# 0 <br> involvea journal of mathematics 

Rational residuacity of primes
Mark Budden, Alex Collins, Kristin Ellis Lea and Stephen Savioli

# Rational residuacity of primes 

Mark Budden, Alex Collins, Kristin Ellis Lea and Stephen Savioli (Communicated by Filip Saidak)

The most natural extensions to the law of quadratic reciprocity are the rational reciprocity laws, described using the rational residue symbol. In this article, we provide a reciprocity law from which many of the known rational reciprocity laws may be recovered by picking appropriate primitive elements for subfields of $\mathbb{Q}\left(\zeta_{p}\right)$. As an example, a new generalization of Burde's law is provided.

## 1. Introduction

The law of quadratic reciprocity has played a central role in the development of number theory since Gauss published its first proof in 1801 (see [Lemmermeyer 2000] for the history of this important result). To state the law, assume that $a \in \mathbb{Z}$ is not divisible by an odd prime $p$ and define the Legendre symbol by

$$
\left(\frac{a}{p}\right):=\left\{\begin{aligned}
1 & \text { if } x^{2} \equiv a(\bmod p) \text { is solvable } \\
-1 & \text { if not. }
\end{aligned}\right.
$$

Then if $p$ and $q$ are distinct odd primes, we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

The remainder of the 1800s and early 1900s saw many generalizations of this result to higher powers, culminating in class field theory, in which generalized reciprocity laws were established. Making such generalizations requires one to leave the realm of the integers, introducing rings of integers in algebraic number fields and primes within these rings. Hence, the study of reciprocity laws can serve as a great topic for students interested in learning about field extensions and Galois theory.

While class field theory has succeeded in capturing the true essence of the higher reciprocity laws, the extensions to the law of quadratic reciprocity that are the most accessible to students are the rational reciprocity laws. Such laws make use of the

[^0]rational residue symbol, which only takes on the integer values $\pm 1$ and is defined on rational primes. The simplicity of the rational residue symbol is much more tangible to students than the power residue symbol, making such laws an excellent starting point for students in algebraic number theory. Like the law of quadratic reciprocity, the statements are often elementary, but the proofs elucidate the utility of Galois theory and the ramification theory of prime ideals in algebraic number fields.

We begin with a description of the quadratic residue symbol and the rational residue symbol. Let $K$ be an algebraic number field and $N$ the norm map of $K$ over $\mathbb{Q}$. Let $\mathfrak{p}$ be a prime ideal such that $\mathfrak{p} \nmid 20_{K}$, where $\mathscr{O}_{K}$ is the ring of integers in $K$. For every $\alpha \in \mathbb{O}_{K}-\mathfrak{p}$, define the quadratic residue symbol $\left(\frac{\alpha}{\mathfrak{p}}\right)$ by

$$
\left(\frac{\alpha}{\mathfrak{p}}\right) \equiv \alpha^{(N(\mathfrak{p})-1) / 2}(\bmod \mathfrak{p})
$$

In the case where $K=\mathbb{Q}$, our definition agrees with the Legendre symbol on the generator of the prime ideal $\mathfrak{p}=p \mathbb{Z}$.

Now let $a \in \mathbb{Z}$ and $p$ be an odd prime satisfying $(a, p)=1$ such that

$$
a^{(p-1) / n} \equiv 1(\bmod p) .
$$

Then the $2 n$-th rational residue symbol $(a / p)_{2 n}$ is defined by

$$
\left(\frac{a}{p}\right)_{2 n} \equiv a^{(p-1) /(2 n)}(\bmod p)
$$

It is easily verified that this symbol only takes on the integer unit values $\pm 1$. It should also be noted that it agrees with the $2 n$-th power residue symbol $(a / \mathfrak{p})_{\mathbb{Q}\left(\zeta_{2 n}\right)}$, where $\mathfrak{p}$ is any prime ideal above $p$ in $\mathbb{Q}\left(\zeta_{2 n}\right)$ and $\zeta_{2 n}$ is the primitive $2 n$-th root of unity $e^{\pi i / n}$.

An indispensable object used in the proofs of most reciprocity laws is the Galois group

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right),
$$

defined to be the group of all automorphisms $\mathbb{Q}\left(\zeta_{p}\right) \rightarrow \mathbb{Q}\left(\zeta_{p}\right)$ that fix $\mathbb{Q}$ pointwise (here, $\zeta_{p}$ is the primitive $p$-th root of unity $e^{2 \pi i / p}$ ). By the fundamental theorem of Galois theory (see [Gallian 2010, Chapter 32], for instance), there is a one-to-one correspondence between the intermediate subfields of the extension $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$ and the subgroups of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$. It is well known that

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}
$$

is a cyclic group of order $p-1$. So, whenever $p \equiv 1(\bmod m)$, there exists a unique subfield $K_{m}$ of $\mathbb{Q}\left(\zeta_{p}\right)$ that satisfies $\left[K_{m}: \mathbb{Q}\right]=m$.

Lemmermeyer [1994] showed that when $p \equiv 1(\bmod 4)$, specific choices of $A, B \in \mathbb{Z}$ so that $K_{4}=\mathbb{Q}(\sqrt{A+B \sqrt{p}})$ result in the rational quartic reciprocity laws of Scholz [1934], Lehmer [1958; 1978], and Burde [1969]. His work simplified the all-encompassing rational quartic reciprocity law of Williams et al. [1985] as well as its simplification by Evans [1989]. The reader unfamiliar with these laws may consult Lehmer's survey article [Lehmer 1978] and [Lemmermeyer 2000] for the relevant background.

When extending the known rational quartic reciprocity laws, it is natural to look for analogues that involve the $2^{t}$-th rational residue symbols $(p / q)_{2^{t}}$ and $(q / p)_{2^{t}}$ when $p \equiv q \equiv 1\left(\bmod 2^{t}\right)$ are distinct primes. Such a generalization of Burde's law was proved by Evans [1981], and Budden et al. [2007] recently proved such a generalization of Scholz's law. In Section 2, we follow the approach of [Budden et al. 2007] to prove a $2 n$-th reciprocity law (Theorem 1), from which many of the known rational reciprocity laws can be recovered. The approach is similar to that of [Lemmermeyer 1994] in that it compares the factorization of the prime ideal $q \mathbb{Z}$ in $\mathbb{Q}\left(\zeta_{p}\right)$ to its factorization in $K_{2 n}$. Additionally, the all-encompassing rational quartic law in this last reference may be viewed as a special case of the quartic version of the $2 n$-th law presented here. Hence, all of the known rational quartic reciprocity laws may be recovered from Theorem 1.

Finally, as an application of Theorem 1, we give in Section 3 a $2^{t}$-th generalization of Burde's law (Theorem 3), that differs from the known generalizations. In particular, our result is different from Williams' octic version of Burde's law [Williams 1976] when $t=3$ (also proved independently by Wu [1975]), Leonard and Williams' sixteenth version of Burde's law when $t=4$ [Leonard and Williams 1977], and Evans' $2^{t}$-th generalization of Burde's law [Evans 1981]. Interesting results follow from comparing the variations.

## 2. A $\mathbf{2 n}$-th rational reciprocity law

Now assume that $p \equiv q \equiv 1(\bmod 2 n)$ are distinct primes with $n \geq 1$ such that

$$
\left(\frac{p}{q}\right)_{n}=\left(\frac{q}{p}\right)_{n}=1
$$

Then the ideal $q 0_{K_{n}}$ factors into prime ideals as

$$
q \mathscr{O}_{K_{n}}=\lambda_{1} \lambda_{2} \cdots \lambda_{n},
$$

with all of the $\lambda_{i}$ distinct. We obtain the following reciprocity law.
Theorem 1. Let $p \equiv q \equiv 1(\bmod 2 n)$ be distinct primes with $n \geq 1$ and assume

$$
\left(\frac{p}{q}\right)_{n}=\left(\frac{q}{p}\right)_{n}=1 .
$$

If $\beta \in \mathscr{O}_{K_{n}}$ is such that $K_{2 n}=K_{n}(\sqrt{\beta})$, then $\left(\frac{q}{p}\right)_{2 n}=\left(\frac{\beta}{\lambda}\right)$, where $\lambda$ is any prime ideal above $q$ in $0_{K_{n}}$.
Proof. The cyclotomic polynomial $\Phi_{p}(x)=\prod_{k=1}^{p-1}\left(x-\zeta_{p}^{k}\right)$ splits over $K_{n}$, and we let $\varphi_{p}(x)$ be the irreducible factor

$$
\varphi_{p}(x)=\prod_{\substack{1 \leq r \leq p-1 \\(r / p)_{n}=1}}\left(x-\zeta_{p}^{r}\right) .
$$

Since $\Phi_{p}(x) \in \mathbb{Z}\left[\zeta_{p}\right][x]$, it follows that $\varphi_{p}(x) \in \mathbb{O}_{K_{n}}$. Furthermore, it has degree $(p-1) / n$ and splits further over $K_{2 n}$ into $\varphi_{p}(x)=\psi_{p}(x) \cdot \tilde{\psi}_{p}(x)$, where

$$
\psi_{p}(x)=\prod_{\substack{1 \leq r \leq p-1 \\(r / p)_{2 n}=1}}\left(x-\zeta_{p}^{r}\right) \quad \text { and } \quad \tilde{\psi}_{p}(x)=\prod_{\substack{1 \leq t \leq p-1 \\\left(t / p 2_{2 n}=-1 \\(t / p)_{n}=1\right.}}\left(x-\zeta_{p}^{t}\right)
$$

Define the polynomial $\vartheta(x)=\psi_{p}(x)-\tilde{\psi}_{p}(x) \in \mathbb{O}_{K_{2 n}}[x]$ and consider the automorphism $\sigma_{q} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$, defined by $\sigma_{q}\left(\zeta_{p}\right)=\zeta_{p}^{q}$. Since the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic, it has unique cyclic subgroups of orders dividing $p-1$, implying that

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{n}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times n} \quad \text { and } \quad \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{2 n}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times 2 n}
$$

Under the assumption $(q / p)_{n}=1$, the automorphism $\sigma_{q}$ is contained in the Galois $\operatorname{group} \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{n}\right)$. Its restriction to $K_{2 n}$ must agree with either the identity automorphism $I \in \operatorname{Gal}\left(K_{2 n} / K_{n}\right)$, or the nontrivial automorphism $\alpha(\sqrt{\beta})=-\sqrt{\beta}$. It follows that

$$
\left.\sigma_{q}\right|_{K_{2 n}}=I \Longleftrightarrow(q / p)_{2 n}=1 .
$$

Since

$$
\alpha(\sqrt{\beta} \vartheta(x))=\sqrt{\beta} \vartheta(x)
$$

and the coefficients in $\vartheta(x)$ come from $\mathbb{O}_{K_{2 n}}$, every coefficient must be an element in $\mathbb{O}_{K_{n}}$ multiplied by $\sqrt{\beta}$ so that we can write

$$
\vartheta(x)=\sqrt{\beta} \phi(x), \quad \text { for some } \phi(x) \in \mathbb{O}_{K_{n}}[x] .
$$

We have also assumed that $(p / q)_{n}=1$, so that the ideal $q 0_{K_{n}}$ splits completely in $\mathbb{O}_{K_{n}}$ (i.e., $q \mathbb{O}_{K_{n}}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$, a product of distinct prime ideals). If $\lambda$ is any such prime ideal in $\mathbb{O}_{K_{n}}$, then $\mathbb{O}_{K_{n}} / \lambda \cong \mathbb{Z} / q \mathbb{Z}$. We have the congruence

$$
(\vartheta(x))^{q}=\left(\psi_{p}(x)-\tilde{\psi}_{p}(x)\right)^{q} \equiv\left(\frac{q}{p}\right)_{2 n}\left(\psi_{p}\left(x^{q}\right)-\tilde{\psi}_{p}\left(x^{q}\right)\right)(\bmod \lambda) .
$$

On the other hand, we also have

$$
\begin{aligned}
(\vartheta(x))^{q}=(\sqrt{\beta} \phi(x))^{q} & \equiv \beta^{(q-1) / 2} \sqrt{\beta} \phi\left(x^{q}\right)(\bmod \lambda) \\
& \equiv\left(\frac{\beta}{\lambda}\right)\left(\psi_{p}\left(x^{q}\right)-\tilde{\psi}_{p}\left(x^{q}\right)\right)(\bmod \lambda)
\end{aligned}
$$

We will obtain the desired result from the congruence

$$
\left(\frac{q}{p}\right)_{2 n}\left(\psi_{p}\left(x^{q}\right)-\tilde{\psi}_{p}\left(x^{q}\right)\right) \equiv\left(\frac{\beta}{\lambda}\right)\left(\psi_{p}\left(x^{q}\right)-\tilde{\psi}_{p}\left(x^{q}\right)\right)(\bmod \lambda)
$$

once we show that $\psi_{p}(X) \not \equiv \tilde{\psi}_{p}(X)(\bmod \lambda)$; note that if $\psi_{p}(X) \equiv \tilde{\psi}_{p}(X)(\bmod \lambda)$, then $\varphi_{p}(X) \equiv \psi(X)^{2}(\bmod \lambda)$. Applying Kummer's theorem [Janusz 1996, Theorem 7.4], the polynomial $\Phi_{p}(X)$ factors in exactly the same way in

$$
(\mathbb{Z} / q \mathbb{Z})[X] \cong\left(\mathbb{O}_{K_{n}} / \lambda\right)[X],
$$

as $q \mathbb{Z}\left[\zeta_{p}\right]$ factors in $\mathbb{Z}\left[\zeta_{p}\right]$. However, the distinctness of the primes $p$ and $q$ implies that $q \mathbb{Z}\left[\zeta_{p}\right]$ does not ramify, giving a contradiction. Thus, we conclude that

$$
\left(\frac{q}{p}\right)_{2 n} \equiv\left(\frac{\beta}{\lambda}\right)(\bmod \lambda),
$$

which reduces to an equality since the residue symbols only take on the values $\pm 1$.

While this reciprocity law may not appear to be rational, given the existence of the quadratic residue symbol, it can be identified with a Legendre symbol. Namely, the element $\beta$ is a coset representative in

$$
\bigcirc_{K_{n}} / \lambda \cong \mathbb{Z} / q \mathbb{Z},
$$

and since $0,1, \ldots, q-1$ represent distinct cosets in $\mathscr{O}_{K_{n}} / \lambda$, we have $\beta \equiv a(\bmod \lambda)$ for some unique element $a \in\{1,2, \ldots, q-1\}$. Thus, we have

$$
\left(\frac{\beta}{\lambda}\right)=\left(\frac{a}{\lambda}\right),
$$

and since Theorem 1 is independent of the choice of prime $\lambda$ above $q$, we may write

$$
\left(\frac{\beta}{\lambda}\right)=\left(\frac{a}{q}\right) .
$$

In this capacity, Theorem 1 may be viewed as a rational reciprocity law.
We chose the polynomial-based proof given for Theorem 1 because it highlights the significance of Kummer's theorem, relating the factoring of minimal polynomials in function fields to that of prime ideals in number fields. We note that Theorem 1 can also be proved in an analogous way to Lemmermeyer's proof of the all-encompassing rational quartic reciprocity law in [Lemmermeyer 1994].

## 3. Generalizing Burde's law

Since Theorem 1 is a generalization of the all-encompassing rational quartic reciprocity law in [Lemmermeyer 1994], the rational quartic laws of Scholz [1934], Lehmer [1958; 1978] and Burde [1969] all follow by picking appropriate primitive elements for $K_{4}$. In this section, we show that Theorem 1 implies a generalization of Burde's law that differs from the known generalizations. Before giving the general case, we recall Lemmermeyer's proof [2000] of Burde's law for motivation.

Assume that $p \equiv q \equiv 1(\bmod 4)$ are distinct primes, so we can write $p=a^{2}+b^{2}$ and $q=A^{2}+B^{2}$ with $2 \nmid a A$. We also assume that $(p / q)=1$. A few simple consequences of these conditions that can be checked directly are

$$
\left(\frac{A}{q}\right)=1 \quad \text { and } \quad\left(\frac{2 B}{q}\right)=1 .
$$

Lemmermeyer argued that $K_{4}=\mathbb{Q}\left(\sqrt{\beta_{4}}\right)$, where

$$
\beta_{4}=p q+\left(b\left(A^{2}-B^{2}\right)+2 a A B\right) \sqrt{p} .
$$

Then we see that

$$
\begin{aligned}
\left(\frac{\beta_{4}}{q}\right) \equiv \beta_{4}^{(q-1) / 2} & \equiv\left(b\left(A^{2}-B^{2}\right)+2 a A B\right)^{(q-1) / 2} p^{(q-1) / 4}(\bmod q) \\
& \equiv\left(-2 b B^{2}+2 a A B\right)^{(q-1) / 2}\left(\frac{p}{q}\right)_{4}(\bmod q) \\
& \equiv(-2 B(b B-a A))^{(q-1) / 2}\left(\frac{p}{q}\right)_{4}(\bmod q) \\
& \equiv\left(\frac{-2 B}{q}\right)\left(\frac{b B-a A}{q}\right)\left(\frac{p}{q}\right)_{4}(\bmod q) \\
& \equiv\left(\frac{b B-a A}{q}\right)\left(\frac{p}{q}\right)_{4}(\bmod q) .
\end{aligned}
$$

Thus, from Theorem 1, we obtain Burde's law:

$$
\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=\left(\frac{b B-a A}{q}\right) .
$$

Note that Burde's law is independent of the choices of signs of $a, b, A$, and $B$.
We now describe a primitive element for $K_{2^{t}}$, when $t \geq 2$, analogous to $\sqrt{\beta_{4}}$ used above for $K_{4}$.

Theorem 2. Let $p \equiv q \equiv 1\left(\bmod 2^{t}\right)$ be distinct primes with $t \geq 2$ such that $p=$ $a^{2}+b^{2}$ and $q=A^{2}+B^{2}$ with $2 \nmid a A$. If $\beta_{4}=p q+\left(b\left(A^{2}-B^{2}\right)+2 a A B\right) \sqrt{p}$, then a primitive element for $K_{2^{t}}$ can be defined recursively for $t>2$ by

$$
\beta_{2^{t}}=\left(q \sqrt{p}+\left(b\left(A^{2}-B^{2}\right)+2 a A B\right)\right) \sqrt{\beta_{2^{t-1}}},
$$

with $K_{2^{t}}=\mathbb{Q}\left(\sqrt{\beta_{2^{t}}}\right)$.

Proof. Our proof proceeds by using (weak) induction on $t \geq 2$ following Lemmermeyer's approach [Lemmermeyer 1994] in the quartic case (and as our starting point when $t=2$ ). Assume that the theorem holds for the $2^{t-1}$ case with $K_{2^{t-1}}=\mathbb{Q}\left(\sqrt{\beta_{2^{t-1}}}\right)$ and let

$$
\alpha_{2^{t}}=q \sqrt{p} \sqrt{\beta_{2^{t-1}}}, \quad \gamma=\left(b\left(A^{2}-B^{2}\right)+2 a A B\right), \quad \delta=\left(a\left(A^{2}-B^{2}\right)-2 b A B\right)
$$

It is easily checked that $\alpha_{2^{t}}, \gamma$, and $\delta$ are pairwise relatively prime and that

$$
\alpha_{2^{t}}^{2}=\beta_{2^{t-1}}\left(\gamma^{2}+\delta^{2}\right)
$$

From the identity

$$
2\left(\alpha_{2^{t}}+\gamma \sqrt{\beta_{2^{t-1}}}\right)\left(\alpha_{2^{t}}+\delta \sqrt{\beta_{2^{t-1}}}\right)=\left(\alpha_{2^{t}}+\gamma \sqrt{\beta_{2^{t-1}}}+\delta \sqrt{\beta_{2^{t-1}}}\right)^{2}
$$

we see that

$$
K_{2^{t}}:=\mathbb{Q}\left(\sqrt{\alpha_{2^{t}}+\gamma \sqrt{\beta_{2^{t-1}}}}\right)=\mathbb{Q}\left(\sqrt{2\left(\alpha+\delta \sqrt{\beta_{2^{t-1}}}\right)}\right)
$$

Thus, the only primes that can possibly ramify in $K_{2^{t}} / K_{2^{t-1}}$ are 2 and any common divisors of

$$
\alpha_{2^{t}}^{2}-\beta_{2^{t-1}} \gamma^{2}=\beta_{2^{t-1}} \delta^{2} \quad \text { and } \quad \alpha_{2^{t}}^{2}-\beta_{2^{t-1}} \delta^{2}=\beta_{2^{t-1}} \gamma^{2}
$$

Since $\delta$ and $\gamma$ are relatively prime, the only odd primes that can ramify are divisors of $\beta_{2^{t-1}}$. However, any such prime would have to have ramified in $\mathbb{Q}\left(\sqrt{\beta_{2^{t-1}}}\right)$ and by our inductive hypothesis, only $p$ ramified there. Thus, $p$ is the only odd prime that ramifies in $K_{2^{t}} / K_{2^{t-1}}$.

Finally, we must argue that 2 does not ramify. Lemmermeyer [1994] showed the case $t=2$, that is, $\beta_{4} \equiv 1(\bmod 4)$. As our inductive hypothesis, we assume that $\beta_{2^{t-1}} \equiv 1(\bmod 4)$. Then the congruences

$$
\sqrt{\beta_{2^{t-1}}} \equiv \pm 1(\bmod 4), \quad \sqrt{p} \equiv \pm 1(\bmod 4), \quad q \equiv 1(\bmod 4)
$$

and the fact that $\gamma$ is even show that $\beta_{2^{t}} \equiv \sqrt{\beta_{2^{t-1}}}(q \sqrt{p}+\gamma) \equiv \pm 1(\bmod 4)$. By Stickelberger's discriminant relation [Ribenboim 2001, Section 6.3], the discriminant of an algebraic number field is $0,1(\bmod 4)$. Thus, $\beta_{2^{t}} \equiv 1(\bmod 4)$ and we conclude that 2 does not ramify in $K_{2^{t}} / K_{2^{t-1}}$. Since $p$ is the only prime that ramifies in the abelian Galois extension $K_{2^{t}} / \mathbb{Q}, K_{2^{t}}$ is the unique subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ of degree $2^{t}$ over $\mathbb{Q}$ by the theorem of Kronecker and Weber [Ribenboim 2001, Section 15.1].

Using the reciprocity law given in Theorem 1 with the choice of primitive element for $K_{2^{t}}$ given in Theorem 2, we obtain the following $2^{t}$-th generalization of Burde's law, which is also independent of the choices of signs of $a, b, A$, and $B$.

Theorem 3. Let $p \equiv q \equiv 1\left(\bmod 2^{t}\right)$ be distinct primes with $t \geq 2$ such that

$$
p=a^{2}+b^{2} \quad \text { and } \quad q=A^{2}+B^{2}
$$

with $2 \nmid a$ A. If

$$
\left(\frac{p}{q}\right)_{2^{t-1}}=\left(\frac{q}{p}\right)_{2^{t-1}}=1,
$$

then

$$
\left(\frac{p}{q}\right)_{2^{t}}\left(\frac{q}{p}\right)_{2^{t}}=\left(\frac{2 B(b B-a A)}{q}\right)_{2^{t-1}} .
$$

Proof. Once again, we use an inductive argument with Lemmermeyer's proof of Burde's law as a starting point. With regard to Theorem 1, assuming that Theorem 3 is true for the $t-1$ case is equivalent to assuming that

$$
\left(\frac{\beta_{2^{t-1}}}{q}\right)=\left(\frac{2 B(b B-a A)}{q}\right)_{2^{t-2}}\left(\frac{p}{q}\right)_{2^{t-1}} .
$$

Letting $\left(\frac{p}{q}\right)_{2^{t-1}}=\left(\frac{q}{p}\right)_{2^{t-1}}=1$, we then obtain, for $t>2$,

$$
\begin{aligned}
\left(\frac{q}{p}\right)_{2^{t}}=\left(\frac{\beta_{2^{t}}}{q}\right) & \equiv \beta_{2^{t}}^{(q-1) / 2} \equiv \beta_{2^{t-1}}^{(q-1) / 4}\left(b\left(A^{2}-B^{2}\right)+2 a A B\right)^{(q-1) / 2}(\bmod q) \\
& \equiv\left(\frac{2 B(b B-a A)}{q}\right)_{2^{t-1}}\left(\frac{p}{q}\right)_{2^{t}}\left(\frac{2 B(b B-a A)}{q}\right)(\bmod q) \\
& \equiv\left(\frac{2 B(b B-a A)}{q}\right)_{2^{t-1}}\left(\frac{p}{q}\right)_{2^{t}}(\bmod q) .
\end{aligned}
$$

Since all of the rational residue symbols take on only the values $\pm 1$, we may drop the congruence and conclude the statement of Theorem 3.

Perhaps the other known generalizations of Burde's law also follow as consequences of Theorem 1. At this time, we have not been able to find suitable primitive elements to prove such implications.

## References

[Budden et al. 2007] M. Budden, J. Eisenmenger, and J. Kish, "A generalization of Scholz's reciprocity law", J. Théor. Nombres Bordeaux 19:3 (2007), 583-594. MR 2009b:11004
[Burde 1969] K. Burde, "Ein rationales biquadratisches Reziprozitätsgesetz", J. Reine Angew. Math. 235 (1969), 175-184. MR 39 \#2694
[Evans 1981] R. J. Evans, "Rational reciprocity laws", Acta Arith. 39:3 (1981), 281-294. MR 83h: 10006 MR 83h:10006 Zbl 0472.10006
[Evans 1989] R. Evans, "Residuacity of primes", Rocky Mountain J. Math. 19:4 (1989), 1069-1081. MR 90m:11008 Zbl 0699.10012
[Gallian 2010] J. Gallian, Contemporary Abstract Algebra, 7th ed., Brooks Cole, Belmont, CA, 2010.
[Janusz 1996] G. J. Janusz, Algebraic number fields, 2nd ed., Graduate Studies in Mathematics 7, American Mathematical Society, Providence, RI, 1996. MR 96j:11137 Zbl 0854.11001
[Lehmer 1958] E. Lehmer, "Criteria for cubic and quartic residuacity", Mathematika 5 (1958), 2029. MR 20 \#1668 Zbl 0102.28002
[Lehmer 1978] E. Lehmer, "Rational reciprocity laws", Amer. Math. Monthly 85:6 (1978), 467-472. MR 58 \#16482 Zbl 0383.10003
[Lemmermeyer 1994] F. Lemmermeyer, "Rational quartic reciprocity", Acta Arith. 67:4 (1994), 387-390. MR 95m:11010 Zbl 0833.11049
[Lemmermeyer 2000] F. Lemmermeyer, Reciprocity laws:From Euler to Eisenstein, Springer, Berlin, 2000. MR 2001i:11009 Zbl 0949.11002
[Leonard and Williams 1977] P. A. Leonard and K. S. Williams, "A rational sixteenth power reciprocity law", Acta Arith. 33:4 (1977), 365-377. MR 57 \#219 Zbl 0363.10003
[Ribenboim 2001] P. Ribenboim, Classical theory of algebraic numbers, Universitext, Springer, New York, 2001. MR 2002e:11001 Zbl 1082.11065
[Scholz 1934] A. Scholz, "Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$ ", Math. Z. 39 (1934), 95-111.
[Williams 1976] K. S. Williams, "A rational octic reciprocity law", Pacific J. Math. 63:2 (1976), 563-570. MR 54 \#2568 Zbl 0311.10004
[Williams et al. 1985] K. S. Williams, K. Hardy, and C. Friesen, "On the evaluation of the Legendre symbol $((A+B \sqrt{m}) / p) "$, Acta Arith. 45:3 (1985), 255-272. MR 87b:11006 Zbl 0524.10002
[Wu 1975] P. Wu, "A rational reciprocity law", Ph.D. thesis, University of Southern California, Los Angeles, 1975.

Received: 2009-04-27 Accepted: 2010-09-20
mrbudden@email.wcu.edu Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC 28723, United States
ac0428@students.armstrong.edu Department of Mathematics,
Armstrong Atlantic State University, 11935 Abercorn St., Savannah, GA 31419, United States
$\begin{array}{ll}\text { ke3203@students.armstrong.edu } & \begin{array}{l}\text { Department of Mathematics, } \\ \\ \\ \\ \text { Armstrong Atlantic State University, } 11935 \text { Abercorn St., } \\ \text { Savannah, GA 31419, United States }\end{array} \\ \text { ss7965@students.armstrong.edu } & \begin{array}{l}\text { Department of Mathematics, } \\ \\ \\ \\ \text { Armstrong Atlantic State University, } 11935 \text { Abercorn St., } \\ \text { Savannah, GA 31419, United States }\end{array}\end{array}$

## involve

pjm.math.berkeley.edu/involve
EDITORS
Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

## Board of Editors

| John V. Baxley | Wake Forest University, NC, USA baxley@wfu.edu | Chi-Kwong Li | College of William and Mary, USA ckli@math.wm.edu |
| :---: | :---: | :---: | :---: |
| Arthur T. Benjamin | Harvey Mudd College, USA benjamin@hmc.edu | Robert B. Lund | Clemson University, USA lund@clemson.edu |
| Martin Bohner | Missouri U of Science and Technology, USA bohner@mst.edu | A Gaven J. Martin | Massey University, New Zealand g.j.martin@massey.ac.nz |
| Nigel Boston | University of Wisconsin, USA boston@math.wisc.edu | Mary Meyer | Colorado State University, USA meyer@stat.colostate.edu |
| Amarjit S. Budhiraja | U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu | Emil Minchev | Ruse, Bulgaria eminchev@hotmail.com |
| Pietro Cerone | Victoria University, Australia pietro.cerone@vu.edu.au | Frank Morgan | Williams College, USA frank.morgan@williams.edu |
| Scott Chapman | Sam Houston State University, USA scott.chapman@shsu.edu | Mohammad Sal Moslehian | Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir |
| Jem N. Corcoran | University of Colorado, USA corcoran@colorado.edu | Zuhair Nashed | University of Central Florida, USA znashed@mail.ucf.edu |
| Michael Dorff | Brigham Young University, USA mdorff@math.byu.edu | Ken Ono | University of Wisconsin, USA ono@math.wisc.edu |
| Sever S. Dragomir | Victoria University, Australia sever@matilda.vu.edu.au | Joseph O'Rourke | Smith College, USA orourke@cs.smith.edu |
| Behrouz Emamizadeh | The Petroleum Institute, UAE bemamizadeh@pi.ac.ae | Yuval Peres | Microsoft Research, USA peres@microsoft.com |
| Errin W. Fulp | Wake Forest University, USA fulp@wfu.edu | Y.-F. S. Pétermann | Université de Genève, Switzerland petermann@math.unige.ch |
| Andrew Granville | Université Montréal, Canada andrew@dms.umontreal.ca | Robert J. Plemmons | Wake Forest University, USA plemmons@wfu.edu |
| Jerrold Griggs | University of South Carolina, USA griggs@math.sc.edu | Carl B. Pomerance | Dartmouth College, USA carl.pomerance@dartmouth.edu |
| Ron Gould | Emory University, USA rg@mathcs.emory.edu | Bjorn Poonen | UC Berkeley, USA poonen@math.berkeley.edu |
| Sat Gupta | U of North Carolina, Greensboro, USA sngupta@uncg.edu | James Propp | U Mass Lowell, USA jpropp@cs.uml.edu |
| Jim Haglund | University of Pennsylvania, USA jhaglund@math.upenn.edu | Józeph H. Przytycki | George Washington University, USA przytyck@gwu.edu |
| Johnny Henderson | Baylor University, USA johnny_henderson@baylor.edu | Richard Rebarber | University of Nebraska, USA rrebarbe@math.unl.edu |
| Natalia Hritonenko | Prairie View A\&M University, USA nahritonenko@pvamu.edu | Robert W. Robinson | University of Georgia, USA rwr@cs.uga.edu |
| Charles R. Johnson | College of William and Mary, USA crjohnso@math.wm.edu | Filip Saidak | U of North Carolina, Greensboro, USA f_saidak@uncg.edu |
| Karen Kafadar | University of Colorado, USA karen.kafadar@cudenver.edu | Andrew J. Sterge | Honorary Editor andy@ajsterge.com |
| K. B. Kulasekera | Clemson University, USA kk@ces.clemson.edu | Ann Trenk | Wellesley College, USA atrenk@wellesley.edu |
| Gerry Ladas | University of Rhode Island, USA gladas@math.uri.edu | Ravi Vakil | Stanford University, USA vakil@math.stanford.edu |
| David Larson | Texas A\&M University, USA larson@math.tamu.edu | Ram U. Verma | University of Toledo, USA verma99@msn.com |
| Suzanne Lenhart | University of Tennessee, USA lenhart@math.utk.edu | John C. Wierman | Johns Hopkins University, USA wierman@jhu.edu |

## PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2010 is US $\$ 100 /$ year for the electronic version, and $\$ 120 /$ year ( $+\$ 20$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
http://www.mathscipub.org
A NON-PROFIT CORPORATION
Typeset in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2010 by Mathematical Sciences Publishers
Gracefulness of families of spiders ..... 241Patrick Bahls, Sara Lake and Andrew Wertheim
Rational residuacity of primes ..... 249Mark Budden, Alex Collins, Kristin Ellis Lea and Stephen Savioli
Coexistence of stable ECM solutions in the Lang-Kobayashi system ..... 259
Ericka Mochan, C. Davis Buenger and Tamas Wiandt
A complex finite calculus ..... 273
Joseph Seaborn and Philip Mummert
$\zeta(n)$ via hyperbolic functions ..... 289
Joseph D'Avanzo and Nikolai A. Krylov
Infinite family of elliptic curves of rank at least 4 ..... 297Bartosz Naskrecki
Curvature measures for nonlinear regression models using continuous designs with ..... 317 applications to optimal experimental design
Timothy O'Brien, Somsri Jamroenpinyo and Chinnaphong Bumrungsup
Numerical semigroups from open intervals ..... 333
Vadim Ponomarenko and Ryan Rosenbaum
Distinct solution to a linear congruence ..... 341
Donald Adams and Vadim Ponomarenko
A note on nonresidually solvable hyperlinear one-relator groups ..... 345
Jon P. Bannon and Nicolas Noblett


[^0]:    MSC2000: primary 11A15; secondary 11R32, 11R18.
    Keywords: reciprocity laws, ramification of prime ideals, cyclotomic fields.
    Supported in part by an internal grant from Armstrong Atlantic State University and a CURM minigrant funded through NSF grant DMS-0636648.

