。
 involvea journal of mathematics

Gracefulness of families of spiders
Patrick Bahls, Sara Lake and Andrew Wertheim

Gracefulness of families of spiders

Patrick Bahls, Sara Lake and Andrew Wertheim
(Communicated by Jerrold Griggs)

Abstract

We say that a tree is a spider if it has at most one branch point. We prove the existence of a family of graceful labelings for spiders all of whose legs are equal in length.

1. Introduction

Let $G=(V, E)$ be a (simple, undirected) graph. A labeling of G is a map from the set V of vertices to the set of nonnegative integers. A labeling ϕ induces a labeling on the edge set E by assigning to $e=\{u, v\}$ the value $\phi(e)=|\phi(u)-\phi(v)|$.

A labeling is said to be graceful if its labels take values in $\{0,1, \ldots,|V|-1\}$, it has no repeated labels, and its induced edge labeling has no repeated labels.

A graph is graceful if there is some graceful labeling of its vertices. Graceful labelings were first defined by Rosa as he considered problems involving decompositions of graphs; see [Rosa 1967], in which various sorts of labelings are defined. Golomb [1972] was the first to use the term graceful labeling.

There is a long-standing conjecture that every tree - that is, every connected acyclic graph - is graceful. Known as the Ringel-Kotzig conjecture, it seems to have first been published as Problem 25, p. 162 in a collection of open problems in [Fiedler 1964]. See [Edwards and Howard 2006; Gallian 1997-2009] for more information on this conjecture and hundreds of related results. We note that proofs of gracefulness for general classes of trees are hard to come by.

We call the graph T a spider if it has at most one branch point - that is, at most one vertex v such that the degree $d(v)$ satisfies $d(v) \geq 3$. Let v^{*} denote the unique branch point of a spider T, if this point exists. We call this point the center of the graph T. A leg of the spider T is any one of the paths from v^{*} to a leaf of T. We will prove the following result in Section 2:

Theorem 1. Let T be a spider with l legs, each of which has length in $\{m, m+1\}$ for some $m \geq 1$. Then T is graceful.

[^0]Theorem 1 is not a new result. It follows from [Poljak and Sûra 1982], but our proof also shows gracefulness for any tree formed by appending an extra leg of any length to an odd-legged spider with legs of lengths in $\{m, m+1\}$. A generalization of the construction, given in Section 3, leads to further interesting labelings: specifically, for spiders having an odd number of legs, all of equal length m, we construct for each positive divisor d of m a graceful labeling associated with d. This construction can be used to generate graceful labelings of many trees that are not spiders, as shown in [Bahls 2008].

2. Proof of the main theorem

We may assume that $l \geq 3$, as otherwise T is a path, which is known to be graceful. (For example, see [Aldred et al. 2003], in which an estimate is obtained for the number of graceful labelings on a path of a given length.)

Proof of Theorem 1 for l odd. Let $l=l_{0}+l_{1}$, where l_{i} is the number of legs of length $m+i$ for $i \in\{0,1\}$. Note that T has $n+1=l m+l_{1}+1$ vertices, to be labeled by the set $\{0,1, \ldots, n\}$. Label the legs by $L_{1}, L_{2}, \ldots, L_{l}$ so that $L_{1}, \ldots, L_{l_{1}}$ have length $m+1$ and $L_{l_{1}+1}, \ldots, L_{l}$ have length m. Let v^{*} denote the branch point of T and denote by $v_{i, j}$ the vertex in L_{i} of distance j from v^{*}.

Let ϕ be the labeling defined as follows:
(i) $\phi\left(v^{*}\right)=0$;
(ii) if i and j are both odd,

$$
\phi\left(v_{i, j}\right)=n-\frac{i-1}{2}-\frac{(j-1) l}{2} ;
$$

(iii) if i and j are both even;

$$
\phi\left(v_{i, j}\right)=n-\frac{l-1}{2}-\frac{i}{2}-\frac{(j-2) l}{2} ;
$$

(iv) if i is even and j is odd,

$$
\phi\left(v_{i, j}\right)=\frac{i}{2}+\frac{(j-1) l}{2} ;
$$

(v) if i is odd and j is even,

$$
\phi\left(v_{i, j}\right)=\frac{l-1}{2}+\frac{i+1}{2}+\frac{(j-2) l}{2} .
$$

The labeling ϕ places 0 at the spider's center and, traversing the longer legs first, alternates between the highest and the lowest remaining unused labels, spiraling away from the center. This is illustrated in Figure 1, in which $l_{0}=2, l_{1}=3$, and $m=4$.

Figure 1. The labeling ϕ for $l_{0}=2, l_{1}=3$, and $m=4$.

To help compute the induced edge labels, we note that the local maxima of ϕ occur at $v_{i, j}$ for which i and j have the same parity - that is, $i \equiv j(\bmod 2)$, For such i and j, we have

$$
\begin{align*}
\phi\left(v_{i, j}\right)-\phi\left(v_{i, j+1}\right) & =n-\frac{l-1}{2}-i+(1-j) l>0 \tag{1}\\
\phi\left(v_{i, j}\right)-\phi\left(v_{i, j-1}\right) & =n-\frac{l-1}{2}-i+(2-j) l>0 \tag{2}
\end{align*}
$$

Suppose, to obtain a contradiction, that there are two distinct edges that share the same label. By considering the indexes of the vertices at both ends end of these edges, we see that we can choose distinct pairs of indexes (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ such that i and j have the same parity, i^{\prime} and j^{\prime} likewise have the same parity, and an edge incident on $v_{i, j}$ shares the same label as a different edge incident on $v_{i^{\prime}, j^{\prime}}$, that is, one of these three cases occur:

$$
\begin{align*}
& \phi\left(v_{i, j}\right)-\phi\left(v_{i, j+1}\right)=\phi\left(v_{i^{\prime}, j^{\prime}}\right)-\phi\left(v_{i^{\prime}, j^{\prime}+1}\right), \tag{3}\\
& \phi\left(v_{i, j}\right)-\phi\left(v_{i, j+1}\right)=\phi\left(v_{i^{\prime}, j^{\prime}}\right)-\phi\left(v_{i^{\prime}, j^{\prime}-1}\right), \tag{4}\\
& \phi\left(v_{i, j}\right)-\phi\left(v_{i, j-1}\right)=\phi\left(v_{i^{\prime}, j^{\prime}}\right)-\phi\left(v_{i^{\prime}, j^{\prime}-1}\right) . \tag{5}
\end{align*}
$$

Consider first the case where (3) holds. From (1), we obtain $i-i^{\prime}+\left(j-j^{\prime}\right) l=0$, which shows that $j \neq j^{\prime}$, since otherwise $i=i^{\prime}$ as well, contrary to the assumption that $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. We therefore can write

$$
l=\frac{i-i^{\prime}}{j^{\prime}-j}
$$

Thus $\left|i-i^{\prime}\right|<l$ and $\left|j-j^{\prime}\right| \geq 1$, and

$$
l=\left|\frac{i-i^{\prime}}{j^{\prime}-j}\right|<\frac{l}{1}=l
$$

a contradiction.
Similar contradictions arise when (4) or (5) hold. Thus no two distinct edges bear the same labels, and ϕ is graceful.

Proof of Theorem 1 for l even. Without loss of generality assume L_{l} is a leg of length m. Remove it, resulting in a tree T_{0} with an odd number of legs, $l-1$. The construction above yields a graceful labeling ϕ_{0} of T_{0} such that $\phi_{0}\left(v^{*}\right)=0$. Let $\left|V\left(T_{0}\right)\right|=n^{\prime}+1$. We define a new graceful labeling, ϕ_{0}^{\prime}, on T_{0} by $\phi_{0}^{\prime}(v)=n^{\prime}-\phi_{0}(v)$ for all v.

Construct a new tree T_{1} by appending a new vertex, w_{1}, to T_{0} 's center. Define ϕ_{1} on $V\left(T_{1}\right)$ by $\phi_{1}\left(w_{1}\right)=0$ and $\phi_{1}(v)=\phi_{0}^{\prime}(v)+1$ for all $v \in V\left(T_{0}\right)$. Define ϕ_{1}^{\prime} on T_{1} by $\phi_{1}^{\prime}(v)=n^{\prime}+1-\phi_{1}(v)$ for all v; note that $\phi_{1}^{\prime}\left(w_{1}\right)=n^{\prime}+1$.

We now append a vertex w_{2} to w_{1} and construct graceful labelings ϕ_{2} from ϕ_{1}^{\prime}, ϕ_{2}^{\prime} from ϕ_{2}, and so forth, until we have reconstructed $L_{l}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$, recovering T.

The argument in the case of l even actually shows this:
Theorem 2. Let T be a spider with legs, where lis even. Suppose each leg, except possibly one, has length in $\{m, m+1\}$ for some $m \geq 1$. Then T is graceful.

3. A family of graceful labelings

Now assume that T is a spider with an odd number l of legs, each of length m. Let d be any fixed positive divisor of m; we define a graceful labeling ϕ_{d} corresponding to d.

We retain the notation $v_{i, j}$ from the previous section. Given a pair (i, j), set $t=\lceil j / d\rceil$ and $r=j-(t-1) d$. Roughly, t gives the "tier" of length d inside the i-th leg in which the vertex $v_{i, j}$ lies, and r gives its position relative to that tier. The value of $\phi_{d}\left(v_{i, j}\right)$ will depend on the parity of each of d, i, t, and r, so we consider the vector $\vec{v}_{i, j}=(d, i, t, r)$ as an element of \mathbb{Z}_{2}^{4} by reducing all coordinates modulo 2.

Let $\phi_{d}\left(v^{*}\right)=0$, as before. The following formula gives $\phi_{d}\left(v_{i, j}\right)$:
(i) if $\vec{v}_{i, j} \in\{(0,1,1,1),(1,1,1,1)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=m l-\frac{(t-1) l d}{2}-\frac{(i-1) d}{2}-\frac{r-1}{2}
$$

(ii) if $\vec{v}_{i, j} \in\{(0,1,1,0),(1,1,1,0)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=\frac{(t-1) l d}{2}+\frac{(i-1) d}{2}+\frac{r}{2} ;
$$

(iii) if $\vec{v}_{i, j} \in\{(0,0,1,1),(1,0,1,1)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=\frac{(t-1) l d}{2}+\frac{i d}{2}-\frac{r-1}{2}
$$

(iv) if $\vec{v}_{i, j} \in\{(0,0,1,0),(1,0,1,0)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=m l-\frac{(t-1) l d}{2}-\frac{i d}{2}+\frac{r}{2} ;
$$

(v) if $\vec{v}_{i, j} \in\{(1,1,0,1),(0,1,0,0)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=\left\lceil\frac{l d}{2}\right\rceil+\frac{(t-2) l d}{2}+\frac{(i-1) d}{2}+\left\lfloor\frac{r}{2}\right\rfloor ;
$$

(vi) if $\vec{v}_{i, j} \in\{(1,0,0,1),(0,0,0,0)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=m l-\left\lfloor\frac{l d}{2}\right\rfloor-\frac{(t-2) l d}{2}-\frac{i d}{2}+\left\lfloor\frac{r}{2}\right\rfloor .
$$

(vii) if $\vec{v}_{i, j} \in\{(1,1,0,0),(0,1,0,1)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=m l-\left\lceil\frac{l d}{2}\right\rceil-\frac{(t-2) l d}{2}-\frac{(i-1) d}{2}-\left\lceil\frac{r}{2}\right\rceil+1 ;
$$

(viii) if $\vec{v}_{i, j} \in\{(1,0,0,0),(0,0,0,1)\}$,

$$
\phi_{d}\left(v_{i, j}\right)=\left\lfloor\frac{l d}{2}\right\rfloor+\frac{(t-2) l d}{2}+\frac{i d}{2}-\left\lceil\frac{r}{2}\right\rceil+1 .
$$

That this yields a graceful labeling can be proved in a manner similar to the proof of Theorem 1.

Like the labeling introduced in the proof of Theorem 1, this labeling proceeds by alternating between the greatest and least labels yet unused, spiraling outward from the center. Now, however, d vertices on each leg are labeled before proceeding to the next leg, and the direction in which the labeling proceeds within this length- d segment (inward or outward relative to the center) alternates from one leg to the next. An example is shown in Figure 2.

In the special case $d=1$, we obtain the labeling constructed in the proof of Theorem 1. In this case $t=j$ and $r=1$, so our labeling depends only on the parities of i and j, and indeed after reduction the corresponding formulas in the above list, namely (i), (iii), (v), and (vi), coincide precisely with those in the proof of Theorem 1.

The labelings ϕ_{d} have the property that the edges

$$
\left\{v^{*}, v_{i, 1}\right\},\left\{v_{i, d}, v_{i, d+1}\right\},\left\{v_{i, 2 d}, v_{i, 2 d+1}\right\}, \ldots,\left\{v_{i, m-d}, v_{i, m-d+1}\right\}
$$

Figure 2. The labeling ϕ_{d} for $l=5, m=6$, and $d=3$.
have labels divisible by d. This fact enables us to "deflate" the labeling ϕ_{d} and obtain a labeling ϕ_{d}^{\prime} on the spider T^{\prime} with l legs, each of length m / d. This new labeling is defined inductively as follows, spiraling outward from the center v^{\prime} of T^{\prime}, where we denote by $v_{i, j}^{\prime}$ the vertex in T^{\prime} in position (i, j) as before and let $v_{i, 0}=v^{*}, v_{i, 0}^{\prime}=v^{\prime}$:
(i) $\phi_{d}^{\prime}\left(v^{\prime}\right)=0$;
(ii) $\phi_{d}^{\prime}\left(v_{i, 1}^{\prime}\right)=\phi_{d}\left(v_{i, 1}\right) / d$;
(iii) assuming $\phi_{d}^{\prime}\left(v_{i, j}^{\prime}\right)$ has been defined, let

$$
\phi_{d}^{\prime}\left(v_{i, j+1}^{\prime}\right)=\phi_{d}^{\prime}\left(v_{i, j}^{\prime}\right)+(-1)^{l+j+1} \frac{\phi_{d}\left(\left\{v_{i, j d}, v_{i, j d+1}\right\}\right)}{d}
$$

This process acts as an inverse to the process of edge subdivision considered in [Bahls 2008], in which each edge of a given gracefully labeled tree is subdivided a fixed number of times, yielding a new graph that can be gracefully labeled by making use of the labeling on the original tree.

References

[Aldred et al. 2003] R. E. L. Aldred, J. Širáň, and M. Širáñ, "A note on the number of graceful labellings of paths", Discrete Math. 261:1-3 (2003), 27-30. MR 2004a:05135 Zbl 1008.05132
[Bahls 2008] P. Bahls, "Generating graceful trees by subdivision", preprint, 2008, Available at http://facstaff.unca.edu/pbahls/papers/GracefulSubdivision.pdf.
[Edwards and Howard 2006] M. Edwards and L. Howard, "A survey of graceful trees", Atlantic Electronic J. Math. 1:1 (2006), 5-30.
[Fiedler 1964] M. Fiedler (editor), Theory of graphs and its applications (Smolenice, 1963), Czechoslovak Acad. Sciences, Prague, and Academic Press, New York, 1964.
[Gallian 1997-2009] J. Gallian, "A dynamic survey of graph labeling", Electron. J. Combin. DS6 (1997-2009). MR 99m:05141 Zbl 0953.05067
[Golomb 1972] S. W. Golomb, "How to number a graph", pp. 23-37 in Graph theory and computing, edited by R. C. Read and C. Berge, Academic Press, New York, 1972. MR 49 \#4863 Zbl 0293.05150
[Poljak and Sûra 1982] S. Poljak and M. Sûra, "An algorithm for graceful labelling of a class of symmetrical trees", Ars Combin. 14 (1982), 57-66. MR 84d:05150 Zbl 0504.05029
[Rosa 1967] A. Rosa, "On certain valuations of the vertices of a graph", pp. 349-355 in Internat. Sympos. Theory of Graphs (Rome, 1966), Gordon and Breach, New York, 1967. MR 36 \#6319 Zbl 0193.53204

Received: 2009-03-02 Revised: Accepted: 2010-07-25

pbahls@unca.edu	University of North Carolina, Asheville, Department of Mathematics, CPO \#2350, One University Heights, Asheville, NC 28804-8511, United States
salake@unca.edu	University of North Carolina, Asheville, Department of Mathematics, CPO \#2350, One University Heights, Asheville, NC 28804-8511, United States
ajwerthe@unca.edu	University of North Carolina, Asheville, Department of Mathematics, CPO \#2350, One University Heights, Asheville, NC 28804-8511, United States

involve

pjm.math.berkeley.edu/involve
EDITORS
Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	A Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	University of Wisconsin, USA ono@math.wisc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
David Larson	Texas A\&M University, USA larson@math.tamu.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2010 is US $\$ 100 /$ year for the electronic version, and $\$ 120 /$ year ($+\$ 20$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
http://www.mathscipub.org
A NON-PROFIT CORPORATION
Typeset in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2010 by Mathematical Sciences Publishers
Gracefulness of families of spiders 241Patrick Bahls, Sara Lake and Andrew Wertheim
Rational residuacity of primes 249Mark Budden, Alex Collins, Kristin Ellis Lea and Stephen Savioli
Coexistence of stable ECM solutions in the Lang-Kobayashi system 259
Ericka Mochan, C. Davis Buenger and Tamas Wiandt
A complex finite calculus 273
Joseph Seaborn and Philip Mummert
$\zeta(n)$ via hyperbolic functions 289
Joseph D'Avanzo and Nikolai A. Krylov
Infinite family of elliptic curves of rank at least 4 297Bartosz Naskrecki
Curvature measures for nonlinear regression models using continuous designs with 317 applications to optimal experimental design
Timothy O'Brien, Somsri Jamroenpinyo and Chinnaphong Bumrungsup
Numerical semigroups from open intervals 333
Vadim Ponomarenko and Ryan Rosenbaum
Distinct solution to a linear congruence 341
Donald Adams and Vadim Ponomarenko
A note on nonresidually solvable hyperlinear one-relator groups 345
Jon P. Bannon and Nicolas Noblett

[^0]: MSC2000: 05C78.
 Keywords: graceful labeling, graph labeling, tree.

