8)

The proof occupies most of this section.

Proof of Theorem 6, case p > 2. We will use the squaring map modulo pt :

Q : I (x + x−1,Zpt )→ I ((x + x−1)2,Zpt ), Q(z)= z2 mod pt .

We note that it preserves coprimeness with p:

Q(I ′(x + x−1,Zpt ))= I ′((x + x−1)2,Zpt ),

Q(I ′′(x + x−1,Zpt ))= I ′′((x + x−1)2,Zpt ).

Proposition 7. Let p be an odd prime. For any a ∈ I ′((x + x−1)2,Zpt ), we have
#Q−1({a})= 2, and consequently

#I ′((x + x−1)2,Zpt )= #I ′(x + x−1,Zpt )/2. (9)

Proof. Let a be an arbitrary element of I ′((x + x−1)2,Zpt ). There exists a point
(x1, y1) ∈Hpt such that

(x1+ y1)
2
≡ a (mod pt).

Since gcd(x1+ y1, p)= 1,

x1+ y1 6≡ −(x1+ y1) (mod pt);

hence the two distinct elements of I ′((x + x−1)2,Zpt ) that Q maps to a are

(x1+ y1) (mod pt) and −(x1+ y1) (mod pt).

By Proposition 3, the congruence x2
≡ a (mod pt) has at most two solutions and

we conclude that #Q−1({a})= 2. �

Proposition 8.

#I ′′(x + x−1,Zpt )=

{
pt−1 if p ≡ 1 (mod 4),
0 if p ≡ 3 (mod 4).

(10)
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Consequently, when p ≡ 1 (mod 4),

I ′′(x + x−1,Zpt )= {kp : k = 0, 1, . . . , pt−1
− 1}.

Proof. Define spt :Hpt → Zpt by spt ((x, y))= (x + y) mod pt and let

H′′pt = {(x, y) : (x, y) ∈Hpt with spt ((x, y)) ∈ I ′′(x + x−1,Zpt )}.

If (x, y)∈H′′pt , then x+ y= 0 (mod p) and consequently x2
=−1 (mod p). Since

−1 is a quadratic residue modulo p if and only if p ≡ 1 (mod 4), we obtain the
second part of (10).

We now restrict our attention to primes p that are congruent to 1 modulo 4.
Since spt (H′′pt ) = I ′′(x + x−1,Zpt ), we prove the first part of (10) by proving the
following two assertions:

(i) #s−1
pt ({a})= 2 for any a ∈ I ′′(x + x−1,Zpt ).

(ii) #H′′pt = 2pt−1.

The proof of (i) is as follows. Let (r, s) ∈ s−1
pt ({a}). Then (2r −a) and (2s−a)

are two distinct roots of the congruence

x2
≡ (a2

− 4) (mod pt).

Since p | a, we have gcd(a2
− 4, p)= 1. Hence by Proposition 3

x2
≡ (a2

− 4) (mod pt)

cannot have more than two roots. Consequently s−1
pt ({a})= {(r, s), (s, r)}.

We now prove (ii). Let (r, s) be an arbitrary element of H′′pt and let

r = d0+ d1 p+ d2 p2
+ · · ·+ dt−1 pt−1

be the expansion of r in base p. There are only two possible choices for d0,
specifically, the two roots of x2

≡−1 (mod p), and for each of the other di ’s there
are p possible choices: 0, 1, . . . , p−1. So there are 2pt−1 possible r ’s. Since s is
completely determined by the choice of r , we conclude that #H′′pt = 2pt−1. �

Proposition 9. If p ≡ 1 (mod 4) then

#I ′′((x + x−1)2,Zpt )=
2pt−1

+ (−1)t−1(p− 1)
4(p+ 1)

+
3
4
. (11)

Proof. By Proposition 8

I ′′(x + x−1,Zpt )= {kp : 0≤ k ≤ pt−1
− 1}.
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Consequently,

I ′′((x + x−1)2,Zpt )= Q(I ′′(x + x−1,Zpt ))

= Q({kp : 0≤ k ≤ pt−1
− 1})= { j2 mod pt

: p | j}.

Therefore,

#I ′′((x + x−1)2,Zpt )= #{k2 mod pt
}− #{k2 mod pt

: gcd(k, p)= 1}.

Combining Stangl’s formula (3) with the standard result that the number of qua-
dratic residues modulo pt is (pt

− pt−1)/2, we obtain

#I ′′((x + x−1)2,Zpt )=
2pt−1

+ (−1)t−1(p− 1)
4(p+ 1)

+
3
4
,

which proves Proposition 9. �

We are now ready to prove formulas (7) and (8). We have

#I ((x + x−1)2,Zpt )

= #I ′((x + x−1)2,Zpt )+ #I ′′((x + x−1)2,Zpt )

=
#I ′(x + x−1,Zpt )

2
+ #I ′′((x + x−1)2,Zpt )

=
#I (x + x−1,Zpt )

2
−

#I ′′(x + x−1,Zpt )

2
+ #I ′′((x + x−1)2,Zpt ).

Formula (5) is

#I (x + x−1,Zpt )=
(p− 3)pt−1

2
+

2pt−1
+ (−1)t−1(p− 1)

2(p+ 1)
+

3
2
.

If p ≡ 3 (mod 4), then #I ′′(x + x−1,Zpt ) = #I ′′((x + x−1)2,Zpt ) = 0 by (10). If
p ≡ 1 (mod 4), then

#I ′′(x + x−1,Zpt )= pt−1

and

#I ′′((x + x−1)2,Zpt )=
2pt−1

+ (−1)t−1(p− 1)
4(p+ 1)

+
3
4
,

by (10) and (11). We complete the proof with simple algebraic computations. �

Proof of Theorem 6, case p = 2. Interestingly this was the most difficult and time
consuming part. It was only through experimenting with Maple that we discovered
the map f (defined below) that allowed us to prove the formula for powers of 2.

Proposition 10. Let t ≥ 3. The image of the map

f : I (x2,Z2t )→ {0, 1, . . . , 2t+6
− 1}
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given by
f (k2)= (64k2

+ 4) mod 2t+6

is I ((x + x−1)2,Z2t+6). Since f is injective we conclude that

#I ((x + x−1)2,Z2t+6)= #I (x2,Z2t ). (12)

Proof. First we show that I ((x + x−1)2,Z2t+6) ⊆ Image( f ). Let (x, y) ∈ H2t+6 .
We can write

x = 8x1+ a and y = 8y1+ a,

with 0≤ x1, y1< 2t+3 and a= 1, 3, 5 or 7. (We are using the fact that each element
in Z∗8 is its own inverse.) The following calculation now shows that (x + y)2

mod 2t+6
∈ Image( f ).

(x + y)2 = (8x1+ 8y1+ 2a)2

= 64x2
1 − 128x1 y1+ 64y2

1 + 256x1 y1+ 32x1a+ 32y1a+ 4a2

= 64(x1− y1)
2
+ 4(64x1 y1+ 8x1a+ 8y1a+ a2)

= 64(x1− y1)
2
+ 4xy

≡ (64(x1− y1)
2
+ 4) (mod 2t+6).

To show the reverse inclusion, let k2
∈ I (x2,Z2t ). By Proposition 3 the congru-

ence
x2
≡ 16k2

+ 1 (mod 2n)

has a solution for all values of n. Let l be any integer such that l2
= 16k2

+ 1
(mod 2t+6), and let

x = (l − 4k) mod 2t+6, y = (l + 4k) mod 2t+6.

The immediate observations that (x, y) ∈H2t+6 and

(x + y)2 ≡ 4l2
≡ 64k2

+ 4 (mod 2t+6)

complete the proof. �

Now the formula (6) for #I ((x+ x−1)2,Z2t ) is obtained by combining (2), (12)
and (16). This concludes the proof of Theorem 6. �

We can also derive the formula for #I (x2
+ x−2,Zp) as a special case of an old

formula for pairs of quadratic residues.

Theorem 11 [Berndt et al. 1998, Theorem 6.3.1, page 197]. Let p be an odd prime
and let c be an integer relatively prime to p. Let ε1 =±1 and ε2 =±1. Then

#
{

n : 0≤ n < p,
( n

p

)
= ε1,

(n+c
p

)
= ε2

}
=

1
4

{
p− 2ε1

(
−c
p

)
− ε2

( c
p

)
− ε1ε2

}
. (13)
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The special case of this formula with ε1 = ε2 = c = 1 was first published by
Aladov in 1896. The connection between (13) and #I (x2

+ x−2,Zp) is as follows.

Theorem 12. Let a ∈ Z with gcd(a2
− 4, n)= 1. Then Ca,n ∩Hn 6=∅ if and only

if for every prime, p, in the canonical factorization of n we have(a−2
p

)
=

(a+2
p

)
= 1. (14)

Consequently,

#I (x2
+ x−2,Zp)= #

{
a : 0≤ a < p,

(a−2
p

)
=

(a+2
p

)
= 1

}
+ 1.

Proof. For the “only if” part, let (r, s) ∈ Ca,n ∩Hn and let p be an arbitrary prime
divisor of n. So, (r − s)2 ≡ a − 2 (mod p) and (r + s)2 ≡ a + 2 (mod p), which
leads immediately to (14).

To prove the converse, let n =
∏t

i=1 pei
i be the canonical factorization of n. By

Proposition 3, we can lift the square roots (modulo p) of (a−2) and (a+2) to the
ei th power, pei

i . Let si =
√

a− 2 (mod pei
i ), and ri =

√
a+ 2 (mod pei

i ). Then

2−1
· (ri + si , ri − si ) ∈ Cpei

i
∩Hpei

i
,

where 2−1 denotes the inverse of 2 modulo pei
i . Now invoke the Chinese remainder

theorem to determine integers r and s such that

r ≡ ri (mod pei
i ) and s ≡ si (mod pei

i ) for i = 1, . . . , t.

Clearly (r, s) ∈ Cn ∩Hn. �

3. The formulas for #I (x2+ y2, Z2
pt )

We now determine the formulas for #I (x2
+ y2,Z2

pt ) to contrast them to

#I (x2
+ x−2,Zpt ).

Theorem 13. Let p be an odd prime. Then

#I (x2
+y2,Z2

pt )=


pt if p ≡ 1 (mod 4),

p if p ≡ 3 (mod 4) and t = 1,

pt
−

[t/2]−1∑
j=0

ϕ(pt−1−2 j ) if p ≡ 3 (mod 4) and t > 1,

(15)

When p = 2 we have

#I (x2
+ y2,Z2

2t )= ϕ(2t)+ 1. (16)

As is typically the case, the formula for powers of two, 2t , will require a separate
argument. We first prove (15).
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Proof of formula (15). We treat each case separately.

• p ≡ 1 (mod 4). Let a ∈ {0, 1, . . . , pt
− 1}. The simultaneous congruences

x − y ≡ 1 (mod pt) and x + y ≡ a (mod pt)

have the solutions

x = ((a+ 1) · (2−1 mod pt)) mod pt ,

y = ((a− 1) · (2−1 mod pt)) mod pt .

It immediately follows that x2
+ (i pt y)2 ≡ a (mod pt), where

i2
pt ≡−1 (mod pt).

• p≡ 3 (mod 4), t = 1. Let a ∈ {0, 1, . . . , p−1}. By (3), #I (x2,Zp)= (p+1)/2
and therefore #(a− I (x2,Zp))= (p+ 1)/2. Since

#I (x2,Zp)+ #(a− I (x2,Zp))= p+ 1,

it follows that there is an element (a − x2
1) ∈ (a − I (x2,Zp)) and an element

x2
2 ∈ I (x2,Zp) such that (a− x2

1)≡ x2
2 (mod p).

• p≡ 3 (mod 4), t ≥ 2. The key is to prove that an element a ∈ {0, 1, 2, . . . , pt
−1}

satisfies a ≡ x2
+ y2 (mod pt) if and only if a = pkb, with gcd(p, b) = 1 and k

even.
(⇐) Since pk is a square in Z, it is sufficient to prove this for integers a that are
relatively prime to p. We argue by induction. The previous case shows that the
result holds for t = 1. Let us assume it is true for t . So

a ≡ (x2
+ y2) (mod pt).

If pt+1
| (a−x2

−y2), there is nothing to prove. So let us assume that (a−x2
−y2)=

pt l, with gcd(l, p)= 1. Since gcd(a, p)= 1 either gcd(x, p)= 1 or gcd(y, p)= 1.
Without loss of generality we assume the former. We now define s ∈ Z, with
1≤ s < p, to be the solution of the congruence

2xs ≡ l (mod p).

An immediate calculation shows that

a ≡ (x + spt)2+ y2 (mod pt+1).

(⇒) We argue by contradiction. Suppose a= pkb, with a< pt , gcd(b, p)= 1,and
k odd, be the sum of two squares modulo pt . So there are integers x = pe1 x1, y =
pe2 y1, with gcd(x1 y1, p)= 1, such that

pkb ≡ (x2
+ y2) (mod pt),
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that is,
pkb ≡ (p2e1 x2

1 + p2e2 y2
1) (mod pt).

Since b 6≡ 0 mod p and k is odd we have min{2e1, 2e2} < k. Without loss of
generality we may assume that e1 ≤ e2. We can reduce the congruence

pkb ≡ (x2
+ y2) (mod pt)

to pk−2e1b ≡ x2
1 + p2(e2−e1)y2

1 (mod pk−2e1), which in turns reduces to

x2
1 + p2(e2−e2)y2

1 ≡ 0 (mod p).

Since x1 6≡ 0 (mod p) we must have p2(e2−e2)y2
1 6≡ 0 (mod p), that is e2 = e1, and

consequently (x2
1 + y2

1)≡ 0 (mod p), with gcd(x1 y1, p)= 1. But this gives us the
contradiction that x2

≡−1 (mod p) is solvable for a prime p with p ≡ 3 (mod 4).
This concludes the proof of (15). �

Proposition 14. Let t ≥ 3 and 0 < m < 2t . Then m ∈ I (x2
+ y2,Z2

2t ) if and only
if m = 2 j

· a, with j < t and a ≡ 1 (mod 4).

Proof. (⇐) Let a ≡ 1 (mod 4). Since 2 j is a sum of squares (in Z) we only need
to show that a is a sum of two squares modulo 2t . If a ≡ 1 (mod 8) then a is a
square modulo 2t by Proposition 3. If a≡ 5 (mod 8), then a−4≡ 1 (mod 8) and is
therefore a square modulo 2t . Consequently a is a sum of two squares modulo 2t .

(⇒) We now assume that a ≡ 3 (mod 4) and argue by contradiction. Let

x2
+ y2
≡ m (mod 2t).

We look at four possible cases.

(1) j = 0: We obtain the contradiction that

x2
+ y2
≡ 3 (mod 4).

(2) j = 1: We obtain the contradiction that

x2
+ y2
≡ 6 (mod 8).

(3) j ≥ 2, j ≤ (t − 2): We have x = 2e1 · x1 and y = 2e2 · y1, with x1, y1 odd and
j = min{2e1, 2e2}. Without loss of generality we may assume that e1 ≤ e2.
We now obtain the contradiction

x2
1 + 4e2−e1 y2

1 ≡ a ≡ 3 (mod 4).

(4) j = t − 1: Then
m = 2t−1

· a ≥ 2t−1
· 3> 2t ,

contradicting the fact that the elements of I (x2
+ y2,Z2

2t ) are less than 2t . �
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Proof of formula (16). Let Mt denote the set

Mt = {m : 0< m < 2t , m = 2 j
· a, j < t, a ≡ 1 (mod 4)}.

In our previous proposition we proved that

I (x2
+ y2,Z2

2t ) \ {0} = Mt .

We now make the following two observations about elements in Mt :

(i) If m ∈ Mt , then (m+ 2t) ∈ Mt+1 provided m 6= 2t−1.

(ii) If m ∈ Mt+1 with m > 2t , then (m− 2t) ∈ Mt .

From these two observations we conclude that

Mt+1 \ {2t
} = Mt ∪ {m+ 2t

: m ∈ Mt \ {2t−1
}},

and consequently #Mt+1= 2 ·#Mt . An inductive argument now proves that #Mt =

ϕ(2t) and therefore #I (x2
+ y2,Z2

2t )= ϕ(2t)+ 1. �
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Minimal k-rankings for prism graphs
Juan Ortiz, Andrew Zemke, Hala King, Darren Narayan and Mirko Horňák

(Communicated by Vadim Ponomarenko)

We determine rank numbers for the prism graph P2×Cn (P2 being the connected
two-node graph and Cn a cycle of length n) and for the square of an even cycle.

1. Introduction

A k-ranking of a graph is a vertex labeling using integers between 1 and k inclusive
such that any path between two vertices of the same rank contains a vertex of
strictly larger rank. When the value of k is unimportant, we will refer to a k-ranking
simply as a ranking. A ranking f is minimal if the reduction of any label violates
the ranking property [Ghoshal et al. 1996]. Another definition of a minimal ranking
is obtained by replacing the reduction of a label by the reduction of labels for any
nonempty set of vertices. It was shown in [Jamison 2003] and [Isaak et al. 2009]
that these two definitions of minimal rankings are equivalent. The rank number of
a graph G, denoted χr (G) is the smallest k such that G has a minimal k-ranking.

Recall that a vertex coloring of a graph is a vertex labeling in which no two
adjacent vertices have the same label. Hence a k-ranking is a restricted vertex
coloring. Then the rank number is similar to the chromatic number. The arank
number of a graph G, denoted ψr (G), is the largest k such that G has a minimal
k-ranking.

The study of the rank number was motivated by applications including the design
of very large scale integration (VLSI) layout and Cholesky factorizations associ-
ated with parallel processing [de la Torre et al. 1992; Ghoshal et al. 1996; 1999;
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Leiserson 1980; Laskar and Pillone 2001; 2000; Sen et al. 1992]. Numerous related
papers have since followed [Bodlaender et al. 1998; Hsieh 2002; Jamison 2003;
Dereniowski 2006; 2004; Dereniowski and Nadolski 2006; Kostyuk and Narayan
≥ 2010; Kostyuk et al. 2006; Isaak et al. 2009; Novotny et al. 2009a]. Ghoshal,
Laskar, and Pillone were the first to investigate minimal k-rankings [Ghoshal et al.
1999; 1996; Laskar and Pillone 2001; 2000]. The determination of the rank number
and the arank number was shown to be NP-complete [Laskar and Pillone 2000].
The rank number was explored in [Bodlaender et al. 1998] where the authors
showed that χr (Pn) = blog2 nc + 1. Rank numbers are known for a few other
graph families such as cycles, wheels, complete bipartite graphs, and split graphs
[Ghoshal et al. 1996; Dereniowski 2004]. The rank number for ladder graphs
P2× Pn and the square of a path P2

n were determined in [Novotny et al. 2009b].
Throughout the paper Pn will denote the path on n vertices. We use G × H

to denote the Cartesian product of G and H . The k-th power of a path, Pk
n , has

vertices v1, v2, . . . , vn and edges (vi , v j ) for all i , j satisfying |i − j | ≤ k. The
k-th power of a cycle, Ck

n , is defined similarly.
In this paper we determine rank numbers for the prism graph P2 ×Cn and the

square of an even cycle.
We begin by restating two elementary results from [Ghoshal et al. 1996].

Lemma 1. In any minimal ranking of a connected graph G the highest label must
be unique.

Proof. Suppose there exist two vertices u and v that both have the highest label k.
Then any path between u and v will not contain a vertex with a higher label. This
is a contradiction. �

The following lemma gives a monotonicity result involving the rank number.

Lemma 2. Let H be a subgraph of a graph G. Then χr (H)≤ χr (G).

Proof. The proof is straightforward. Suppose χr (H) > χr (G). Then we could
relabel the vertices of H using the corresponding labels used in the ranking of G.
This produces a ranking with fewer labels, and hence a contradiction. �

1.1. The ladder graph Ln. We next describe a family of graphs built using the
Cartesian product.

Definition 3. The Cartesian product of G and H written G×H is the graph with
vertex set V (G)×V (H) specified by putting {u, v} adjacent to (u′, v′) if and only
if u = u′ and (v, v′) ∈ E(H) or v = v′ and (u, u′) ∈ E(G).

An example is the ladder graph Ln = P2× Pn , shown in Figure 1.
In this paper we investigate the family of prism graphs P2 ×Cn . We will start

with a ladder P2 × Pn with n even, and insert either a P2 × P1 or P2 × P2 and
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· · ·

Figure 1. The ladder graph Ln = P2× Pn .

“wrap” the ends to form a prism graph P2 × Cn+1 or P2 × Cn+2. In order for
this construction to work, it is essential that in the labeling of the vertices labeled
1 of the ladder satisfies an “alternating 1’s property”: for each vertex v, either v
is labeled 1 or all of its neighbors are labeled 1 (Figure 2). That is, the vertices
labeled 1 form a particular dominating set of the graph. It was shown in [Novotny
et al. 2009b] that in a minimal ranking of a ladder the 1’s can be made to alternate.

2 1 5 1 3 1

1 3 1 4 1 2

Figure 2. A graph with the alternating 1s property.

We can insert in P2×Pn either a 1-bridge (Figure 3, left) or a 2-bridge (Figure 3,
right). In general, the bridges will contain the labels k and k+1 where k−1 is the
rank of the original ladder. Our example shows the extension where k = 6.

In each case we insert four edges to connect the bridge to each end of the ladder.
When n is even the wrapping of the ladder Ln creates a prism graph where the 1’s
alternate. When n is odd the 1’s alternate except in one place where there are two
vertices labeled 1 that are distance 3 apart (Figure 4).

Novotny et al. [2009b] determined the rank number of a ladder graph. This
result is stated in our next lemma.

Lemma 4. χr (Ln)= blog2(n+ 1)c+
⌊

log2(n+ 1− 2blog2 nc−1)
⌋
+ 1 for n ≥ 1.

Applying our construction immediately gives an upper bound for the rank num-
ber of the prism graph P2×Cn , as stated in our next theorem.

Theorem 5. For k ≥ 2, both χr (P2×C2k−1) and χr (P2×C2k) are bounded from
above by r(2k−2)+ 2.

We will show later that this bound is tight.

k + 1

k

k + 1 1

1 k

Figure 3. A 1-bridge (left) and 2-bridge (right).
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Figure 4. Prism graphs for n even (left) and n odd (even).

2. Main results

Theorem 6. Let l = χr (P2 × Cn) where n ≥ 3. If f is a minimal l-ranking of
P2×Cn , then l ≥ 5 and the largest four labels of f appear exactly once.

Proof. In the minimal ranking f : V (P2×Cn)→{1, 2, . . . , l} every label appears
at least once. Since G = P2×Cn is (vertex) 3-connected, any two distinct vertices
of G are joined by three internally vertex disjoint paths. Hence each of the largest
three labels appears exactly once in f .

Assume that l − 3 appears at least twice with f (x) = f (y) = l − 3, where
x 6= y. We have l ≥ 5 because the independence number of G is 2bn/2c and
2bn/2c+ 3< 2n = |V (G)|.

Let S be a minimum-sized x, y vertex separating set. It is clear that |V (S)| = 3.
It is well known that every 3-element separating set S̃ is a prism graph P is a
neighborhood of a single vertex z̃ ∈ V (P) and the nontrivial component of P − S̃
is induced by V (P)− (S̃ ∪ {z̃}). Thus, there exists z ∈ {x, y} such that S is the
neighborhood of z. However if z has its neighbors labeled l − 2, l − 1, and l, then
f (x) can be reduced to 1, contradicting the minimality of f . �

For a positive integer n let

r(n)= blog2(n+ 1)c+ blog2(n+ 1− (2blog2 nc−1))c+ 1. (1)

Then Lemma 4 states that χr (Ln)= χr (P2× Pn)= r(n) for n ≥ 1.

Theorem 7. For k ≥ 2, we have

χr (P2×C2k−1)= χr (P2×C2k)= χr (P2× P2k−2)+ 2= r(2k− 2)+ 2.

Proof. By Theorem 5, both χr (P2 ×C2k−1) and χr (P2 ×C2k) are bounded from
above by r(2k− 2)+ 2. In other words, if m = 2k− 1 or 2k, then

χr (P2×Cm)≤ χr (P2× P2dm/2e−2)+ 2= r(2dm/2e− 2)+ 2.
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To prove the theorem we will show that this last inequality is in fact equality.
If k = 2 and m = 2k − 1 or 2k, then r(2dm/2e − 2)+ 2 = 5. So by Theorem 6,
χr (P2×Cm)= 5.

Now assume that m = 2k− 1 or 2k, k ≥ 3, and

χr (P2×Cm)= l ≤ r
(

2
⌈m

2

⌉
− 2

)
+ 1. (2)

Let f be an l-minimal ranking of G= P2×Cm . If k=3, then 5≤ l=r(4)+1≤5,
l = 5, and by Theorem 6, the label 1 appears 2m − 4 times in f . However the
independence number of G equals 2bm/2c≤m< 2m−4, which is a contradiction.

Let k ≥ 4. This implies m ≥ 7. Let i be the maximum label used at least twice.
Since r(2dm/2e−2)+1≤ r(m−1)+1<2m=|V (G)|, such a label does exist, and
i ≤ l−4 by Theorem 6. Consider vertices x1, x2 ∈ V (G) with f (x1)= i = f (x2),
and let y j be the neighbor of x j that is not on the “ring” containing x j . We will
refer to this vertex as the special neighbor of x j for j = 1, 2. There are two
distinct subgraphs G1,G2 of G that are ladders with corners x1, x2, y1, y2. The
restriction f |V (G j ) is a ranking of G j ; hence there is a minimal separating set
S j ⊆ V (G j ) such that min f (S j ) > i and x1, x2 are in distinct components of
G j − S j , j = 1, 2. It is easy to see that any minimal separating set that separates
two “distant” corners of a ladder on at least six vertices has two vertices and is of
one of the two types shown in Figure 3 (consisting of the vertices labeled k and
k+ 1). As all labels in {i + 1, . . . , l} are used by f exactly once, any permutation
of those labels yields a ranking of G. Therefore, we may suppose without loss of
generality that f (S1) ∪ f (S2) = {l − 3, l − 2, l − 1, l}. Further, let S̄ j be the set
consisting of the vertices of S j together with their special neighbors (so that |S̄ j |

is 2 or 4). The graph G−(S̄1∪ S̄2) is a union of two vertex disjoint ladders H1 and
H2. Clearly if |V (H1)| ≥ |V (H2)|, then H1 = P2 × Pq , where q ≥ d(m − 4)/2e.
Now f |V (H1) uses only labels from the set {1, . . . , l − 4}; hence, by (2),

χr (H1)≤ l − 4≤ r
(

2
⌈m

2

⌉
− 2

)
− 3. (3)

On the other hand if s, t are positive integers with s≤ t , then P2×Ps is a subgraph
of P2× Pt . Then by Lemma 2 we have r(s)= χr (P2× Ps)≤ χr (P2× Pt)= r(t).
Consequently,

χr (H1)= χr (P2× Pq)= r(q)≥ r
(⌈m−4

2

⌉)
. (4)

If m is even, then it follows from Equations (3) and (4) that

r(m− 2)= r
(

2 · m−4
2
+ 2

)
≥ r

(m−4
2

)
+ 3.
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If m is odd we have

r(m− 1)= r
(

2 · m−3
2
+ 2

)
≥ r

(m−3
2

)
+ 3.

However both cases lead to a contradiction. From (1) it is easy to see that

r(2n+ 2)− r(n)= 2

for any positive integer n. �

Since r(2k− 3)= r(2k− 2) for n ≥ 3, we obtain from Theorem 7:

Theorem 8. χr (P2×Cn)= χr (Ln−2)+ 2 for n ≥ 4.

3. Rankings for other classes of graphs

We now show that the rank number of a prism graph can be used to give the rank
number of the square of an even cycle. We recall some earlier facts:

Definition 9 [Ghoshal et al. 1996]. For a graph G and a set S⊆V (G) the reduction
of G, denoted by G[

S , is a subgraph of G induced by V − S with an edge uv
in E(G[

S) if and only if there exists a u − v path in G with all internal vertices
belonging to S.

Lemma 10 [Ghoshal et al. 1996]. Let G be a graph and let f be a minimal k-
ranking of G. If

S1 = {x ∈ V (G) : f (x)= 1} and f [ : V (G[
S1
)→ {1, . . . , k− 1}

is defined by f [(x)= f (x)− 1, then f [ is a minimal (k− 1)-ranking of G[
S1

.

3.1. The square of a cycle. Next we reduce even prism graphs to squares of cycles.

Theorem 11. χr (C2
n)= χr (P2×Cn) for even n ≥ 4.

Proof. (Illustrated in Figure 5.) If n = 2, the result follows from Theorem 7 which
states that χr (P2×C4)= 5 and from the fact that χr (C2

4)= χr (K4)= 4.
Henceforth suppose that n≥ 3. Let k=χr (P2×C2n) and let l =χr (C2

2n). Let f
be a k-ranking of P2×C2n in which the 1’s alternate. It is straightforward to see that
then (P2×C2n)

[
S1

is isomorphic to C2
2n . Therefore, by Lemma 10 χr (C2

2n)≤ k−1.
Now let g be an l-ranking of C2

2n . One can easily see that C2
2n is isomorphic

to an n-sided antiprism An . Pick a new vertex inside each of the 2n triangles
of An , join it to all three vertices of “its” triangle and delete all edges of An .
The result is a graph Gn that is isomorphic to P2 × C2n . Consider the mapping
g̃ : V (Gn)→{1, . . . , l+1} defined as follows: g̃(x)= g(x)+1 if x ∈ V (C2

2n) and
g̃(x) = 1 if x ∈ V (Gn)− V (C2

2n). Since g̃ is a ranking of Gn (a simple exercise
left to the reader), we have χr (P2×C2n)≤ l + 1.
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Figure 5. A minimal 7-ranking of P2 × C8 (left) and a minimal
6-ranking of A4 (right).

Thus l = χr (C2
2n)≤ k− 1= χr (P2×C2n)− 1≤ (l+ 1)− 1= l, and since both

inequalities turn into equalities, we are done. �

Combining Theorems 8 and 11 gives:

Corollary 12. Let n ≥ 4 be even. Then

χr (C2
n)= χr (P2×Cn)−1= blog2(n−1)c+

⌊
log2

(
n−1− (2blog2(n−2)c−1)

)⌋
+2.

4. Conclusion

We conclude by posing some problems for future research. In this paper we de-
termined the rank number of P2×Cn using known results for the rank number of
P2 × Pn . It would be interesting to determine the rank numbers for grid graphs
Pm× Pn and cylinders Pm×Cn . We found out recently that [Alpert ≥ 2010] gives
rank numbers for P3× Pn , among other results including an alternate proof of our
Theorem 7.
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An unresolved analogue
of the Littlewood Conjecture

Clarice Ferolito

(Communicated by Nigel Boston)

This article begins with an introduction to a conjecture made around 1930 in the
area of Diophantine approximation: the Littlewood Conjecture. The conjecture
asks whether any two real numbers can be simultaneously well approximated
by rational numbers with the same denominator. The introduction also focuses
briefly on an analogue of this conjecture, regarding power series and polynomi-
als with coefficients in an infinite field. Harold Davenport and Donald Lewis
disproved this analogue of the Littlewood Conjecture in 1963. Following the
introduction we focus on a claim relating to another analogue of this conjecture.
In 1970, John Armitage believed that he had disproved an analogue of the Little-
wood Conjecture, regarding power series and polynomials with coefficients in a
finite field. The remainder of this article shows that Armitage’s claim was false.

1. Introduction

Through studying the results of John Littlewood and Godfrey Hardy on topics
of Diophantine approximation, Littlewood’s student Donald Spencer questioned
whether any two real numbers can be approximated simultaneously by rational
numbers with the same denominator. For some reason this conjecture was attrib-
uted to Littlewood and is known as Littlewood’s problem of Diophantine approxi-
mation [Burkill 1979], or simply the Littlewood Conjecture.

To state it more formally, we fix some notation. As usual, |n| denotes the ab-
solute value of a number n. For x a real number, let ‖x‖ denote the Euclidean
distance of x to the nearest integer: ‖x‖ = infa∈Z |x − a|.

Conjecture 1.1 (Littlewood Conjecture). For every θ, φ ∈ R and for all ε > 0,
there exists n ∈ N such that

n‖nθ‖‖nφ‖< ε.

MSC2000: 11K60.
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No one has been able to prove this, in part because the method of continued
fractions commonly used with approximations cannot be used for simultaneous
approximations. The following definitions will aid in describing the analogue of
the Littlewood Conjecture for power series and polynomials, which is easier to
study than the original conjecture.

For any field K , let K [t] denote the set of polynomials with coefficients in K .
Define the norm of N ∈ K [t] as |N |K = e h , where h is the degree of N . Series
with coefficients in K , possibly infinitely many negative exponents, and finitely
many positive exponents form the field K ((t−1)). For every 9 ∈ K ((t−1)), define
the norm of 9 to be ‖9‖K = e l , where l is the greatest negative exponent of t . For
example, if K = R and 9(t)= 12t50

+ 3t9
+ 2+ 5t−11

+ 20t−99
+· · · ∈ K ((t−1)),

then ‖9(t)‖K = e−11.

Conjecture 1.2 (Polynomial analogue of the Littlewood Conjecture). Let K be a
field and consider2,8∈K ((t−1)). For every ε>0, there exists N ∈K [t] such that

|N |K‖N2‖K‖N8‖K < ε.

Davenport and Lewis [1963] proved that this analogue fails when K is an infinite
field. Baker [1964] furthered this result by showing that e1/t and e2/t

∈ K ((t−1))

serve as counterexamples to the analogue of the Littlewood Conjecture when K
is the set of real numbers. With the analogue of the Littlewood Conjecture settled
when K is an infinite field, the next problem to solve is the analogue with K a
finite field.

2. Armitage’s claim

Armitage [1970] published a corrigendum and addendum to his article from the
previous year, entitled An analogue of a problem of Littlewood [Armitage 1969].
At first, it appeared that Armitage had disproved the analogue of the Littlewood
Conjecture when K is a finite field of characteristic greater than or equal to 5.
For many years, mathematicians accepted this claim. Armitage’s proof appeared
to imitate Baker’s proof for his counterexample to the analogue of the Littlewood
Conjecture with K = R.

However, we found a parenthetical comment in [Adamczewski and Bugeaud
2007] that Armitage’s counterexample does not hold, an observation these authors
attribute to Bernard de Mathan. We also found a reference in [Larcher and Nieder-
reiter 1993] that Yves Taussat, a student of Mathan, disproved Armitage’s claim
in his Ph.D. thesis [Taussat 1986]. However, in this paper, Taussat did not show
why Armitage’s counterexample fails. Below we provide a simplified wording of
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Armitage’s claim and in the next section we will show that his claim fails to dis-
prove the analogue of the Littlewood Conjecture for K a finite field of characteristic
p ≥ 5.

Claim 2.1 [Armitage 1970]. Let K be a field of characteristic p > 3. Define the
norm of N ∈ K [t] as |N |K = pdeg N , and the norm of 9 ∈ K ((t−1)) as ‖9‖K = p l ,
where l is the greatest negative exponent of t in 9. Define 2, 8 ∈ K ((t−1)) by

2(t)= (1+ t−1)1/3, 8(t)= (1+ t−1)2/3.

Then for all nonzero N ∈ K [t],

|N |K ‖N2‖K ‖N8‖K ≥ p−17.

Note that Armitage uses p for the base of the norms rather than e, so his “lower
bound”, p−17, for |N |K ‖N2‖K ‖N8‖K specifies the characteristic of K .

To show that Armitage’s claim fails, we prove the following theorem.

Theorem 2.2. Let K be a field of characteristic p> 3. Define 2, 8 ∈ K ((t−1)) by

2= (1+ t−1)1/3, 8= (1+ t−1)2/3.

Given any ε > 0, there exists a polynomial N ∈ K [t] such that

|N |K ‖N2‖K ‖N8‖K < ε.

The proof is divided into two cases, depending on the residue of p modulo 3.

3. Preliminary lemmas

Lemma 3.1. For any prime p congruent to 2 modulo 3 and not equal to 2, the
coefficient of t−n in the expansion of (1+ t−1)1/3 is congruent to 0 modulo p if
(p3
+ 1)/3< n < p3.

Proof of Lemma 3.1. Consider the number of factors of p in the numerator of the
coefficient of t−n in 2= (1+ t−1)1/3. By the binomial theorem, this coefficient is(1

3
n

)
=
(−1) n−1

(
1(3 · 1− 1)(3 · 2− 1) · · · (3(n− 1)− 1)

)
3n n!

.

Thus, the last term in the numerator of the coefficient of t−n is 3n − 4. Since 3
always has a multiplicative inverse modulo p, we have

3l − 1≡ 3m− 1 (mod p) ⇐⇒ l ≡ m (mod p).

Moreover, the greatest common divisor of 3 and p2 is 1 for any p 6= 3, so

3l − 1≡ 3m− 1 (mod p2) ⇐⇒ l ≡ m (mod p2).
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Since 3l−1≡ 3m−1 (mod p)⇐⇒ l ≡m (mod p), p divides at least bn/pc terms
in the numerator of the coefficient of t−n . Similarly, because

3l − 1≡ 3m− 1 (mod p2) ⇐⇒ l ≡ m (mod p2),

p2 divides at least bn/p2
c terms.

Since p≡2 (mod 3), p3 will divide a term in the numerator of a coefficient if and
only if for some r ∈Z+ (0≤ r ≤ n−1) there exists s ∈Z such that 3r−1= sp3. In
other words, r= (sp3

+1)/3 must be a positive integer. Thus, such an s must satisfy
s ≡ 1 (mod 3). We are only considering n ≤ p3

− 1 and r = (sp 3
+ 1)/3≤ n− 1,

so (sp3
+ 1)/3 ≤ p3

− 2. Thus, sp3 will divide a numerator in the coefficient of
t−n for n ≤ p3

− 1 if and only if s ≤ (3p3
− 7)/p 3 < 3 and s ≡ 1 (mod 3). In

other words, the only term that could be divisible by p3 in the numerator of the
coefficient of t−n for n≤ p 3

−1 is p3 itself. The final term in the numerator of the
coefficient of t−(p

3
+4)/3 is 3((p3

+4)/3−1)−1= p3. Thus, the first time that p3

appears in the numerator of a coefficient of t−n is actually when n = (p3
+ 4)/3.

So, for each (p3
+ 4)/3 ≤ n ≤ p3

− 1, the numerator of the coefficient of t−n has
exactly one term that is divisible by p3. This and the preceding paragraph show
that for each (p3

+ 4)/3≤ n ≤ p3
− 1, the numerator of the coefficient of t−n has

at least bn/pc+ bn/p2
c+ 1 factors of p.

Now looking at the denominator of the coefficient of t−n for (p3
+ 4)/3 ≤

n ≤ p3
− 1, the only powers of p that divide n! are p and p2. So there are only

bn/pc+bn/p2
c factors of p in the denominator of t−n for (p3

+4)/3≤ n≤ p3
−1.

Therefore, for any (p3
+ 4)/3≤ n ≤ p3

− 1, the numerator of the coefficient of
t−n will have at least one more factor of p than the denominator and the coefficient
will be congruent to zero modulo p. �

The proof of the next lemma is similar to that of Lemma 3.1.

Lemma 3.2. For any prime p congruent to 1 modulo 3, the coefficient of t−n in the
expansion of (1+ t−1)2/3 is congruent to zero modulo p if (p2

+ 2)/3< n < p2.

Lemma 3.3. For any prime p > 3 and any even positive integer b, there exists an
integer a < 0 such that 1

3 = a+ pb
·

1
3 .

Proof of Lemma 3.3. We have

1
3 = a+ pb

·
1
3 ⇐⇒ a = (1− pb)/3 ∈ Z ⇐⇒ pb

≡ 1 (mod 3).

For any p > 3, p ≡ 1 (mod 3) or p ≡ 2 (mod 3). Obviously, 12
≡ 1 (mod 3),

but also 22
≡ 1 (mod 3). Thus, for any prime p > 3, p2

≡ 1 (mod 3). This further
implies that p2k

= (p2)k ≡ 1k
≡ 1 (mod 3) for any k ∈ N. Therefore, we have

shown that for any even integer b, pb
≡ 1 (mod 3). �

The proof of the following lemma is analogous to that of Lemma 3.3.
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Lemma 3.4. For any prime p > 3 and any even positive integer b, there exists an
integer a < 0 such that 2

3 = a+ pb
·

2
3 .

4. Proof of Theorem 2.2

By assumption, the characteristic of K is p > 3.

First case: p ≡ 2 (mod 3). By Lemma 3.3, for b an even positive integer, there
exists a negative integer a such that (1+ t−1)1/3 = (1+ t−1)a+pb/3. Multiplying
both sides by (1+ t−1)−a , yields (1+ t−1)−a (1+ t−1)1/3 = (1+ t−1)pb/3. Since
we are working in a field with characteristic p, (1+ t−1)pb/3

= (1+ t−pb
)1/3, and

therefore

(1+ t−1)−a (1+ t−1)1/3 = (1+ t−pb
)1/3.

Multiplying both sides by t−a results in

(1+ t)−a (1+ t−1)1/3 = t−a(1+ t−pb
)1/3.

Now applying Lemma 3.1, we know that the coefficient of t−i in t−a(1+ t−pb
)1/3

is congruent to zero modulo p for each i with a+((p3
+1)/3)pb< i < a+(p3)pb.

Multiplying

(1+ t)−a (1+ t−1)1/3 = t−a(1+ t−pb
)1/3

by ta+((p3
+1)/3)pb

, we have

ta+((p3
+1)/3)pb

(1+ t)−a (1+ t−1)1/3 = q(t)+ c t pb((−2p3
+1)/3)

+ · · · ,

where q(t) ∈ K [t] and c 6≡ 0 (mod p).
Let N be the polynomial

N (t)= ta+((p3
+1)/3)pb

(1+ t)−a.

Then by the definitions for the norm of a polynomial and the norm of a power
series,

|N | = p((p
3
+1)/3)pb

and ‖N2‖ = p pb((−2p3
+1)/3).

Therefore

|N |‖N2‖ = p pb((2−p3)/3).

For any ε > 0, choosing an even positive integer b such that

b > logp

∣∣∣∣ logp(ε)

((2− p3)/3)

∣∣∣∣
implies that |N |‖N2‖< ε.
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Second case: p ≡ 1 (mod 3). A similar method of proof works in this case, if we
choose as the approximating polynomial

N = ta+((p2
+2)/3)pb

(1+ t)−a,

with b an even positive integer such that

b > logp

∣∣∣ logp(ε)

((4− p2)/3)

∣∣∣.
Since ‖N9‖≤ p0 for any9 ∈ K ((t−1)), together these cases show that Theorem

2.2 holds with the approximating polynomial N chosen as above depending on the
characteristic of the finite field. �

Thus, Armitage’s counterexample does not settle the analogue of the Littlewood
Conjecture when K is a finite field of characteristic p ≥ 5.
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Mapping the discrete logarithm
Daniel Cloutier and Joshua Holden

(Communicated by Carl Pomerance)

The discrete logarithm is a problem that surfaces frequently in the field of cryp-
tography as a result of using the transformation x 7→ gx mod n. Analysis of
the security of many cryptographic algorithms depends on the assumption that
it is statistically impossible to distinguish the use of this map from the use of
a randomly chosen map with similar characteristics. This paper focuses on a
prime modulus, p, for which it is shown that the basic structure of the functional
graph produced by this map is largely dependent on an interaction between g
and p− 1. We deal with two of the possible structures, permutations and binary
functional graphs. Estimates exist for the shape of a random permutation, but
similar estimates must be created for the binary functional graphs. Experimental
data suggest that both the permutations and binary functional graphs correspond
well to the theoretical predictions.

1. Introduction

Just a few decades ago, cryptography was considered a domain exclusive to na-
tional governments and militaries. However, the computer explosion has changed
that. Every day, millions of people trust that their privacy will be protected as
they make online purchases or communicate privately with a friend. Many of the
cryptographic algorithms they will use are built upon a common transformation,
namely

x 7→ gx mod n (1)

where gcd(g, n) = 1 and the transformation is considered as a function from
{1, . . . , n−1} to itself. (We will call functions of this form discrete exponentiation
maps.) For instance, Diffie–Hellman key exchange [Diffie and Hellman 1976],
RSA [Rivest et al. 1978], and the Blum–Micali pseudorandom bit generator [Blum
and Micali 1984] all use discrete exponentiation maps. In particular, if n is a prime
and g is a primitive root modulo that prime, then a discrete exponentiation map has
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Keywords: discrete logarithm problem, random map, functional graph.
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an inverse which is known as the discrete logarithm. The security of the Diffie–
Hellman protocol and the Blum–Micali generator both rely on the idea that the
discrete logarithm is difficult to calculate.

Furthermore, the analyses of the security of many algorithms rely on the idea
that not only is calculating the inverse of a discrete exponentiation map difficult,
but in fact that certain properties of discrete exponentiation maps and/or discrete
logarithms cannot be predicted better than a random guess. (It is not known to the
authors who first suggested this general idea; it may be folklore.) For example,
in [Blum and Micali 1984] the cryptographic security of a particular pseudoran-
dom bit generator relies on the hypothesis that a certain property of discrete ex-
ponentiation cannot be predicted better than a random guess. Similarly, [Boneh
1998] shows that if certain statistical properties of the Diffie–Hellman problem
cannot be guessed better than randomly then the Diffie–Hellman protocol can be
made much more efficient than otherwise. This paper will consider some statistics
of maps on {1, . . . , n − 1} such that the expected values of these statistics for a
randomly chosen map in a class containing the discrete exponentiation maps can be
calculated theoretically. We conjecture that the particular values of these statistics
for discrete exponentiation maps will resemble the expected values for the random
maps. Furthermore, we will collect experimental data on discrete exponentiation
maps for various values of g and n and compare them to our expected values to
give evidence for this conjecture.

Some readers might be familiar with other papers that look at the discrete expo-
nentiation map from a statistical point of view, such as [Canetti et al. 2000]. In both
cases n is fixed and “measurements” are taken from a (nonrandom) sample which is
derived from discrete exponentiation maps. The distribution of the measurements
on the sample is then compared with the distribution of measurements taken from
random samples of a certain population. In [Canetti et al. 2000], g is fixed, the
measurements are a specified set of bits from triples of numbers, the sample is
triples of the form (gx , gy, gxy) (with varying x and y), and the population is
all strings of bits. In this paper, the measurements are various graph-theoretic
properties of functional graphs (as defined below). The sample is maps of the
form (1) (with varying g) which have a certain property on their in-degrees and the
population is all functional graphs with that same property.

2. Terminology and background

Throughout this paper, φ denotes the Euler phi function. The letter n will stand
for an odd prime. We will examine mappings

f : S = {1, 2, . . . , p− 1} → S
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of the form x 7→ gx mod p, where p ≥ 3 is a prime modulus and gcd(g, p) = 1.
In some instances, it will prove to be useful to interpret the mappings as functional
graphs. A functional graph is a directed graph such that each vertex must have
exactly one edge directed out from it. The relationship between the mappings
which interest us and functional graphs is straightforward. Each element in S can
be interpreted as a vertex. The edges are defined such that an edge 〈a, b〉 is in the
graph if and only if f (a)= b.

There are a number of statistics of interest derived from functional graphs; in
particular, Flajolet and Odlyzko — henceforth abbreviated FO — have treated ran-
dom mappings in detail. Following the conventions in [FO 1990b], let f : S→ S be
the transition function so that the edges in the functional graph can be expressed as
the ordered pair 〈x, f (x)〉 for x, f (x) ∈ S. By applying the pigeonhole principle
and noting that the cardinality of S is p − 1 we can say that by starting at any
random point u0 and following the sequence u1 = f (u0), u2 = f (u1), . . . , there
must be a ui = u j after at most p iterations. Suppose ui occurs before u j in the
sequence of nodes. In this case, the tail length is the number of iterations of the
function from u0 to ui . The cycle length is the number of iterations from ui to u j .
In more natural graphical terms, the tail length is the number of edges involved in
the directed path from u0 to ui , and the cycle length is the number of edges (or
equivalently nodes) involved in the directed path from ui to itself. Additionally, a
terminal node is one with no preimage, or more formally, x is a terminal node if
f −1(x)=∅. A node is an image node if it is not a terminal node. Since each node
has an out-degree of exactly one, each cycle with the trees grafted onto its nodes
will form a connected component.

When a functional graph is produced from a discrete exponentiation function,
we will call it a discrete exponentiation functional graph. The value of g plays a
major role in determining the basic structure of discrete exponentiation functional
graphs. In fact, as Theorem 1 formalizes, the interaction between g and p − 1
will effectively fix the in-degrees of the nodes in the graph. First, though, define
an m-ary functional graph to be a graph where each node has in-degree of exactly
zero or m. The proof of the following theorem is then straightforward.

Theorem 1. Let p be fixed and let m be any positive integer that divides p − 1.
Then as g ranges from 1 to p−1, there are φ((p−1)/m) different functional graphs
which are m-ary produced by maps of the form f : x 7→ gx mod p. Furthermore,
if r is any primitive root modulo p, and g ≡ ra mod p, then the values of g that
produce an m-ary graph are precisely those for which gcd(a, p− 1)= m.

Theorem 1 gives a strong indication that the graphs generated by (1) have to
be considered separately for different values of m. It should be noted, though,
that there are some values of m which lead to completely predictable graphs. For
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instance, there is one (p− 1)-ary graph that corresponds to g ≡ 1 mod p. There
is also one ((p− 1)/2)-ary graph that corresponds to g ≡−1 mod p. In general,
however, an m-ary discrete exponentiation functional graph is not trivially pre-
dictable. This paper will restrict its focus to unary functional graphs (which will
be referred to as permutations since they simply permute the numbers 1, . . . , p−1)
and binary functional graphs. As a consequence of Theorem 1, we can observe that
the values of g which produce a permutation are precisely those which are primitive
roots modulo p, and the values of g which produce a binary functional graph are
precisely those which are the squares of primitive roots modulo p.

In cryptography, it is common to look for primes where p− 1 has at least one
large prime factor. For instance, the pseudorandom bit generator described in [Gen-
naro 2005], which is a modification of the Blum–Micali generator mentioned in
Section 1, specifically requires the modulus to be of the form p = 2q+ 1 where q
is also prime. A prime of this form is known as a safe prime (q is also known as
a Sophie Germain prime). These primes are of interest here not only because of
their extensive use in cryptography, but also because p− 1 has only four divisors,
namely 1, 2, q = (p−1)/2 and 2q = p−1. In addition to the one (p−1)-ary and
one ((p− 1)/2)-ary graph mentioned above, there are φ(q) permutations and φ(q)
binary functional graphs which represent the remaining values of g (since φ(q) is
q − 1). Thus, not only do safe primes provide large numbers of permutations
and binary functional graphs, but every graph generated by a safe prime is either
trivial (the graphs where g is either 1 or −1) or fits into the theoretical framework
presented in Section 3.

We can now present the central conjecture of this paper, which as far as we know
has not been previously considered in this form:1

Conjecture 2. The average values of the following statistics are asymptotically
the same for m-ary discrete exponential functional graphs on n = p−1 nodes and
for random m-ary functional graphs on n nodes as n goes to infinity:

Number of components
Number of tail nodes Number of cyclic nodes
Number of image nodes Number of terminal nodes
Average cycle length Maximum cycle length
Maximum tail length Average tail length

(as seen from a random node) (as seen from a random node)

We are a long way from proving this conjecture but we will give some supporting
evidence for it in the cases of m = 1 and m = 2.

1Pollard [1978] considers functional graphs corresponding to a similar map when analyzing his
kangaroo method. That map takes x 7→ xg f (x) for some pseudorandom function f, however.
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3. Theoretical results

In Theorem 1, it is shown that the in-degree of each node is dependent on the value
of both g and p. This is clearly imposing a structure on any functional graphs
generated using (1). While most of the parameters that are of interest depend on
the exact graph generated, the number of image nodes can be computed directly
from the values of g and p. The proof is again straightforward.

Theorem 3. The number of image nodes in any m-ary graph is (p− 1)/m.

This fact helps quantify the repercussions of Theorem 1 and the restrictions on
in-degree in m-ary graphs. The number of image nodes is a direct function of
m which can greatly limit the shapes each graph can take on. None of the other
parameters appear to be strictly controlled by m in this fashion.

3.1. Permutations. Predicting the behavior of the permutations is, in many ways,
much easier than other m-ary graphs. The most important reason for this is that
there are no terminal nodes or tail nodes. This follows quickly from the definition
of a permutation as a unary functional graph and the fact that the sum of the in-
degrees must be the same as the sum of the out-degrees. Each node has an out-
degree of exactly one, and if any node were to have an in-degree of zero, then,
by the pigeon-hole principle, at least one node must have an in-degree of more
than one. This is not allowed so each node must have in-degree of exactly one.
Furthermore, since every tail must contain at least one terminal node, this also
implies that every node is cyclic. The parameters that can then be determined from
the definition of a permutation are:

Number of cyclic nodes n Number of tail nodes 0
Number of terminal nodes 0 Number of image nodes n
Average tail length 0 Maximum tail length 0

Theorem 4. The expected values for the number of components, the average cycle
length as seen from a random node and the maximum cycle length in a random
permutation of size n have the following asymptotic forms:

Number of components =
n∑

i=1

1
i
+ o(log n), (i)

Average cycle length =
n+ 1

2
+ o(1), (ii)

Maximum cycle length = n
∫
∞

0

[
1− exp

(
−

∫
∞

v

e−u du
u

)]
dv+ o(n) (iii)

≈ 0.62432965n+ o(n).
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Parts (i) and part (ii) are fairly well known. Part (iii) seems to have first been
solved in [Shepp and Lloyd 1966]. An alternative solution and proof more similar
to the methods used here is offered in [FO 1990a].

3.2. Binary functional graphs. While estimates for the parameters investigated
here exist in the literature for the random functional graphs and permutations,
it does not appear that estimates for binary functional graphs have ever been all
collected in one place. However, the methods in [FO 1990b] can be extended
to develop these estimates, and some of the following results have appeared in
various places already. Imitating those methods, we first need to convert our ideas
of a binary functional graph into corresponding generating functions. We first note
that a binary functional graph is a set of components. Each component is a cycle
of nodes with each node having an attached binary tree to bring its in-degree to
two. A binary tree is either a node (terminal node) or a node with two binary trees
attached. Finally, a node is simply an atomic unit. A moment’s reflection should
indicate that this natural specification does, in fact, specify a binary functional
graph.2

Imitating the transformations in [FO 1990b, Section 2.1], the generating func-
tions of interest are

f (z)= ec(z)
=

1
1−zb(z)

, (2)

c(z)= ln 1
1−zb(z)

, (3)

b(z)= z+ 1
2

zb2(z). (4)

Here f generates the number of binary functional graphs, c generates the number
of components, and b generates the number of binary trees of a given size. Solving
the quadratic formula for (4), we can produce the following formulas for f and c
which simplify some of the cases:

f (z)= 1
√

1−2z2
, c(z)= ln 1

√
1−2z2

(5)

See also [FO 1990b, (70)] and [Flajolet et al. 1991, Theorem 11].
To compute asymptotic forms of any of the statistics of interest, we must first

compute an asymptotic form for f to normalize results. The following derivations

2In the notation of [FO 1990b]:

BinFunGraph = set(Components),
Component = cycle(Node*BinaryTree),
BinaryTree = Node + Node*set(BinaryTree, cardinality = 2),
Node = Atomic Unit.
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give only a highlight of the methods used by Flajolet and Odlyzko. The interested
reader is encouraged to see [FO 1990a; 1990b] for detailed proofs.

From the formula for f (z) in (5) it is clear that there is a singularity at z=1/
√

2.
Performing a singularity analysis3 as in [FO 1990b, Section 2], the asymptotic form
for f falls out quickly as

f (z)∼ 2n/2
√
πn/2

. (6)

In at least one case, there are some important second-order interactions between
the error terms of the number of graphs and the appropriate statistic. In these cases,
a more exact form of (6) must be used. Expanding one more term in the expansion
of f gives

f (z)∼ 2n/2
√
πn/2

−
2n/2

4n
√
πn/2

=
2n/2(4n−1)
4n
√
πn/2

. (7)

In most cases, using this more precise expansion of f is not necessary and does
not change the results. Therefore, in all but the necessary cases, (6) will be used.

We begin by deriving the results for the simplest parameters.

Theorem 5. The expected values for the number of components, number of cyclic
nodes, number of tail nodes, number of terminal nodes and number of image nodes
in a random binary functional graph of size n, as n → ∞ have the following
asymptotic forms:

Number of components=
ln (2n)+ γ

2
+ o(1), (i)

Number of cyclic nodes=
√
πn/2− 1+ o(1), (ii)

Number of tail nodes= n−
√
πn/2+ 1+ o(1), (iii)

Number of terminal nodes= n/2, (iv)

Number of image nodes= n/2. (v)

In part (i), γ represents the Euler constant which is approximately 0.57721566.
The results for parts (iv) and (v) can in fact be shown to be exact and not merely
asymptotic. The highlights of the proofs as they differ from those in [FO 1990b]
follow.

Proof. As in [FO 1990b], the following bivariate generating functions need to
be defined with parameter u marking the elements of interest. The generating

3The analyses in this paper have been performed using the computer algebra program Maple
and the packages created as part of the Algorithms Project at INRIA, Rocquencourt, France. The
packages can be found online at http://algo.inria.fr/libraries/#down.

http://algo.inria.fr/libraries/#down
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functions for the number of components, number of cyclic nodes and number of
terminal nodes are respectively:

ξ1(u, z)= exp
(

u ln 1
1−zb(z)

)
, (8)

ξ2(u, z)= 1
1−uzb(z)

, (9)

ξ3(u, z)= 1
√

1−2uz2
. (10)

(Equation (9) may also be found in [Flajolet et al. 1991, Theorem 11].) Imitating
the methods in [FO 1990b], the mean value generating function, 4(z), is found by
taking the partial derivative of ξ(u, z) with respect to u and evaluating at u = 1.
This yields

41(z)=
1

1− zb(z)
ln

1
1− zb(z)

, (11)

42(z)=
zb(z)

(1− zb(z))2
, (12)

43(z)=
z2

(1− 2z2)3/2
. (13)

The forms in the statement of the theorem follow by expanding around the singu-
larity z = 1/

√
2, applying singularity analysis as in [FO 1990b], and normalizing

parts (i) and (ii) by (6) and (iv) by (7). Parts (iii) and (v) follow from parts (ii)
and (iv) respectively since the respective pairs must sum to n. Also note that
part (iv) can also be derived in an elementary fashion from the definition of the
binary functional graph. �

The asymptotic values for the average length of cycles and tails as seen from
a random point in the graph are also interesting. The asymptotic forms of these
values are given in Theorem 6.

Theorem 6. The expected values for the cycle size and tail length as seen from
a random node in a random binary functional graph of size n have the following
asymptotic forms as n→∞:

Average cycle length =
√
πn/8+ o(

√
n), (i)

Average tail length =
√
πn/8+ o(

√
n). (ii)

Proof. In order to calculate the average cycle length and average tail length, the
generating functions must be manipulated to account for each node in the cycle
or tail. This can be done by using the same methods as in the previous proof, but
marking only one component or tail at a time. This is essentially the same as the
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strategy which is used to prove the result for average cycle size in [FO 1990b].
More background on the method can be found there.

Let ξ1(z) be the exponential generating function for the total cycle length over
all binary functional graphs and ξ2(z) be the exponential generating function for
the total tail length. Then, ξ1(z) can be defined as

ξ1(z)=
∂2

∂w∂u

[
1

1−
√

1− 2z2
ln
(

1

1− u
(
1−

√
1− 2(zw)2

))]
u=1,w=1

. (14)

In (14), u marks the cyclic nodes in the component we are considering andwmarks
all nodes in that component, so that each node in the component is weighted with
the number of nodes in the cycle. (In [Salvy 1997], the method of “decorated”
graphs is used to develop a generating function for a variation of this problem.)

In order to compute total tail length we need a version of the generating function
for binary trees which marks the edges along one tail. We can write that as

β(z, u)= z+ 1
2 zb2(z)+ uzb(z)β(z, u). (15)

Then solving (15) and plugging it in appropriately gives us

ξ2(z)=
∂

∂u

[
1

√
1− 2z2

1
√

1− 2z2

u(1−
√

1− 2z2)(
1− u(1−

√
1− 2z2)

)]
u=1
. (16)

Note that the first factor in (16) is for the unmarked components and the second
is for the unmarked trees in the marked components. (In [Salvy 1997] and [Fla-
jolet et al. 1989; Mishna 2004],4 the methods of “decorated” graphs and attribute
grammars, respectively, are used to develop the same generating function.)

Performing a singularity analysis of the two generating functions and normaliz-
ing by 2n/2/(n

√
πn/2), as done in the previous theorems, leads to the statement of

the theorem. The additional factor of n in the denominator is needed to compensate
for the fact that the parameters were estimated across all nodes in the graph and
the goal is to determine them from any single random node in the graph. �

The final parameters that needs to be calculated are the average maximum cycle
length and the average maximum tail length.

Theorem 7. The expected sizes of the largest cycle and the largest tail in a random
binary functional graph of size n have the following asymptotic forms as n→∞:

4According to [Flajolet et al. 1989], results from this analysis were first obtained by hand in
[Flajolet 1979].
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Largest cycle =
√
πn
2

∫
∞

0

[
1− exp

(
−

∫
∞

v

e−u du
u

)]
dv+ o(

√
n) (i)

≈ 0.78248
√

n+ o(
√

n);

Largest tail =
√

2πn ln 2− 3+ 2 ln 2+ o(1) (ii)

≈ 1.73746
√

n− 1.61371+ o(1).

Proof. The proof for part (i) result follows precisely the methods of [FO 1990b]
with substitution of the proper generating function f , and is therefore omitted.

The proof for part (ii) follows a combination of [FO 1990b, Theorem 6] and
[FO 1982, Sections 3–5]. Let b[h](z) be the exponential generating function for
the number of binary trees with height at most h and f [h](z) be the exponential
generating function for the number of binary functional graphs with maximum tail
length less than or equal to h, so that (as in [FO 1990b, Equations 41 and 42])

f [h](z)= 1
1−zb[h](z)

and

b[h+1](z)= z+ 1
2 z(b[h](z))2, b[0](z)= z.

Now, as in [FO 1982, Proposition 2], note that

b(z)− b[h+1](z)= 1
2 z(b(z)− b[h](z))(b(z)+ b[h](z)),

so if we let

eh(z)=
b(z)−b[h](z)

2b(z)
,

then

eh+1(z)= (1−
√

1− 2z2)eh(z)(1− eh(z)).

Now we want to approximate eh(z) with a function of h and some ε(z). If we
let ε =

√
1− 2z2 then we have

e j+1 = (1− ε)e j (1− e j ); e−1 = 2.

This is essentially the same recursion as in [FO 1982]. As in Lemma 5 there, we
can then “normalize” and “take inverses” to get the approximation

eh ≈
(1−ε)h+1ε

1−(1−ε)h+1 . (17)

The details of the error bounds proceed as in [FO 1982]; we omit them here.
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The generating function associated to the average maximum tail length is, as in
[FO 1990b, Equation 43],

4(z)=
∑
h≥0

[ 1
1−zb(z)

−
1

1−zb[h](z)

]
,

and we proceed as in [FO 1990b, Equation 51] to write

4(z)=
2zb(z)

1− zb(z)

∑
h≥0

eh(z)
1−zb(z)+2eh(z)zb(z)

.

Putting this entirely in terms of ε and h, and shifting the index of summation
for convenience, we can write

4(z)≈ 2(1−ε)
ε

∑
h≥1

(1−ε)h

1+(1−2ε)(1−ε)h
. (18)

We approximate the sum with an integral, using Euler–Maclaurin summation. Tak-
ing the integral and noting that ln(1− ε)∼−ε as ε→ 0, we finally get

4(z)≈ 2(1−ε)
ε2(1−2ε)

ln(2− 3ε+ 2ε2). (19)

The next step is to substitute ε =
√

1− 2z2 into (19) and do the singularity
analysis, which gives us the statement of the theorem. �

4. Observed results

In [Holden 2002; Holden and Moree 2004; 2006], heuristics and observed values
for the number of small cycles (fixed points and two-cycles) in discrete exponenti-
ation graphs are given. Our methods build on this to generate experimental data for
the parameters described by the theoretical predictions in Section 3. The method of
data collection was straightforward. A prime was chosen as the modulus and then
for each g ∈ {1, 2, 3, . . . , p−1}, the corresponding discrete exponentiation binary
functional graph or permutation was generated. The results were then computed
as average statistics over all p− 1 graphs observed. The permutations and binary
functional graphs were noted and their results were also tabulated separately. In
this manner, the data can be examined in its complete form over all graphs and
individually over the permutations and binary functional graphs. The generation
and analysis of each of the graphs was handled by C++ code written by the first
author.
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100043 100057 106261

Permutations 50020 30240 21120
Binary functional graphs 50020 15120 10560
Total functional graphs 100042 100056 106260

Table 1. The number of permutations, binary functional graphs
and total discrete exponentiation functional graphs associated with
p = 100043, p = 100057, and p = 106260.

The primes chosen for these calculations were

100043= 2 · 50021+ 1,

100057= 23
· 3 · 11 · 379+ 1,

106261= 22
· 3 · 5 · 7 · 11 · 23+ 1.

The total number of graphs, permutations and binary functional graphs can be
computed using Theorem 1 and are shown in Table 1.

In Section 4.1, the observed results for the discrete exponentiation permuta-
tions will be compared to the theoretical results for random permutations given
in Theorem 4. Finally, the observed results for the discrete exponentiation binary
functional graphs will be examined in Section 4.2. Theorems 5 through 7 will
provide the theoretical predictions for these values on random binary functional
graphs. Since the terminal nodes and tail nodes can be directly computed from
the image nodes and cyclic nodes, including them in the collected data does not
add any insight. For this reason, they have both been excluded from the analysis
conducted in the following sections. The Appendix gives some of the interesting
extremal data such as the longest cycle observed for each prime. More information
on the data and how they were computed may be found in [Cloutier 2005].

4.1. Permutation results. The results of looking at only the values of g that were
a primitive root modulo p (and thus produced permutation discrete exponentiation
graphs) can be found in Table 2.

The percent error here is nearly zero in every instance. This seems to indicate
that there are no obvious structural differences between a random permutation and
a permutation generated by the process used here.

4.2. Binary functional graph results. The binary functional graphs should prove
more interesting than the permutations examined in the previous section. Unlike
permutations, binary functional graphs do not appear to have been previously
studied in detail. The statistics derived from the binary discrete exponentiation
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functional graphs and the error when compared to the results derived for random
binary functional graphs in Section 3.2 can be found in Table 3.

The number of image nodes came out exactly as expected and predicted by
Theorem 3. However, in many other cases the results were nearly as good. The
relative size of the error decreases as the number of binary discrete exponentiation
functional graphs increases over the different primes. This is especially worth
noting for p = 100043 which has over fifty thousand binary functional graphs
while 100057 and 106261 have approximately fifteen thousand and ten thousand
respectively. Since having more graphs appears to push the results closer to those
derived in Section 3.2, this seems to further support the claim that any binary
functional graph produced by our mapping does in fact resemble a randomly chosen
binary functional graph.

5. Conclusions and future work

The transformation used here to generate functional graphs is an exceedingly im-
portant transformation in cryptography. If the output of the function were to fall
into a predictable pattern, it could be an exploitable flaw in many algorithms con-
sidered secure today. For instance, the average cycle length seems particularly im-
portant for pseudorandom bit generators since, in many cases, it relates directly to
the predictability of the pseudorandom bit generator. As Theorem 1 demonstrates,
the use of (1) repeatedly forces a nontrivial structure onto the graphs generated.
This is certainly worth investigating as any imposed structure may be open to an
exploit.

The advantage of using a safe prime is that every nontrivial graph can be an-
alyzed by the theoretical framework laid out in this paper. Their use is also very
prevalent in cryptographic applications. As mentioned above, the pseudorandom
bit generator specified in [Gennaro 2005] requires the use of a safe prime to defend
against other attacks. However, the methods used for binary functional graphs in
Section 3.2 can and should be extended to larger values of m. (This is currently un-
derway in the case m= 3 and some results may be found in [Brugger and Frederick

100043 100057 106261

Observed Error Observed Error Observed Error

Components 12.081 0.083% 12.054 0.306% 12.126 0.205%
Avg cycle 49980.551 0.082% 50191.352 0.326% 53105.104 0.048%
Max cycle 62395.488 0.102% 62627.745 0.256% 66245.807 0.144%

Table 2. Observed results for the three primes over the permuta-
tion discrete exponentiation graphs, with corresponding errors.
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100043 100057 106261

Observed Error % Observed Error % Observed Error %

Components 6.389 0.047 6.364 0.437 6.370 0.810
Cyclic nodes 395.303 0.029 395.858 0.105 408.433 0.217
Image nodes 50021 0 50028 0 53130 0
Avg cycle 198.319 0.056 197.766 0.230 202.651 0.795
Avg tail 197.961 0.125 197.550 0.339 202.422 0.907
Max cycle 247.261 0.094 247.302 0.082 256.986 0.754
Max tail 541.827 1.115 549.588 1.145 566.370 1.744

Table 3. The observed results for the three primes over all binary
discrete exponentiation functional graphs generated and the corre-
sponding percent errors.

2007; Brugger 2008].) In an ideal case, they should be extended to the general case
of an m-ary graph, which can be specified as a set of components, each of which
is a cycle of nodes with each node having an attached m-ary tree.5 The associated
generating functions for these functional graphs would be

f (z)= ec(z), c(z)= ln
(

1− z
(m−1)!

tm−1(z)
)−1

, t (z)= z+ z
m!

tm(z),

where f (z) is the exponential generating function associated to the functional
graphs, c(z) is the exponential generating function associated to the connected
components and t (z) is associated to the trees. The methods in Section 3.2 could
also be extended to obtain values for additional parameters such as the average and
maximum tree size.

This paper has focused on the graphs generated when the modulus is prime. In
practice, though, this is not always the case. For this reason, it could be worthwhile
to attempt to extend the type of analysis done here to a composite modulus. Some
work in this direction may be found in [Mace 2009].

While the data generated for this project appears to confirm that the graphs do
tend toward the shape and structure of a random graph of the appropriate type, no
data were collected on the distribution of the different parameters. This data could
help to give a clearer picture of how closely individual graphs may be expected to
exhibit the characteristics of a random graph, especially given the observation that
primes with a larger number of binary functional graphs seem to conform better to

5In the notation of [FO 1990b]:

FunctionalGraph = set(Components),
Component = cycle(Node*Set(Tree, cardinality = m− 1)),
Tree = Node + Node*set(Tree, cardinality = m),
Node = Atomic Unit.
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prediction on the average. The methods used in [Flajolet et al. 1993] would seem
to be potentially helpful here. In addition, finding the standard deviation for the
parameters of interest across all graphs of the appropriate type would allow us to
do a more sophisticated analysis of the observed errors. Initial work along these
lines has been done for permutations in [Hoffman 2009] and for binary functional
graphs in [Lindle 2008].

Appendix: Extremal data

For p = 100043, the longest cycle observed was 100042 which occurred for two
different values of g. They were g = 20812 and g = 94034. The longest tail had
a length of 1448 and was observed when g = 89339. There were five instances
where the graphs contained no cycles longer than one which occurred for g = 1,
72116, 91980, 95997, and 100042.

The graphs generated by p = 100057 had an overall longest cycle of 100052
when g = 58303. The longest tail observed was 1589 when g = 18115. There
were also 26 different values of g that produced a graph that did not have a cycle
longer than one.

The largest cycle observed in graphs generated using p = 106261 was 106257
when g = 102141. The longest tail was 35822 when g = 1480. There were 92
different values of g that produced graphs with no cycles longer than a fixed point.
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Linear dependency for the difference
in exponential regression
Indika Sathish and Diawara Norou

(Communicated by Kenneth S. Berenhaut)

In the field of reliability, a lot has been written on the analysis of phenomena
that are related. Estimation of the difference of two population means have
been mostly formulated under the no-correlation assumption. However, in many
situations, there is a correlation involved. This paper addresses this issue. A se-
quential estimation method for linearly related lifetime distributions is presented.
Estimations for the scale parameters of the exponential distribution are given
under square error loss using a sequential prediction method. Optimal stopping
rules are discussed using concepts of mean criteria, and numerical results are
presented.

1. Introduction

In recent years, there has been a great deal of interest in looking at parameters
and characterization of linearly related lifetime distributions, and more specifi-
cally of exponential types distributions. In the literature, estimation of the param-
eters using the sequential prediction method can be found in many areas such as
statistical sciences, industrial quality control, communication science, computer
simulations, genetics and many more. The sequential analysis method is carried
out to determine improvements on the estimators and reduce noises related to the
lifetime distributions. However, in many cases, when a pair of distributions are
considered, the assumption of independence is assumed. There are contexts in
which the assumption of independence is not realistic, such as in [Carpenter et al.
2006]. This paper extends the results that are proposed by including a correlation
in estimating the difference parameter between two exponentially distributed func-
tions. It is organized as follows. In Section 2, we present the basic results and
the problem of interest. In Section 3, we present the sequential analysis method
for the estimation of the difference of the scale parameters. Many works, such as
[Mukhopadhyay and Hamdy 1984], have addressed the estimation of the difference
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of the location parameters of two distributions. Lai [2001] gives a thorough review
of the sequential analysis technique along with challenges. The sections that follow
are about the stopping rule technique and simulations.

2. Preliminaries and problem of interest

We consider the class of exponential family type probability distributions on the
real line from [McCullagh and Nelder 1983]. The class is defined by the family of
densities G with respect to the Lebesgue measure as

f (x; θ, ϕ)= exp
{
θT (x)− b(θ)

a(ϕ)
+ c(x, ϕ)

}
, (1)

where

• f ∈ G,

• ϕ is a constant scale parameter, typically called the nuisance parameter,

• θ is a location parameter,

• a(ϕ) and c(x, ϕ) are specific functions of the scale parameter, and

• b(θ) and T (x) are functions of the location parameter and variable x , respec-
tively.

In fact, this exponential family density in (1) is a reformulation of the form
given in [McCullagh and Nelder 1983] as they simplify T (x) in (1) to simply x .
Also, the expression (1) generalizes the exponential family type of distributions as
described in [Terbeche et al. 2005] in the sense that

• if ϕ is known, (1) is the linear exponential family with canonical parameter θ ;

• if ϕ is unknown, (1) may be used as a 2-parameter exponential family type.

As described in [McCullagh and Nelder 1983], this family includes the normal,
exponential, gamma, and Poisson types of distributions. In this setting,

U =U (θ)=
∂ log L(θ, x)

∂θ
=
∂ f (x, θ)/∂θ

f (x, θ)
(2)

is the score function. Note that

• E(U )= 0,

• Var(U )= E(U 2)=−E(∂U/∂θ)= I (θ), known as Fisher’s information.
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In the exponential family case, as in (1),

l(θ, ϕ, x)= log L(θ, ϕ, x)=
θT (x)− b(θ)

a(ϕ)
+ c(x, ϕ),

U =
∂l
∂θ
=

T (x)− ∂b(θ)/∂θ
a(ϕ)

,

E(U )= 0 H⇒ E
(
T (x)

)
=
∂b(θ)
∂θ
= b′(θ).

Based on some index set I , we now consider two classes of exponential families
of random variables called X= (X i )i∈I and Y= (Yi )i∈I , with densities

f (xi ; θ, ϕ)= exp
{
θT (xi )− b(θ)

a(ϕ)
+ c(xi , ϕ)

}
, (3)

f (yi ; θ̃ , ϕ̃)= exp
{
θ̃T (yi )− b̃(θ̃)

ã(ϕ̃)
+ c̃(yi , ϕ̃)

}
. (4)

in the classes GX and GY , with the linear relationship

Yi = aX i + Zi , (5)

where i ∈ I , a is a fixed positive constant, and the Zi are unknown random variables
whose means are of interest.

The set I is an index countable set that could be finite or infinite. The linear
relation described in (5) of association of random variables is not new, but is still a
challenging problem. In fact, many authors [Carpenter et al. 2006; Iyer et al. 2002;
2004] have suggested its importance in applications.

Our goal is to estimate the parameter

λ= Eθ̃ [T (Y)] − aEθ [T (X)] , (6)

with square error loss. When a=1, this equation reduces to the difference between
two dependent exponential family of distributions. The dependence concept is the
innovation here as in many cases independence is assumed, even if it is known that
there is great cost associated with that independence assumption.

3. Sequential analysis

We use the sequential estimation procedure to estimate the mean of the difference
of two exponential families distributions with conjugate priors of the gamma or
Bernoulli or Poisson types. This procedure helps address the problem in the small
sample size case, maintaining a high power . The approach we use is Bayesian and
we assume that π1(θ) and π2(θ̃) are the conjugate priors given by

π1(θ)∝ exp[t (µ1θ −ϕ(θ))], π2(θ̃)∝ exp[s(µ2θ̃ − ϕ̃(θ̃ ))].
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This is not a new idea; Diaconis and Ylvisaker [1979] adopted this alternative to
the maximum likelihood estimation regarding the parameter θ as a random variable
with prior distribution, and the inference was based on the posterior distribution.
They used this setting in the exponential family with conjugate prior distribution
of the parameter θ given as

π(θ)=
exp{t (µθ −φ(θ))}∫
exp{t (µθ −φ(θ))}dθ

, (7)

where θ ∈2, t can be thought as prior sample size, and µ is the mean parameter.
See also [Annis 2007].

In that regard, we see that µ1 = Eπ1[ϕ
′(θ)] and µ2 = Eπ2[ϕ̃

′(θ̃)] are prior
estimators of Eθ [T (X)] and Eθ̃ [T (Y)], respectively.

Hence, following an idea from [Terbeche et al. 2005], the Bayes estimate of λ,
based on a random sample of size n of X1, X2, . . . , Xn of X, and Y1, Y2, . . . , Yn

of Y is given by

λ̂= λ̂(X,Y)= λ̂(X1, . . . , Xn, Y1, . . . , Yn)

= E[λ|X1, . . . , Xn, Y1, . . . , Yn]

= E[b̃′(θ̃)|Y1, . . . , Yn] − aE[b′(θ)|X1, . . . , Xn],

where

E[b′(θ)|X1, . . . , Xn] =
nT̄ X

n + tµ1

n+ t
, E[b̃′(θ̃)|Y1, . . . , Yn] =

nT̄ Y
n + sµ2

n+ s
, (8)

with

T̄ X
n =

T (X1)+ . . .+ T (Xn)

n
, T̄ Y

n =
T (Y1)+ . . .+ T (Yn)

n
.

Hence,

λ̂=
nT̄ Y

n + sµ2

n+ s
− a

nT̄ X
n + tµ1

n+ t
. (9)

The asymptotic estimate for the parameter as n −→∞ is

λ̂= T̄ Y
n − aT̄ X

n . (10)

A criteria for stopping the estimation of λ is developed. When t = s,

λ̂=
n(T̄ Y

n − aT̄ X
n )+ t (µ2− aµ1)

n+ t
=

n
n+ t

(T̄ Y
n − aT̄ X

n )+
t

n+ t
(µ2− aµ1).

When t = s = n,

λ̂=
(T̄ Y

n − aT̄ X
n )+ (µ2− aµ1)

2
. (11)

In the sequential analysis idea, the sample size is not predetermined. Hence, a
natural question to ask is when is the sample size large enough to make conclusions.
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4. Stopping rules

The Bayes risk of the estimate λ̂ of λ with respect to the prior π(θ) in (7) is

r(θ, λ̂)= E[R(θ, λ̂)],

where R(θ, λ̂)= E[L(θ, λ̂)] and L(θ, λ̂)= (λ− λ̂)2 is the loss function.
In this setting, the Bayes risk is given by

r(π1, π2)= r(λ̂(X,Y))

= E(XY)[Eλ|(X,Y)(λ̂(X,Y)− λ)2]

= E(X,Y)[Var(λ|(X,Y))]

= E(X,Y)
[
Var(b̃′(θ̃)− ab′(θ)|(X,Y))

]
= E(X,Y)

[
Var(b̃′(θ̃))+ a2 Var(b′(θ))− 2aρ

√
Var(b̃′(θ̃))

√
Var(b′(θ))

]
,

and the upper bound is achieved using the idea of Equation (4) in [Terbeche et al.
2005]. It is given by

r(π1, π2)= EY

[
Eθ̃ |Y

∣∣∣ b̃′′(θ̃)
n+ s

∣∣∣]+ a2 EX

[
Eθ |X

∣∣∣b′′(θ)
n+ t

∣∣∣], (12)

with equality achieved in (12) when ρ = corr(b̃′(θ̃), b′(θ)) = corr(X,Y) ≥ 0 is
minimized.

Considering the loss function

L(λ, λ̂, n)= (λ− λ̂)2+ cn, (13)

where c can be looked at as the cost of sampling, and the decision rule 1= (τ, δ),
where τ = τn(x, y) is the stopping rule and δ= δn(x, y) is the decision rule, we have
that the Bayes risk to minimize from a suitable sample size n obtained sequentially
given by

r(τ, π1, π2)= E(X,Y,τ )

[
Un

n+t
+

Vn
n+s
− 2aρ

√
[Var(b̃′(θ̃))]

√
[Var(b′(θ))] + cn

]
= E(Y,τ )

[ Un
n+t

]
+ E(X,τ )

[ Vn
n+s

]
+E(X,Y,τ )

[
−2aρ

√
[Var(b̃′(θ̃))]

√
[Var(b′(θ))] + cn

]
,

where Un = EY,τ |b̃′′(θ̃)| and Vn = EX,τ |b′′(θ)|.
Using ideas in [Terbeche et al. 2005] to achieve the upper bound in (12), the

stopping rule criteria can be expressed as if

Un ≤ c(n+ t)2 or Vn ≤ c(n+ s)2,
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Figure 1. Graph of the bias from ρ for c = 0.

then take another pair of observations. Otherwise, stop the collection process.
That is the estimation of the difference of the two exponential distributions can
be evaluated from the available informative sample. In other words, the stopping
variable is defined by the quantity

n ≥min
{√

Un
c
− t,

√
Vn
c
− s

}
. (14)

In order to study the optimized stopping rule in (14) and its efficiency, a numer-
ical simulation technique is provided in Section 5. We consider two exponentially
related distributions with gamma priors.

5. Simulation

We have described a methodology to compare the mean difference between two
exponential distributions that are linearly related. In this section, we show an ex-
ample of a simulation data of the related bivariate exponential distribution with the
different values of the correlations ρ.

Since we consider two dependent random variables, we create one exponential
random variable and create the other one with the desired correlation ρ. We gen-
erate sample data of size 50. We assume a coefficient of linear relationship a = 1
of simultaneous occurrence as described in [Marshall and Olkin 1967], and c = 0
and c = 0.25 in (13) over 5000 runs. The simulation was carried out using SAS.

The results of the two figures show that data does not need to be large to achieve
convergence. The pattern is the same regardless of the number of runs. Figures 1
and 2 give the bias of the mean difference for c = 0 and c = 0.25, respectively.
The convergence is justified by the maximal error we allowed to reach based on
the stopping rule, when the data generation and bias are computed at three and five
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Figure 2. Graph of the bias from ρ for c = 0.25.

decimal places (circles and dots, respectively). The algorithm performs very well
even when the sample size is small, showing great robustness.

The resulting plot of the bias is very helpful in explaining the effectiveness
of the estimator. When the correlation is present, this new estimator should be
considered. Furthermore, the choice of the cost of resampling c does not affect
significantly in the error estimation. Setting c = 0.25 as in Figure 2 shows the
same trend as for Figure 1. The risk is then minimized considerably when the
correlation is significant.

6. Conclusion

The proposed sequential parametric procedure in the estimation of the difference of
two exponential distribution is quite useful and relevant. This sequential estimation
for the bivariate distributions of the exponential type families is used to get an
estimate of the mean difference. It is more efficient in terms of bias.
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The probability of relatively prime
polynomials in Zpk[x]

Thomas R. Hagedorn and Jeffrey Hatley

(Communicated by Arthur T. Benjamin)

Let PR(m, n) denote the probability that two randomly chosen monic polynomi-
als f , g ∈ R[x] of degrees m and n, respectively, are relatively prime. Let q = pk

be a prime power. We establish an explicit formula for PR(m, 2) when R = Zq ,
the ring of integers mod q.

1. Introduction

Given two polynomials f (x), g(x) chosen at random, what is the probability that
they are relatively prime? For a ring R, we say that two polynomials f, g ∈ R[x]
are relatively prime if there is no monic polynomial of positive degree that divides
both f and g. Let PR(m, n) denote the probability that two randomly chosen
monic polynomials f , g ∈ R[x] of degrees m and n, respectively, are relatively
prime. If R has an infinite number of elements, then PR(m, n) = 1, so we restrict
our attention to finite rings R. Let R = Fq , the finite field with q elements. The
formula, PFq (m,m)=1−1/q was proved in [Corteel et al. 1998]. When q= p=2,
Reifegerste [2000] gave a combinatorial proof that PF2(m,m)=1/2. Benjamin and
Bennett subsequently found a beautifully simple proof generalizing these results:

Theorem 1.1 [Benjamin and Bennett 2007]. If m, n ≥ 1, then PFq (m, n)= 1− 1
q

.

This can be generalized in at least two ways. Hou and Mullen [2009] have gen-
eralized Theorem 1.1 by considering the problem of relatively prime polynomials
in several variables over a finite field. In earlier work, Gao and Panario [2006] con-
sidered the probability distribution of the greatest common divisor of l randomly
chosen monic single-variable polynomials in Fq [x] with degrees n1, . . . , nl as the
ni →∞. In this paper, we restrict ourselves to single-variable polynomials and
explore a different perspective.

MSC2000: 11C20, 13B25, 13F20.
Keywords: relatively prime polynomials.
The authors would like to thank The College of New Jersey for its support of undergraduate research.
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As the formula in Theorem 1.1 only depends on the number of elements in
the field Fq , one can ask whether the same formula holds when R is another ring
with q elements. For example, if R = Zq , the integers mod q, does the same
formula hold? It does not, but the formula for PFq (m, n) can be viewed as a first
approximation to the formula for PZq (m, n). In this paper, we prove an explicit
formula for PZpk (m, 2) for p odd.

For each positive integer k, we define a monic polynomial fk(x) ∈ 1
2 Z[x] by

fk(x)= x2k
+ (1− x)

(k−3)/2∑
i=0

x (k+3)/2+3i
+

1
2

k−1∑
i=0

(−x)i + 1
2 x (k−1)/2

− 1,

for k odd, and

fk(x)= x2k
+ (1− x)

k/2−1∑
i=1

x2k−3i
−

1
2

k−1∑
i=1

(−x)i − xk/2+1
+

3
2 xk/2

− 1,

for k even. The polynomial fk(x) has degree 2k and its coefficients have absolute
value at most 2.

Theorem 1.2. Let p be an odd prime and let m, k ≥ 1 be integers. The proba-
bility that two randomly chosen monic polynomials in Zpk [x] of degrees m and 2,
respectively, are relatively prime is

PZpk (m, 2)= 1−
1

p3k fk(p).

When k= 1, we rediscover PFp(m, 2)= 1−1/p. For small values of k, we have

PZp2 (m, 2)= 1−
1
p2 +

1
p4 −

2
p5 +

1
p6 ,

PZp3 (m, 2)= 1−
1
p3 +

1
p5 −

1
p6 −

1
2p7 +

1
2p9 ,

PZp4 (m, 2)= 1−
1
p4 +

1
p6 −

1
p7 +

1
2p9 −

1
p10 −

1
2p11 +

1
p12 .

As an immediate corollary to Theorem 1.2, we obtain:

Corollary 1.3. Given k ≥ 1, there exists a monic polynomial

gk(x)=
∑

ai x i
∈

1
2 Z[x]

with degree 2k− 2 and |ai | ≤ 2, such that

PZpk (m, 2)= 1−
1
pk +

1
p3k gk(p) for all odd primes p and all m ≥ 1.
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We obtain Theorem 1.2 and its corollary by adapting the arguments of Benjamin
and Bennett [2007], who proved Theorem 1.1 by a clever use of the Euclidean
algorithm in Fq [x]. While Zpk [x] does not have the Euclidean algorithm, due to
the existence of noninvertible elements in Zpk , it does have a division algorithm
for monic polynomials. This division algorithm, together with some facts about
polynomial factorization of quadratics in Zpk [x], suffices to prove Theorem 1.2 for
odd primes p. It appears that our arguments can also be used to prove the formula
for PZpk (m, 2) when p = 2, and also a formula for PZpk (m, 3), but the details
are much more involved and have not yet been fully worked through. However,
the present approach does not seem able to establish a formula for PZpk (m, n) for
general m, n≥4 as the number of cases to consider in the proof grows as a function
of min(m, n).

2. Arithmetic in Z pk [x]

In this section, we establish some basic results on the rings Zpk and Zpk [x]. Recall
that Zn denotes the ring of integers mod n. We will make use of Hensel’s lemma
[Gouvêa 1997, page 70] in the following form:

Lemma 2.1 (Hensel’s lemma). Let f (x) ∈ Zpk [x] be a polynomial and denote its
reduction mod p by f̄ (x) ∈ Zp[x]. Suppose there exists u0 ∈ Zp with f̄ (u0)= 0 in
Zp and f̄ ′(u0) 6= 0 in Zp. Then there exists a unique u ∈Zpk , with f (u)= 0 in Zpk

and u ≡ u0 mod p.

We start by counting the squares in Zpk and its unit subgroup Z∗pk .

Lemma 2.2. Let p be an odd prime and k ≥ 1.

(a) Z∗pk has 1
2 pk−1(p− 1) squares.

(b) Let d be even, with 0 ≤ d < k. There are 1
2(p − 1)pk−1−d nonzero squares

x ∈ Zpk with x ∈ pdZpk\ pd+1Zpk .

(c) There are 1+ 1
2(p+1)

(pk+1
− p1−k+2[k/2]) squares in Zpk .

Proof. (a) We first note that the (p− 1)/2 squares x = 12, . . . , ( p−1
2 )2 are distinct

nonzero squares in both Zp and Zpk . Now consider a unit u ∈ Zpk satisfying
u ≡ 1 mod p. Letting f (x) = x2

− u ∈ Zpk [x], and u0 = 1, by Lemma 2.1, u is a
square in Zpk . Thus the pk−1 units u ∈ Zpk with u ≡ 1 mod p are squares. Hence,
the 1

2 pk−1(p− 1) distinct units xu are all squares and every unit square can be
seen to be of this form.

(b) Let x ∈ Zpk satisfy x ∈ pdZpk\ pd+1Zpk . Let x = (pt u)2 = p2t u2, where
u is a unit. To satisfy the given conditions, t = d/2, u2 is a unit square in Z∗pk ,
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and u2
≡ u2

1 mod pk−d . Hence, the number of distinct x equals the number of unit
squares in Zpk−d , which is given by (a).

(c) Every nonzero square can be written as p2du, where u is a unit square and
0≤ 2d < n. Counting the square 0, the total sum is, thanks to (b),

1+ 1
2(p− 1)

[(k−1)/2]∑
d=0

pk−1−2d .

This expression simplifies to the claimed formula. �

For g(x) = x2
+ bx + c ∈ Zpk [x], define the discriminant 1g = b2

− 4c. As
when k = 1, we can describe the number of roots of g(x) ∈ Zpk [x] using 1g.

Lemma 2.3. Let p be an odd prime, k ≥ 1, and g(x)= x2
+ bx + c ∈ Zpk [x].

(a) 1 is a square mod pk if and only if g is reducible.

(b) If1≡ 0 mod pk , then g has the p[k/2] roots given by −b
2
+ p[(k+1)/2]t mod pk ,

where t = 1, . . . , p[k/2].

(c) Suppose1≡ pdu mod pk is a nonzero square with 0≤ d < k, d even, u ∈ Z∗pk

a square. Choose a such that u ≡ a2 mod pk . Then g has the 2pd/2 roots

−
1
2 b± 1

2apd/2
+ tpk−d/2 mod pk, where t = 1, . . . , pd/2.

Proof. Since p is odd, we have g(x)= (x+b/2)2−1/4. Hence r =−(b+z)/2 is a
root of g(x) if and only if z is a solution of the equation z2

≡1mod pk . Condition
(a) is thus proved. Condition (b) follows as well as the roots of the equation z2

≡

0 mod pk are z ≡ p[(k+1)/2]t mod pk , for t = 1, . . . , p[k/2], or equivalently, z ≡
2p[(k+1)/2]t mod pk , for t = 1, . . . , p[k/2]. (c) By the hypothesis, d is even and
a 6≡ 0 mod p. The solutions to the equation z2

≡ pda2 mod pk have the form
z ≡ pd/2wmod pk , where w ∈ Zpk is a solution of x2

≡ a2 mod pk−d . Hensel’s
lemma (using the polynomial f (x)= x2

−a2), shows that the solutions to this latter
equation are the w ∈ Zpk satisfying w ≡ ±a mod pk−d . Thus w = ±a + tpk−d ,
for t = 1, . . . , pd , or equivalently, as 2 is a unit mod pd , w = ±a + 2tpk−d for
t = 1, . . . , pd . Now two roots z = pd/2w and z1 = pd/2w1 are equal precisely
when the signs in the expressions forw andw1 agree and the respective parameters
t and t1 satisfy t ≡ t1 mod pd/2. Hence we have shown that the original equation
z2
≡ pda2 mod pk has the 2pd/2 distinct roots given by z = ±apd/2

+ 2tpk−d/2,
for t = 1, . . . , pd/2. �

Lemma 2.4. Let p be an odd prime and k ≥ 1.

(a) Given 1 ∈ Zpk , there are pk monic, quadratic polynomials g ∈ Zpk [x] with
1g ≡1mod pk .
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(b) There are
pk

2(p+ 1)
(pk+1

+ 2pk
− p− pk−2[k/2]

− 1)

monic, irreducible, quadratic polynomials g ∈ Zpk [x].

Proof. If g = x2
+ bx + c, then 1g = b2

− 4c. Since 4 is invertible mod pk , for
every 1, b ∈ Zpk , there is a unique choice of c such that 1g ≡ 1mod pk . Since
there are pk choices for b, (a) is proved. Now g is irreducible precisely when 1g

is not a square. Let S be the number of squares in Zpk . Then for each b ∈ Zpk ,
there are pk

− S choices for c such that b2
− 4c is not a square. Thus, using the

formula for S given by Lemma 2.2(c), there are

pk(pk
− S)=

pk

2(p+ 1)

(
pk+1
+ 2pk

− 2p+ p1−k+2[k/2]
− 2

)
irreducible polynomials g. Simplification gives (b). �

Given a monic, quadratic polynomial g ∈ Zpk [x], we define the set

Ag = {h ∈ Zpk [x] : deg h ≤ 1 and g, h are not relatively prime},

and let |Ag| denote its cardinality. We note that in the definition of Ag, we allow
nonmonic polynomials h.

Lemma 2.5. Let p be an odd prime and g(x) be a monic quadratic polynomial in
Zpk [x].

(a) If 1g ≡ 0 mod pk , then

|Ag| = pk−[k/2]
(

p2[k/2]+1
+ 1

p+ 1

)
.

(b) Assume1g ∈Zpk is a nonzero square. Let1g ≡ pdvmod pk , where d is even,
0≤ d < k, and v ∈ (Z∗pk )

2. Then

|Ag| = 2pk−d/2
(

pd+1
+ 1

p+ 1

)
− pd/2.

Proof. We first note that a linear factor of g(x) must have the form u(x−r), where
u, r ∈ Zpk , u is a unit, and r is a root of g. Therefore, the elements h(x) ∈ Ag are
exactly the polynomials h(x)= α(x−r), for some α ∈ Zpk and some root r ∈ Zpk

of g. Hence, to calculate |Ag|, we need to count the number of distinct h(x) of this
form.

Suppose r1 and r2 are two roots of g and α(x − r1) ≡ β(x − r2)mod pk . Then
β ≡ αmod pk and α(r1−r2)≡ 0 mod pk . Let α= psu, with u ∈Z∗pk . If s= k, then
α= 0 is the only choice. Now suppose s< k. Then there are pk−s−1(p−1) distinct
choices for u giving rise to distinct α. For each such α, we need to calculate the
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number of roots of g in Zpk−s . To proceed further, we need to have a description
of the roots.

Writing g(x)= x2
+bx+c, in case (a), the roots of g are r =−b/2+ p[(k+1)/2]t ,

for t = 1, . . . , p[k/2] by Lemma 2.3. If [k/2] ≤ s < k, for each choice of α = psu,
there is exactly one factor α(x − r)mod pk . As there are pk−s−1(p− 1) choices
for u, and hence α, we obtain the same number of distinct factors α(x−r) for each
s. If 0 ≤ s ≤ [k/2], then for each choice of α = psu, there are p[k/2]−s distinct
factors α(x − r)mod pk . Hence there are pk+[k/2]−2s−1(p − 1) distinct factors
α(x − r)mod pk for each s. In total then, we have

|Ag| =

[k/2]∑
s=0

(p− 1)pk+[k/2]−2s−1
+

( k−1∑
s=[k/2]+1

(p− 1)pk−s−1
+ 1

)

=

[k/2]∑
s=0

(p− 1)pk+[k/2]−2s−1
+ pk−[k/2]−1

= pk−[k/2]
(

p2[k/2]+1
+ 1

p+ 1

)
,

where the last equality is obtained by evaluating a geometric sum. We thus obtain
the desired formula for case (a). In case (b), by Lemma 2.3, the roots of g are
−

1
2 b± 1

2apd/2
+ tpk−d/2 mod pk , where a2

≡ v mod pk, t = 1, . . . , pd/2. As in
case (a), we let α= psu, and consider the number of distinct factors h(x)=α(x−r)
for each choice of s. When s = k, h(x)= α = 0 is the only factor. There are three
additional cases:

(1) Suppose k> s≥ k−d/2. Then k−s≤d/2 and all the roots of g are equivalent
mod pk−s . Since there are pk−s−1(p−1) distinct choices for α, there are the
same number of distinct factors α(x − r).

(2) Suppose k − d/2 > s ≥ d/2. Then d/2 < k − s ≤ k − d/2 and the roots of
g determine two equivalence classes mod pk−s . Thus for each s, there are a
total of 2pk−s−1(p− 1) distinct factors α(x − r).

(3) Suppose d/2 ≥ s ≥ 0. Then the roots of g determine 2pd/2−s equivalence
classes mod pk−s for each α. Thus there are a total of 2pk+d/2−2s−1(p− 1)
distinct factors α(x − r), for each s.

In total, when d < k− 1, we have for |Ag| the value

d/2∑
s=0

2(p−1)pk+d/2−2s−1
+

( k−d/2−1∑
s=d/2+1

2(p−1)pk−s−1
+

k−1∑
s=k−d/2

(p−1)pk−s−1
+ 1

)

=

d/2∑
s=0

2(p−1)pk+d/2−2s−1
+ 2pk−d/2−1

− pd/2,
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which simplifies to the formula stated in (b). When d=k−1, the second summation
does not appear, and

|Ag| =

d/2∑
s=0

2(p− 1)pk+d/2−2s−1
+

( k−1∑
s=k−d/2

(p− 1)pk−s−1
+ 1

)

=

d/2∑
s=0

2(p− 1)pk+d/2−2s−1
+ pd/2,

which again simplifies to the stated formula for (b). �

3. Proof of the main theorem

In this section, we let q = pk . To prove Theorem 1.2, we will count the number of
polynomial pairs ( f, g), where f, g∈Zq [x] are not relatively prime. Let f (x), g(x)
be monic polynomials. Then by the division algorithm, there is a unique choice of
polynomials q(x), r(x) ∈ Zq [x], with q(x) monic, satisfying

f (x)= g(x)q(x)+ r(x), (1)

where r(x)= 0 or deg r(x)< deg g(x). Thus the pair ( f, g) is uniquely determined
by the triple (g, q(x), r(x)). From (1), any common divisor of f and g is a common
divisor of g and r and vice-versa. We define

Sm,d,q = {( f, g) : f, g ∈ Zq [x] monic with deg f = m, deg g = d,
f and g not relatively prime},

Tm,q = {(g, r) : g, r ∈ Zq [x] with g monic of degree m, deg r < m,
g and r not relatively prime}.

Lemma 3.1. If m ≥ d , then |Sm,d,q | = qm−d
|Td,q |.

Proof. Let (g, r) ∈ Td,q . Then each of the qm−d monic polynomials q(x) with
degree m − d gives rise via (1) to a unique pair ( f, g) ∈ Sm,d,q . Conversely, the
inverse map

( f, g) 7→ (g, q, r) 7→ (g, r)

is a qm−d -to-1 map from Sm,d,q to Td,q . �

Thus, proving Theorem 1.2 is reduced to calculating |T2,q |. We begin with:

Proposition 3.2. |T1,q | = q.

Proof. If (g, r) ∈ T1,q , then g(x) = x − c. For g and r to have a common factor,
r = 0. Hence T1,q consists of the q pairs (x − c, 0). �
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We now determine |T2,q |. By Lemma 2.3, we have |T2,q | = B1+B2+B3, where
the Bi are defined by

B1 =
∣∣{(g, r) ∈ T2,q : g is irreducible}

∣∣,
B2 =

∣∣{(g, r) ∈ T2,q :1g ≡ 0 mod pk
}
∣∣,

B3 =
∣∣{(g, r) ∈ T2,q :1g mod pk is a square, and, for each d < k,

1g ≡ 0 mod pd and 1g 6≡ 0 mod pd+1
}
∣∣.

Lemma 3.3. (a) B1 =
pk

2(p+ 1)
(pk+1

+ 2pk
− p− pk−2[k/2]

− 1).

(b) B2 = p2k−[k/2]
(

p2[k/2]+1
+ 1

p+ 1

)
.

(c) B3 =
p2k−1−[(k−1)/2]

− p2k

2(p+ 1)(p2+ p+ 1)
α, where

α = (p+ 1)(p2
+ p+ 1)− 2pk+1(p+ 1)2− 2pk−[(k−1)/2](p+ p−[(k−1)/2]).

Proof. (a) Assume g ∈Zpk [x] is a monic, irreducible, quadratic polynomial. Since
g has no factors, (g, r) ∈ T2,q only when r = 0. Hence, B1 equals the number of
monic, irreducible quadratic polynomials, which is given by Lemma 2.4.

(b) Assume g ∈ Zpk [x] is a monic quadratic with 1g ≡ 0 mod pk . By Lemma 2.4,
there are pk such g. For each g, |Ag| is given by Lemma 2.5(a). Thus

B2 = pk
|Ag|.

(c) If (g, r) ∈ T2,q is included in the pairs counted for B3, then 1g = pdu, where
0 ≤ d < k, d even, and u ∈ Z∗pk is a square. For a fixed d, u, satisfying these
conditions, there are pk polynomials g with 1g = pdu by Lemma 2.4(a). And for
any such g, |Ag| is given by Lemma 2.5(b). Now, for a fixed d , there are

1
2(p− 1)pk−d−1

choices for u that give distinct values for pdu. Putting these results together, and
replacing d by 2d , we have

B3 =

[(k−1)/2]∑
d=0

1
2
(p− 1)p2k−d−1

(
2pk−2d

( p2d+1
+ 1

p+ 1

)
− 1

)

=
p2k−1(p− 1)

2(p+ 1)

[(k−1)/2]∑
d=0

p−d(2pk−2d(p2d+1
+ 1)− p− 1

)
. (2)
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Summing the geometric sequences, we have

[(k−1)/2]∑
d=0

p−d(−p− 1)= −(p+ 1)p−[(k−1)/2]
( p[(k−1)/2]+1

− 1
p− 1

)
,

[(k−1)/2]∑
d=0

p−d(2pk−2d(p2d+1
+ 1)

)
= 2pk−[(k−1)/2]+1

( p[(k−1)/2]+1
− 1

p− 1

)
+2pk−3[(k−1)/2]

( p3[(k−1)/2]+3
− 1

p3− 1

)
.

Substituting these equations in (2) and simplifying with the help of a computer
algebra system, we obtain the desired expression. �

Proof of Theorem 1.2. There are qm monic polynomials in Zq [x] with degree m.
Hence there are qm+2 pairs of monic polynomials ( f, g)with deg f =m, deg g=2.
By Lemma 3.1, the probability that a pair of these polynomials is relatively prime is

1−
|Sm,2,q |

qm+2 = 1−
|T2,q |

q4 .

Now |T2,q |= B1+B2+B3, with the values of Bi given by Lemma 2.5. Manipulating
this expression with the help of a computer algebra system, one obtains

|T2,q | =
pk

2(p+ 1)
D,

where D equals the expression

2p2k+1
+ 2p2+k/2(p− 1)

( p3k/2
− 1

p3− 1

)
+ p1+k/2

+ 3pk/2
+ pk
− p− 2

when k is even, and D equals

2p2k+1
+ 2(p− 1)

( p2(k+1)
− p(k+1)/2

p3− 1

)
+ 3p(k+1)/2

+ p(k−1)/2
+ pk
− 2p− 1,

when k is odd. When k is even, algebraic manipulation shows

2p2k+1
= 2(p+ 1)p2k

− 2p2k,

2p2+k/2(p− 1)
( p3k/2

− 1
p3− 1

)
= 2p2k

− 2p2+k/2
+ 2(1− p2)

k/2−1∑
i=1

p2k−3i ,

p1+k/2
+ 3pk/2

= (p+ 1)(−2p1+k/2
+ 3pk/2)+ 2p2+k/2,

pk
− p− 2=−(p+ 1)

k−1∑
i=1

(−p)i − 2(p+ 1).
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Adding both sides, the left hand side sums to D. With fk(x) defined as in the
introduction, we then have

1
2(p+ 1)

D = fk(p).

Theorem 1.2 follows immediately for k even. Similar calculations establish it for
k odd. �
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G-planar abelian groups
Andrea DeWitt, Jillian Hamilton, Alys Rodriguez and Jennifer Daniel

(Communicated by Scott Chapman)

For a group G with generating set S={s1, s2, . . . , sk}, the G-graph of G, denoted
by 0(G, S), is the graph whose vertices are distinct cosets of 〈si 〉 in G. Two
distinct vertices are joined by an edge when the set intersection of the cosets is
nonempty. In this paper, we explore the planarity of 0(G, S).

1. Introduction

Let G be a group with a generating set S = {s1, . . . , sk}. We say that the subset
T〈si 〉 ⊂ G is a left transversal for the subgroup 〈si 〉 of G if {x〈si 〉 | x ∈ T〈si 〉}

is precisely the set of all left cosets of 〈si 〉 in G. As in [Bauer et al. 2008],
we associate with (G, S) a simple graph 0(G, S) with vertex set V (0(G, S)) =
{x j 〈si 〉 | x j ∈T〈si 〉}. Two distinct vertices x j 〈si 〉 and xl〈sk〉 in V (0(G, S)) are joined
by an edge if x j 〈si 〉 ∩ xl〈sk〉 is nonempty. The edge set, E(0(G, S)), consists of
pairs (x j 〈si 〉, xl〈sk〉). 0(G, S) defined this way has no multiedge or loop.

Let Vi = {x j 〈si 〉 | x j ∈ Tsi }. Then V =
⋃k

i=1 Vi . The number of vertices in Vi

is simply the order of G divided by the order of si which is the index of 〈si 〉 in
G, denoted [G : 〈si 〉]. The minimum number of elements required to generate a
finite group G is called the rank of G. A minimal generating set for G is a subset
S = {s1, . . . , sk} such that G = 〈S〉, where k is the rank of G. This concept is not
to be confused with nonredundancy. A nonredundant set of generators is a set S
such that S generates all of G, that is, 〈S〉 =G, but no proper subset of S generates
all of G.

The main object of this paper is to explore the planarity of 0(G, S).

Definition 1.1. A group G is G-planar if there exists a generating set S such that
the graph, 0(G, S), is a planar graph.

We recall a fundamental criterion for the G-planarity of a group:

MSC2000: 05C25, 20F05.
Keywords: groups, graphs, generators.
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Theorem 1.2 (Wagner). A finite graph is planar if and only if it does not have K5

or K3,3 as a minor.

2. Examples of G-planar groups

The next two theorems give us two classes of G-planar groups.

Theorem 2.1. All cyclic groups are G-planar.

Proof. Let G be a cyclic group. Since G is cyclic, there exists an element b ∈ G
such that 〈b〉 = G. Let S = {b} be the generating set of G. Then 0(G, S) contains
only one vertex and 0(G, S) is a planar graph. Therefore G is a G-planar group. �

For the dihedral group, Dn , let r be a rotation of 360◦/n and let f be any
reflection.

Proposition 2.2. For S = { f, r f }, the graph 0(G, S) of the dihedral group Dn is
the cycle of length 2n, C2n .

Proof. Write
V1 = {〈 f 〉, r〈 f 〉, r2

〈 f 〉, . . . , rn−1
〈 f 〉},

V2 = {〈r f 〉, r〈r f 〉, r2
〈r f 〉, . . . , rn−1

〈r f 〉}.

Since f and r f are both reflections, their composition is a rotation. Denote this
rotation by rm .

Choose a vertex from V1, r s
〈 f 〉. Since

r s
∈ r s
〈 f 〉 ∩ r s

〈r f 〉,

the edge (r s
〈 f 〉, r s

〈r f 〉) is in E . Now we need to show that there is another
edge between r s

〈 f 〉 and V2. By simple calculation, we have r s f = r (s+m) mod nr f ;
moreover (r s

〈 f 〉, r (s+m) mod n
〈r f 〉) is in E .

Therefore the degree of each vertex in V1 is 2. By similar arguments, the degree
of each vertex in V2 is 2 and 0(G, S) is a cycle. �

Example 2.3. Let G = D3 and S = { f, r f }. Then the G-graph is the cycle C6:

t
t

t
t

t
t
�
��

@
@@

@
@@

�
��

Theorem 2.4. All dihedral groups are G-planar.

Proof. Let G = Dn and S = { f, r f }. Since 0(G, S) is a cycle, 0(G, S) is a planar
graph and G is a G-planar group. �

From [DeWitt et al. ≥ 2010], we have a few other examples of G-planar groups.
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Example 2.5. The modular group M has presentation

〈s, t | s8
= t2
= e, st = ts5

〉.

Let S= {s, ts}. From [DeWitt et al. ≥ 2010], 0(M, S) is K2,2. Therefore 0(M, S)
is a planar graph and M is a G-planar group.

Example 2.6. The quasihedral group QS has presentation

〈s, t | s8
= t2
= e, st = ts3

〉.

Let S = {s, ts}. From [DeWitt et al. ≥ 2010], 0(QS, S) is K2,4. Therefore
0(QS, S) is a planar graph and QS is a G-planar group.

Recall that the generalized quaternion group Q2n has presentation

〈s, t | s2n−1
= e, s2n−2

= t2, tst−1
= s−1

〉.

Theorem 2.7. The generalized quaternion group Q2n is G-planar.

Proof. Let G = Q2n and S = {tsk, tsm
}, where k is odd and m is even. 0(G, S) is

a bipartite connected graph with every vertex of degree 2 [DeWitt et al. ≥ 2010].
Therefore, 0(G, S) is a cycle and Q2n is G-planar. �

3. Finite abelian groups

The fundamental theorem of finite abelian groups tells us that every finite abelian
group of rank k is isomorphic to a direct product of cyclic groups of prime-power
order, that is, G ∼= Zm1 ×Zm2 × · · ·×Zmk . A standard generating set for G is a
subset S = {s1, . . . , sk} such that G = 〈s1〉× · · ·× 〈sk〉. Let G be an abelian group
with standard generating set S = {s1, . . . , sk}, then G is isomorphic to

Z|s1|×Z|s2|× · · ·×Z|sk |.

From Theorem 2.1, we know that all finite abelian groups with 1 generator
are G-planar. We now consider three cases: finite abelian groups with 4 or more
generators, 3 generators or 2 generators.

Let G be a group with generating set S. There exists a subset of S, S′, that
is nonredundant and generates G. From [Bretto and Gillibert 2004], 0(G, S′) is
necessarily a subgraph of 0(G, S). If 0(G, S′) is not a planar graph, then 0(G, S)
is not planar. Therefore, it is only necessary to consider generating sets that are
nonredundant.

Example 3.1. Let G = Z2×Z6 and S = {(1, 0), (0, 0), (0, 2), (0, 3), (0, 4)}. The
subset S′ = {(1, 0), (0, 2), (0, 3)} of S is a nonredundant generating set of G. The
set S′′= {(1, 0), (0, 1)} is a minimal generating set of G that is also nonredundant.
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Lemma 3.2. Let G be a finite abelian group and let S = {s1, s2, s3, . . . , sk} be a
nonredundant generating set, then |si | ≥ 2 for all i .

Proof. Assume |si |< 2. Then |si | = 1 and 〈si 〉 = {e}. Therefore si is not needed to
generate G and S\{si } generates G. This is a contradiction. Therefore, |si | ≥ 2. �

Finite abelian groups G with 4 or more generators.

Lemma 3.3. Let G be a finite abelian group and let S = {s1, s2, s3, s4, . . . , sk} be
a nonredundant generating set of G with k ≥ 4. Consider the subgroup H of G
that is generated by S′ = {s1, s2, s3, s4}. The vertices 〈s1〉, 〈s2〉, 〈s3〉, 〈s4〉, s1〈s2〉,
s2〈s1〉, s2〈s3〉, s3〈s2〉, s3〈s4〉, s4〈s3〉 of 0(H, S′) are all unique.

Proof. To see that each of these vertices is unique, assume 〈s1〉, s2〈s1〉 ∈ V1 are
not distinct, that is, 〈s1〉 = s2〈s1〉. So there exists k ∈ Z+ such that s2 = sk

1 which
contradicts the fact that S is a nonredundant generating set of G. The proofs of the
other cases are similar. �

Theorem 3.4. Let G be a finite abelian group and let S = {s1, s2, s3, s4, . . . , sk}

be a nonredundant generating set of G with k ≥ 4. Then 0(G, S) is not a planar
graph.

Proof. Consider the subgroup H of G generated by S′ = {s1, s2, s3, s4}. Define a
contraction 0 of 0(H, S′) in this way: Let V 1, V 2, V 3, V 4, V 5 ∈ V (0) with

{〈s1〉} = V 1, {〈s2〉} = V 2, {〈s3〉} = V 3, {〈s4〉} = V 4,

{s1〈s2〉, s2〈s1〉, s2〈s3〉, s3〈s2〉, s3〈s4〉, s4〈s3〉} = V 5.

Then, e ∈ (V 1∩V 2), e ∈ (V 1∩V 3), e ∈ (V 1∩V 4), s1 ∈ (V 1∩V 5), e ∈ (V 2∩V 3),
e ∈ (V 2∩V 4), s2 ∈ (V 2∩V 5), e ∈ (V 3∩V 4), s3 ∈ (V 3∩V 5), and s4 ∈ (V 4∩V 5).
Then (V i , V j ) ∈ E(0) for all i 6= j and 0 = K5. So, 0(H, S′) has K5 as a minor
and 0(H, S′) is not planar. From [Bretto et al. 2005], 0(H, S′) is a subgraph of
0(G, S). Therefore, 0(G, S) is not a planar graph. �

Corollary 3.5. Let G be a finite abelian group of rank 4 or more. Then G is not
G-planar.

Finite abelian groups G with 3 generators.

Example 3.6. Let G = Z2×Z2×Z2 with standard generating set

S = {s1, s2, s3} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The graph 0(G, S), illustrated in Figure 1, is a planar graph; hence G is a G-planar
group.

Next we show that this example is the only abelian group of rank three that is
G-planar.
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〈s1〉

〈s2〉

〈s3〉
s3〈s1〉

s3〈s2〉

s2〈s3〉

s2〈s1〉

s1〈s2〉

s1s2〈s3〉
s2s3〈s1〉

s1s3〈s2〉

s1〈s3〉

Figure 1. The graph 0(G, S), with G=Z2
3 and S={(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Lemma 3.7. Let G be a finite abelian group with nonredundant generating set
S = {s1, s2, s3} such that |si | ≥ 3 for at least one i . Then the graph 0(G, S)
contains at least 16 vertices.

Proof. Without loss of generality, assume that |s3| ≥ 3. There are at least 6 vertices
in V1. They are 〈s1〉, s2〈s1〉, s3〈s1〉, s2s3〈s1〉, s2

3〈s1〉, s2s2
3〈s1〉. To see that each of

these vertices is unique, assume 〈s1〉, s2s3〈s1〉 ∈ V1 are not distinct, that is, 〈s1〉 =

s2s3〈s1〉. So there exists k ∈ Z+ such that s2s3 = sk
1 which contradicts the fact that

S is a nonredundant generating set of G. The proofs of the other cases are similar.
Likewise, there are at least 6 unique vertices in V2 and 4 unique vertices on

V3. They are 〈s2〉, s1〈s2〉, s3〈s2〉, s1s3〈s2〉, s2
3〈s2〉, s1s2

3〈s2〉 and 〈s3〉, s1〈s3〉, s2〈s3〉,
s1s2〈s3〉. �

Theorem 3.8. Let G be a finite abelian group with nonredundant generating set
S = {s1, s2, s3} such that |si | ≥ 3 for at least one i . Then 0(G, S) is not a planar
graph.

Proof. Define a contraction 0 of 0(G, S) by setting

V 1 = {〈s1〉, 〈s2〉}, V 2 = {s1〈s2〉, s1s2〈s3〉, s1s3〈s2〉},

V 3 = {s1〈s3〉, s2
3〈s1〉, s2

3〈s2〉}, V 4 = {〈s3〉, s3〈s2〉, s3〈s1〉, s2s3〈s1〉},

V 5 = {s2〈s1〉, s2〈s3〉, s2s2
3〈s1〉, s1s2

3〈s2〉}.
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Then
s1 ∈ (V 1 ∩ V 2), s1 ∈ (V 1 ∩ V 3),

e ∈ (V 1 ∩ V 4), s2 ∈ (V 1 ∩ V 5),

s1 ∈ (V 2 ∩ V 3), s1s2s3 ∈ (V 2 ∩ V 4),

s1s2 ∈ (V 2 ∩ V 5), s2
3 ∈ (V 3 ∩ V 4),

s2
3s2 ∈ (V 3 ∩ V 5), s2s3 ∈ (V 4 ∩ V 5).

It follows that (V i , V j ) ∈ E(0) for all i 6= j and 0 = K5. So, 0(G, S) has K5 as
a minor and is not a planar graph. �

Corollary 3.9. Let G be a finite abelian group of rank 3 such that G 6∼=Z2×Z2×Z2.
Then G is not a G-planar group.

Finite abelian groups G with 2 generators. Since we have results for groups of
rank 1 and for groups of rank 3 or more, the only case left to consider is that of
groups of rank 2. Notice that any finite abelian group of rank 2 is isomorphic to
the direct product Zm ×Zn with gcd(m, n) 6= 1.

Lemma 3.10. Let G be a finite abelian group of rank 2 and let S be a nonredundant
generating set of G. If |S| ≥ 3, then 0(G, S) is not a planar graph.

Proof. If |S|> 3, then 0(G, S) is not planar by Theorem 3.4. Assume that |S| = 3,
that is, S = {s1, s2, s3} and that |si | < 3 for i = 1, 2, 3. Since S is nonredundant
|si |> 1 and therefore |si | = 2 for i = 1, 2, 3. Consider the subset

H = 〈s1〉〈s2〉 = {hk | h ∈ 〈s1〉, k ∈ 〈s2〉} = {e, s1, s2, s1s2}

of G. Since G is abelian, this subset is a subgroup. Now consider the subset

K = H〈s3〉 = {hk | h ∈ H, k ∈ 〈s3〉} = {e, s1, s2, s1s2, s3, s1s3, s2s3, s1s2s3}

of G. Again K is necessarily a subgroup of G.
Now assume that g ∈ G. Since S generates G, there exists n,m, l such that

g = sn
1 sm

2 sl
3. Since the order of each generator is 2, n,m, l are congruent to 0 or

1 modulo 2 and g ∈ K . Therefore G = K . Since the order of each element in G
is two, G ∼= Z2 × Z2 × Z2. This is a contradiction since G is a group of rank 2.
Therefore, |si | ≥ 3 for at least one i and by Theorem 3.8 the graph, 0(G, S), is not
planar. �

Theorem 3.11. Let G be a finite abelian group of rank 2. G is G-planar if and
only if G ∼= Z2×Zk , for some k ∈ N.

Proof. (⇐) Let G ∼= Z2×Zk and let 0(Z2×Zk, S) be the associated G-graph of
Z2 × Zk with S = {(1, 0), (0, 1)}. There exist an isomorphism φ : Z2 × Zk → G.
Let (x, y) ∈ Z2×Zk . There exists a, b such that (x, y) = a(1, 0)+ b(0, 1). Then
φ(x, y)=φ(a(1, 0)+b(0, 1))=aφ(1, 0)⊕bφ(0, 1). So φ(S)={φ(1, 0), φ(0, 1)}
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Rank Group Planarity

1 all G planar

2 G ∼= Z2×Zk planar
G 6∼= Z2×Zk not planar

3 G ∼= Z2×Z2×Z2 planar
G 6∼= Z2×Z2×Z2 not planar

4 or more all G not planar

Table 1. G-planarity of finite abelian groups.

generates G. 0(Z2×Zk , S) is Kk,2, so Kk,2 ∼= 0(G, φ(S)). Since Kk,2 is planar,
0(G, φ(S)) is planar. Therefore G is G-planar.
(⇒) Let G be a finite abelian G-planar group of rank 2 and let S be a generating

set such that 0(G, S) is a planar graph. From Lemma 3.10, |S| = 2, that is, S =
{s1, s2}.

Case 1. Assume that |s1| = 2. Let |G| = n, |V1| = [G : 〈s1〉] = n/2. So

V1 = {〈s1〉, s2〈s1〉, s2
2〈s1〉, · · · , sn/2−1

2 〈s1〉},

and the elements of G are of the form

s2, s2
2 , . . . , sn/2−1

2 , e and s1s2, s1s2
2 , . . . , s1sn/2−1

2 , s1.

Therefore |s2| = n/2 and G is isomorphic to Z2×Zn/2.
Case 2. Assume that |s1|, |s2|> 2. Consider the vertex induced subgraph gener-

ated by the six vertices 〈s1〉, s2〈s1〉, s2
2〈s1〉, 〈s2〉, s1〈s2〉, s2

1〈s2〉. This graph is K3,3.
Since this subgraph is not planar, 0(G, S) is not planar. This contradicts the sup-
position that S is a generating set such that 0(G, S) is a planar graph. Therefore,
if G is G-planar, then G ∼= Z2×Zk . �

Table 1 summarizes the results for all finite abelian groups.
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