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In 1939, Richard Rado showed that any complex matrix is partition regular over
C if and only if it satisfies the columns condition. Recently, Hogben and McLeod
explored the linear algebraic properties of matrices satisfying partition regularity.
We further the discourse by generalizing the notion of partition regularity beyond
systems of linear equations to topological surfaces and graphs. We begin by
defining, for an arbitrary matrix 8, the metric space (M8, δ). Here, M8 is
the set of all matrices equivalent to 8 that are (not) partition regular if 8 is
(not) partition regular; and for elementary matrices, Ei and F j , we let δ(A, B)=
min{m= l+k : B= E1. . .El AF1. . .Fk}. Subsequently, we illustrate that partition
regularity is in fact a local property in the topological sense, and uncover some
of the properties of partition regularity from this perspective. We then use these
properties to establish that all compact topological surfaces are partition regular.

1. Introduction

Let C be the set of complex numbers, and let Mu,v(C) be the set of all u×v matrices
with complex entries. Let A = [ai, j ] ∈ Mu,v(C) be given, and let Ea j denote the
column j of A. Then A satisfies the columns condition if and only if there exists an
m ∈ {1, . . . , v} and a partition {I1, . . . , Im} of {1, . . . , v} into nonempty sets such
that

(i)
∑
j∈I1

Ea j = 0, and

(ii) for each t ∈ {2, 3, . . . ,m} (if any),
∑
i∈It

Eai is in the span of {Eai : i ∈
⋃t−1

j=1 I j }.

A is said to be partition regular if it satisfies the columns condition [Hindman
2007; Rado 1943]. The study of partition regularity has long been a combinatorial
endeavor, which mostly uses the columns condition to check if a given matrix
is partition regular. However, Hogben and McLeod [2010] recently showed that
the columns condition is interesting in its own right, and provided a more linear
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algebraic perspective on partition regularity. We employ this new perspective to
extend the notion of partition regularity into geometrical and topological settings.

For an arbitrary complex matrix 8, we construct a metric space characterized
by the partition regularity of 8 (Section 2). We then use this metric space about 8
to generate a topological space that recasts partition regularity as a local property.
We show a few topological properties of these spaces, and then demonstrate how
their systems of neighborhoods can describe the “degree” of partition regularity as
applied to a given matrix (Section 2). Finally, using some well known connections
between graph theory and linear algebra, we construct topological spaces that allow
us to define partition regularity as a property of topological surfaces and graphs.
In Section 3, we show that all compact topological surfaces are partition regular.
We then demonstrate that not all graphs are partition regular.

We take a topological surface to be a two-dimensional real manifold that is
Hausdorff. A graph G= (V, E) is a nonempty set V of vertices, along with a set E
of edges, where an edge is a two-element subset of vertices. A walk is an alternating
sequence (v0, e1, v1, e2, . . . , em, vm) of vertices and edges. A graph G is connected
if there exists a walk between any two distinct vertices of G. A component is a
connected subgraph of G, and a set S of edges of G is a disconnecting set if G \ S
has more than one component. The edge connectivity of G is the minimum size
of a disconnecting set of G. An orientation 0 of G is obtained by assigning a
direction to each edge of G, and thus replacing the edge {i, j} with the arc (i, j).
An orientation 0 of G is strongly connected if there exists an alternating sequence
(v0, e1, v1, e2, . . . , em, vm) of vertices and arcs between any two vertices of 0. The
oriented incidence matrix of 0 is the rational matrix denoted D0 = [di,e], where if
e = (i, j), then di,e =−1, d j,e = 1, and dk,e = 0 for k 6= i and k 6= j .

For any matrix A in Mm,n(C), we let a type-1 elementary operation be a row (col-
umn) permutation, a type-2 elementary operation be multiplication of a given row
(column) of A by a scalar β ∈C, and a type-3 elementary operation be the addition
of a scalar multiple of one row (column) of A to another. We call the associated
matrices of each elementary operation T1, T2, and T3 matrices, respectively.

2. Topologically rich spaces associated with partition regularity

Let A, B ∈ Mm,n(C). We say that B is equivalent to A if there exist invertible
matrices P and Q for which B= PAQ. This is an equivalence relation on Mm,n(C),
and we let [A] denote the equivalence class of A. Since P and Q are each the
product of a finite number of elementary matrices we can identify P and Q, with
the sequence of nonidentity elementary matrices 〈x〉li=1 that when applied to matrix
A produces matrix B. Since A and B are both in [A], there must exist a minimal
sequence of elementary operations. Let lA,B be the nonnegative integer denoting
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the length of this minimal sequence. Then we can define the function

δ : [A]× [A] −→ R

such that
δ(A, B)= lA,B .

Theorem 2.1. Let A be in Mm,n(C). Then ([A], δ) is a metric space.

Proof. The nonnegativity of δ follows trivially from the definition of lA,B for any
pair of matrices A, B in [A].

To see that δ is symmetric, notice that if δ(A, B) = lA,B , then there exist
invertible matrices P and Q associated with the minimal sequence 〈x〉lA,B

i=1 such
that B = P AQ. It follows that A = P−1 B Q−1, and thus P−1 and Q−1 may be
associated with the sequence 〈x〉mi=1, where m = lA,B is equal to the number of
elementary matrices in the product P−1 Q−1. Assume that 〈x〉mi=1 is not minimal,
then there must exist a sequence 〈x〉lB,A

i=1 such that lB,A < m. Find its associated
invertible matrices U and V such that A=U BV . So, B =U−1 AV−1 and there is
an associated sequence 〈x〉ni=1. But n = lB,A, and since m = lA,B , this contradicts
the minimality of 〈x〉lA,B

i=1 . Thus,

δ(A, B)= lA,B = m = lB,A = δ(B, A),

and δ is a symmetric function.
To see that δ satisfies the triangle inequality, let A, B, and C be in [A], and pick

G, P , U , V , N , and Q such that B = GAP , C =UAV , and B = NCQ. Then

δ(A, B)= lA,B, δ(A,C)= lA,C , δ(C, B)= lC,B .

Now let m = δ(A,C)+ δ(C, B). Then there exists a sequence 〈x〉mi=1 associated
with the invertible matrices NU and VQ such that

B = (NU )A(VQ).

Thus, since A can be changed to B using δ(A,C)+δ(C, B) elementary operations,
it follows from the minimality of δ(A, B) that

δ(A, B)≤ δ(A,C)+ δ(C, B).

So, δ satisfies the triangle inequality, and ([A], δ) is indeed a metric space. �

Let 8 ∈Mm,n(C) be a partition regular matrix, and let M8 denote the set of all
matrices that are partition regular and equivalent to 8. Notice that (M8, δ) is a
metric space. Furthermore, the range of our metric δ is a subset of the nonnegative
integers.

Theorem 2.2. Let T be the metric topology induced by δ on M8. Then (M8, T) is
a discrete topological space.
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Proof. Let A, B ∈Mm,n(C). We need only prove that δ(A, B) = 0 if and only if
A= B. To see this, notice that for any A, B in M8, δ(A, B)= lA,B is a nonnegative
integer. So, if δ(A, B) = 0, then the minimal number of nonidentity elementary
matrices that must be applied to A to produce B is zero. So it must be that A= B.
Conversely, if A= B, then the minimal number of elementary operations that must
be applied to A to reach B is equal to 0. Thus, δ(A, B)= 0.

For A0 in M8 consider the open ball of radius 1
2 about A0:

BA0,1/2 =
{

A ∈ M8 : δ(A0, A) < 1
2

}
= {A ∈ M8 : δ(A0, A)= 0} = {A0}.

Therefore, the singletons of M8 are all open sets, and so T is equal to the power
set of M8. Thus, the pair (M8, T) is a discrete topological space. �

Notice that if 8 is not partition regular, then there is a corresponding discrete
space consisting of all matrices that are not partition regular and equivalent to
8. This allows us to establish a “degree” of partition regularity for any arbitrary
matrix.

Definition 2.3. Let A ∈Mu,v(C) be given.

(a) The progress of A is the minimum number, l, of elementary operations that
must be performed on A to produce a partition regular matrix. We say that
A has progress l, and write pr(A) = l, moreover, we write pr(A) =∞ if A
cannot be changed into a partition regular matrix via elementary operations.

(b) The antiprogress of A is the minimum number, l, of elementary operations
that must be performed on A to produce a matrix that is not partition regular.
We say that A has antiprogress l, and write apr(A) = l, moreover, we write
apr(A)=∞ if A cannot be changed into a matrix that is not partition regular
via elementary operations.

Any A ∈ Mu,v(C) has both a progress and an antiprogress. Moreover, A has
progress 0 if and only if A is partition regular, and A has antiprogress 0 if and only
if A is not partition regular.

We are interested in the collection of matrices that proceed from a given matrix
A in M8. The following definitions describe such collections.

Definition 2.4. (a) A filament is a sequence of equivalent matrices in M8 satis-
fying the following conditions:
(i) The sequence begins with 8.

(ii) No matrix in the sequence is repeated.
(iii) The sequence is finite if and only if the last matrix in the sequence has

antiprogress 1.
(iv) Each matrix of the sequence is obtained by performing a single elementary

operation on the preceding matrix in the sequence.
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A filament is called finite if the sequence is finite. Otherwise, it is called
infinite.

(b) A subfilament associated with A is a sequence of equivalent matrices in M8

starting with matrix A, that satisfies (ii), (iii), and (iv). A subfilament is called
finite if the sequence is finite. Otherwise, it is called infinite.

Example 2.5. Let 8=

[
−1 1 0
−1 0 1

0 0 0

]
. Then

([
−1 1 0
−1 0 1

0 0 0

]
,

[
−1 1 0
−1 0 1
−1 1 0

])
and

([
−1 1 0
−1 0 1

0 0 0

]
,

[
−1 1 0
−1 0 1
−1 1 0

]
,

[
−1 1 0
−1 0 1

0 1 −1

])
are finite filaments in M8 since[

−1 1 0
−1 0 1
−1 1 0

][
−1 0 0

0 1 0
0 0 1

]
=

[
1 1 0
1 0 1
1 1 0

]
and

[
−1 1 0
−1 0 1

0 1 −1

][
−1 0 0

0 1 0
0 0 1

]
=

[
1 1 0
1 0 1
0 1 0

]

are both not partition regular. If A =

[
−1 1 0
−1 0 1
−1 1 0

]
, then

([
−1 1 0
−1 0 1
−1 1 0

]
,

[
−1 1 0
−1 0 1

0 1 −1

])
is a finite subfilament associated with A.

The following theorem provides a better description of exactly how the size of
M8 relates to the degree of partition regularity of 8.

Theorem 2.6. For any partition regular matrix 8 in Mm,n(C), M8 contains an
infinite number of infinite filaments.

Proof. Since row equivalent matrices share the same nullspace, we have, as an
immediate consequence of [Hogben and McLeod 2010, Theorem 2.3], that parti-
tion regularity is invariant under elementary row operations. It follows from the
definition of the columns condition that partition regularity is also invariant under
type-1 column operations. Thus, there exist exactly four types of elementary oper-
ations that cannot produce a matrix that has antiprogress 0 from a partition regular
matrix. For any A ∈ M8 we may apply a type-1 row operation for every possible
pair of rows in A, and similarly for any type-1 column operation. This gives

(m
2

)
possible type 1 row operations, and

(n
2

)
possible type-1 column operations that can

be applied to A and produce a matrix in M8. type-2 row operations also cannot
produce a matrix that has antiprogress 0 from A. Since any scalar in C−{0}may be
applied to a single row of A, there exist m |C−{0}| possible type-2 row operations
that can be applied to A. Finally, there are |C− {0}| ways to scale a given row of
A, and m−1 rows to which this scaled row may be added. Since this may be done
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for any row of A, there exist m (m−1) |C−{0}| type-3 row operations that can be
applied to A and can produce a matrix in M8. Thus, for any A ∈ M8, there are
exactly

m (m− 1) |C−{0}| +m |C−{0}| +
(

m
2

)
+

(
n
2

)
elementary operations that will not produce a matrix that has antiprogress 0 when
applied to A. Thus, for each matrix produced by applying exactly these operations
to 8, we can produce another m (m − 1) |C− {0}| +m |C− {0}| +

(m
2

)
+
(n

2

)
that

are still partition regular. Continuing in this fashion, we produce[
m (m− 1) |C−{0}| +m |C−{0}| +

(
m
2

)
+

(
n
2

)]ℵ0

infinite sequences of matrices contained in M8.
Now, if

(8, A1, A2, A3, . . .)

is an infinite sequence of matrices in M8, where each Ai is produced by applying
exactly one of the infinitely many operations described above to Ai−1, then there
exist only a finite subset of these operations such that Ai = A j for some

A j ∈ {8, A1, . . . , Ai−1}.

Notice that only the identity operation may be applied to Ai−1 to produce Ai−1.
Then to see the result, assume there exists some elementary operation E0 such that
E0 applied to Ai−1 produces Ai ∈ M8 and

Ai ∈ {8, A1, . . . , Ai−2}.

If E0 is a type-1 row operation, there exists some

A j ∈ {8, A1, . . . , Ai−2}

such that switching exactly two rows of A j produces Ai−1. Since there exist for
each

A j ∈ {8, A1, . . . , Ai−2}

exactly two rows that may be switched to produce Ai−1, there exist at most (i−1)
possibilities for E0 to be a type-1 row operation such that

Ai = E0 Ai−1 ∈ {8, A1, . . . , Ai−2}.

Similarly, there exist at most (i − 1) possibilities for E0 to be a type-1 column
operation such that

Ai = Ai−1 E0 ∈ {8, A1, . . . , Ai−2}.
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In the case that E0 is a type-2 row operation, and

E0 Ai−1 ∈ {8, A1, . . . , Ai−2},

then we may produce some A j ∈ {8, A1, . . . , Ai−2} by scaling exactly one row of
Ai−1 by a single α ∈ C. Since C is a unique factorization domain, it follows that
if E0 Ai−1 = A j , E0 is unique. Therefore, at most, we may find one E0 such that
E0 Ai−1 = A j for each A j ∈ {8, A1, . . . , Ai−2}. Thus, there are at most (i − 1)
type-2 column operations such that Ai ∈ {8, A1, . . . , Ai−2}.

Finally, let E0 be a type-3 column operation such that

E0 Ai−1 = A j ∈ {8, A1, . . . , Ai−2}.

Then exactly one row of A j , call it row (A j )k , is not equal to row (Ai−1)k , and

(A j )k = α(Ai−1)k′ + (Ai−1)k,

where α ∈ C, and (Ai−1)k′ is one of the (m − 1) rows of Ai−1 that is not row
(Ai−1)k . It follows that

(A j )k − (Ai−1)k = α(Ai−1)k′,

and again α ∈ C must be unique. Thus, for a given

A j ∈ {8, A1, . . . , Ai−2},

there are at most (m − 1) possibilities for E0 such that E0 Ai−1 = A j . Therefore,
there are at most (m−1)(i−1) possibilities for E0 to be a type-3 column operation
such that Ai ∈ {8, A1, . . . , Ai−2}.

We may now conclude from these various cases that there are at most

3(i − 1)+ (m− 1)(i − 1)+ 1

elementary operations that when applied to Ai−1 will yield for Ai an element of
{8, A1, . . . , Ai−1}. Thus, for each Ai in the sequence there still exist an infinite
number of elementary operations such that Ai+1∈M8 and Ai+1 /∈{8, A1, . . . , Ai }.
It follows that there exist an infinite number of infinite filaments in M8, for any
partition regular matrix 8. �

For any partition regular matrix, 8, the space M8 is large. Moreover, for any
two partition regular matrices, 8 and 9, the cardinality of the collection of infinite
filaments in M8 is the same as the cardinality of the collection of infinite filaments
in M9 . This makes it difficult to use the size of these spaces to say that one matrix
is “more” partition regular than another.
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Lemma 2.7. Let A′ ∈M8, and let κ(A′) be an infinite subfilament associated with
A′, such that A′ is the only matrix on κ(A′) that may also be on a finite filament.
Consider the map

p : M8 −→ M8

such that

p(A)=
{

A if A is on a finite filament,
8 if A is on some κ(A′) for some A′ ∈ M8, and A 6= A′.

Let P8 = I m(p), the image of p. Then the space P8 has the quotient topology
induced by p.

Proof. It is clear p is a surjection. Furthermore, since M8 has the discrete topology,
then if U is open in P8, it must be that U is open in M8. �

This new topological space consists of exactly those finite sequences of matrices
that will allow8 to escape the condition of partition regularity. Therefore, the sizes
of these spaces offer a better characterization of the degree of partition regularity
of a given matrix. Now consider the following corollary to Theorem 2.1.

Corollary 2.8. Let D8 = {A ∈ P8 : apr(A) = 1}. Then (D8, δ) is a metric space,
and (D8,T) is a discrete topological space.

Proof. By Theorem 2.1 we know that

δ : [8] X [8] −→ R

is a metric on [8]. Since D8 is a subset of [8], we know that

δ : D8 X D8 −→ R

is a metric on D8. Thus, (D8, δ) is a metric space. Since every subset of D8 is
contained in M8, then we know for every A0 in D8, there exists an open ball

BA0,1/2 = {A0}.

Therefore, every singleton in D8 is open, and we conclude that (D8,T) is a dis-
crete topological space. �

Lemma 2.9. If P8 is compact, then it is finite. Similarly, if D8 is compact, then it
is finite.

Proof. We will demonstrate the result for P8. The proof works analogously for
D8. Let P8 be compact. Since the collection F consisting of all singletons in
P8 forms an open cover of P8, there exists a finite subcover F′ contained in F.
Assume that F′ is a proper subcollection of F. Then the set Q={A∈ P8 : {A}∈F′}

has power set P(Q) equal to the set of all sets that may be formed by taking the
union of elements of F′. Similarly, R = {A ∈ P8 : {A} ∈ F} has power set P(R)
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equal to the set of all sets that may be formed by taking the union of elements
of F. Since F′ is a proper subcollection of F, it must be that P(Q) is a proper
subcollection of P(R). Thus, we can choose U ∈P(R) \P(Q) that is not equal to
the empty set. Then

U=
⋃
B∈U

{B},

and so any subset {B} is not in P(Q). Thus, the matrix B cannot be in any open set
contained in F′, a contradiction. Therefore, F′=F, and consequently, F is a finite
open cover of P8. Since F is the collection of all singletons in P8, we conclude
that P8 must be finite. �

Notice that for any 8 in Mm,n(C), the topological spaces M8, P8, and D8 are
all Hausdorff. We can think of D8 as the boundary set of P8, since no matrix in
P8 can be “closer” to leaving P8 than those matrices with antiprogress 1. This
relationship between P8 and D8 grants us the following theorem.

Theorem 2.10. For any partition regular matrix 8, the quotient space P8 is com-
pact if and only if D8 is finite.

Proof. Necessity of the statement follows from Lemma 2.9. To demonstrate suffi-
ciency, recall that P8 consists of only finite filaments. Every A in D8 is the last
matrix of a finite filament. For such an A, pick P and Q such that A= P8Q, and
represent P and Q with the finite sequence of elementary operations 〈x〉li=1. Then
we can think of the finite filament ending in A as the finite, ordered set of matrices(

8, 〈x〉1i=1(8), 〈x〉
2
i=1(8), . . . , 〈x〉

l−1
i=1(8), A

)
,

where 〈x〉ni=1(8) represents the matrix produced by applying the first n operations
of 〈x〉li=1 to 8. If we let

〈x〉A(8)=
(
8, 〈x〉1i=1(8), 〈x〉

2
i=1(8), . . . , 〈x〉

l−1
i=1(8), A

)
,

then
P8 =

⋃
A∈D8

〈x〉A(8).

It follows that P8 contains a finite number of matrices if and only if D8 is finite.
Now let X denote the set of all open sets in P8. Since every singleton is open in
P8, we know that X is finite if and only if D8 is finite.

Assume that D8 is finite. Let F be an open cover of P8 (without duplicates),
and assume that F is not finite. Then |X|< |F|. Thus, F must contain more open
sets of P8 than are in the set X, a contradiction. We conclude that F must be finite,
and since any open cover F is a subcover of itself, then it must be that every open
cover of P8 contains a finite subcover. Thus, P8 is compact. �
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Corollary 2.11. D8 is compact if and only if D8 is finite.

Proof. Necessity of the statement again follows from Lemma 2.9. So assume that
D8 is finite. Then, P8 is compact. Since P8\D8 is open in P8, then D8 is closed.
Therefore, D8 is a closed subset of a compact space, and we conclude that D8 is
compact. �

Theorem 2.12. Let 8 be a partition regular matrix, and let the set D8 be infinite.
Then P8 is the union of an infinite number of disjoint, compact subspaces.

Proof. Let G= {Gi : i ∈N} be a partition of D8 into nonempty, disjoint and finite
subsets. Since each subset is finite and D8 contains an infinite number of elements,
there must exist an infinite number of subsets in G. Now let B1 ⊂ P8 be the set of
all matrices on a filament that terminates with a matrix contained in G1. Then for
i > 1, let Bi ⊂ P8 be the set of all matrices on a filament that terminates with a
matrix contained in Gi , but are not contained in

⋃i−1
j=1 B j .

If a filament ends in a matrix A ∈ Gi , then there exists a pair of invertible
matrices P and Q, such that A= P8Q, that can be represented by a finite sequence
of elementary operations 〈x〉li=1. Thus, the filament terminating with A may be
written as the finite, ordered set of matrices

〈x〉A(8)=
(
8, 〈x〉1i=1(8), 〈x〉

2
i=1(8), . . . , 〈x〉

l−1
i=1(8), A

)
,

where 〈x〉ni=1(8) represents the matrix produced by applying the first n operations
of 〈x〉li=1 to 8. Then, for all i ∈ {1, 2, 3, . . .}, the set⋃

A∈Gi

〈x〉A(8)

is the union of a finite number of finite sets, and therefore is also finite. Conse-
quently, each Bi is finite for all i since,

Bi ⊆
⋃

A∈Gi

〈x〉A(8).

Now let X be the set of all open sets in Bi . Since Bi is finite and has the discrete
topology, X=P(Bi ), and is also finite. Assume that F is an open cover of Bi that
contains an infinite number of open sets. Since F is a collection of open sets of
Bi , it must be that F ⊆ X. Thus, |F| ≤ |X|, which contradicts the finite size of
X. So F must be finite, and every open cover of Bi is finite. Thus, every open
cover of Bi contains a finite subcover, namely itself. Therefore, Bi is a compact
subspace of P8. Since {Bi : i ∈N} is an infinite set of disjoint subspaces of P8 and
P8 =

⋃
i∈N Bi , it follows that P8 is the union of an infinite number of disjoint,

compact subspaces. �
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3. Partition regular topological surfaces and graphs

In this section, we will create a topological space that has geometry describing the
degree of partition regularity for an associated topological surface, and then we
will show how these spaces may also be created for an arbitrary, finite graph.

Every topological surface S has a triangulation, and S is compact if and only
if it has a triangulation consisting of a finite number of triangles. So let S be
a topological surface, and let T (S) be a triangulation of S. Then, the set of all
vertices and edges in T (S) form a connected graph G. Let {0i : i ∈ N} be the
collection of all orientations of G.

Proposition 3.1. The collection {0i : i ∈ N} is finite if and only if the surface S is
compact.

Proof. For necessity, let {0i : i ∈ N} be finite and assume S is not compact. Then
T (S) does not consist of a finite number of triangles. Thus, there exists an infinite
number of edges in G, each of which may be assigned one of two directions. Let
00 be in {0i : i ∈N} with K as the edge index set. Now, let 0n be the orientation of
G obtained by reversing only the direction of edge n in 00. Then the set {0n : i ∈K}

is infinite. However,
{0n : i ∈ K} ⊂ {0i : i ∈ N},

which gives a contradiction.
For sufficiency, notice that if S is compact, then T (S) contains a finite number

of triangles. Therefore, E , the set of all edges in G, is a finite set. Since each edge
may have one of two directions, then |{0i : i ∈ N}| = 2|E |. �

Let G be a finite graph and 0i an orientation of G. We know that D0i , the
oriented incidence matrix of 0i , is partition regular if and only if 0i is strongly
connected [Hogben and McLeod 2010, Theorem 2.4]. Here we consider the sub-
collection C of {0i : i ∈N} consisting of all strongly connected orientations of G.

Theorem 3.2. The collection C, of all strongly connected orientations of G, is a
nonempty and proper subcollection of {0i : i ∈ N}, for any triangulation of any
topological surface S.

Proof. Let T (S) be a triangulation of some topological surface S. Then the graph
G consisting of all vertices and edges in T (S) is a connected graph. It is well
known that a graph G has a strongly connected orientation if and only if the edge
connectivity of G is greater than or equal to 2. Therefore, G associated with T (S)
will have a strongly connected orientation if and only if it does not have edge
connectivity equal to 1. We know that an edge {i, j} of G must be an edge of at
least one triangle. Now let

w =
{
v1, {1, 2}, v2, . . . , vi , {i, j}, v j , . . . , {n− 1, n}, vn

}
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be a walk on G that uses edge {i, j}. If we remove edge {i, j}, then we can define
the walk

w′ =
{
v1, {1, 2}, v2, . . . , vi , {i, k}, vk, {k, j}, v j , . . . , {n− 1, n}, vn

}
,

where vk is the third vertex in some triangle containing edge {i, j}. Thus, G\{{i, j}}
is still connected, and consequently, G cannot have edge connectivity equal to 1.
Therefore, there exists a strongly connected orientation of G, and C is nonempty.

To see that C 6= {0i : i ∈ N}, notice that for any vertex vi of G, there exists an
orientation 0i in {0i : i ∈N} such that any edge connected to vi has vi as its head.
Thus, 0i cannot be strongly connected, and C must be a proper subcollection of
{0i : i ∈ N}. �

Therefore, if S is compact, then for each 0i in C, D0i is partition regular. Fur-
thermore, for each D0i we can create the associated quotient space PD0i

= P0i .

Definition 3.3. Given a compact topological surface S, let T be the set of all
triangulations of S. For t ∈T, let Ct be the set of all strongly connected orientations
of the graph associated with t . Then S is a partition regular surface if the product
space ∏

t∈T

( ∏
0i∈Ct

P0i

)
is nonempty.

Theorem 3.4. Let S be a compact topological surface. Then S is partition regular.

Proof. Recall that the set Ct is nonempty for any triangulation t , of any surface
S. Thus, there is at least one quotient space for each distinct triangulation of S

in the product topology associated with S. Consequently, the product topology
associated with S is not an empty space, and thus S is partition regular. �

Definition 3.5. For any finite graph G, let C be the set of all strongly connected
orientations of G. Then G is a partition regular graph if the product space∏

0i∈Ct

P0i

is nonempty.

In contrast to Theorem 3.4, the following theorem shows that not all finite graphs
are partition regular.

Theorem 3.6. Let G be a finite tree. Then G is not a partition regular graph.

Proof. Since no orientation of a tree graph is strongly connected, then every quo-
tient space in the product topology associated with a tree graph is empty. Conse-
quently, any such product topology is empty, and no tree graph is a partition regular
graph. �
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4. Conclusion

As is captured in the contrasting scenarios presented in Theorems 3.4 and 3.6,
partition regularity may be thought of as a property with varying degree that is
dependent on the object being studied. For instance, we began with a compact
topological surface S, traced the notion of order in the context of topological sur-
faces, through the graph theoretical context, and finally the matrix theoretical con-
text. Consequently, we were able to construct topological spaces characterizing the
degree of order for the surface S. We have also seen that every compact topological
surface is a partition regular surface, and thus exhibits, as should be expected, some
level of order. We may now explore the concept of partition regularity for compact
topological surfaces and finite graphs. Moreover, we now possess structures that
allow us to no longer think of an object as simply being partition regular, but
instead, as having some degree of partition regularity. Subsequently, we may begin
to relate matrices, graphs, and topological surfaces based on their relative degrees
of partition regularity.
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